
HAL Id: hal-04064177
https://hal.science/hal-04064177v1

Submitted on 10 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Backpropagation-based learning techniques for deep
spiking neural networks: a survey

Manon Dampfhoffer, Thomas Mesquida, Alexandre Valentian, Lorena Anghel

To cite this version:
Manon Dampfhoffer, Thomas Mesquida, Alexandre Valentian, Lorena Anghel. Backpropagation-
based learning techniques for deep spiking neural networks: a survey. IEEE Transactions on Neural
Networks and Learning Systems, 2023, pp.1-16. �10.1109/TNNLS.2023.3263008�. �hal-04064177�

https://hal.science/hal-04064177v1
https://hal.archives-ouvertes.fr

1

Backpropagation-based Learning Techniques for
Deep Spiking Neural Networks: A survey

Manon Dampfhoffer∗†, Thomas Mesquida†, Alexandre Valentian†, Lorena Anghel∗
∗Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, INAC-Spintec, 38000 Grenoble, France

†Univ. Grenoble Alpes, CEA, List, F-38000 Grenoble, France
manon.dampfhoffer@cea.fr, thomas.mesquida@cea.fr, alexandre.valentian@cea.fr, lorena.anghel@grenoble-inp.fr

Abstract—With the adoption of smart systems, Artificial Neu-
ral Networks (ANNs) have become ubiquitous. Conventional
ANN implementations have a high energy consumption, limiting
their use in embedded and mobile applications. Spiking Neu-
ral Networks (SNNs) mimic the dynamics of biological neural
networks by distributing information over time through binary
spikes. Neuromorphic hardware has emerged to leverage the
characteristics of SNNs, such as asynchronous processing and
high activation sparsity. Therefore, SNNs have recently gained
interest in the machine learning community as a brain-inspired
alternative to ANNs for low-power applications. However, the
discrete representation of the information makes the training of
SNNs by backpropagation-based techniques challenging. In this
survey, we review training strategies for deep SNNs targeting
deep learning applications such as image processing. We start
with methods based on the conversion from an ANN to a SNN
and compare these with backpropagation-based techniques. We
propose a new taxonomy of spiking backpropagation algorithms
into three categories, namely: spatial, spatio-temporal and single-
spike approaches. In addition, we analyze different strategies to
improve accuracy, latency and sparsity, such as regularization
methods, training hybridization and tuning of the parameters
specific to the SNN neuron model. We highlight the impact
of input encoding, network architecture and training strategy
on the accuracy-latency trade-off. Finally, in the light of the
remaining challenges for accurate and efficient SNNs solutions,
we emphasize the importance of joint hardware-software co-
development.

Index Terms—Deep learning, spiking neural networks, brain-
inspired computing, neuromorphic computing.

I. INTRODUCTION

ARTIFICIAL Neural Networks (ANNs) are machine-
learning algorithms inspired by the computations done

by the brain while solving complex tasks. Deep ANNs (with
more than a few hidden layers) have been successfully used in
many applications such as image recognition [1], object detec-
tion [2], speech recognition [3], medical diagnosis [4], game
playing [5], etc. ANNs can solve difficult tasks using a large
amount of data and large network architectures. This comes
at the cost of a high energy consumption [6], which limits
their use in embedded and even more in mobile applications.
It is known that biological neural networks in the human brain
consumes very few energy while performing much complex
tasks, which motivates brain-inspired computing.

Spiking Neural Networks (SNNs) are among the new gen-
erations of ANNs pushing the brain-inspired approach. In the

This work has been partially supported by MIAI @ Grenoble Alpes, (ANR-
19-P3IA-0003).

brain, neurons use electrical pulses to transmit information
through the synapses in a sparse and asynchronous manner.
Similarly, the neurons of SNNs communicate through tem-
poral events (called spikes) and follow Integrate and Fire
dynamics [7], [8]. Information can be encoded sparsely in
the temporal dimension, in the spike rates or in the timing
of spike emissions, and processed asynchronously. SNNs are
sometimes seen as Recurrent Neural Networks (RNNs) in a
wide sense [9], as the state of a spiking neuron depends on
its previous state, therefore naturally introducing recurrence.
SNNs are also often compared to Binarized Neural Networks
(BNNs), which use binarized weights and activations. How-
ever, in RNNs and BNNs the operations are executed in a
synchronized manner, while in SNNs the computation can be
event-driven (computation only when an input spike arrives).

SNNs aim not only at realistically emulating biological
computation of the brain, but also target better energy-
efficiency than ANNs when implemented in hardware. ANN
computations involve matrix multiplications which can be
done in parallel on GPUs. On the other hand, SNN com-
putations can be realized efficiently on dedicated neuromor-
phic hardware [10], [11]. Neuromorphic computing aims at
mimicking the asynchronous information processing and co-
localization of memory and computing units in the brain, as
opposed to the traditional von Neumann paradigm. Large-scale
neuromorphic accelerators [12]–[16] and application-specific
accelerators [17], [18] have been demonstrated, either for on-
chip training, or for inference only. While ANNs process
the analog information in a one-shot fashion using matrix
multiplications, information in SNN is coded in a binary
signal distributed over time. The use of binary spikes is one
of the motivations for SNNs as it allows replacing costly
multiply-accumulate (MAC) operations in ANNs by simpler
accumulate (AC) operations, which consume less energy and
occupy less area [19]. Moreover, not all neurons spike during
an inference phase. Thus, this sparsity of activations decreases
the number of ACs operations to be performed, which is
another motivation for the use of SNNs. In addition, the
asynchronous behavior of SNNs can allow faster inference
in some neuromorphic hardware such as the neuromorphic
asynchronous processors proposed in [20]. Note that most
of the energy consumption of neural networks in specialized
architectures comes from memory accesses associated with
arithmetic operations rather than from the arithmetic opera-
tions themselves [21]. However, spike sparsity and event-based

2

processing can help reduce the memory accesses by reducing
the number of associated operations.

Various methods have been proposed to train SNNs in super-
vised or unsupervised manners. The Spike-Timing-Dependent
Plasticity (STDP) rule is a local learning rule demonstrated
by neurobiologists and is inspired by chemical mechanisms
with computation capability existing in nervous system [22].
This rule makes it possible to train SNNs in an unsupervised
and biologically-plausible manner and is suitable for on-chip
learning due to its locality. Although it has been shown that
STDP can approximate backpropagation update rules [23],
[24], it is not the most appropriate rule to train deep networks
with high accuracy in the context of deep learning applications.
On the other hand, backpropagation-based training methods
are able to accurately train deep networks. In that case, deep
SNNs can be trained either directly with backpropagation,
or indirectly by converting a pre-trained ANN to a SNN
formalism. In this survey, we focus on training deep SNNs,
and therefore we will not discuss the applications of the STDP
rule, for which we refer the reader to [11], [24]–[27].

Surveys on SNNs [11], [24]–[28] have been published the
past few years, addressing spiking neuron models, learning
rules (unsupervised and supervised), neuromorphic hardware
and applications. Motivated by the success of many recently
proposed backpropagation-based training methods for deep
SNNs, this survey takes a different approach by focusing on
the latter. A novel taxonomy of backpropagation-based learn-
ing algorithms for the direct training of SNNs is proposed and
strategies to improve these algorithms in terms of accuracy,
latency and sparsity are discussed. In addition, the impact of
the input encoding and network architecture on the accuracy-
latency trade-off is highlighted.

The remainder of the paper is organised as follows. In
Section II, the SNN model is presented, addressing the choices
of neurons, synapses and coding strategy. In Section III,
the different strategies to train deep SNNs from conversion
methods to backpropagation-based methods are reviewed. In
Section IV, strategies to improve the training of deep SNNs are
discussed. Targeting accurate and energy-efficient hardware
inference, the accuracy-latency trade-off is studied in Section
V. Finally, promising solutions and remaining challenges for
SNNs are summarized in Section VI.

II. THE SPIKING NEURAL NETWORKS MODEL

A. Neurons and synapses

The basic ANNs and SNNs units in a neural networks are
shown in Fig.1. In ANNs, the output of a neuron is a function
defined as:

yi = φ(
∑
j

xjwij + bi) (1)

where yi is the output activation of neuron i, bi is the bias of
neuron i, xj is the input activation from presynaptic neuron j,
and wij is the synaptic weight between neurons i and j. φ is an
activation function, such as the Rectified linear unit (ReLU).
While in ANNs the information propagates synchronously on
a layer-by-layer basis, the information processing in SNNs is

asynchronous and in a depth-first manner. Indeed, neurons in a
layer fire spikes without waiting for other neurons in the same
layer to fire. Due to the temporal dynamics of the neurons,
SNNs operate in the spatio-temporal domain, while standard
ANNs operate only in the spatial domain.

The most popular neuron model for SNNs is the Leaky
Integrate and Fire model (LIF) [7], [8]. More complex neuron
models exist [29], [30], but have not yet demonstrated superior
performance than the simple LIF model for deep learning
applications. In the LIF model, the membrane potential Vi(t)
of the neuron i is described as :{

λdVi

dt = −Vi +
∑

j wij

∑
k ϵ(t− tjk)

Vi(t) = Vreset, if Vi(t) ≥ θi
(2)

where λ is the membrane time constant, wij is the synaptic
weight from neuron j to i, ϵ(.) is the synaptic kernel, tjk
is the kth spike of the input neuron j, Vreset is the reset
membrane potential and θi is the membrane potential thresh-
old. It is also possible to add a bias in the SNN model,
for example by setting Vi(0) = bi. Similar to biological
neurons, the neuron integrates the weighted input spikes into
its membrane potential. When the latter reaches its threshold,
the neuron fires an output spike and the membrane potential
is reset. Depending on the chosen membrane time constant,
the Integrate and Fire neuron can also be non-leaky (IF). The
difference is that the membrane potential of the IF neuron
is constant in time between two spikes, while in the LIF
neuron the membrane potential decays over time. The synapse
model is defined by the kernel function ϵ(.), corresponding
to the response of the neuron membrane potential to the
presynaptic spike. The synapse can be instantaneous (Dirac
kernel function) or continuous (e.g. linear, exponential, or
alpha kernel functions). Neurons and synapses are shown in
Fig.1b. The inference phase of SNNs is usually discretized in
timesteps, each timestep corresponding to one forward pass
in the network. In this case, an iterative version of the LIF
model is used, as shown in [31]. The number of timesteps
is generally used to estimate the future latency of the SNN
inference in hardware.

