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 2 

Abstract 3 

In respect to ecological psychology processes of attunement and calibration, this 4 

critical review focusses on how exploratory behaviors may contribute to skilled perception 5 

and action, with particular attention to sport. Based on the theoretical insights of Gibson 6 

(1966) and Reed (1996), exploratory and performatory actions have been differentiated in 7 

numerous experiments to study the perception of opportunities of action. The distinction 8 

between exploratory and performatory actions has informed the study of infant behavior in 9 

developmental psychology. In the current article, we highlight limitations with this distinction 10 

in the study of sports performers. We propose that a dynamic view of exploratory behavior 11 

would reveal how individuals develop exploratory activity that generates information about 12 

the fit between environmental properties and action capabilities. In this aim, practitioners 13 

should: (i) give learners the opportunity to safely develop exploratory behaviors even when 14 

they act outside their action boundary; and (ii) guide learners to search for more reliable 15 

information to develop exploratory behaviors that would enhance the transfer of skills to 16 

various performance contexts. 17 

 18 
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Introduction 1 

Exploration is the continuous and active process through which individuals reveal and 2 

pick up information during the control of action (E. J. Gibson 1988; J. J. Gibson 1979/2015). 3 

From an ecological psychology perspective, information resides as patterns in ambient energy 4 

arrays (e.g., optical, acoustic, mechanical) that specify the state of the relation between the 5 

environment and the individual. From this point of view, exploration underpins the relation 6 

between information and movement as the energy arrays are structured by the properties of 7 

the environment and the motion of the individual (J. J. Gibson 1979/2015; Mantel, Stoffregen, 8 

Campbell, and Bardy 2015; Stoffregen, Mantel, and Bardy 2017). When the information 9 

specifies relevant individual-environment relations, individuals perceive opportunities for 10 

action, that is, affordances (J. J. Gibson 1979/2015). Said otherwise, through exploratory 11 

perceptual-motor activity, individuals reveal energy arrays leading to the pickup of 12 

information about affordances that is used to adapt to the environment (E. J. Gibson, 1988).  13 

Authors have tended to differentiate between exploratory and performatory actions 14 

(J.J. Gibson, 1966; E. J. Gibson, 1988; Reed, 1996). An underlying proposal has been that 15 

exploratory action reveals information that is subsequently utilized in the control of 16 

performatory action (e.g., Kretch and Adolph, 2016). Exploration is often considered as a 17 

period of information-gathering to satisfy an intention (Adolph, Eppler, Marin, Weise, & 18 

Wechsler Clearfield, 2000; E. J. Gibson, 1988; Kretch & Adolph, 2017). In this context, 19 

exploratory and performatory actions are often differentiated as the former is thought to 20 

precede the latter in development. Whilst such distinction has been meaningful in the 21 

developmental psychology literature when applied to other domains of psychology such as 22 

expert perceptual-motor control in sport, this has led to the development of methods that 23 

separate the reciprocity of perception-action (e.g., McGuckian, Cole, Chalkley, Jordet, and 24 

Pepping 2018). Indeed, a contemporary view of perception-action, that builds on James 25 



 

 

 

Gibson’s (1966) original perspective is that the process of visual perception is context-1 

dependent and relative to the body and action capabilities of the performer (Wagman & 2 

Morgan, 2010). Although this view is well-established in ecological psychology, this 3 

important proposal is often omitted in the sports skill acquisition literature, particularly during 4 

intervention studies aimed at examining the role of exploratory movements in learning.  5 

Given that a central tenet of ecological psychology is that perception is embedded in 6 

the continuous flow of action and vice-versa, in the current manuscript, we aim to develop a 7 

view of exploratory and performatory action that reflects an embodied-embedded approach to 8 

skilled behavior (Richardson, Shockley, Fajen, Riley, & Turvey, 2008). We argue that 9 

studying the dynamics of changes in exploration during learning could provide valuable 10 

information on how perception-action is developed, with specific consideration of how 11 

learners become more skilled at perceiving and acting in relation to affordances with respect 12 

to sport-specific behaviors (Ludovic Seifert, Komar, Araújo, & Davids, 2016). Central to this 13 

view is an affordance-based control framework (Fajen, 2005), which proposes two learning 14 

processes in the development of perception and action: (i) attunement and (ii) calibration. 15 

First, attunement is characterized by the differentiation of information that supports the 16 

pickup of more reliable patterns in the energy arrays to guide action (Fajen & Devaney, 2006; 17 

J. J. Gibson, 1966). Second, calibration consists in finding an appropriate scaling between 18 

information and action capabilities (Fajen, 2007). Indeed, as individuals’ action capabilities 19 

change over time (e.g., action capabilities can change with fatigue), recalibration facilitates 20 

continuous adaptation that supports the visual control of action (Fajen, 2005, 2007). Despite 21 

the large body of literature discussing the importance of exploration to develop perception-22 

action, exploratory activity is rarely studied in sports skill acquisition. To address this gap in 23 

the literature, we propose the need to examine the exploratory actions used to generate and 24 



 

 

 

scale reliable information for affordances, to better understand “how” individuals become 1 

more skilled during learning. 2 

In sum, this critical review will focus on how exploratory activity can give rise to 3 

perception-action during the acquisition of perceptual-motor skills in sport. We will first 4 

consider the methods used in ecological psychology to investigate exploration. Although this 5 

distinction appears insightful to understand the development of action systems (Reed, 1996), 6 

we propose that these methods cannot be applied to all performance contexts. Indeed, in many 7 

complex sporting environments such as climbing (L. Seifert et al., 2018), exploratory and 8 

performatory actions can appear tightly linked in tasks where performers need to continuously 9 

adjust their relationship with the environment to guide on-going and future activity. Second, 10 

we consider the dynamics of exploratory activity during learning. In studies of expert sport 11 

populations, it is often implied that the amount of exploration decreases as performers become 12 

more attuned to the relevant properties of the environment (Mann, Williams, Ward, & Janelle, 13 

