
HAL Id: hal-04064187
https://hal.science/hal-04064187

Submitted on 11 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Open licence - etalab

A Comprehensive P4-based Monitoring Framework for
L4S leveraging In-band Network Telemetry

Huu Nghia Nguyen, Bertrand Mathieu, Marius Letourneau, Guillaume Doyen,
Stéphane Tuffin, Edgardo Montes de Oca

To cite this version:
Huu Nghia Nguyen, Bertrand Mathieu, Marius Letourneau, Guillaume Doyen, Stéphane Tuffin, et
al.. A Comprehensive P4-based Monitoring Framework for L4S leveraging In-band Network Teleme-
try. 36th IEEE/IFIP Network Operations and Management Symposium (NOMS), May 2023, Miami,
United States. �10.1109/NOMS56928.2023.10154331�. �hal-04064187�

https://hal.science/hal-04064187
http://www.etalab.gouv.fr/pages/licence-ouverte-open-licence-5899923.html
http://www.etalab.gouv.fr/pages/licence-ouverte-open-licence-5899923.html
https://hal.archives-ouvertes.fr

A Comprehensive P4-based Monitoring Framework
for L4S leveraging In-band Network Telemetry

Huu Nghia Nguyen†, Bertrand Mathieu‡, Marius Letourneau∗, Guillaume Doyen§,
Stéphane Tuffin‡, Edgardo Montes de Oca†

†Montimage, Paris, France, {huunghia.nguyen,edgardo.montesdeoca}@montimage.com,
‡Orange Innovation, Lannion, France, {bertrand2.mathieu,stephane.tuffin}@orange.com
∗LIST3N, University of Technology of Troyes, Troyes, France, marius.letourneau@utt.fr,

§OCIF - IRISA (UMR CNRS 6074), IMT Atlantique, Rennes, France, guillaume.doyen@imt-atlantique.fr

Abstract—The Low-Latency Low-Loss Scalable throughput
(L4S) architecture has recently been proposed to reduce the
network latency of low-latency services and to allow their
flows to coexist with classic ones in the same domain. This
coexistence implies monitoring and security challenges. However
current monitoring methods, primarily based-on sampling and
polling, exhibit performance and granularity limitations. This
paper describes the challenges for monitoring LL services and
details our solution when introducing a fine-grained and real-time
monitoring capability in our P4-based L4S implementation using
In-band Network Telemetry. The initial experimental evaluation
shows that our solution is able to monitor the metrics of an L4S
switch with very few networking and processing overhead and
without disturbing the L4S behaviour.

Index Terms—P4, INT, L4S, High-precision Monitoring

I. INTRODUCTION

Today, many new applications require low or near-zero
latency, such as virtual reality, cloud gaming, tele-robotics
or tactile internet. End-to-end latency is affected by several
factors with packet sojourn time in routers or switches being
among well-known factors [1] influenced by the traffic load.
In this context, the L4S architecture [2] has recently been
proposed to reduce the queuing delay of low-latency (LL)
traffic in a way that does not harm classic (CL) traffic. While
some LL and CL traffic coexistence issues such as throughput
sharing, are addressed in L4S specifications, deploying L4S
still implies assurance and security challenges that are calling
for a monitoring framework. For instance, three categories of
threats to make LL applications unusable have been identified
in [3] .

Monitoring L4S implies being capable of observing the
internal states of routers and switches to further evaluate,
detect, and eventually protect forwarding planes’ behaviour.
The current methods to obtain reports about internal states
are polling or sampling based. Polling causes performance
limitation due to the induced polling delay and processing
overhead for the L4S node. Sampling may miss small flows
and network events such as spikes or anomalies when they
occur between two samples.

Meanwhile, the P4 programming language [4] has emerged.
It aims at programming packet forwarding in network devices.
It is a disruptive instrument [5] as it helps to reduce the need
of dedicated hardware devices by introducing programmable

devices and APIs to process and control network traffic.
We implemented an L4S switch using P4 language in [6].
In this implementation, we modified the code of the BMv2
switch, which is a virtual switch supporting P4, to use its
measurement API and wrote the results into its execution log
stream. This offers some preliminary elements for debugging
and troubleshooting L4S but without the attributes of a fully
operational monitoring solution.