B. Coding strategy

Contrary to ANNs, SNNs use the temporal dimension to
code the information. Indeed, while ANNs use static real-
valued activations per neuron per inference, SNNs use one
or several binary spikes for which the temporal information is
used to code the information. Therefore, the coding strategy
refers to how the temporal information in the spikes is taken
into account. There are several coding strategies based on
the spike rate, timing, rank, phase, etc. (for a recent review
see [32]), but the majority of works in deep SNNs use either
the spike rate or the spike timing. The rate coding strategy
uses several spikes to represent one unit of information while
in temporal coding, the information is carried by individual
spike times. Note that, in order to be efficient in neuromorphic
hardware, the coding strategy should use a minimum number
of spikes, as the energy consumption is strongly correlated to
the spiking activity. Moreover, the coding strategy affects the

3

Information propagation

Neuron Synapse

Hidden layers
Input Output

Input activations Synpatic
weights

Output activation

ANN unit

Input spikes Synpatic
weights

Output spikes

SNN unit

Synpatic
kernels

Instantaneous

Continuous

(a)

…

𝑥1 𝑤𝑖1

𝑤𝑖𝑛

𝑥𝑛

𝑦𝑖

𝑏𝑖

𝜃

𝜖

𝜖

Neuron

Neuron

𝜑

0

𝑦𝑖

V(t)

V(t)

IF

LIF

𝜃

𝜃

input

𝜆

t

(b)

(c)
…

𝑥1 𝑤𝑖1

𝑤𝑖𝑛

𝑥𝑛
Rate coding Temporal coding

t t

t t

t t

0.9

0.5

0.1

Fig. 1. (a) Feedforward fully-connected neural network. (b) ANN and SNN neuron and synapse models. (c) Input encoding: example of pixel-to-spike
conversion with a rate coding or temporal (latency) coding.

behavior of the entire system, the characteristics of the neurons
and synapses, and the efficiency of the learning process.

The coding strategy must consider both the encoding of the
input to the network and the decoding of the output. Indeed,
to process real-valued data, such as pixels for images, these
values can be converted into spikes in order to be processed
further by the SNN. Note that neuromorphic sensors can
provide data already in the form of spikes which can be fed
directly to the SNN without pre-processing. Fig.1c represents
a typical pixel-to-spike conversion in rate and time. The rate-
based strategy matches each pixel intensity with a firing rate,
using a probabilistic sampling (generally Poisson) to generate
the spike trains: the higher the pixel value, the higher the firing
rate of the corresponding input. A simple time-based strategy,
also called latency coding, consists in associating the pixel
intensity with the latency of a single spike. In that case, the
latency is inversely proportional to the pixel intensity: earlier
spikes encode higher values and later spikes encode lower
values. Decoding the output in a classification task consists in
determining the most activated neuron in the output layer, each
neuron being associated with a class. With rate coding, this
is done by using the highest spike rate or membrane potential
value. With temporal coding, a popular solution called Time-
To-First-Spike (TTFS) uses the first spike fired by a neuron.

Temporal codes are sparse and can have a lower latency (e.g.
when the TTFS decoding is used). However, temporal coding
requires high temporal resolution because each spike carries
important information, which may be difficult to implement
efficiently in neuromorphic hardware [33]. Moreover, the

analogy with ANNs is more straightforward with rate coding,
and therefore the latter is easier to use for supervised training,
either with conversion or direct training approaches.

III. TRAINING DEEP SNNS

Learning is the process by which the weights (i.e. the
values of the synapses) of the neural network are determined
such that the network performs a specific task. Most deep
learning applications use supervised learning, meaning that
the expected outputs are known (each data is associated to
a label). A cost metric is defined as a function of the error
between the desired and actual output. The learning process
consists of tuning the values of the synaptic weights such that
the cost function is minimized. In ANNs, the backpropagation
algorithm is used to calculate the gradients of the cost function
with respect to each synaptic weight in order to perform
synaptic weights updates. The calculation starts from the last
layer of the network and proceeds backwards layer by layer.
This survey focuses on supervised strategies inspired by the
backpropagation algorithm for training deep SNNs. Applying
backpropagation to SNNs is challenging due to the nature of
the neuron activation function (step function) which is not
differentiable, thus the error can not be backpropagated cor-
rectly. Different strategies have been proposed to mitigate this
problem, such as approximating the derivative with a surrogate
gradient [9] (see Fig. 3), or directly differentiating the spike
times [34]. An alternative solution is to convert a trained ANN
to a SNN formalism, also called indirect training or ANN-

4

to-SNN conversion, which bypasses the training difficulty of
SNNs.

A. ANN-to-SNN conversion

The ANN-to-SNN conversion is an indirect training strategy
consisting in training an ANN and then mapping the trained
weights to a SNN, assuming equivalence of the SNN comput-
ing units to the ANN ones. The ANN must be trained under
constraints to fit the SNN model, such as removing biases of
neurons (which are usually not represented in the SNN model)
and batch normalization layers (which rely on biases). Then,
either the thresholds of the spiking neurons or the weights are
normalized equivalently, so that the transfer function (input-
output mapping) of the SNN unit matches the transfer function
of the ANN unit [35], [36].

1) Conversion with rate coding: Rate coding is a straight-
forward approach to conversion, in which the firing rate of
neurons is considered equivalent to the analog output (acti-
vation value) of the ANN neuron [10], [37]. However, the
conversion process results in errors in some cases, for instance
when the ANN activation is too high and can not be accurately
represented by the spike rate given a fixed simulation duration.
An effective data-based weight normalization, consisting in
rescaling the weights in each layer according to the maximum
ANN activation in the corresponding layer within the training
set, is presented in [35] to mitigate this problem. Another
solution is proposed in [36], which balances the thresholds
in each layer according to the maximum SNN activation.
The difference with the method in [35] is that SNN statistics
are used instead of ANN statistics to determine the normal-
ization, which leads to more accurate results. They report
high accuracy for a converted SNN with VGG-16 network
architecture, such as 91.55% on CIFAR-10 and 69.96% on
ImageNet using 2500 inference timesteps. The accuracy can
be further improved using a soft reset mechanism instead
of a hard reset [38]. The soft reset consists in subtracting
the threshold value from the membrane potential after the
neuron fires a spike, instead of setting it to the reset potential
value. The residual membrane potential above the threshold
is thus kept for the next spike, which reduces the loss in the
spiking quantization process. Their method yields a near loss-
less conversion, showing 93.63% accuracy on CIFAR-10 and
73.09% on ImageNet with a VGG-16 architecture using 2048
and 4096 timesteps, respectively. Similar results are shown
with ResNet-20 and ResNet-34 on CIFAR-10 and ImageNet
achieving 91.36% and 69.89% accuracy, respectively.

2) Conversion with temporal coding: Another approach to
conversion is based on temporal coding. This approach is at-
tractive because the number of spikes emitted can be decreased
drastically, thus further reducing the energy consumption. This
is first proposed in [19] using the equivalence between the
activation value of the ANN unit and the inverse of the spike
time of the SNN unit. In [39] an accuracy as high as the one
obtained with rate coding [38] is demonstrated on CIFAR-
10 and Imagenet using VGG-16 and ResNet architectures,
with at most two spikes per neuron. They propose a novel
temporal coding with one positive and one negative spike

per neuron. In addition, they introduce a threshold balancing
method to improve the accuracy while using fewer timesteps
compared to the rate-based conversion of [38]. Furthermore,
the paper [33] introduces a temporal code associated with
a new spiking neuron model using logN different values of
spike times to transmit integers between 1 and N in order to
reduce the required temporal resolution. They achieve 83.57%
accuracy on ImageNet with the EfficientNet-B7 architecture
(75.10% with ResNet-50), with on average less than 2 spikes
per neuron per inference. However, the proposed neuron model
is complex, requiring additional parameters and additional
state functions computed at each timestep, and might be costly
to implement in neuromorphic hardware.

3) Limitations: The ANN-to-SNN conversion results in
SNNs with accuracy close to the accuracy of the original ANN.
Although originally designed for rate coding, the conversion
process is compatible with many coding strategies. In fact,
conversion with temporal coding is a promising way to in-
crease the spike sparsity, but it might be less robust to noise in
hardware implementation. However, both coding strategies re-
quire hundreds to thousands of inference timesteps, leading to
a much higher latency and a degraded energy efficiency [28].
The long inference time required to achieve high accuracy is
inherent to the equivalence chosen for the conversion. Indeed,
the ReLU activation function approximates the firing rate of
the IF model only if the SNN inference is discretized with a
sufficient number of timesteps. However, recent improvements
in conversion methods can mitigate this problem. For instance,
the authors in [40] propose to replace the standard ReLU in
the ANN model by the quantization clip-floor-shift activation
function, which better approximates the firing rate of the IF
model. Indeed, by clipping and flooring, they suppress the
conversion errors due to large activations in the ANN and the
discretization of the SNN activation (resp.), if the quantization
step is properly chosen according to the time discretization
of the SNN inference. Therefore, they reduce the conversion
error between the ANN and SNN model and make it possible
to obtain SNNs with a much smaller number of timesteps.
For instance, on ImageNet with ResNet-34, they achieve
69.37% (resp. 72.35%) accuracy with 32 (resp. 64) timesteps.
However, there is still a gap between the accuracy of the ANN
and the converted SNN due to unevenness errors, which result
from the fact that a different order of input spikes produces a
different output [40]. Besides, the conversion process does not
allow the optimization of the temporal dynamics of the SNN,
contrary to direct training approaches [41].

B. Backpropagation-based learning algorithms for deep SNNs

The direct training of SNNs with backpropagation was
partly motivated by the objective of reducing the SNN latency.
In order to apply backpropagation to SNNs, different strategies
are used to circumvent the problem of the non-differentiability
of the spiking activation function, such as approximating the
derivative with a surrogate gradient [9], or directly differen-
tiating the spike times [34]. The surrogate gradient technique
consists in approximating the neuron’s activation function
(which is usually a step function) by a differentiable function

5

during the backward pass, to enable informative gradients to
backpropagate through the layers (see Fig. 3). The approach
was first introduced by [42], [43] with the straight-through
estimator used to train quantized neural networks. Further-
more, the SNN inference being discretized in timesteps, there
are several strategies to apply backpropagation to SNNs (see
Fig.2). We classify these methods into three categories. (1)
The spatial approach uses accumulated quantities which are
retrieved at the end of the inference phase (such as the spike
count or membrane potential value) to serve as an activation
value for each neuron. Then, backpropagation can be applied
on these quantities. This strategy does not take into account
the SNN temporal dynamics (i.e. the precise timing and order
of the spikes and temporal components of the SNN model).
(2) The spatio-temporal approach considers each timestep
of the inference phase by using backpropagation through
time (BPTT), which was originally used to train RNNs. The
BPTT consists in applying the backpropagation method on an
unrolled SNN network, where all the timesteps are simulta-
neously considered (one neuron unrolled for T timesteps will
be instantiated T times in this virtual network). This method
thus considers both temporal and spatial dynamics of SNN,
and therefore takes into account the temporal dependencies
associated with LIF neurons and continuous synapses. (3) The
single-spike approach uses only one spike per neuron (using
a latency temporal coding), and computes directly the spike
time of each neuron during the inference phase. Then, the
backpropagation algorithm can be applied using the spike time
of each neuron as its activation value.