2007). We will discuss such assumption and present exploration as a process that, under 14 

appropriate practice conditions, supports attunement and calibration, thus, continuously 15 

revealing the appropriate fit between the environment and the perceiver’s action capabilities. 16 

Finally, we will present some challenges and considerations to design interventions where 17 

individuals can learn to explore. Rather than learning a specific movement, we propose that 18 

skill acquisition should focus on how performers could develop exploratory behavior: (i) that 19 

is useful in various performance contexts; and (ii) that enables maintenance of active 20 

prospective control during performatory activity.  21 

Explore to Reach a Task-Goal: Exploration and Performance 22 

Exploratory Actions: Explore to Perform 23 

James Gibson (1966) proposed that perception is an active process that does not rely 24 

on passive sensory units, but on the activity of perceptual systems. Gibson differentiated 25 



 

 

 

exploratory (or investigative) activity achieved by these perceptual systems from the 1 

performatory (or executive) activity achieved by the action systems. Following Gibson’s 2 

initial work, Reed (1996) further differentiated exploratory and performatory activities to 3 

understand the development of functional systems, which are the systems that enable 4 

individuals to use resources in their environment to achieve their goal. Reed (1996) proposed 5 

that exploratory actions are those that are aimed at scanning the environment for information 6 

whereas performatory actions are those that alter the substances and surfaces of the 7 

environment. This distinction is useful as animals, especially those like humans, with a head 8 

differentiated from the rest of the body, are able to scan their environment for information 9 

while acting in their environment. For example, during bipedal locomotion, humans have the 10 

capacity to maintain a prospective control in locomotion or to initiate other activity (Reed, 11 

1996).  12 

The differentiation between performatory and exploratory activity is in line with 13 

perspectives in developmental psychology (E. J. Gibson, 1988). Eleanor Gibson differentiated 14 

performatory actions from exploratory actions that are information-gathering, to understand 15 

how infants discover opportunities for action. For instance, E. J. Gibson et al. (1987) 16 

measured the visual and haptic exploration of infants in a task where they had to traverse 17 

different surfaces. Exploratory activity was defined as the period before initiation of 18 

locomotion on the manipulated surface (i.e., when the infants were leaving a starting 19 

platform). This study showed that the duration of haptic and visual exploration depended on 20 

the properties of the surfaces (whether they were rigid or not) and on the mode of locomotion 21 

that was characteristic of the infants’ developmental stage. Thus, this distinction of 22 

performatory and exploratory activities appears valuable to understand how infants developed 23 

their action systems and perceive new affordances. For example, in a series of experiments, 24 

the exploratory activity of children of different ages and abilities were studied in a task 25 



 

 

 

requiring them to approach a slope to study whether they perceived the slope as “crossable” or 1 

not (Adolph, 1995; Adolph, Bertenthal, Boker, Goldfield, & Gibson, 1997; Adolph, Eppler, & 2 

Gibson, 1993; Adolph et al., 2000; Adolph & Eppler, 1998). In these studies, all actions 3 

(whether visual or haptic) that occurred before each child passed the edge of the slope were 4 

considered as exploratory actions. The possibilities of performatory actions are minimal in 5 

young infants as their action systems are not well developed (E. J. Gibson, 1988). Therefore, 6 

the distinction between exploratory and performatory action enables description of the links 7 

between infants’ activity and the attunement of their perceptual-motor system (Adolph et al., 8 

1993; Eppler, Adolph, & Weiner, 1996; E. J. Gibson et al., 1987).  9 

The distinction between exploratory and performatory actions in developmental 10 

psychology has motivated studies in the sport of climbing that have investigated the effects of 11 

anxiety on affordance perception (Nieuwenhuys, Pijpers, Oudejans, & Bakker, 2008; Pijpers, 12 

Oudejans, & Bakker, 2005; Pijpers, Oudejans, Bakker, & Beek, 2006). In these works, the 13 

visual fixations and hand movements of climbers have been categorized as being either 14 

exploratory or performatory based on the actions utilized to complete the climb. If the action 15 

led to a displacement of the climber on the route, it was deemed performatory, otherwise the 16 

action was deemed exploratory. Results showed that both exploratory and performatory visual 17 

(eye) and haptic (hand) movements increased in high anxiety conditions, suggesting that the 18 

climbers performed at a level equivalent to novice performance (Pijpers, 2006). Further to 19 

climbing studies, researchers have also differentiated between exploratory and performatory 20 

actions in soccer. Specifically, in these works, studies have measured visual exploratory 21 

activity (VEA), separate from performatory actions (Jordet, 2005; Pocock, Dicks, Thelwell, 22 

Chapman, & Barker, 2019), with VEA defined as head and body movements that are used to 23 

scan the environment (pitch, teammates, and opponents) prior to receiving the ball, whereas 24 

performatory actions are those observed once a player is in possession of the ball. The 25 



 

 