This paper describes the challenges in monitoring LL ap-
plications and our solution to implement a fine-grained and
real-time monitoring system1 for L4S using P4 language. The
monitoring system is based on the In-band Network Telemetry
(INT) technology [7] which is a remote network monitoring
framework. We overcome the trade-off between precision of
monitoring and monitoring overhead thanks to on-demand
monitoring which gives the ability to select the metrics to be
captured and to set the condition for reporting these metrics.
To the best of our knowledge, this is the first dedicated INT
monitoring framework for L4S networking devices using P4.

The rest of the paper is organised as follows. Section II
presents the background about L4S and INT. We detail the
challenges and our approach to tackle them in Section III. We
evaluate our implementation in Section IV. Section V presents
related work. Section VI concludes the paper.

II. BACKGROUND

A. L4S Architecture

A key concept of L4S is the Dual queue coupled Active
Queue Management (AQM) with one queue for LL and
another queue for CL traffic. The coupling between the two
queues allows these two traffic types to fairly share bandwidth
when they coexist in the same bottleneck which is a prereq-
uisite to LL deployment over the Internet. Consequently, LL
traffic leveraging TCP-Prague congestion control can coexist
with throughput oriented traffic using more common conges-
tion controls such as Reno/Cubic without the former starving
the latter [8].

The Dual queue AQM consists of three main components.
The first one classifies the ingress LL and CL packets to

1The code and test results are open-source at https://github.com/
mosaico-anr/p4-int-l4s

{huunghia.nguyen,edgardo.montesdeoca}@montimage.com
{bertrand2.mathieu,stephane.tuffin}@orange.com
guillaume.doyen@imt-atlantique.fr
https://github.com/mosaico-anr/p4-int-l4s
https://github.com/mosaico-anr/p4-int-l4s

determine which queue the packet should be forwarded to. The
classification is usually based on a 2-bit Explicit Congestion
Notification (ECN) field in the IP header however other classi-
fication methods may be applied to steer non-L4S low-latency
flows in the LL queue. Once classified a packet is processed by
the AQM of the CL or LL queue with the marking or dropping
probability of the CL queue being proportional to the square
of the marking probability of the LL queue. This coupling
between the two queues forms the second component of the
Dual queue AQM. It ensures the fair sharing of bandwidth
between the two types of traffic. It represents a core feature
of the L4S architecture as the coexistence and fairness of the
two types of traffic are strong prerequisites in the design of
L4S. The last component is a scheduler that gives conditional
priority to the LL traffic over the CL traffic. The conditional
priority being meant to avoid short-term starvation of the CL
traffic by the LL traffic.

B. In-band Network Telemetry

Network telemetry has emerged as a mainstream technical
term [9] to refer to an automated process for remotely col-
lecting and processing network information. In-band network
telemetry uses INT packets in the data plane to carry INT
metadata that are telemetry instructions and collected infor-
mation. The P4 Working Group 2 recently defined the INT
data plane specification, including the INT system, the INT
metadata and the INT report [7]. An INT system basically
consists of (i) INT-capable devices, which can be eventually
configured by an SDN controller, and (ii) a collector, which
receives and extracts information from INT reports that are
sent by the devices.

An INT-capable device can play one or more roles: source,
transit or sink. Based on the received configuration from the
control plane, a source device selects INT packets, then em-
beds a telemetry instruction bit map into the packets to indicate
the network information to be measured. While matching
and forwarding an INT packet, a transit device interprets
the instructions to collect the required information. The sink
device removes INT metadata from the packet. A node will
not attach its information into a packet if the resulting packet
size is greater than its Maximum Transmission Unit (MTU).