1) Spatial approaches: Spatial approaches, such as [44]–
[46], use a rate-coding strategy with IF neurons and instan-
taneous synapses and do not consider temporal dependencies
in the gradient computation. They consist in approximating
the SNN forward pass during the training in order to obtain
a lighter backpropagation, only in the spatial domain, as in
ANN training. The spatial approach resembles the ANN-to-
SNN conversion with rate coding, however the training targets
are different. In conversion methods, the ANN is trained under
constraints and then, there is a conversion procedure to transfer
the ANN trained weights to the SNN. On the other hand, in
the spatial approach, the SNN is directly trained, but viewed
as an ANN, and thus can be trained in a similar way using
accumulated quantities during the SNN forward pass. Hence,
contrary to the ANN-to-SNN conversion, there is only one
network and no conversion procedure.

For instance, the authors in [44] consider the membrane
potential without the spiking discontinuities, using low-pass
filtered spike signals. Therefore the signal is continuous (con-
sidering the spiking activity as noise) and backpropagation
can be applied on it. They use an architecture with lateral
inhibitions and neurons with a refractory periods. To keep the
performance stable, error normalization, threshold regulariza-
tion and a novel exponential weight regularization are used
to reach 99.31% accuracy on MNIST with a 4-layer CNN
architecture. In [46] the authors take the spike count of neurons
as a surrogate for gradient backpropagation. They define the
equivalent of the neuron activation as the sum of its spikes

𝜏

𝑨(𝟐)𝑨(𝟏) 𝑨(𝟑)

𝑨(𝟏)

…

𝑨(𝒏)…

𝐒𝐩𝐚𝐜𝐞
𝑡
=
0

𝐓
𝐢𝐦

𝐞

𝐴(1)

𝑨(𝟐)

…

𝑨(𝟐)

𝑨(𝒏)

…

𝑨(𝒏)

𝑨(𝟑)

…

𝑨(𝟑) …

…

𝑡
=
1

𝑾(𝟏) 𝑾(𝟐) 𝑾(𝒏−𝟏)

𝑾(𝟏) 𝑾(𝟐) 𝑾(𝒏−𝟏)

𝑾(𝒏−𝟏)
𝑾(𝟐)𝑾(𝟏)

𝑡
=
𝑇

𝐸𝑟𝑟𝑜𝑟

…

𝐒𝐩𝐚𝐜𝐞

𝐸𝑟𝑟𝑜𝑟

𝐁𝐚𝐜𝐤𝐩𝐫𝐨𝐩𝐚𝐠𝐚𝐭𝐢𝐨𝐧

𝑨(𝟏) 𝑨(𝟐) 𝑨(𝟑) 𝑨(𝒏)…

𝑾(𝟏) 𝑾(𝟐) 𝑾(𝒏−𝟏)

Rate

Temporal

Time

Time

𝒂𝒊 = 𝒄𝒊 = σ𝒕 𝒔𝒊
𝒕

𝒂𝒊 = 𝒕𝒊

𝒂𝒊
𝒕 = 𝒔𝒊

𝒕 = {0
1

Spatio-temporal

Spatial

Single-spike

CODING APPROACH

𝜏 𝜏 𝜏

𝜏 𝜏 𝜏 𝜏

(a)

(b)

Backpropagation

through time

TRAINING

Backpropagation

𝐁𝐚𝐜𝐤𝐩𝐫𝐨𝐩𝐚𝐠𝐚𝐭𝐢𝐨𝐧 𝐭𝐡𝐫𝐨𝐮𝐠𝐡 𝐭𝐢𝐦𝐞

Fig. 2. (a) Backpropagation-based learning algorithms. Spatial and spatio-
temporal approaches use a rate coding while the single-spike approach use
a temporal (latency) coding. The spatio-temporal approach considers the
activation of each neuron at each timestep ati , corresponding to the emission or
not of a spike sti . The backpropagation through time is used to backpropagate
the error in both space and time dimensions. On the other hand, the spatial
and single-spike approaches consider for each neuron a single activation ai
for the forward pass, which can correspond to the spike count ci for the
former or the timing of the unique spike emitted by the neuron ti for the
latter. Therefore, the backpropagation is used to backpropagate the error only
in the space dimension. (b) Backpropagation and backprogation through time
training. Notations: n number of layers, T number of timesteps used in the
SNN inference, A(l) activation of neurons in layer l, W (l) weight vector
from layer l to l+1, τ membrane potential and postsynaptic potential update
(for LIF neurons and continuous synapses).

Fig. 3. The activation function of neurons has derivative equals to zero
everywhere except in θ where it is infinite. Therefore, the derivative of a
surrogate function is used to compute the gradients during the backward pass.

produced during the simulation time [46]:

ani =

T∑
t=1

st,ni (3)

with ani the equivalent activation of neuron i from layer n, and
st,ni a spike produced by this neuron at timestep t. Therefore,
the aggregated input current of a neuron can be expressed
as [46]:

zni = θ
∑
j

wn−1
ij an−1

j + bni (4)

6

They use a cross-entropy loss, as it is commonly used for
classification tasks:

E(aNi , yi) = −log(
exp(aNi)∑
k exp(a

N
k)

) (5)

with aNj the output spike count of neuron j in the last layer
and yj the target one-hot label for this neuron. Then, the error
derivative with respect to weights and biases is computed using
standard backpropagation. For instance, in the hidden layer,
the error derivative with respect to the weights is computed
using the chain rule [46]:

∂E

∂wn−1
ij

=
∂E

∂ani

∂ani
∂zni

∂zni
∂wn−1

ij

(6)

with ∂an
i

∂zn
i

= 1
θ .(z

n
i > 0). They achieve 99.26% accuracy on

MNIST with a 3-layer CNN architecture. However, they argue
that considering only the spike count generates a quantization
error, as the surplus membrane potential of spiking neurons
is not taken into account, which could become a problem for
deeper neural networks. Furthermore, the paper [45] shows
that the backpropagation phase can also be realized with spikes
by considering the error in a discrete form. Therefore, the
same hardware infrastructure can be used for both inference
and learning, which makes it attractive for on-chip learning.
Moreover, they show that the spike discretization error can
be reduced to zero by adding some constraints on the ANN.
Therefore, they can perform the offline training directly with
the equivalent ANN. They demonstrate 89.99% accuracy on
CIFAR-10 with a 8-layers VGG architecture. However, be-
cause they perform training and inference with the equivalent
ANN, they do not indicate the number of inference timesteps
which would be used for the inference with the SNN.

Overall, the spatial approach is purely rate-based and there-
fore is the closest to ANNs. This approach was not used
in many works as it appears to not benefit from the spatio-
temporal dynamics of SNNs. However, in [46] the authors
argue that spatial rules are less complex than spatio-temporal
rules and can be more efficient in terms of computation and
memory due to the use of backpropagation instead of BPTT.
Moreover, the most recent ANN-to-SNN conversion tech-
niques resemble the spatial SNN training. Indeed, they convert
a SNN from an ANN that matches more closely the SNN such
that the differences between the two models decrease and the
conversion becomes more straightforward [40].

2) Spatio-temporal approaches: Spatio-temporal
approaches, such as those described in [31], [47]–[58],
also use a rate-coding strategy, but propagate the gradient
both in spatial and temporal dimensions using the BPTT.
They usually have temporal components, such as in the
neurons (LIF), synapses (continuous), or in the loss function.
The majority of works use rate-coded loss functions (based
on the output firing rate or output membrane potential) and
LIF neurons with instantaneous synapses.

Paper [31] proposes a spatio-temporal backpropagation for
SNN based on an iterative LIF model and approximated the
non-differentiable spiking activity with a surrogate gradient.

Their iterative LIF obtained by solving the differential equa-
tion of the LIF is defined as [31]:

ut+1,n
i = ut,n

i f(ot,ni) + xt+1,n
i + bni

xt+1,n
i =

∑l(n−1)
j=1 wn

ijo
t+1,n−1
j

ot+1,n
i = g(ut+1,n

i)

f(x) = τexp(−x/τ)

g(x) = 1 if x ≥ θ , 0 otherwise.

(7)

with ut,n
i , ot,ni , xt,n

i , respectively the membrane potential,
output, and input current of neuron i in layer n at time t. They
use a loss based on the mean square error for all samples of
the batch (of size S) between the target vector (y) and the
sum of the output vector of neurons in the last layer during
the simulation time T [31]:

L =
1

2S

S∑
s=1

||ys −
1

T

T∑
t=1

ot,Ns ||22 (8)

The derivative of the loss with respects to the membrane
potential and output spikes is needed to compute the error
derivative with respect to weights and biases. These values
are obtained by unrolling the network in time and space.
For instance, in the hidden layers at a given timestep, the
loss derivative with respect to output spikes depends on the
output spikes of the next layer (space) and the output spikes
at the next timestep (time). Similarly, the loss derivative with
respect to the membrane potential depends on the output spikes
produced by this neuron (space) and the output spikes at the
next timestep (time) [31]:

∂L

∂ot,ni

=

l(n+1)∑
j=1

∂L

∂ot,n+1
j

∂ot,n+1
j

∂ot,ni

+
∂L

∂ot+1,n
i

∂ot+1,n
i

∂ot,ni

=

l(n+1)∑
j=1

∂L

∂ot,n+1
j

∂g

∂ut,n+1
i

wij +
∂L

∂ot+1,n
i

∂g

∂ut+1,n
i

ut,n
i

∂f

∂ot,ni

(9)

∂L

∂ut,n
i

=
∂L

∂ot,ni

∂ot,ni

∂ut,n
i

+
∂L

∂ot+1,n
i

∂ot+1,n
i

∂ut,n
i

=
∂L

∂ot,ni

∂g

∂ut,n
i

+
∂L

∂ot+1,n
i

∂g

∂ut+1,n
i

f(ot,ni) (10)

All the terms can be derived using the equations (7)-(8),
except the derivative of the spiking activation function (∂g∂u),
which must be approximated by a surrogate gradient. They
demonstrate 99.42% accuracy on MNIST with a 4-layer CNN
architecture. The authors in [53] follow the approach of [44]
by considering the membrane potential without the spiking
discontinuities, but with a leak in the neuron model. They
achieve 90.95% accuracy on CIFAR-10 with a ResNet-11
using 100 timesteps for inference with on average 1.53x106

spikes per inference, which leads to x15 efficiency gain with
respect to MAC and AC operations (using the energy values
given in [21]) compared to the ANN version. In [58], they
do not use temporal components in the neuron and synapse

7

models, but use a temporal loss inspired by the van Rossum
distance. Therefore, they minimize the distance between the
desired and actual output spike train.

The use of surrogate gradient to approximate the non-
differentiable behavior has the effect of smoothing the spiking
activity. This leads to an inconsistency between the computed
gradient and loss, which degrades the accuracy [49], [54].
Therefore, the authors in [49] introduce a backpropagation at
the spike train level with a decoupled macro factor accounting
for the rate-coded loss function and a micro factor to incor-
porate temporal dependencies at the spike train level. They
show that this decomposition improves the precision of the
temporal learning. In the same spirit, in [54], the derivative of
the error is decomposed in two factors, one accounting for the
inter-neuron dependencies and one accounting for the intra-
neuron dependencies. They use LIF neurons with continuous
exponential synapses and consider incremental changes in the
postsynaptic potential with regards to the membrane potential
of a neuron to compute the gradients. Moreover, they use a
temporal loss function analogous to the van Rossum distance.
They proposed a warm-up mechanism with a sigmoid instead
of a step function as activation function to enable backpropa-
gation when there is no spike. They improved the temporal
learning compared to [49] and scaled to CIFAR-10, while
reducing the inference latency and showing high spike sparsity
with on average 0.49 spike per neuron per inference.