 

differentiation between VEA and performatory action has led to the development of 1 

experimental methods that have studied VEA in response to video images presented across 2 

multiple screens, without any game-specific performatory action (McGuckian et al., 2019; 3 

van Andel, McGuckian, Chalkley, Cole, & Pepping, 2019). Thus, a methodological 4 

consequence of creating a dichotomy between exploratory and performatory actions is that 5 

researchers have studied perception and action as two separate processes, which compromises 6 

the theoretical view of Gibson (1966). Similarly, in climbing, the differentiation of 7 

exploratory and performatory hand movements has been questioned as in many instances, it is 8 

possible that movements categorized as being exploratory may actually be “failed” 9 

performatory movements (Orth, Button, Davids, & Seifert, 2016). For instance, a climber may 10 

have tried to use a handhold, but because the handhold depth was not as expected, he/she may 11 

have only touched the handhold, released it, and then used another hold. Thus, even “failed” 12 

performatory actions may have temporary performance consequences, they remain important 13 

in the process of learning to differentiate information (van Dijk & Bongers, 2014). Thus, 14 

during practice, the entire activity (i.e., both exploratory and performatory actions) contributes 15 

to their perceptual learning. 16 

In summary, actions have tended to be categorized according to their outcomes: if they 17 

enable the performer to reach the task-goal they are performatory actions, otherwise, if they 18 

lead to the discovery of available information and preparing the performatory actions, they are 19 

related to exploratory activity. Thus, exploratory activity relates to actions that aim at 20 

gathering or scanning information before the initiation of a performatory action. Considering 21 

the reciprocity of perception and action, the study of prospective control with the distinction 22 

between “action to perceive” (exploratory activity) and “action to realize the intention” 23 

(performatory action) appears to be in contradiction to the unity of perception-action.  24 

Exploration is Continuous and Multimodal: Exploring is Performing 25 



 

 

 

Exploration Never Ceases 1 

As considered in the previous section, the differentiation between exploratory and 2 

performatory actions has contributed important understanding in developmental studies 3 

(Adolph, 1995; Adolph et al., 1997, 2000; Adolph & Eppler, 1998), where infants face the 4 

task of perceiving whether to act or not (e.g., walking down slopes or walking over an 5 

unexpected surface). However, in numerous sports activities, performers are in continual need 6 

of adapting their ongoing activity and are, therefore, unable to necessarily stop and “explore” 7 

their environment. For example, performance in pole vaulting necessitates that athletes adjust 8 

the pole position whilst running at high-speed to accurately point the tip of the pole to the 9 

vault box, and then prospectively control when and how to move relative to the pole to 10 

convert maximal kinetic energy into gravitational potential energy while avoiding the bar. 11 

Indeed, performance environments are often dynamic and require to continuously perceive the 12 

opportunities for action relative to ongoing events (Fajen, 2005; Fajen, Riley, & Turvey, 13 

2008).  14 

The ability to anticipate future states of the individual-environment relation is a 15 

characteristic of all animals, especially skilled performers in sport (Araújo, Hristovski, Seifert, 16 

Carvalho, & Davids, 2017). For instance, in a series of recent climbing studies, Seifert and 17 

colleagues have found that performers do not appear to perceive the actions enabled by each 18 

separate hold during an ascent, but rather, they perceive a chain of movements offered by the 19 

properties of the holds and layout on the wall (L. Seifert et al., 2018; Ludovic Seifert, Cordier, 20 

Orth, Courtine, & Croft, 2017). Moreover, in dynamic environments such as soccer games, 21 

players may act by anticipating a chain of actions to score or defend, but they continuously 22 

need to probe for potential changes in the ball, teammates, and opponents’ movements that 23 

could affect the viability of their chain of actions (Dicks, Araújo, & van Der Kamp, 2019). 24 

The concept of nested affordances, which emphasizes that seemingly discrete behaviors are 25 



 

 

 

better understood as a continuous flow of actions distributed across different temporal and 1 

spatial scales, may, therefore, help to understand how individuals efficiently chain their 2 

actions to achieve a task-goal.  3 

The concept of nested affordances was further developed by Wagman (2012), who 4 

demonstrated the effect of practice on the estimation of reachability, revealing that affordance 5 

perception depends on the future states by which a behavior will occur. Specifically, 6 

Wagman, Cialdella and Stoffregen (2018) proposed that affordances can be nested in a 7 

hierarchy that consists of three levels: the “Why” level, which represents the task goal; the 8 

“What” level, which represents the specific behaviors needed to achieve the task goal; and the 9 

“How” level, which represents the various means available to achieve the task goal (Wagman 10 

et al., 2018; Wagman & Morgan, 2010). For illustration, Wagman (2012) showed that 11 

individuals could estimate their maximum touching height (the “Why” level) when they were 12 

asked to reach a suspended object (the “What?” level) by (i) standing on toes or standing with 13 

heels touching the ground, (a first “How?” level), and/or by (ii) using (or not using) a tool (a 14 

second “How?” level). These results indicate that individuals are able to perceive the future 15 

state of their action capabilities even when they are about to perform a series of nested 16 

actions. Therefore, there is not an exploratory action that dictates what and how to do the next 17 

performatory action, but exploration enables performers to keep on accurately perceiving and 18 

acting. 19 

In accordance with the nested affordances perspective, we propose that exploration 20 

could also be considered as an aspect of performatory activity. For instance, in a team sport 21 

such as soccer, the player in possession is not the only sportsperson on the field “performing”. 22 

All the other players are also acting in such a way that they seek to probe future actions, and 23 

at the same time, they move to create opportunities for passes or to restrict opportunities 24 

(depending on whether their team is in possession of the ball or not). Thus, performers in 25 



 

 

 

team sports are constantly scanning, probing and acting in their environment in such a way 1 

that the differentiation between exploration and performatory periods is ambiguous. 2 

Moreover, when a performer tries to dribble past his/her opponent, he/she may use deception 3 

to influence his/her opponent and guide future actions. That is, as the player is revealing and 4 

picking up information, he/she is also generating information. Thus, expertise may reside in 5 

the continuous exploratory activity of performers that enables them to maintain an active 6 

prospection of the available information to act effectively (Pocock et al., 2019). In sum, the 7 

prospective control of action occurs through the information-movement coupling, which 8 

enables to continuously adjust the relation between individual and environment to achieve the 9 

task-goal (Araújo et al., 2017). On-going actions reveal information that contribute to 10 

perception of affordances related to this action (Franchak, van der Zalm, & Adolph, 2010).  11 