The P4 Working Group defines three INT modes of op-
eration. In the INT-XD (eXport Data) mode, an INT-capable
device plays all the three roles, i.e., it selects INT packets,
collects then sends telemetry data to the collector. In the
INT-MX (eMbed instructXions) and INT-MD (eMbed Data)
modes, the source and the sink roles are played by two
different devices. The device also plays the transit role to
collect data. The difference is that the collected information is
directly exported by the node to the collector in INT-MX mode
while the information is embedded into packets and forwarded
to the next node in INT-MD mode.

2https://p4.org

III. CHALLENGES AND DESIGN CHOICES

A. Lack of INT Monitored Metrics dedicated to L4S

The P4 Working Group specifies 8 sets of metrics which are
for monitoring general networking devices. Additional metrics
are needed to monitor L4S devices: the numbers of dropped
packets and marked packets for each LL and CL queues.
Although in the initial 8 sets some metrics do not concern L4S,
such as the 7th set meant to collect level 2 ingress and egress
port IDs, we implemented all of them, to be compatible with
the P4 Working Group specification, which is implemented
and used on a variety of devices.

It is worth noting that we identified the smallest set of
metrics that represent the internal information of an L4S
device to save space, hence reducing the bandwidth consumed
by INT to transfer the metric values. We do not take into
account the metrics that can be collected outside the device
by analysing the packets before or after it, e.g., bandwidth,
throughput or packet inter-arrival time. Our framework moni-
tors the following metrics:

1) Device ID is the unique identification of the device.
2) Level 1 Ingress and Egress port IDs are the IDs of the

ports on which the packet was received and sent.
3) Hop latency is the time, in microsecond, that it takes for

the packet to be processed within the device.
4) Queue ID and queue occupancy are the ID of a queue

and its build-up of traffic in the queue, expressed as the
number of packets, at the moment the packet was sent
out. We have two queues in a L4S devices: queue 0 for
LL and queue 1 for CL traffic.

5) Ingress timestamp is the device’s local time, in nanosec-
ond, when the packet was received.

6) Egress timestamp is the device’s local time, in nanosec-
ond, when the packet was sent out.

7) Level 2 ingress and egress port IDs are the IDs of
the logic ports, applying for layer 3 switched virtual
interface, on which the packet was received or sent.

8) Egress port TX link utilisation is the current usage of
the egress port the packet was sent through.

9) Numbers of marked packets and dropped packets are the
amount of packets that have been marked and dropped
by L4S, respectively. Only the packets being dropped
due to the behaviour of L4S are counted. By analysing
the ingress and egress traffic, we can obtain the total
dropped packets including the ones dropped by the
device when it does not find a route to send the packets.

As such, the above metrics can be used to identify, for
example, the dominant contributing IP sender whose packets
occupy most of a queue during a given interval. Indeed, by
using the ingress and egress timestamps, one can get the set
of packets that were present in the queue during the given
interval. Furthermore, since the INT collector can also extract
the IP source field of those packets, one can then easily
identify their dominant IP source.

The next two subsections focus on the implementation of
two main components in the framework, INT-capable devices
using P4 and an INT collector.

B. P4-based INT Networking Devices

1) P4-based Monolithic Application: A P4 program is
monolithic which causes difficulty to write programs in a
reusable and modular way. Furthermore, the existing P4-based
INT frameworks are usually implemented as a main program
performing network monitoring. Instead, our main P4 program
implements L4S (P4-L4S).

Our INT-based monitoring framework (P4-INT) is improved
from the existing P4-based INT [10] to conform to INT version
2.0 by supporting INT-MX mode which does not exist in the
version 1.0 of the P4 Working Group specification. Although,
our P4-INT do not support the type-length-value (TLV) data
type as it is not required for monitoring L4S and P4 does
not natively support multiple fields with varying lengths. It is
organised as a library that is called by the main program, P4-
L4S. Our P4-INT code consists of three main building blocks,
so-called control in P4 language, to realize the three roles
of an INT node. The separation of P4-INT and P4-L4S allows
to easily upgrade each component.