In summary, the spatio-temporal approaches consider spatial
and temporal dependencies using the BPTT. This is relevant
to take into account the temporal components of the model
(such as in the neurons, synapses and loss function) in the
backpropagation. Therefore, they can benefit from the full
spatio-temporal dimension of the SNN dynamics.

3) Single-spike approaches: Single-spike approaches, such
as [34], [59]–[64], circumvent the non-differentiability prob-
lem when applying backpropagation in SNNs by directly
differentiating the spike times. These methods have been
applied to image processing, the spatial information contained
in the images being directly converted to the spike timing using
a temporal (latency) coding.

The single-spike approach was introduced very early with
the SpikeProp learning rule [65]. SpikeProp defines the firing
time of neurons as a function of their membrane potential and
thus approximates their derivative using the changes of the
membrane potential around the firing time. Later, the authors
in [34] demonstrated that by using single-spike IF neurons
with exponential synapses, the differential equation of the
neuron membrane potential has a simple solution. Indeed, they
define the IF neurons and exponential synapses as [34]:

dV j
mem(t)

dt
=

∑
i

wji

∑
r

ϵ(t− tri) (11)

with tri the time of the rth spike from neuron i and ϵ the
synaptic current kernel given by [34]:

ϵ(x) = exp(− x

τsyn
) if x ≥ 0 , 0 otherwise. (12)

with τsyn the synaptic time constant. Then, assuming a neuron
will spike at time tout, they integrate the membrane potential

for t < tout, which allows to obtain the output spike time of a
neuron (tout) as a function of the spike times of its presynaptic
neurons [34]:

exp(tout) =

∑
i∈C wiexp(ti)∑
i∈C wi − θ

(13)

C = {i : ti < tout} is the causal set of the neuron,
containing the input spikes that had arrived before its output
spike and thus have influenced the output spike. Due to this
analytic input-output relation, the spike times can be computed
directly without simulating the whole network dynamics (i.e.
computing membrane potentials at each timestep). Therefore,
there is no need to do a BPTT, but a direct backpropagation
only on the spike times is possible. A particularity of this
algorithm is that, due to the form of the analytical relation,
for a given neuron, the backpropagation rule only applies to
the presynaptic neurons in its causal set. Furthermore, back-
propagation is not performed on the neurons that do not spike.
Therefore, the authors in [34] apply weight regularization
to push neurons to spike, by forcing its presynaptic sum of
weights to be superior to its threshold. Using a change of
variable exp(tx) −→ zx, the derivative of the output spike
time with respect to the weight and with respect to an input
spike time is computed [34]:

dzout
dwp

=
zp − zout∑
i∈C wi − θ

if p ∈ C, 0 otherwise. (14)

dzout
dzp

=
wp∑

i∈C wi − θ
if p ∈ C, 0 otherwise. (15)

The loss function for the output spike times vector of the
output neurons zL and a target class index g is defined as [34]:

L(g, zL) = −ln
exp(−zL[g])∑
i exp(−zL[i])

(16)

The loss function takes the negative of the spike times (in
the z-domain) to encourage the neurons corresponding to the
correct class to fire earlier. They achieve 97.2% accuracy on
MNIST with a 784-800-10 fully-connected network.

Papers [59] and [60] take their inspiration from [34] but
use IF neurons and synapses with alpha synaptic kernel,
and LIF neurons and synapses with dual exponential kernel,
respectively. Their models are more biologically plausible, but
the differential equations have complex solutions. Performance
in hardware is demonstrated in [60] by implementing the
algorithm in BrainScaleS-2. They yield 95.9% accuracy with
25µJ per classification on MNIST (16x16 images) with a 256-
128-10 fully-connected network.

Another work [61] uses IF neurons with linear synapses,
taking inspiration from the ReLU units used in ANNs, demon-
strating 99.2% accuracy on MNIST with a 5-layer CNN
architecture. They argue that the linear synapse alleviates the
problem of exploding gradient and dead neurons compared
to the alpha synapse (and more generally to a decaying
kernel function). Indeed, the derivative of the linear synapse
is never close to zero, and there is no leak in the model
therefore neurons are more likely to spike. The authors in [62]

8

also use linear synapses and added a temporal penalty term
to stabilize the timing of the output spike instead of the
penalty on the weights used by [34]. This allows to control
the output spike times of the network and therefore to tune
the inference latency. Furthermore, considering analog VLSI
implementations, they show that their SNN dynamics can
be mapped to circuits with analog resistive memory. Using
numerical simulations, the robustness of their model to device
variations (when taken into account during the training) was
demonstrated for a small fully connected network on the
MNIST task. Besides, the authors in [63] simplify the model
of [34] by using instantaneous synapses with IF neurons.
However, because the synapse is not continuous, they must
approximate the derivative of the spike time with regards to
the membrane potential, and so the gradients are not exact.
They obtain 97.4% accuracy on MNIST with a 784-400-10
fully-connected network.

Finally, the paper [64] extends the work of [34] by propos-
ing an efficient way of computing the spike times taking
advantage of parallel tensor computations in deep learning
frameworks running on GPUs, thus speeding-up the offline
training. They achieved 92.68% and 68.8% accuracy on
CIFAR-10 and ImageNet using VGG-16 and GoogleNet archi-
tectures, respectively. Targeting efficient inference, they show
that their method is robust to weight quantization. Indeed, they
yield 90.93% accuracy for CIFAR-10 with 2-bits quantization,
and 65.2% (resp. 60.0%) for ImageNet with 4-bit (resp. 2-
bit) quantization. In addition, they report high sparsity of
activations, with on average 0.62 (resp 0.56) spike per neuron
per inference on CIFAR-10 (resp. ImageNet). However, as
they directly compute the spike times without simulating the
SNN dynamics, they do not discretize the inference phase with
timesteps. Therefore, the number of timesteps which would be
used to simulate the SNN inference with the desired temporal
resolution in hardware is unknown.

In summary, single-spike approaches have the advantage of
using at most one spike per neuron and thus appear promis-
ing for energy-efficient hardware implementations. Moreover,
using the analytical input-output relation allows us to com-
pute exact gradients instead of using approximate gradients,
which is better for the optimization process. However, the
backpropagation is only performed on presynaptic neurons
which have spiked before the given neuron. Therefore, fewer
synaptic weights are updated per iteration, which could lead to
a slower training convergence. Moreover, encouraging neurons
to fire during training improves the learning [34], [64] but can
limit the sparsity reached. In addition, while the single-spike
approach is adapted to static input data, it is hardly compatible
with dynamically changing input data, as neurons can fire only
once [24].

4) Limitations: Considering the spatial and single-spike
approaches, only the works [45], [64] have shown scalability
to CIFAR-10, and ImageNet for the latter. The spatio-temporal
approach is the only approach considering spatial and temporal
dimension in the backpropagation, which can lead to a better
optimization of the SNN in terms of accuracy and latency.
Moreover, spatio-temporal approaches are compatible with
dynamically changing input data, such as neuromorphic data.

However, the computational and memory cost of training with
BPTT is huge, as this method requires storing the activations
and computing the gradient at all timesteps. This is a major
obstacle to the direct training of SNNs. For instance, training
VGG-16 on CIFAR-10 for one epoch of BPTT (using 100
timesteps) with the method of [66] takes 78 min and 9.36 GB
of GPU memory (using Nvidia GeForce RTX 2080 Ti TU102
GPU with 11GB memory). For comparison, the VGG-16 ANN
training of one epoch requires only 0.57 min and 1.47 GB,
which is x137 less time and x6 less memory.

In addition, SNN training is still challenging. Most of the
works use an approximate derivative for the spiking activity,
therefore there is an inconsistency between the model which
is optimized with the backpropagation and the actual SNN
model. These approximation errors could accumulate through
the layers. Moreover, [58] argued that, for SNNs trained
with BPTT, reducing the number of timesteps is crucial, not
only to reduce the latency and energy consumption, but also
to improve the training convergence. Indeed, with the same
network architecture, the unrolled SNN in the BPTT is much
bigger compared to the ANN trained with backpropagation.
Therefore, similar to RNNs, the vanishing and exploding
gradients problem is increased. These problems prevent SNNs
from scaling to very deep architectures. Hence, in addition
to an increased offline training cost, the accuracy of SNNs
trained with backpropagation is still limited and lags behind
conversion approaches.

IV. OPTIMIZING FURTHER DEEP SNNS

Recent works have proposed additional strategies to im-
prove the supervised training of SNNs with backpropagation,
such as transferring ANNs techniques to SNNs, improving
the encoding and decoding, using wider network architec-
tures, hybridization between training strategies, and tuning
the parameters specific to the SNN model. This methods
have demonstrated significant improvements regarding the
accuracy, latency and spike sparsity. The main results of
backpropagation-based methods (spatial, spatio-temporal and
single-spike methods) on static and neuromorphic vision
datasets are summarized in Tables I and II, while showing the
effect of using the improvements described in the following
subsections.