Exploration is multimodal 12 

The continuity of exploratory activity is also dependent on multimodal perception. An 13 

important emphasis of James Gibson (1966) was that the environment is not perceived 14 

passively in which our actions are responses to stimuli, but that we actively perceive the 15 

world through the actions of the different perceptual systems. However, a multimodal account 16 

of exploration is lacking in the study of sport skill acquisition. Notably, visual exploration has 17 

largely been studied using video-based laboratory tasks where the opportunities for action are 18 

severely compromised and not representative of complex sport environments (Mann et al., 19 

2007; McGuckian, Cole, & Pepping, 2018). Indeed, results have revealed that the gaze 20 

behaviors utilized by soccer goalkeepers when attempting to save penalty kicks change as a 21 

consequence of both the environment (i.e., video presentation vs. real-time opponent) and the 22 

response requirements (e.g., simulated movement vs. diving to save the kick) (Dicks, Button, 23 

& Davids, 2010). 24 



 

 

 

Comparable to the study of sport performers, the role of exploration in the perception 1 

of affordances has also been studied in laboratory tasks, with restrictions placed on participant 2 

behavior. For instance, Pepping and Li (2008) investigated the role of visual and haptic 3 

exploration on the perception of maximum jumping height from different surfaces. One group 4 

of participants was allowed to explore visually and haptically (i.e., they were invited to jump 5 

on the different surfaces) whereas another group was limited to visual exploration. Although 6 

the haptic exploration group could access more information, they did not improve perception 7 

of their jumping capabilities. Rather, they overestimated their capabilities, whereas the 8 

participants in the visual exploration group underestimated them. Thus, the results indicate 9 

that limiting the perceptual systems during exploration, does not appear to support accurate 10 

attunement or calibration. Indeed, methods that have constrained the modes of exploration, 11 

have also been used to study the perception of “sit-ability” under different leg lengths (Mark, 12 

Balliett, Craver, Douglas, & Fox, 1990), gap “cross-ability” (Mark, Jiang, King, & Paasche, 13 

1999), the “catchableness” of fly balls (Oudejans, Michaels, Bakker, & Dolné, 1996) and the 14 

minimum passing height of a barrier when using a wheelchair (Yu, Bardy, & Stoffregen, 15 

2011; Yu & Stoffregen, 2012). In these studies, the limitations on the permitted actions with 16 

the different perceptual systems (e.g., notably the haptic system and visual system) has been 17 

shown to negatively affect the perceptual judgements of participants in comparison to 18 

conditions where they are able to freely explore. Such findings support a multimodal account 19 

of exploration and as such, examination of the temporal organization of different exploratory 20 

actions provides the opportunity to better understand how multimodal exploration can give 21 

rise to skilled perception-action.  22 

Research conducted in the developmental psychology literature has highlighted the 23 

necessity of multimodal exploration by showing that the information picked-up through the 24 

different perceptual systems is used to support accurate affordance perception. For example, 25 



 

 

 

in the “walk on slope” experiment, Adolph and Eppler (1998) revealed that infants can obtain 1 

visual information about depth and slant, whilst haptic exploration is required to get 2 

information about friction. Furthermore, Adolph, Eppler, Marin, Weise, and Wechsler 3 

Clearfield (2000) described the exploratory activity of infants during the “walk on slope” task 4 

as a sequential process composed of three modes of exploration: exploration from a distance 5 

(e.g., looking at the slope); exploration via direct contact (e.g., touching the slope surface); 6 

and exploration of alternative means (e.g., crawling instead of walking). Following this idea 7 

of a sequential organization of exploration, Kretch and Adolph (2017) proposed that the mode 8 

and organization of exploration in space and time is relative to its cost in terms of effort, time, 9 

and injury risk. According to this hypothesis, individuals use the exploration modes following 10 

a ramping-up organization process. For instance, haptic exploration is a risky form of 11 

exploration because it involves direct contact with an unknown surface, thus, it is only used to 12 

obtain new information following less exposed forms of exploration such as visual 13 

exploration that can be achieved from a distance and, therefore, with limited risks. Thus, 14 

exploratory activity appears to be organized in space and time when individuals search for 15 

opportunities for actions. A closer look at how haptic, motor, and visual exploration are linked 16 

during tasks is required to reveal the organization and changes in organization of exploration 17 

to maintain prospective control during action.  18 

Stoffregen, Mantel, and Bardy (2017) reinforced the importance of multimodal 19 

exploration by proposing that perception should be considered as emerging from a single 20 

perceptual system rather than from different perceptual systems. This idea follows the global 21 

array hypothesis, which proposes that the senses function as a single unit during (active) 22 

perception (Stoffregen & Bardy, 2001). Studies have shown that exploratory activity can 23 

reveal higher order information to perceive the absolute distance from a target object, which is 24 

composed of optic flow patterns and haptic/gravito-inertial stimulation (Mantel, Bardy, & 25 



 

 

 

Stoffregen, 2010; Mantel et al., 2015). These results argue in favor of looking for organization 1 

in the different dimensions of exploratory activity rather than in isolated perceptual systems. 2 

For instance, affordance perception depends on information exploited by the eyes, head and 3 

whole-body in motion, as studies have shown that eye-height information is important for 4 

calibration of the perceptual system to perceive whether one can sit on a seat or fit through a 5 

doorway (Franchak et al., 2010; Mark, 1987; Mark et al., 1990). The information-movement 6 

couplings utilized during exploration may, therefore, provide individuals with the ability to 7 

act purposefully to reveal information. Subsequently, the usefulness of the revealed 8 

information depends on the organization of individuals’ exploratory actions. Thus, 9 

exploratory activity is not only an information-gathering activity that occurs before the start of 10 

performatory actions, but it is embedded throughout the entirety of a performer’s activity. 11 