In addition to the P4 Working Group metrics which are
supported by the devices, we need to implement counters to
compute the statistic of the numbers of dropped or marked
packets. These counters should not be at the packet level
since they accumulate the total numbers of dropped or marked
packets. They are globally available across the packets that
are in the same traffic type, either LL or CL. We thus use a
P4 register with four elements to store these counters. A
register element is reset to zero to avoid repeatedly reporting
once its value has been embedded inside an INT packet.

2) Overhead of Fine-grained Monitoring: The framework
needs to capture the L4S device states per packet which would
heavily consume device resources if all metrics of all packets
were to be analysed, especially with high throughput traffic.
To mitigate this high resource consumption, we design P4-
INT to perform conditional measurements: on an L4S device
it only measures the metrics requested via the INT instruction
bit map; the measurement of given metrics and the complete
INT-capabilities of the device can be activated or deactivated
at runtime by the device control plane.

The overhead in device resource consumption can also be
reduced by triggering measurements only for flows matching
filters configured by the control plane.

C. INT Collector

1) Fast Reaction in a Short Timescale: A monitoring
framework is often deployed together with a detection and
reaction framework. It should provide precise networking
information enabling the later to react in an appropriate way to
ensure the network actually sustains LL services. Our frame-
work provides high precision network state information by
relying on a push mechanism that uses network sockets, Kafka

or Redis message buses, rather than a temporal database [10],
to deliver in near real-time the collected metrics values.

Precisely, we extended our existing network traffic analyser,
MMT [11], so that it can act as an INT collector by imple-
menting two new plugins in its deep packet inspection library
to parse the two protocols, INT metadata and INT report, that
are defined by the P4 Working Group. Originally, MMT is
a software solution with a plugin architecture, to passively
analyse network packets. By using the new plugin to decode
the INT metadata protocol, MMT can be eventually deployed
on-the-fly behind an INT-capable device to capture and extract
INT metadata directly from the egress packets in the data
plane.

2) Huge Reports generated by Collectors: Whereas MMT
can analyse network traffic with very high throughput, it may
saturate the third-party application with a huge amount of re-
ports. For instance, a collector, without any further processing,
will generate one report per INT packet [10]. We overcome this
bottleneck by implementing in MMT two new filters. MMT
reports only the metric values according to the condition pre-
defined by the users via these filters. As such, the framework
gives users fine-grained control on the whole monitoring chain,
from collecting metrics to forwarding reports.

The event-based filter allows MMT to generate a report only
when some metrics’ values change. It reduces unnecessary
reports while preserving the fine-grained information. Listing 1
shows an example of an event-based filter to tell MMT to send
only the reports, named vary-latency, when matching
the two following conditions: (i) the Hop latency metric,
designated in MMT by the term int.hop_latencies, is
being collected; and (ii) latency values of each queue change
with respect to the last report. If these conditions are satisfied,
then MMT will send a report containing the values of the
prescribed metrics in the attributes expression to a Redis
message bus that has been configured beforehand.

event-report vary-latency {
event = "int.hop_latencies"
delta-cond = {"int.hop_latencies","int.hop_queue_ids"}
attributes = {"ip.src","int.hop_switch_ids","int.
hop_ingress_times","int.hop_egress_times"}

output-channel = {redis}}

Listing 1. An event-based report to retrieve only the change of queue latency

The query-based filter allows MMT to generate periodically
statistic by performing some query operations on a window of
INT metadata. The current supported operations are: sum that
returns the sum of values; count that returns the number
of values; avg that returns the average of values; var that
returns the variance of values in the group; diff that returns
the difference between two consecutive values; last, first
that returns the last or first value in the group respectively.