A. Adapting successful ANN techniques to SNNs

ANNs training is more mature and already benefits from
successful techniques developed in the past few years. There-
fore, taking inspiration from these techniques could be a
solution to improve SNNs accuracy. For instance, regulariza-
tion is a powerful ANN technique to decrease the overfitting
occurring during the training process and thus improving
the generalization of the network. One regularization method
especially designed for SNN is proposed in [51]. This neuron
normalization method (NeuNorm) consists in using auxiliary
neurons at each convolutional layer. These auxialiary neurons
compute a weighted summation of spike counts of the other
neurons to be fed to the next layer in addition to the raw
spike signals. This additional signal is used to balance the

9

TABLE I
COMPARISON OF BACKPROPAGATION-BASED ALGORITHMS ON STATIC VISION DATASETS

Learning strategy Paper Coding Neurons + synapses Architecture Regularization method Additional training strategy Timesteps Acc. (%)

CIFAR-10
Spatial [45] rate IF + instantaneous VGG-8 / / / 89.99

Spatio-temporal

[51] rate LIF + instantaneous VGG-8 neuron normalization, dropout encoding layer, voting layer 12 90.53
[53] rate LIF + instantaneous ResNet-11 dropout / 100 90.95
[54] rate LIF + exponential VGG-8 / encoding layer 5 91.41
[58] rate IF + instantaneous ResNet-11 batch normalization, dropout surrogate gradient tuning 20 90.20
[56] rate LIF + instantaneous VGG-8 batch normalization, dropout encoding layer, voting layer 8 93.50
[67] rate LIF + instantaneous VGG-9 batch normalization / 25 90.50
[57] rate LIF + instantaneous ResNet-19 batch normalization encoding layer, voting layer 6 93.16

Single-spike [64] time IF + exponential VGG-16 weight regularization / / 92.68

CIFAR-100

Spatio-temporal
[58] rate IF + instantaneous ResNet-50 batch normalization, dropout surrogate gradient tuning 40 58.5
[67] rate LIF + instantaneous VGG-11 batch normalization / 30 65.8

ImageNet
Spatio-temporal [57] rate LIF + instantaneous ResNet-34 batch normalization encoding layer, voting layer 6 67.05

[68] rate LIF + instantaneous ResNet-152 batch normalization encoding layer 4 69.26
Single-spike [64] time IF + exponential GoogLeNet weight regularization / / 68.8

TABLE II
COMPARISON OF BACKPROPAGATION-BASED ALGORITHMS ON NEUROMORPHIC VISION DATASETS

Learning strategy Paper Coding Neurons + synapses Architecture Regularization method Additional training strategy Timesteps Acc. (%)

CIFAR-10-DVS

Spatio-temporal

[51] rate LIF + instantaneous VGG-5 neuron normalization, dropout encoding layer, voting layer 20 60.5
[56] rate LIF + instantaneous VGG-6 batch normalization, dropout encoding layer, voting layer 20 74.8
[67] rate LIF + instantaneous VGG-7 batch normalization / 20 63.2
[57] rate LIF + instantaneous ResNet-19 batch normalization encoding layer, voting layer 10 67.8

DVSGesture

Spatio-temporal

[55] rate LIF + continuous 5-layer CNN / synapse kernel optimization / 96.09
[56] rate LIF + instantaneous VGG-7 batch normalization, dropout encoding layer, voting layer 20 97.57
[57] rate LIF + instantaneous ResNet-17 batch normalization encoding layer, voting layer 40 96.87

input current received by neurons and leads to an increased
accuracy. However, this normalization step requires additional
multiplications as both the spike counts and the associated
weights are real-valued quantities.

In the ANN domain, dropout [69] is a simple yet effective
regularization technique transferable to SNNs [51], [53], [56],
[58], [66], [70]. It consists in disconnecting some units of
a layer with a given probability during the training to avoid
the network relying too much on certain connections. For
example, [53] introduced dropout for SNN trained with BPTT
by keeping the same random subset of dropped units at each
timestep. Batch Normalization (BN) [71] is a another powerful
regularization technique widely used to train deep ANNs. It
consists in rescaling the activations of a layer, and learning
this scaling per batch, in order to maintain the variance
of the activations throughout the network, which leads to
better convergence. Several works propose to transfer the BN
technique to the SNN training [57], [58], [67]. The authors
in [67] show that standard BN should not be applied directly to
SNNs, because it considers the timesteps all at once. Instead,
they propose a BN ”through time” to decouple the parameters
of the BN across the timesteps. They show that their BPTT
method could converge on CIFAR-100 and TinyImageNet
datasets, which was not the case without the BN. Furthermore,

they report a decreased number of spikes per inference by
one order of magnitude compared to the BPTT without BN
and an increased robustness to noisy inputs. They showed
x9 efficiency gain compared to the ANN version in terms
of AC/MAC operations using the energy values of [21]. In
addition, [57] propose a threshold-dependent spatio-temporal
BN that normalizes the variance of the inputs to the threshold.
By adding this BN to the BPTT algorithm described in [31]
(further improved by the neuron normalization in [51]), they
demonstrate scalability to deep residual networks with high
accuracy while using fewer timesteps. In addition, they report
sparse spiking activity (less than 2 spikes per neuron per
inference on average). Therefore, it seems that BN enables the
convergence of deeper networks while potentially reducing the
spiking activity.

Scalability of SNNs can also be improved using optimized
network architectures. For instance, the ResNet architecture
can alleviate the gradient vanishing problem by adding residual
shortcut connections, which enables the effective training of
deeper networks [72]. Papers [53], [57], [58], [68] achieve
high accuracy using ResNet architectures and regularization
techniques. For instance, [58] and [57] show scalibility up to
a 50-layer ResNet on CIFAR-100 and ImageNet, respectively.
However, the accuracy gap with respect to ANN for the same

10

architecture is still high. On ImageNet, the SNN ResNet-50
in [57] yields 64.88% accuracy while the ANN ResNet-50
achieves 76.13% [73], both being trained with BN. However,
[68] proposes a novel implementation of the identity mapping
in spiking ResNet, which can mitigate the problem of SNNs
scaling with depth. Indeed, they are able to scale to very deep
residual networks while increasing the accuracy with depth.
For instance, they reach 69.26% accuracy on ImageNet with
ResNet-152 using only 4 timesteps.

B. Improving encoding and decoding

Input encoding and output decoding of the network se-
riously impact the SNN accuracy and latency [10], [51],
[74], [75]. Therefore, recent works proposed alternative coding
methods.

1) Encoding: It is known that the higher the number of
timesteps used in the inference phase, the higher the precision
of the encoding and in turn, the higher the network accu-
racy. However, this induces an increased inference latency.
Therefore, reducing the number of timesteps while preserving
the accuracy is challenging. The authors in [74] point out
that Poisson spike generation (the most common encoding
scheme used in both spatial and spatio-temporal approaches)
is inefficient, because it relies only on spike rate to encode
information and does not make use of the temporal dimension.
They propose a Discrete Cosine Transform which encodes
distinct information at each timesteps, by decomposing the
input signal into a basis of spectral components. Therefore,
the latency is defined as the number of vectors in the basis,
starting from coarse to fine grain resolution to maximize the
accuracy while reducing the latency. However, this encoding
requires two matrix multiplications in the pre-processing step.

Another solution to improve the encoding, which can be
applied to real-valued signals from non-spiking datasets (such
as image pixels), consists in using an encoding layer, also
called direct input encoding, to do the conversion from real
values to spikes [10], [51], [54], [56], [57], [70], [75], [76]
(see Fig.4b). This method consists in directly feeding the real
values to the first layer at each timestep, without discretization
of the input, the discretization process with the spikes being
done in the first layer. Such encoding layer is thus a hybrid
ANN-SNN layer, as the synapses perform real-valued input-
weight multiplications but the neurons are spiking units. The
authors in [75] report that by using the encoding layer, a
small VGG-5 trained with BPTT on CIFAR-10 could achieve
74.23% accuracy instead of 63.19% with a standard proba-
bilistic sampling. Moreover, it seems that, as it improves the
accuracy, the number of timesteps can be reduced without
losing in accuracy. Indeed, it appears that since the inputs are
encoded with full precision in the first layer, a lower precision
can be used in the subsequent layers while maintaining a high
accuracy. They show that the VGG-5 with the encoding layer
can achieve already the same accuracy than the one obtained
without the encoding layer by using only 3 timesteps instead
of 15 [75]. Besides, other spatio-temporal approaches [51],
[54], [56], [57] demonstrate accuracy above 90% on CIFAR-
10 with 5-12 timesteps, while usually the same approach with

Poisson spike generation requires about a hundred timesteps
for accurate inference [53]. Similar conclusions are derived
in the recent study [77] comparing the rate coding and the
encoding layer strategies. Note that this hybrid layer must be
supported in the neuromorphic hardware used for inference, or
computed at the interface between the data and neuromorphic
hardware.

2) Decoding: A simple way to increase the precision of the
output layer is to apply the loss function on the high precision
membrane potential of the output neurons instead of their
spike rate [53], [66], [70]. Alternatively, population decoding
can be used to improve the robustness of the classification
when using the output spike rates [51], [56], [57]. In this
decoding scheme, each group of output neurons represents
a class, and the choice is made based on a voting strategy.
The drawback is to use more neurons in the output layer and
therefore more parameters. Besides, improving the softmax
layer can also improve the accuracy by a few percents. For
instance, [78] show about 2 to 3% accuracy improvement and
a sparser spiking activity, by using a stochastic softmax instead
of the standard softmax classifier. The stochastic aspect of this
softmax can be considered as a regularization technique.

C. Wide network architectures
Using wider network architectures, by increasing the num-

ber of neurons per layer, improves the accuracy when the num-
ber of timesteps is constrained. For instance, the works [53],
[57], [58], [66], [70] achieving low latency with high accuracy
on CIFAR-10 use very large ResNet architectures (11 to
18M parameters), following the architecture designed in the
ResNet paper [72] for the ImageNet task instead of CIFAR-
10. Indeed, ResNet architectures for CIFAR-10 are originally
very small architectures, such as the ResNet-20 with only
0.27M parameters, and yet are able to achieve good accuracy
on CIFAR-10 (91.25%). On ImageNet, [57] report that by
doubling the number of filters per convolutional layers in
the ResNet-34 architecture, they increase the accuracy from
63.72% to 67.05%. Interestingly, when they compare the SNN
with the ResNet-50 and ResNet-34 original architectures, the
ResNet-50 yields better accuracy (64.88%), but not compared
to the large ResNet-34. This shows that, in SNNs, from a
certain depth, increasing the width of the network is more
beneficial compared to further increasing the depth. Indeed,
the number of neurons is increased, which can be considered
equivalent to increasing the precision of a smaller number of
neurons, without degrading the backpropagation phase. On the
other hand, increasing the depth of the network makes the
backpropagation more difficult due to accumulation of errors
(for instance due to the surrogate gradient training) through
the layers. This is on par with the work [79] proposing to
use wider architectures to improve the accuracy of reduced-
precision ANNs (with quantized weights and activations).
Indeed, SNNs with few timesteps behave similarly to ANNs
with strongly-quantized activations.

D. Training hybridization
Hybrid training approaches have also been proposed to

further reduce the offline training and hardware inference costs

11

Fig. 4. (a) Example of ANN-SNN hybridization. Here, the first convolutions
are done in ANN mode (MACs with real-valued inputs) and the last convo-
lutions are performed in SNN mode (ACs with binary spikes). A conversion
from analog values to spikes is performed between ANN and SNN layers.
(b) Encoding layer. The first layer is hybrid ANN-SNN, as synapses perform
MAC operations between weights and real-valued inputs, but neurons are
spiking. Therefore, the conversion from analog values to spikes is performed
directly by this layer.

while preserving the accuracy.
1) ANN-SNN network hybridization: Mixing ANN and

SNN layers is one strategy to improve the accuracy (see
Fig. 4a). For instance, the authors in [78] use a network
with ANN layers at the inputs to improve the encoding
accuracy, and SNN layers at the output, the whole network
being trained with backpropagation (spatio-temporal for SNN
layers). This approach demonstrates benefits for the CIFAR-
10 classification task, for which the hybrid version yields
84.98% accuracy (+1.65% compared to the full ANN) using
25 timesteps with a VGG-9, showing x4 efficiency in terms
of MAC/AC operations (using the energy values in [80])
compared to the ANN. However, the benefits are smaller on
the Imagenet dataset (x1.3 efficiency), as they could not use
more than two spiking layers in the VGG-13 architecture to
achieve satisfactory accuracy (-2% compared to the full the
ANN).