Exploration is multimodal as individuals do not perceive the environment through isolated 12 

perceptual systems, but as a whole. From this whole, individuals must find functional patterns 13 

to discover affordances, which is made possible through attunement and calibration of the 14 

perceptual-motor system. But how can performers become sensitive to properties of their 15 

performance environment? How does exploration evolve with practice and experience in a 16 

task? 17 

Exploration During Practice: Learning to Reveal Information 18 

Dynamics of Exploration: Toward Less Exploration with Practice? 19 

When exploration is investigated as a sequence of information-gathering actions, 20 

research has shown that exploratory activity tends to decrease with practice, and performatory 21 

activity also decreases as individuals attune to more reliable information and become more 22 

skilled in the task (e.g., Seifert, Boulanger, Orth, and Davids 2015). Quantification of 23 

exploratory actions has been studied during climbing, within which participants were 24 

instructed to climb three different routes - with different orientations of handholds – as 25 



 

 

 

fluently as possible (Orth, Davids, & Seifert, 2018; L. Seifert et al., 2015). In these studies, 1 

the handhold orientation in the climbing route and experience of participants in the task 2 

impacted the amount of exploration of climbers. Specifically, the number of exploratory 3 

actions decreased with practice and increased with the complexity of behavior specified by 4 

the climbing routes. Similar findings have been observed in the development of tool creation 5 

(van Dijk & Bongers, 2014). In this study, van Dijk and Bongers differentiated between 6 

distinct periods during task completion: (i) a visual phase; (ii) a manual and visual exploration 7 

phase; and (iii) a construction phase. The first two phases were considered as exploratory 8 

activity while the construction phase was related to performatory activity. The distinction 9 

between the exploratory and performatory periods was defined relative to the initiation of a 10 

movement that was aimed at achieving the task (i.e., to create and use a tool with the pieces 11 

provided). The duration of the two exploratory periods decreased with practice, whilst actions 12 

during these phases were found to be more goal-directed, as the actions were oriented towards 13 

constructing the final tool. The authors concluded that actions became more goal-directed 14 

with the attunement of the participants to their environment and the discovery of new 15 

possibilities for action. In sum, these findings suggest that the amount of exploration 16 

decreases as the performers become better attuned to relevant information about affordances.  17 

However, focusing analysis solely on the amount of exploration may be misleading. 18 

For example, Wagman, Shockley, Riley and Turvey (2001) examined how the accuracy of 19 

participants’ estimations of the width and height of different objects differed following 20 

periods of haptic exploration completed under different modes of practice (i.e., with or 21 

without knowledge of results). Results revealed that irrespective of the feedback received, 22 

exploration time and exploration complexity (e.g., randomness in hand movements) 23 

decreased, which suggests that exploration decreased and gained in goal-directedness (cf. van 24 

Dijk and Bongers 2014). Nevertheless, attunement did not occur for the groups without 25 



 

 

 

knowledge of results; in this case, the decrease in exploration time was not associated with 1 

improved performance in the size estimation of objects. This finding is in line with infant 2 

locomotion studies, which have reported that neither the amount nor the type of exploration 3 

predicts motor decisions (Adolph et al., 2000; Joh & Adolph, 2006; Kretch & Adolph, 2017). 4 

Therefore, an increase in the effectiveness of exploration cannot be explained solely through 5 

the measurement of the quantity of exploration; a measure that accounts for the accuracy of 6 

perception is required.  7 

The literature considered in this section suggests that individuals who become 8 

successful in a task do not necessarily decrease the quantity of exploration over time. Rather, 9 

it appears that successful exploration reveals the opportunities for action that fit both an 10 

individual’s action capabilities and properties of the environment. Thus, successful 11 

exploration guides the pick-up of reliable information for task accomplishment; that is, 12 

successful exploration is a consequence of increasing accuracy rather than decreasing 13 

quantity. Thus, we argue in the following sections that when studying the perceptual learning 14 

processes of attunement and of calibration, it is more insightful to investigate changes in 15 

performers’ exploration during practice rather than the volume of exploration.  16 

Explore to Reveal Reliable Information: Differentiation of Information 17 

Perceptual learning studies have demonstrated that, with practice, novices can learn to 18 

exploit more reliable informational variables through the attunement of the perceptual systems 19 

(Jacobs & Michaels, 2006; Smith, Flach, Dittman, & Stanard, 2001; van der Kamp, 20 

Savelsbergh, & Smeets, 1997). To better understand the relation between exploration during 21 

learning and task achievement, an important question is whether the changes in the pick-up of 22 

information are a consequence of changes in the mode of exploration. For instance, van Dijk 23 

and Bongers (2014) observed the functional reorganization of gaze behavior with practice in 24 

their tool making task. This reorganization had both an exploratory role, which led to the 25 



 

 

 

pick-up of information about affordances, and a performatory role, which led to alterations of 1 

the environment that led to the discovery of new affordances. Given the mutuality of 2 

perception-action, changes in the information exploited may be assessed by the changes in the 3 

way individual interacts with the environment. For example, Withagen, Kappers, Vervloed, 4 

Knoors and Verhoeven (2013) investigated if sighted, and blind children and adults were 5 

using the same exploratory actions to differentiate between dimensions of an object including 6 

the shape, weight, volume and texture. The experimenters defined five exploratory procedures 7 

that they used to code the participants’ hand movements. They measured the percentage of 8 

time spent using each exploratory pattern and the quality of exploration (i.e., the time needed 9 

before an estimation). Results showed that specific exploratory patterns were necessary to 10 

estimate some dimensions of the objects and that the difference between sighted and blind 11 

participants was not a result of the specific exploratory pattern utilized but in the quality of 12 

exploration (i.e., blind participants needed less time to respond). With practice, participants 13 

learnt to differentiate three out of four object dimensions (i.e., their shape, texture and volume 14 

but not their weight), which illustrated that practice led to the detection of more reliable 15 

information. Thus, the novice participants needed to find an adequate means of exploration to 16 

interact with the objects to achieve the task and, as such, they learnt how to explore. 17 