IV. EXPERIMENTAL EVALUATION

We set up a testbed to evaluate our framework. It includes:
(1) two client-server pairs that allow generating LL and CL
traffic, (2) an INT-capable P4-based L4S switch and an INT
sink switch between the clients and servers, and (3) MMT that

C
ollector V

M

Switch VM

Analysis,
visualisation

tool
(3rd-party app)

INT

L4S
Routing,

Forwarding

P4 switch

P4 program
IP, INT

packets
IP

packets P4 switch

INT monitoring
configuration

IP
packets

MMT
(INT collector)

INT-capable
plugins A

d
ap

ti
n

g,
Fi

lt
er

in
g

➢ Event-based filter reports
➢ Query-based filter reports
➢ Packets reports

Controller
tool

INT report

INT

Routing,
Forwarding

P4 program

Client
VMs

Server
VMs

Fig. 1. P4-based monitoring system for L4S leveraging INT

acts as an INT collector. In our test, the client sends data to the
server. We used BMv2 virtual switches and their MTU setup
is large enough to be able to carry the INT metadata in the
packets. These entities are installed inside VirtualBox Virtual
Machines (VMs) hosted on a Dell laptop. We use internal
networking mode to create software-based networks which
are only visible to the concerned VMs and isolated from the
other VMs.

Figure 1 details the components inside the switches and the
collector of the testbed. We configure the switches via their
control planes by using Thrift protocol. The INT monitoring
configuration allows to enable or disable INT capability, to set
the INT roles, to select the metrics to be monitored, and to
select the IP packets to carry INT metadata. The L4S switch
on the left side plays both the source and transit roles to
extract and embed INT metadata in INT packets which are
then forwarded to the next switch which plays the sink role
to send INT reports to the collector. Thus the testbed follows
the INT-MD mode [7].

A. Overhead on Packet Latency

The INT computation of the device may introduce an
extra latency when parsing INT instructions and embedding
required metrics into INT packets. Indeed, if all the metrics
are collected, the device will add to an INT packet 48 bytes
to carry the collected values and 12 bytes of the INT protocol
header. Consequently, each packet at the egress port of the
switch in our testbed contains 60 additional bytes. To evaluate
the latency overhead, we implemented two simple client and
server programs to actively measure the end-to-end packet
latency. The client inserts the current time in a packet field
and sends it to the server. The latter simply sends the packet
back. The client then compares the current time and the one
embedded in the packet to get the Round-Trip Time (RTT)
of the packet without requiring time synchronization between
the client and the server. In the case of the measurements
without INT, we removed the related P4 code of INT in the
L4S switch.

We conducted several measurements with different TCP
packet sizes, 100, 200, 500 and 1000 bytes, on two different
client-server VM pairs to measure LL and CL traffic. Each
measurement sends 10000 packets. We intend to avoid queuing

delay that may disturb our measurements as a side effect
by introducing a 100 ms delay between two consecutive
packets in the client program, and disabling TCP slow start
on both the client and server VMs. We present the results
in the Cumulative Distribution Function (CDF) diagram in
Figure 2.a. The horizontal axis stands for the measured RTT
values and the vertical axis for their distribution. We can
see that almost all RTT values vary from 2500 to 4000 µs.
The average latency without INT for LL and CL packets are
respectively 3053 µs and 3101 µs, while these values with INT
are 3130 µs and 3234 µs. Therefore, the additional latency
increases 2.52% and 4.29% for CL and LL traffic. We can
notice that the RTT of LL traffic is slightly higher than that
of CL traffic. This difference does not contradict the effort
of L4S to achieve low latency. Indeed, L4S tries to reduce
the queuing latency which is not taken into account in our
measurements. The additional latency is mainly influenced by
the computation time of the switch that might require more
time to calculate the mark or drop probability of LL traffic.
The measured values would be smaller within a testbed using
a P4 hardware switch.

B. Overhead on Resource Usage

We then evaluate the overhead of resources usage, such as
CPU and memory, of the L4S switch with two configurations:
with and without INT processing. We note that the L4S VM
has two virtual CPU and 4 GB of RAM. To evaluate the
overhead, we used iPerf3 to generate LL and CL traffic from
client to server VMs. The traffic was limited to avoid dropping
packets. All the 9 sets of metrics are required to be collected
when evaluating with INT processing.