2) Tandem learning: Another strategy proposed in [76] is
to couple each SNN layer with an ANN layer with weight
sharing. In the training phase, the inference is performed
by the SNN and the obtained spike counts are used as
activation values by the ANN to perform the backpropagation.
Therefore, the offline training phase is accelerated and needs
less memory because the backpropagation is done on the
ANN (thus removing the need for BPTT). The obtained SNN
yields 90.98% accuracy on CIFAR-10 with 8 timesteps (7-
layer VGG architecture), and 50.22% on ImageNet with 10
timesteps (AlexNet architecture). In comparison, the ANN
versions achieve 91.77% and 57.55%, respectively. In addition,
they report a sparse spiking activity (less than 0.4 spike
per neuron per inference on the CIFAR-10 task), and thus
up to x20 energy-efficiency compared to the ANN in terms
of MAC/AC operations (using the energy values of [80]).
Note that the temporal information can not be used in the
backpropagation as the training is performed in the ANN
domain.

3) Conversion and direct training hybridization: A hybrid
approach between conversion and supervised direct training,

thus mixing direct and indirect training, is proposed in [66].
Indeed, the ANN-to-SNN conversion yields very good accu-
racy but at the cost of a high number of inference timesteps,
while SNN supervised training yields a lower number of
timesteps but the spatio-temporal training with BPTT is ex-
pensive. Taking the best of both worlds, they used ANN-to-
SNN conversion as a pretraining and further applied SNN
fine-tuning with a spatio-temporal learning rule. For instance
with a VGG-16 architecture on CIFAR-10, after the ANN
pretraining (250 training epochs), the SNN converged with 20
training epochs, showing the effectiveness of the pretraining.
Therefore, the total training duration is reduced to 28 hours
(using Nvidia GeForce RTX 2080 Ti TU102 GPU with 11GB
memory) compared to 325 hours with SNN training from
scratch. However, the memory requirements for training are
not reduced, as the SNN still requires training with BPTT. In
addition, the latency is decreased while yielding high accuracy.
For instance, on ImageNet with 250 timesteps, a VGG-16
(resp. ResNet-34) with hybrid training achieves 65.19% (resp.
61.48%) accuracy, while with the same number of timesteps
the converted SNN without the fine tuning only achieves
62.73% (resp. 56.87%).

E. Leveraging the specificity of the SNN model

The methods to improve the supervised training proposed in
the previous sections are mostly inspired by the ANN training.
However, the SNN model have some specificity that do not
exist in the ANN version, such as the threshold parameter,
or time constants for LIF neurons and continuous synapses.
This section shows that, by making efficient use of the rich
dynamics of the SNN model, further benefits can be expected
in terms of accuracy and efficiency (latency and sparsity).

1) Neuron’s leak and threshold: Typical parameters of
spiking neurons such as leak (for LIF neurons) and threshold
are usually defined as hyperparameters and not considered
in the training. However, neuron’s leak and threshold are
important parameters determining the SNN behavior. For a
given set of weights, the threshold determines how much the
input neurons must spike in order for the neuron to spike.
The leak parameter controls how close to each other input
spikes must be for a temporal coincidence to be detected. Thus,
tuning leak and threshold parameters with backpropagation
can allow a better optimization of the SNN model. For in-
stance, the authors in [56] propose to learn the leak parameters
and reported higher accuracy than other spiking approaches
on neuromorphic datasets CIFAR-10-DVS and DVSGesture
(see Table II). In [70], both leak and threshold are learned
with the hybrid conversion pretraining and supervised fine-
tuning method of [66]. They show an accuracy improvement
compared to learning only the synaptic weights of about 1%
on CIFAR-10 and up to 5% on CIFAR-100 and ImageNet,
as well as a lower spike rate (average number of spikes per
neuron per inference). The effect of tuning the thresholds
when the weights are learned is surprising, as adjusting either
the weights or the thresholds (from pre-trained weights) is
usually considered equivalent in conversion methods. How-
ever, they demonstrate that, with iso-accuracy (using VGG-16

12

on CIFAR-10), tuning the thresholds leads to a reduction in
timesteps from 25 to 15 and in spike rate from 1.94 to 1.47.
Tuning the leaks reduces even more the number of timesteps
from 15 to 5 and the spike sparsity from 1.47 to 0.39. The
threshold and leak parameters are shared between neurons in
a layer, thus the number of added parameters is negligible
compared to the total number of parameters in the model.

2) Synapse dynamics: The choice of the synaptic kernel
function, when continuous synapses (rather than instanta-
neous) are used, is another parameter to explore in order to
optimize the SNN model. For instance, in [55], the authors
propose a SNN with LIF neurons where the synapses are
described as second order infinite impulse response filters,
allowing to model various types of kernel (e.g. instantaneous,
exponential, alpha, dual-exponential). The coefficients of the
synapse filter are jointly learned with the synaptic weights
using BPTT. They achieved 96.09% accuracy on DVSGesture.

3) Surrogate gradient: Finally, the spatial and spatio-
temporal approaches use a surrogate gradient to approximate
the derivative of the spiking activity. The derivative of sigmoid
functions is often used as a surrogate, as the sigmoid function
can be seen as a smooth approximation of the step function
(see Fig. 3), but other surrogate derivatives, such as expo-
nential or piece-wise linear functions, can also be used [9].
While the training performance is robust to the shape of the
surrogate function, it is strongly affected by its scale [81].
For instance, paper [58] shows that, by tuning the scale of
the surrogate gradient function, the variance of the gradients
can be preserved through the layers, avoiding exploding and
vanishing gradients. Therefore, by optimizing the width of
the surrogate gradient function (and additionally using BN),
they can scale to a ResNet-50 architecture, achieving 58.5%
accuracy on CIFAR-100 and 81.2% accuracy on Imagenette (a
subset of ImageNet), with 40 and 20 timesteps for evaluation,
respectively (10 timesteps are used for training).

V. IMPACT OF INPUT ENCODING, TRAINING AND
NETWORK ARCHITECTURE WIDTH ON THE

ACCURACY-LATENCY TRADE-OFF

Finally, as SNNs distribute the information through binary
events over time, there is an inherent trade-off between ac-
curacy and latency (and thus the energy cost). Indeed, the
latency directly impacts the accuracy, as the precision of
the coding depends on the number of timesteps used for
inference [35], [36], [38]. In order for SNNs to replace
ANNs for efficient inference on neuromorphic hardware, the
accuracy-latency trade-off should be carefully considered. In
particular, parameters such as the coding, training strategies,
and network architecture width, impact this trade-off. State-of-
the-art approaches in conversion, direct training with BPTT,
and hybrid training, are compared in terms of accuracy-latency
trade-off with regards to these parameters in Table III.

First, the training strategy appears to have an effect on the
accuracy-latency trade-off. For instance, the conversion with
temporal switch coding proposed in [39] yields better results
than the conversion with rate coding of [38] when a reduced
number of timesteps is used (256). This is explained by the

use of a better threshold balancing. Moreover, fine-tuning with
BPTT after the rate-coded conversion in [66] improves the
accuracy by 1% on CIFAR-10 and by 3% (resp. 5%) on
ImageNet when using a VGG (resp. ResNet) architectures with
the same number of timesteps (250). Adding further the fine-
tuning of the threshold and leak improves also the accuracy
by 1% (resp. 5%) on CIFAR-10 with ResNet architecture
(resp. ImageNet with VGG architecture) when using the same
number of timesteps (5) [70].

Considering the network architecture, as mentioned in sec-
tion IV-C, increasing the width can improve the accuracy-
latency trade-off. For instance, we observe that the gap be-
tween the SNN and ANN accuracy decreases as much as the
architecture width increases. This explains the bigger differ-
ences between SNN and ANN accuracy on ImageNet with
ResNet-34 architecture (21M parameters) than with VGG-16
(138M parameters). For instance, 69.00% accuracy is achieved
with 5 timesteps using VGG-16 in [70], which is close to
the ANN accuracy (71.59% without BN). The best accuracy
among SNNs for a 34-layer ResNet is 67.05% with the spatio-
temporal approach (trained with BN) of [57] by using a
wide ResNet (≈85M parameters). The problem is mitigated
by [68] with a modified implementation of the spiking ResNet
achieving 67.04% accuracy with 4 timesteps using the original
ResNet-34 architecture. However, both SNNs are still far from
the ANN ResNet-34 accuracy (73.31% with BN). Similarly
in conversion approaches [38], [39], using the ResNet-34
architecture on ImageNet with a reduced number of timesteps
(256 vs 4096), the degradation in accuracy is larger than the
one observed for VGG-16. This highlights the accuracy-size
trade-off in SNNs: the loss in accuracy due to the quantization
of information (which is further increased by reducing the
number of inference timesteps) is compensated by increasing
the number of neurons in each layer of the network.

In addition, the encoding layer impacts a lot the accuracy-
latency trade-off for both hybrid conversion and direct training
approaches. Indeed, when compared to the same architecture
(ResNet-20 large or VGG-16) with the same training method-
ology (i.e. conversion with fine-tuning), the encoding layer can
allow to reduce the number of timesteps from 250 to 5 with
only 1 to 2% accuracy loss [70]. In addition, direct training
approaches yielding high accuracy with very few timesteps (5
to 12), such as [51], [54], [56], [57], use the encoding layer.
The paper [70] studies the effect of the input encoding and
leak and threshold optimization on both the spike rate and
latency for the hybrid conversion with fine-tuning approach
(with VGG-16 on CIFAR-10). Using an encoding layer instead
of probabilistic sampling induces a significant improvement in
the latency (from 150 to 25 timesteps)and in the spike rate
(from 26 to 1.94).