Wagman (2012) pointed out that changes in exploratory actions can be obvious (e.g., 18 

like touching a surface to estimate its walk-ability after a fall, Joh and Adolph, 2006) or more 19 

subtle (e.g., changes in head and torso motion are sufficient to judge maximum sitting height 20 

when action capabilities are changed: Stoffregen, Yang, and Bardy, 2005). In accordance with 21 

different contemporary learning perspectives in ecological psychology (Fajen, 2005; Jacobs & 22 

Michaels, 2007), it would be important to understand whether differences exist in the modes 23 

of exploration associated with changes in perceptual attunement and the calibration of action. 24 

An example of an obvious change in exploratory activity was observed in a study by Joh and 25 



 

 

 

Adolph (2006) during which, children had to walk on a path with a hidden foam pit. Results 1 

showed that after falling in a trial, children increased the amount of exploration on subsequent 2 

trials: they took more time before walking on the path, they changed their locomotor 3 

behavior, and they increased the use of exploratory touching near the foam pit. Task 4 

achievement was due to the differentiation of reliable visual information (i.e., the delineation 5 

of the new ground surface), which was motivated by a fall in an earlier trial that guided 6 

changes in the exploratory and locomotor activity. Exploration may lead to misperception and 7 

failure in the task if the exploited information is not reliable, irrespective of the time spent 8 

exploring the environment (Adolph, Marin, & Fraisse, 2001). Therefore, the quantity of 9 

exploration during learning should be investigated alongside the mode of exploration (i.e., 10 

how do individuals reveal information to achieve the task?) and the dynamics of exploration 11 

during practice (i.e., what were the previously observed outcomes and behaviors?). 12 

A recent climbing study proposed an innovative method to study the dynamics of 13 

exploration during the acquisition of a complex motor skill. To describe the temporal 14 

organization of exploration of climbers during practice, Seifert, Orth, Mantel, Boulanger, 15 

Hérault, and Dicks (2018) defined five different climbing states: (i) looking at the route; (ii) 16 

adjusting the center of mass; (iii) determining which hold to use (i.e., modifying the position 17 

or orientation of the hand or foot); (iv) hold changing (i.e., grasping another hold while the 18 

hip stays stationary before motion); and (v) moving the hip and at least one limb. The number 19 

of times each mode was used, and their relative duration was measured for each trial during 20 

practice. The authors presented the dynamics of exploration across multiple temporal levels, 21 

which enabled improved understanding on the relations between exploration during learning 22 

and task achievement. Their results revealed that climbers decreased the number of stationary 23 

states while their climbing fluency increased, suggesting an improvement in “route finding” 24 

skill, encompassing the ability to perceive a chain of movements (i.e., nested affordances) on 25 



 

 

 

the climbing route. Such association between the dynamics of exploration and the dynamics 1 

of performance highlights changes in the efficiency of an individual’s exploration. The 2 

analysis of the dynamics of the efficiency of the exploratory activity would also reveal if the 3 

learning protocol enabled individuals to learn to explore effectively, that is by guiding 4 

performers toward information about affordances relevant for the task achievement. 5 

Explore to (Re)Calibrate the Perceptual-motor System: Scaling Action to the 6 

Information 7 

Although the previous section stressed that the exploration of performers may change 8 

as they increase their sensitivity to their environment, it shouldn’t be forgotten that the 9 

accurate perception of affordances is grounded in the individuals’ sensitivity to their action 10 

capabilities (Fajen, 2007). For example, Oudejans, Michaels, Bakker, and Dolné (1996) used 11 

an interception task to study the “catchableness” of a fly ball. To be perceived, this kind of 12 

affordance requires that participants scale information to their body size (e.g., eye height and 13 

leg length) and to their running and catching capabilities. Results revealed that participants 14 

were more efficient in judging the ball “catchability” when they could move than when they 15 

stood before giving their judgement. This difference was explained by the availability of 16 

information about the boundaries of the participants action capabilities when they are moving, 17 

which supports the view that exploration is continuous. 18 

Given that action capabilities are liable to change due to motor development on a 19 

longer timescale, and on a shorter timescale, due to fatigue, calibration and recalibration must 20 

be continuous to accurately perceive opportunities for action (Franchak & Somoano, 2018). 21 

More specifically, a change in action capabilities modifies the mapping between information 22 

and action which requires recalibration, that is, to adapt the scaling of action to information 23 

(van Andel, Cole, & Pepping, 2017). Moreover, Brand and de Oliveira (2017) proposed that 24 

the exploration required for recalibration depends on the availability of reliable information 25 



 

 

 

and on the magnitude of the disturbance of the action system. The authors subsequently 1 

suggested that expert performers may better adapt to disturbances in their action capabilities 2 

as they may have developed exploratory actions that support recalibration over a relatively 3 

short timescale (Brand & de Oliveira, 2017). For example, Mantel, Stoffregen, Campbell, and 4 

Bardy (2015) demonstrated that individuals could generate sufficient information about the 5 

distance between themselves and an object with only a combination of eye, head and torso 6 

movements. Such adaptive exploratory actions could reflect the subtle changes in exploration 7 

that we previously discussed that are used to adapt perception and action to the context 8 

(Wagman, 2012). 9 

During development, children adopt different locomotion patterns including crawling 10 

and walking due to postural milestones (e.g., learning to crawl, to walk…), which requires 11 

calibration of an infant’s action capabilities and contributes to the process of differentiation of 12 

information (Adolph et al., 1997; Adolph & Eppler, 1998). Indeed, experiments on the slope 13 

crossing task have revealed that infants in their first weeks are unable to judge risky slopes. 14 