Figure 2.b represents the average values of the CPU and
memory usage, computed based on 5 measurements of each
configuration. We can see that the resource usage of the
L4S switch when processing INT is close to the one without
INT. Indeed, without INT processing the average CPU and
memory usages are 55.57% and 28.97 MB, while the values
are 57.84% and 29.16 MB with INT processing. Consequently,
the resource consumption of INT processing increases 4.08%
in term of CPU usage and 0.66% in term of memory usage.
Thus, this stands for a very acceptable value for a monitoring
framework.

C. Overhead of Reports

Finally, we examine the overhead which can be reduced
by the event-based filter. We ignore the query-based filter
as it periodically generates reports without depending on the
traffic. We used iPerf3 to generate traffic that was captured
at the egress of the switch and saved this capture into a file
by using tcpdump. The INT metrics from the captured traffic
are then extracted offline by our INT collector. This allows
performing several tests on the same traffic with two different
configurations of the collector: (1) without using the filter, thus
one report is generated for one INT packet; (2) using event-
based filter for queue latency, as depicted in Listing 1, and (3)
using events-based filter for queue occupancy.

2250 2500 2750 3000 3250 3500 3750 4000 4250 (s)
(a) RTT distribution (%)

0

20

40

60

80

100

CL traffic - with INT
LL traffic - with INT
CL traffic - without INT
LL traffic - without INT

0 60 120 180 240 300 (s)
(b) Average of CPU and Memory Usage

25

30

35

40

45

50

55

60

65

CP
U

us
ag

e
(%

)

CPU - with INT
CPU - without INT 24

25

26

27

28

29

Re
al

 M
em

or
y

(M
B)

Memory - with INT
Memory - without INT

0 60 120 180 240 300 (s)
(c) Number of INT reports per second

1100

1200

1300

1400

1500

1600

1700 #Reports of each INT packet
#Event-based reports of queue latency
#Event-based reports of queue occupancy

Fig. 2. Overhead of INT processing

Figure 2.c represents the number of reports per second
corresponding to theses configurations. Since the queue la-
tency is measured at the microsecond scale, this leads to
very few consecutive packets having the same queue latency.
Consequently, very few reports are filtered, and the number of
queue delay reports is close to that of INT packets. However,
the number of queue occupancy reports reduces significantly.
This can be caused by the bulk packet processing of the switch,
that is, the packets in a same bulk report holds the same queue
occupancy number.

During the 300 seconds of the test, the total number of
reports without filtering is 448216, i.e., 1494 reports per
second. The numbers of reports for queue latency and oc-
cupancy are 448120 and 375266 respectively. These results
show that one can reduce the report overhead by 0.02% and
16.27% respectively without losing fine-grained monitoring of
the queue latency and occupancy.

D. Assessment of the L4S Behaviour

As a second set of tests, we verified the expected behaviour
of L4S that can be retrieved through our INT monitoring
framework. We used TCP-Prague and TCP Cubic congestion
control algorithms on LL and CL VMs, respectively. We
generated two TCP flows for each kind of traffic. Bandwidth
of each flow is limited to 4 Mbps due to the capacity of our
virtual switches. ECN support is enabled on LL VMs and
disabled on CL VMs. We evaluated the collected metric values
via several tests using iPerf3 to generate LL and CL traffic.
We present below the most noticeable results.

In Figure 3.a, we can see that the bandwidth is fairly shared
between these two kinds of traffic. The sharing ratio is detailed
in Figure 3.d, where it is close to 1. The LL traffic is very
slightly dominant but this is not considerable and it conforms
to the behaviour of L4S P4-based implementation [6].

We notice some peaks in the bandwidth measurements
although we limited each flow to 4 Mbps. We analysed that
this phenomenon is not related to our solution but is caused
by the virtual environment which impacts the VMs by actually
reducing the sending rate of iPerf3 which afterwards tries to
increase the sending rate to reach again the limit of 4 Mbps.