Hence, it seems that the training strategy, the network
architecture width and the use of an encoding layer impact
the accuracy-latency trade-off. In particular, the use of wide
architectures and encoding layer seems to be the key to
compensate for the quantization process inherent to the spike
coding with a limited number of timesteps and thus to reach
the best accuracy-latency trade-off. However, they bring addi-
tional costs, such as using MACs operations for the encoding

13

TABLE III
IMPACT OF INPUT ENCODING, TRAINING AND NETWORK ARCHITECTURE WIDTH ON THE ACCURACY-LATENCY TRADE-OFF

Paper Architecture Encoding layer Training Timesteps Acc. (%)

CIFAR-10
[38] ResNet-20 ✕ conversion (rate) 2048 91.36
[38] ResNet-20 ✕ conversion (rate) 256 89.37
[39] ResNet-20 ✕ conversion (time) 2048 91.42
[39] ResNet-20 ✕ conversion (time) 256 90.10
[40] ResNet-20 ✓ conversion (rate) 16 91.62
[66] ResNet-20 (L) ✕ conversion (rate) 250 91.12
[66] ResNet-20 (L) ✕ conversion (rate) + backpropagation 250 92.22
[70] ResNet-20 (L) ✓ conversion (rate) + backpropagation 5 90.29
[70] ResNet-20 (L) ✓ conversion (rate) + backpropagation (+ leak & threshold tuning) 5 91.78
[57] ResNet-19 (L) ✓ backpropagation 6 93.16
[53] ResNet-11 (L) ✕ backpropagation 100 90.95
[58] ResNet-11 (L) ✕ backpropagation (+ batch normalization + surrogate gradient tuning) 20 90.20
[72] ResNet-20 / ANN (+ batch normalization) / 91.25
[70] ResNet-20 (L) / ANN / 92.79

ImageNet
[38] ResNet-34 ✕ conversion (rate) 4096 69.89
[38] ResNet-34 ✕ conversion (rate) 256 ≈20
[39] ResNet-34 ✕ conversion (time) 4096 69.93
[39] ResNet-34 ✕ conversion (time) 256 55.65
[40] ResNet-34 ✓ conversion (rate) 64 72.35
[66] ResNet-34 (M) ✕ conversion (rate) 250 56.87
[66] ResNet-34 (M) ✕ conversion (rate) + backpropagation 250 61.48
[57] ResNet-34 ✓ backpropagation (+ batch normalization) 6 63.72
[57] ResNet-34 (L) ✓ backpropagation (+ batch normalization) 6 67.05
[68] ResNet-34 ✓ backpropagation (+ batch normalization) 4 67.04
[73] ResNet-34 / ANN (+ batch normalization) / 73.31

[38] VGG-16 ✕ conversion (rate) 4096 73.09
[38] VGG-16 ✕ conversion (rate) 256 48.32
[39] VGG-16 ✕ conversion (time) 2560 73.46
[39] VGG-16 ✕ conversion (time) 256 69.71
[40] VGG-16 ✓ conversion (rate) 64 72.85
[66] VGG-16 ✕ conversion (rate) 250 62.73
[66] VGG-16 ✕ conversion (rate) + backpropagation 250 65.19
[70] VGG-16 ✓ conversion (rate) + backpropagation 5 64.32
[70] VGG-16 ✓ conversion (rate) + backpropagation (+ leak & threshold tuning) 5 69.00
[73] VGG-16 / ANN (+ batch normalization) / 73.36

Number of parameters of the architectures (estimated according to the details given in the associated papers): ResNet-20: 0.27M. ResNet-20
(L): 11M. ResNet-19 (L): 13M. ResNet-11 (L): 18M. ResNet-34: 21M. ResNet-34 (M): 22M. ResNet-34 (L): 85M. VGG-16: 138M.

layer, and increasing the area and memory requirements for
large architectures compared to smaller one.

VI. CONCLUSION

Compared to ANNs, the SNN model is more complex and
requires to choose the neuron, synapse and coding strategies.
These choices are intertwined and impact the learning rule and
the system efficiency. Related to SNN training, the conversion
and direct training backpropagation-based approaches have the
potential to replace ANNs for accurate and energy-efficient
hardware inference on typical deep learning tasks such as
image classification. From the conversion approaches, the
temporal switch coding [38] is a promising strategy to increase
the spike sparsity. Moreover, it is important to use ANN

model which are closest to SNN models to minimize the
conversion errors [40]. From the direct training methods, the
spatio-temporal approaches have demonstrated the best results.
Only two algorithms [45], [64] from the spatial and single-
approaches were shown to scale, but they lack information
related to the number of timesteps required for inference. Thus,
further work is needed to evaluate the performance of those
approaches compared to the spatio-temporal ones.

Conversion methods suffer from high latency while direct
training spatio-temporal approaches show an increased offline
training cost and a degraded accuracy. Thus, to reach ANN
capabilities, further methods to improve SNN training and
inference are necessary, such as applying regularization tech-
niques during training and tuning parameters specific to SNNs.

14

Moreover, feeding directly real values at the inputs with an en-
coding layer instead of performing spike conversion improves
both SNN accuracy and latency. In the same spirit, the hybrid
ANN-SNN approach mixing ANN and SNN layers also has a
potential to improve the accuracy-latency trade-off and should
be further explored. The hybrid training approaches such as
conversion pre-training and supervised fine-tuning in [66], [70]
or tandem ANN-SNN learning [76], can improve the accuracy,
latency and spike sparsity. In addition, they reduce the cost of
the offline training due to the use of ANN training, which
was a hurdle to direct training approaches. Furthermore, wide
network architectures allow reducing the accuracy loss when
the number of timesteps is limited. This shows the importance
of finding network architectures suitable for SNNs, which
can be done using Neural Architecture Search [82]. Finally,
the accuracy-latency trade-off in SNN should be carefully
considered. For instance, the use of an encoding layer and
wide architectures can significantly improve this trade-off.

In the interests of comparing the different training algo-
rithms, we have focused on image classifications tasks. How-
ever, SNNs may offer greater benefits in other applications,
but these remain to be fully explored [28]. For instance,
some works have studied SNNs for speech processing [50],
[83], biomedical applications [84]–[89] or in the context of
privacy and security scenarios [90]–[92] including federated
learning [93], [94]. These works show a broad range of
applications where SNNs could bring both high accuracy and
energy-efficient solutions.

The sparsity of activations and event-based processing result
in efficient SNNs in neuromorphic hardware. However, note
that, although the sparsity and the number of timesteps provide
initial elements of comparison at the algorithmic level, they
are not sufficient to accurately evaluate the efficiency of an
algorithm implemented in hardware. For instance, the energy
consumption and the latency of the SNN hardware inference
also depends on the complexity of the neuron model and the
network architecture. Moreover, the characteristics of SNNs
may be particularly suited to the constraints of memristor-
based neural networks accelerators. Indeed, activation sparsity
and information coding through time could mitigate the current
limitations of this emerging hardware, such as heat dissipation,
device variability or limited variable precision [95]. Hence, we
emphasize the importance of a hardware-software co-design
strategy in order to enable highly energy-efficient solutions.

REFERENCES

[1] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” University of Toronto, Toronto, Ontario, Tech. Rep. 0,
2009.

[2] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in 2014 IEEE Conference on Computer Vision and Pattern Recognition,
2014, pp. 580–587.

[3] G. Hinton et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE Signal
Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[4] A. Esteva et al., “Dermatologist-level classification of skin cancer with
deep neural networks,” Nature, vol. 542, no. 7639, pp. 115–118, 2017.

[5] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[6] D. Li, X. Chen, M. Becchi, and Z. Zong, “Evaluating the energy
efficiency of deep convolutional neural networks on cpus and gpus,”
in 2016 IEEE International Conferences on Big Data and Cloud
Computing (BDCloud), Social Computing and Networking (SocialCom),
Sustainable Computing and Communications (SustainCom) (BDCloud-
SocialCom-SustainCom), 2016, pp. 477–484.

[7] L. Lapicque, “Recherches quantitatives sur l’excitation electrique des
nerfs traitee comme une polarization,” Journal of Physiol Pathol
Générale, no. 9, pp. 620–635, 1907.

[8] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal
Dynamics: From Single Neurons to Networks and Models of Cognition.
Cambridge University Press, 2014.

[9] E. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning in spik-
ing neural networks: Bringing the power of gradient-based optimization
to spiking neural networks,” IEEE Signal Processing Magazine, vol. 36,
pp. 51–63, 11 2019.

[10] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Con-
version of Continuous-Valued Deep Networks to Efficient Event-Driven
Networks for Image Classification,” Frontiers in Neuroscience, vol. 11,
p. 682, 2017.

[11] M. Pfeiffer and T. Pfeil, “Deep Learning With Spiking Neurons: Op-
portunities and Challenges,” Frontiers in Neuroscience, vol. 12, 2018.

[12] M. Davies et al., “Loihi: A neuromorphic manycore processor with on-
chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[13] P. A. Merolla et al., “A million spiking-neuron integrated circuit with a
scalable communication network and interface,” Science, vol. 345, no.
6197, pp. 668–673, 2014.

[14] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiNNaker
Project,” Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, May
2014.

[15] J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner,
“A wafer-scale neuromorphic hardware system for large-scale neural
modeling,” in Proceedings of 2010 IEEE International Symposium on
Circuits and Systems. IEEE, 2010, pp. 1947–1950.

[16] B. V. Benjamin et al., “Neurogrid: A mixed-analog-digital multichip
system for large-scale neural simulations,” Proceedings of the IEEE,
vol. 102, no. 5, pp. 699–716, 2014.

[17] S. Yin et al., “Algorithm and hardware design of discrete-time spiking
neural networks based on back propagation with binary activations,”
in 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS).
IEEE, 2017, pp. 1–5.

[18] H. Mostafa, B. U. Pedroni, S. Sheik, and G. Cauwenberghs, “Fast
classification using sparsely active spiking networks,” in 2017 IEEE
International Symposium on Circuits and Systems (ISCAS), 2017, pp.
1–4.

[19] B. Rueckauer and S. Liu, “Conversion of analog to spiking neural
networks using sparse temporal coding,” in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5.

[20] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A Scalable Multicore
Architecture With Heterogeneous Memory Structures for Dynamic Neu-
romorphic Asynchronous Processors (DYNAPs),” IEEE Transactions on
Biomedical Circuits and Systems, vol. 12, no. 1, pp. 106–122, Feb. 2018.

[21] M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in 2014 IEEE International Solid-State Circuits Conference Digest
of Technical Papers (ISSCC), 2014, pp. 10–14.

[22] Y. Dan and M.-M. Poo, “Spike timing-dependent plasticity: From
synapse to perception,” Physiological Reviews, vol. 86, no. 3, pp. 1033–
1048, 2006.

[23] A. Tavanaei and A. Maida, “BP-STDP: Approximating backpropagation
using spike timing dependent plasticity,” Neurocomputing, vol. 330, pp.
39–47, 2019.

[24] J. K. Eshraghian et al., “Training Spiking Neural Networks Using
Lessons From Deep Learning,” arXiv:2109.12894 [cs], Jan. 2022.

[25] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. S.
Maida, “Deep learning in spiking neural networks,” Neural Networks,
vol. 111, pp. 47–63, 2019.

[26] M. Bouvier et al., “Spiking neural networks hardware implementations
and challenges: A survey,” J. Emerg. Technol. Comput. Syst., vol. 15,
no. 2, pp. 1–35, 2019.

[27] C. S. Han and K. M. Lee, “A Survey on Spiking Neural Networks,”
International Journal of Fuzzy Logic and Intelligent Systems, vol. 21,
no. 4, pp. 317–337, 12 2021.

[28] K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine
intelligence with neuromorphic computing,” Nature, vol. 575, no. 7784,
pp. 607–617, Nov. 2019.

15

[29] A. L. Hodgkin and A. F. Huxley, “A quantitative description of mem-
brane current and its application to conduction and excitation in nerve,”
The Journal of Physiology, vol. 117, no. 4, pp. 500–544, 1952.

[30] E. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions
on Neural Networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[31] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-Temporal Back-
propagation for Training High-performance Spiking Neural Networks,”
Frontiers in Neuroscience, vol. 12, p. 331, May 2018.