Rather, they needed weeks of locomotor experience to develop exploratory activity to 15 

generate information that reveals the fit between environmental properties and their 16 

capabilities (Adolph, 2008). In fact, the emergence of new coordination modes can increase 17 

individual action capabilities and extend the field of possibilities that the environment offers 18 

to individuals. During learning, changes in patterns of coordination used to achieve task 19 

outcomes have been observed during practice (Chow, Davids, Button, & Rein, 2008; Komar, 20 

Potdevin, Chollet, & Seifert, 2019; Nourrit, Delignières, Caillou, Deschamps, & Lauriot, 21 

2003). These behavioral dynamics may induce the need for learners to modify their 22 

exploratory activity to control their movements accurately, but it also gives to the learners the 23 

chance to discover new opportunities for interaction with the environment.  24 



 

 

 

It has been suggested that the discovery of original and functional possibilities for 1 

action (i.e., individuals’ creativity) may be enhanced when individuals act close to their 2 

maximal action capabilities (Orth, van der Kamp, Memmert, & Savelsbergh, 2017). 3 

Conversely, it has been proposed that in everyday tasks, individuals tend to stay in a safe 4 

region in-between the boundaries of their action capabilities to preserve the possibility to 5 

adapt their behavior (Fajen, 2005). For instance, studies show that children playing in a 6 

climbing playscape stay within a safe region of their action boundaries and keep a security 7 

margin when they climb (Croft, Pepping, Button, & Chow, 2018; Prieske, Withagen, Smith, 8 

& Zaal, 2015). This protective behavior has also been observed in a virtual car braking task 9 

where participants anticipated braking even if they could stop later (Fajen, 2005; Fajen & 10 

Devaney, 2006). However, in competitive sport contexts, performers are pushed toward their 11 

action boundaries. In such instances, exploratory movements (i.e., like touching a hold in a 12 

climbing task to estimate its grasp-ability) may be limited so that performers are targeted in 13 

their exploration to maintain a prospective control and to perceive the limits of their action 14 

capabilities. For example, when attempting to save penalty kicks, soccer goalkeepers tend to 15 

initiate movements to intercept the ball outside of their action boundaries (Dicks, Davids, & 16 

Button, 2010). Although this late dive may not enable goalkeeper to reach for the ball if the 17 

shot is highly accurate, this timing of action allowed goalkeepers to rely on more useful 18 

spatial information to anticipate kick direction. Thus, methods that investigate affordance-19 

based control of action should assess the maximal action capabilities of the performers to 20 

examine whether they are sensitive to their action boundaries. Also, it seems that performers 21 

should explore a large range of their action capabilities during practice to develop efficient 22 

exploratory activity, and acting close to their action boundaries may encourage performers to 23 

find new movement solutions that would extend their maximal action capabilities and their 24 

possibility of exploration. 25 



 

 

 

Learning to Explore 1 

A key emphasis of this critical review is that skill learning conditions in sports should 2 

encourage the development of modes of exploration that reveal the fit between environmental 3 

properties and performers’ action capabilities to perceive affordances relevant for task 4 

achievement. Practice conditions should: (i) lead performers to develop exploratory activity 5 

that reveals more reliable information; and (ii) encompass safe environments where 6 

performers can learn to explore even when they behave close to – and beyond - their current 7 

maximal action boundaries. When applied to climbing, a safe environment refers to situations 8 

from which the learner can escape, fallback or adapt and use a back-up plan. To test this 9 

hypothesis, Seifert, Boulanger, Orth, and Davids (2015) designed three climbing routes by 10 

manipulating the hold orientation and the number of available edges for grasping during 11 

learning. A horizontal-edge route was designed to allow horizontal holds in which the trunk 12 

faced the wall. A vertical-edge route was designed to allow vertical holds, which experienced 13 

climbers were able to grasp with the side of their body toward the wall. Finally, a double-edge 14 

route was designed to invite both horizontal and vertical holds. Because a route with only 15 

vertical-edge holds was challenging for novice climbers, the double-edge route allowed safe 16 

and functional exploration because climbers could both exploit their preexisting behavioral 17 

repertoire (i.e., horizontal-hold grasping pattern with their trunk toward the wall) and explore 18 

new behaviors (i.e., vertical-hold grasping with their side toward the wall). The results 19 

indicate that this safe environment of practice can be useful because perceptual-motor 20 

exploration appears less risky, with possible back-up and the learner is more inclined to 21 

experiment in these regions (L. Seifert et al., 2015). Thus, this learning design guided the 22 

exploration of learners to search for reliable information to perform the vertical-hold grasping.  23 

However, research has also demonstrated that if there is insufficient variation in the 24 

practice environment, learners can sometimes exploit information that does not support 25 



 

 

 

accurate perception when they are exposed to a broader range of situations (Fajen & Devaney, 1 

2006; Smith et al., 2001). To address this issue, Smeeton, Huys and Jacobs (2013), proposed a 2 

novel type of intervention to guide learners’ exploration to pick-up more reliable information 3 

by neutralizing less useful information. More specifically, they reduced the usefulness of the 4 

informational variables that were potentially used by novice tennis players to anticipate the 5 

direction of their opponent’s stroke by keeping constant this potential information while the 6 

strike outcomes were varied. Two important findings revealed that: (i) learners exploited new 7 

information if the usefulness of the initial information is reduced; and (ii) learners could 8 

attune to higher order information that supported accurate perceptual-motor skill in both a 9 

post-test and transfer test (in this study, the higher-order information was distributed across 10 

different body parts of the opponent).  11 

Variable practice has been proposed to guide learners’ perceptual attunement and to 12 

enhance transfer of learning (Fajen, 2005; Fajen & Devaney, 2006; Huet et al., 2011). In this 13 

form of practice, less useful informational variables are varied across practice trials so that 14 

learners are forced to search for new and more consistent information to guide their action. 15 