The averages per second of queue delay and queue occu-
pancy metrics are presented in Figure 3.b and c respectively.
Their corresponding CDF in Figure 3.d and e show the

distribution of their values. We can see that 99% of queuing
delay values are less than 5 ms for LL traffic and 25 ms
for the CL one, which are the target values we configured
for the L4S switch for our tests. The CL queue is also more
filled than the LL one. This confirms the behaviour of L4S to
achieve low-latency by reducing the queue delay.

Despite the fact that the INT technology can introduce
overheads in the monitoring framework, we can conclude that
our framework is able to provide the metrics values that are
similar to those presented in [3], [6] and conform to the
expected behaviour of L4S switches.

V. RELATED WORK

The metrics of an L4S device are extracted in our previous
work [3] by periodically calling system commands such as
ss and tc to poll the statistics from an L4S AQM. Although
the polling frequency is very short, e.g., four times per base
RTT, it may miss microbursts in traffic, which mostly occur
during at most tens of microseconds [12] and induce usually
periods of high queue utilization eventually leading to packet
delay or loss. To overcome this issue, the current framework
does not rely on packet sampling, compressing, aggregating,
nor coarse-grained counters. It performs the monitoring at the
packet level. Consequently, it will not miss any relevant phe-
nomenon. Hence, it ensures the full coverage of the monitored
device states.

The closest work to ours is the monitoring system imple-
mented by the L4S team to evaluate the Linux-based L4S
implementation [2], [8]. The authors override 2 bytes of the
identification field of the IP packet header to store the L4S
information: 11 bits for queue delay and 5 bits for the number
of dropped packets. The authors installed a traffic analyser
behind the AQM to capture the outgoing packets and extract
the information. However, limitation of space in 2 bytes leads
to the limitation of precision. By contrast, our framework also
stores the collected information inside the packets respecting
the INT protocol format, thus more space can be used although
one is still limited by the MTU.

A survey of the INT technology is presented in [9]. The
authors in [13] proposed another survey of dedicated P4-based
INT. The authors in [14] go beyond INT, which only covers
the collection of elementary device metrics at the packet level,
leaving more complex analysis to external systems, by allow-

0 60 120 180 240 300 (s)
(a) Egress bandwidth (Mbps)

4

6

8

10

12

14
CL traffic
LL traffic

0 60 120 180 240 300 (s)
(b) Queue delay (ms/packet/s)

0

5

10

15

20

25

30

35 CL traffic
LL traffic

0 60 120 180 240 300 (s)
(c) Queue occupancy (packets/s)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5 CL traffic
LL traffic

0 50 100 150 200 250 300 (s)
(d) Balance egress rate (LL/CL)

0

50

100

150

200

250

300 (s)

CL traffic

LL traffic

5 10 15 20 25 30 35 (ms/packet)
(e) Queue delay distribution (%)

0

20

40

60

80

100

CL traffic
LL traffic

6 8 10 12 14 16 18 20 (packets)
(f) Queue occupancy distribution (%)

0

20

40

60

80

100

CL traffic
LL traffic

Fig. 3. Behaviour of the L4S switch with two LL and two CL flows of 4 Mbps each flow at the ingress ports.

ing to program more sophisticated analysis and conditional
actions directly inside the data plane using the Big Packet
Protocol, for instance, to dynamically select which metrics to
collect depending on statistics computed from previous data.

We can cite two P4-based implementations of INT in
[10], [15]. The authors in [10] propose a high-performance
monitoring framework. However it is not suitable for real-time
detection or reaction because it can be delayed when using a
database to store the collected metrics and then a third-party
application needs to query the information from the database.
In [15], the authors aim at finding a balance between reducing
the payload overhead of INT packets and the accuracy of the
network view constructed from the telemetry. The overhead is
mitigated by aggregating the INT data, but it is traded for a
coarser view of the network state. Our framework overcomes
these limitations by using sockets to be able to send reports in
near real-time and introducing on-demand monitoring feature
which allows the users to select the metrics to be monitored
and the conditions to fulfill to report them.