Smith, Flach, Dittman, and Stanard (2001) proposed the concept of flexible attunement to 16 

describe the ability of learners to rely on different informational variables according to the 17 

performance context. Fajen and Devaney (2006) observed such flexible attunement while 18 

comparing the effects of different variable practice conditions to perform a braking task in a 19 

virtual environment. They manipulated either (or both) the stop sign radius and/or the initial 20 

speed of the virtual vehicle so that the less reliable informational variables, like the expansion 21 

rate of the sign would no longer be useful. Results showed that these interventions led to 22 

perceptual attunement: participants learnt to rely on high order informational variables to 23 

guide their actions. Similarly, Huet, Jacobs, Camachon, Missenard, Gray, and Montagne 24 

(2011) created a flight simulator where the less reliable informational variables initially used 25 



 

 

 

by novice participants were varied so that exploiting this information no longer supported 1 

accurate action. Results showed that participants in the variable practice group outperformed a 2 

constant practice group in a transfer test due to changes in the informational variables used to 3 

guide action. Developing interventions that support flexible attunement (i.e., transfer in the 4 

use of a variable to guide action) is important in sports given the variable and complex nature 5 

of sport environments (Fajen et al., 2008). Dicks, Pocock, Thelwell, and van der Kamp (2017) 6 

proposed a form of on-field variable practice to train goalkeepers in a penalty task. The 7 

goalkeepers faced three players that started their run-up together but only one them executed 8 

the penalty on each trial. This intervention was aimed at directing the goalkeeper’s attention 9 

to information that emerged around the time of when the penalty taker’s foot contacted the 10 

ball. Compared to constant practice (i.e., facing penalty kicks from one player executing the 11 

run-up and penalty), the intervention enhanced performances of goalkeeper on non-deceptive 12 

penalty kicks, which may be due to a better perceptual attunement. Such intervention must be 13 

developed to help learners to pick-up more reliable information about affordances, and so that 14 

the exploration developed during practice can be transferred and used to achieve high 15 

performances outside the training context. 16 

Linking perspectives from ecological psychology to existing findings on the dynamics 17 

of learning may help to better understand the transfer of perceptual-motor skills to multiple 18 

contexts of performance and to inform interventions that both develop a performer’s motor 19 

repertoire and guide learners toward more reliable information. Indeed, a large volume of the 20 

literature focusing on interventions in performance contexts is rooted in the dynamical 21 

systems approach to learning (Schöner, Zanone, & Kelso, 1992). This framework has focused 22 

on the effect of the interventions on coordination dynamics (i.e., the motor repertoire of the 23 

learners) rather than on perceptual attunement (Chow et al., 2008, 2007; Lee, Chow, Komar, 24 

Tan, & Button, 2014). Based on Bernstein’s (1967) observation that practice is a form of 25 



 

 

 

“repetition without repetition”, interventions have focused on the role of movement variability 1 

to develop the adaptability of learners. For instance, training interventions such as 2 

“differential learning” have proposed to add random noise to task constraints (i.e., irrelevant 3 

movement components) to increase the performance of learners by discovering multiple 4 

movement solutions (Schöllhorn et al., 2006; Schöllhorn, Hegen, & Davids, 2012; 5 

Schöllhorn, Mayer-Kress, Newell, & Michelbrink, 2009). A question remains about the 6 

qualitative nature and actual relevance of the induced variability (i.e., the random noise in the 7 

task constraints). Indeed, variations in the learning contexts may encourage attunement only if 8 

reliable information is available in the different learning conditions (Smeeton et al., 2013). 9 

Cardis, Casadio, and Ranganathan (2018) have also pointed out that such variability may 10 

increase exploration of new solutions but may adversely affect the ability to retain the learned 11 

solution, thus, they questioned the threshold of variability after which variable practice 12 

impairs learning.  13 

In summary, learning interventions may promote the discovery of exploratory actions 14 

that enhance the transfer of perceptual-motor skills. Learners should be given the opportunity 15 

to safely explore and to be guided toward more reliable information for action. Reducing the 16 

usefulness of the less reliable information seem to be effective in enhancing transfer of 17 

learning. In this aim, the less reliable information can be neutralized or varied across practice 18 

trials so that learners search for new and more reliable information for action. However, care 19 

must be given to the context of practice that may limit the opportunity to interact with the 20 

environment. Thus, as learning is not about accumulating information across trials but rather 21 

generating and exploiting useful information for action, interventions must lead performers to 22 

learn to explore rather than learning a model of skill. 23 

Conclusion 24 



 

 

 

This critical review focused on how exploratory activity can support the development 1 

of perception-action during learning. We considered that exploration is continuous and 2 

multimodal, and so, the generation and pickup of information lies in all the actions of 3 

performers. Therefore, we propose that future investigations in skill acquisition should look at 4 

the changes in the organization of the learners’ exploratory activity in relation to performance 5 

achievements rather than observing the amount of exploration during practice. Experts in 6 

high-performance contexts such as sport manage to perceive future states of their relationship 7 

with their environment even though they experience changes in their action capabilities or 8 

events. Therefore, a dynamic view of exploratory activity may reveal how experts in sport act 9 

in uncertain and dynamic environments. Practice conditions must lead individuals to adopt 10 

exploratory activity that reveals the fit between the environmental properties and their action 11 

capabilities. Moreover, to discover new opportunities for action, learning environments 12 

should promote safe conditions that give performers the opportunity to develop exploratory 13 

activity, even when they act outside of a ‘safe region’ of their action capabilities. In this 14 

regard, interventions that guide learners to search for more reliable information appear to be 15 

the most suitable learning design to develop exploratory activity that would enhance the 16 

transfer of skill to various performance contexts. 17 
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