VI. CONCLUSION AND FUTURE WORK

We have presented in this paper the initial design and open-
source implementation of a framework using INT to monitor
P4-based L4S networking devices. The framework provides
fine-grained values of the monitored metrics in real-time.
The experimental evaluation shows that our solution has the
capability to capture the metrics of an L4S switch with a low
overhead that does not alter the behaviour of the L4S system.

In our future work, we plan to evaluate its high-precision
features by conducting an experiment on a high performance
testbed which will be deployed onto physical servers and a
hardware switch. Our final objective is to have a network
equipment embedding the framework that fully monitors the

L4S system for both performance assurance and security
purposes.

ACKNOWLEDGEMENTS

This work is partially funded by the French National Re-
search Agency (ANR) MOSAICO project, under grant No
ANR-19-CE25-0012.

REFERENCES

[1] S. Nádas et al. “A Congestion Control Independent L4S Scheduler,” in
Proc. of ANRW, 2020, pp. 45–51.

[2] K. De Schepper et al. “PI2: A Linearized AQM for both Classic and
Scalable TCP,” in Proc. of CoNEXT, 2016, pp. 105–119.

[3] M. Letourneau et al. “Assessing the Threats Targeting Low Latency
Traffic: The Case of L4S,” in Proc. of CNSM, 2021, pp. 544–550.

[4] P. Bosshart et al. “P4: Programming Protocol-Independent Packet Pro-
cessors,” Computer Communication Review, pp. 87–95, 2014.

[5] F. Paolucci et al. “P4 Edge Node Enabling Stateful Traffic Engineering
And Cyber Security,” Journal of Optical Communications and Network-
ing, pp. A84–A95, 2019.

[6] B. Mathieu et al. “Evaluating the L4S Architecture in Cellular Networks
with a Programmable Switch,” in Proc. of ISCC, 2021, pp. 2–7.

[7] The P4.org Working Group “In-band Network Telemetry (INT) Data-
plane Specification V2.1,” Tech. Rep., 2020.

[8] O. Albisser et al. “DUALPI2 - Low Latency, Low Loss and Scalable
Throughput (L4S) AQM,” in Proc. of Netdev, 2019.

[9] L. Tan et al. “In-band Network Telemetry: A Survey,” Computer
Networks, vol. 186, no. December, 2021.

[10] J. Hyun et al. “Real-time and fine-grained network monitoring using in-
band network telemetry,” International Journal of Network Management,
vol. 29, no. 6, 2019.

[11] B. Wehbi et al. “Events-Based Security Monitoring Using MMT Tool,”
in Proc. of ICTS, 2012, pp. 860–863.

[12] Q. Zhang et al. “High-Resolution Measurement of Data Center Mi-
crobursts,” in Proc. of SIGCOMM, 2017, pp. 78–85.

[13] P. M.-Lopez et al. “Passive In-Band Network Telemetry Systems: The
Potential of Programmable Data Plane on Network-Wide Telemetry,”
IEEE Access, vol. 9, pp. 20 391–20 409, 2021.

[14] A. Clemm et al. “Network-Programmable Operational Flow Profiling,”
IEEE Communications Magazine, vol. 57, no. 7, pp. 72–77, 2019.

[15] G. Simsek et al. “Efficient Network Monitoring via In-band Telemetry,”
in Proc. of DRCN, 2021, pp. 1–6.

	Introduction
	Background
	L4S Architecture
	In-band Network Telemetry

	Challenges and Design Choices
	Lack of INT Monitored Metrics dedicated to L4S
	P4-based INT Networking Devices
	P4-based Monolithic Application
	Overhead of Fine-grained Monitoring

	INT Collector
	Fast Reaction in a Short Timescale
	Huge Reports generated by Collectors

	Experimental Evaluation
	Overhead on Packet Latency
	Overhead on Resource Usage
	Overhead of Reports
	Assessment of the L4S Behaviour

	Related Work
	Conclusion and Future Work
	References