[32] D. Auge, J. Hille, E. Mueller, and A. Knoll, “A survey of encoding
techniques for signal processing in spiking neural networks,” Neural
Process. Lett., vol. 53, no. 6, p. 4693–4710, dec 2021.

[33] C. Stöckl and W. Maass, “Optimized spiking neurons can classify images
with high accuracy through temporal coding with two spikes,” Nature
Machine Intelligence, vol. 3, 03 2021.

[34] H. Mostafa, “Supervised learning based on temporal coding in spiking
neural networks,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 29, no. 7, pp. 3227–3235, 2018.

[35] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer,
“Fast-classifying, high-accuracy spiking deep networks through weight
and threshold balancing,” in 2015 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2015, pp. 1–8.

[36] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in
spiking neural networks: VGG and residual architectures,” Frontiers in
Neuroscience, vol. 13, p. 95, 2019.

[37] Y. Cao, Y. Chen, and D. Khosla, “Spiking Deep Convolutional Neural
Networks for Energy-Efficient Object Recognition,” International Jour-
nal of Computer Vision, vol. 113, no. 1, pp. 54–66, May 2015.

[38] B. Han, G. Srinivasan, and K. Roy, “Rmp-snn: Residual membrane
potential neuron for enabling deeper high-accuracy and low-latency
spiking neural network,” 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 13 555–13 564, 2020.

[39] B. Han and K. Roy, “Deep spiking neural network: Energy effi-
ciency through time based coding,” in Computer Vision – ECCV 2020,
A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds. Springer
International Publishing, 2020, pp. 388–404.

[40] T. Bu, W. Fang, J. Ding, P. Dai, Z. Yu, and T. Huang, “Optimal ANN-
SNN conversion for high-accuracy and ultra-low-latency spiking neural
networks,” in International Conference on Learning Representations,
2022.

[41] N. Rathi, A. Agrawal, C. Lee, A. K. Kosta, and K. Roy, “Explor-
ing spike-based learning for neuromorphic computing: Prospects and
perspectives,” in 2021 Design, Automation Test in Europe Conference
Exhibition (DATE), 2021, pp. 902–907.

[42] G. Hinton, “Neural networks for machine learning, coursera,” Coursera,
video lectures, 2012.

[43] Y. Bengio, N. Leonard, and A. Courville, “Estimating or propagat-
ing gradients through stochastic neurons for conditional computation,”
arXiv:1308.3432 [cs.LG], 2013.

[44] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training Deep Spiking Neural
Networks Using Backpropagation,” Frontiers in Neuroscience, vol. 10,
2016.

[45] J. C. Thiele, O. Bichler, and A. Dupret, “SpikeGrad: An ANN-equivalent
Computation Model for Implementing Backpropagation with Spikes,”
arXiv:1906.00851 [cs], Jun. 2019.

[46] J. Wu, Y. Chua, M. Zhang, Q. Yang, G. Li, and H. Li, “Deep
spiking neural network with spike count based learning rule,” in 2019
International Joint Conference on Neural Networks (IJCNN). IEEE,
2019, pp. 1–6.

[47] S. B. Shrestha and G. Orchard, “SLAYER: Spike layer error reassign-
ment in time,” in Advances in Neural Information Processing Systems,
vol. 31, 2018.

[48] F. Zenke and S. Ganguli, “SuperSpike: Supervised Learning in Multi-
layer Spiking Neural Networks,” Neural computation, vol. 30, no. 6, pp.
1514–1541, Jun. 2018.

[49] Y. Jin, W. Zhang, and P. Li, “Hybrid macro/micro level backpropagation
for training deep spiking neural networks,” in Proceedings of the 32nd
International Conference on Neural Information Processing Systems, ser.
NIPS’18, Dec. 2018, pp. 7005–7015.

[50] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass,
“Long short-term memory and learning-to-learn in networks of spiking
neurons,” arXiv:1803.09574 [cs, q-bio], Dec. 2018.

[51] Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, and L. Shi, “Direct training for
spiking neural networks: Faster, larger, better,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, no. 1, pp. 1311–1318, Jul.
2019.

[52] W. Zhang and P. Li, “Spike-train level backpropagation for training deep
recurrent spiking neural networks,” in Advances in Neural Information
Processing Systems, vol. 32, 2019.

[53] C. Lee, S. S. Sarwar, P. Panda, G. Srinivasan, and K. Roy, “Enabling
spike-based backpropagation for training deep neural network architec-
tures,” Frontiers in Neuroscience, vol. 14, p. 119, 2020.

[54] W. Zhang and P. Li, “Temporal spike sequence learning via back-
propagation for deep spiking neural networks,” in Advances in Neural
Information Processing Systems, vol. 33, 2020, pp. 12 022–12 033.

[55] H. Fang, A. Shrestha, Z. Zhao, and Q. Qiu, “Exploiting neuron and
synapse filter dynamics in spatial temporal learning of deep spiking
neural network,” in Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, Jul. 2020, pp. 2799–2806.

[56] W. Fang, Z. Yu, Y. Chen, T. Masquelier, T. Huang, and Y. Tian,
“Incorporating learnable membrane time constant to enhance learning of
spiking neural networks,” in 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), 2021, pp. 2641–2651.

[57] H. Zheng, Y. Wu, L. Deng, Y. Hu, and G. Li, “Going deeper with
directly-trained larger spiking neural networks,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 12, pp. 11 062–11 070,
May 2021.

[58] E. Ledinauskas, J. Ruseckas, A. Juršėnas, and G. Buračas, “Training
deep spiking neural networks,” Jun. 2020. [Online]. Available:
http://arxiv.org/abs/2006.04436

[59] I.-M. Comşa, K. Potempa, L. Versari, T. Fischbacher, A. Gesmundo, and
J. Alakuijala, “Temporal coding in spiking neural networks with alpha
synaptic function: Learning with backpropagation,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 33, no. 10, pp. 5939–
5952, 2022.

[60] J. Göltz et al., “Fast and deep neuromorphic learning with first-spike
coding,” in Proceedings of the Neuro-inspired Computational Elements
Workshop, ser. NICE ’20, Mar. 2020, pp. 1–3.

[61] M. Zhang et al., “Spike-timing-dependent back propagation in
deep spiking neural networks,” Mar. 2020. [Online]. Available:
http://arxiv.org/abs/2003.11837

[62] Y. Sakemi, K. Morino, T. Morie, and K. Aihara, “A supervised learning
algorithm for multilayer spiking neural networks based on temporal
coding toward energy-efficient vlsi processor design,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 34, no. 1, pp. 394–408,
2023.

[63] S. R. Kheradpisheh and T. Masquelier, “S4nn: temporal backpropagation
for spiking neural networks with one spike per neuron,” vol. 30, no. 6,
p. 2050027, 2020. [Online]. Available: http://arxiv.org/abs/1910.09495

[64] S. Zhou, X. Li, Y. Chen, S. T. Chandrasekaran, and A. Sanyal,
“Temporal-coded deep spiking neural network with easy training and
robust performance,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 12, pp. 11 143–11 151, May 2021.

[65] S. M. Bohte, J. N. Kok, and H. La Poutré, “Error-backpropagation
in temporally encoded networks of spiking neurons,” Neurocomputing,
vol. 48, no. 1, pp. 17–37, 2002.

[66] N. Rathi, G. Srinivasan, P. Panda, and K. Roy, “Enabling
deep spiking neural networks with hybrid conversion and spike
timing dependent backpropagation,” 2020. [Online]. Available:
http://arxiv.org/abs/2005.01807

[67] Y. Kim and P. Panda, “Revisiting Batch Normalization for Training Low-
Latency Deep Spiking Neural Networks From Scratch,” Frontiers in
Neuroscience, vol. 15, 2021.

[68] W. Fang, Z. Yu, Y. Chen, T. Huang, T. Masquelier, and Y. Tian, “Deep
Residual Learning in Spiking Neural Networks,” in Advances in Neural
Information Processing Systems, vol. 34, 2021, pp. 21 056–21 069.

[69] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” J. Mach. Learn. Res., vol. 15, no. 1, p. 1929–1958, Jan. 2014.

[70] N. Rathi and K. Roy, “Diet-snn: A low-latency spiking neural network
with direct input encoding and leakage and threshold optimization,”
IEEE Transactions on Neural Networks and Learning Systems, pp. 1–9,
2021.

[71] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceedings
of the 32nd International Conference on International Conference on
Machine Learning - Volume 37, ser. ICML’15, 2015, p. 448–456.

[72] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2016.

[73] Pytorch torchvision models. [Online]. Available:
https://pytorch.org/vision/stable/models.html

16

[74] I. Garg, S. S. Chowdhury, and K. Roy, “DCT-SNN: Using
DCT to distribute spatial information over time for learning low-
latency spiking neural networks,” Oct. 2020. [Online]. Available:
http://arxiv.org/abs/2010.01795

[75] L. Deng et al., “Rethinking the performance comparison between SNNS
and ANNS,” Neural Networks, vol. 121, pp. 294–307, Jan. 2020.

[76] J. Wu, Y. Chua, M. Zhang, G. Li, H. Li, and K. C. Tan, “A tandem
learning rule for effective training and rapid inference of deep spiking
neural networks,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 34, no. 1, pp. 446–460, 2023.

[77] Y. Kim, H. Park, A. Moitra, A. Bhattacharjee, Y. Venkatesha, and
P. Panda, “Rate coding or direct coding: Which one is better for accurate,
robust, and energy-efficient spiking neural networks?” in ICASSP 2022
- 2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2022, pp. 71–75.

[78] P. Panda, S. A. Aketi, and K. Roy, “Toward scalable, efficient, and
accurate deep spiking neural networks with backward residual connec-
tions, stochastic softmax, and hybridization,” Frontiers in Neuroscience,
vol. 14, 2020.

[79] A. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr, “WRPN:
Wide reduced-precision networks,” Sep. 2017. [Online]. Available:
http://arxiv.org/abs/1709.01134

[80] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” in Proceedings of the 28th
International Conference on Neural Information Processing Systems -
Volume 1, ser. NIPS’15, 2015, p. 1135–1143.

[81] F. Zenke and T. P. Vogels, “The Remarkable Robustness of Surrogate
Gradient Learning for Instilling Complex Function in Spiking Neural
Networks,” Neural Computation, vol. 33, no. 4, pp. 899–925, 03 2021.

[82] Y. Kim, Y. Li, H. Park, Y. Venkatesha, and P. Panda, “Neural Architec-
ture Search for Spiking Neural Networks,” in Computer Vision – ECCV
2022, S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner,
Eds. Cham: Springer Nature Switzerland, 2022, pp. 36–56.

[83] J. Wu, E. Yılmaz, M. Zhang, H. Li, and K. Tan, “Deep Spiking
Neural Networks for Large Vocabulary Automatic Speech Recognition,”
Frontiers in Neuroscience, vol. 14, Mar. 2020.

[84] N. K. Kasabov, “NeuCube: a spiking neural network architecture for
mapping, learning and understanding of spatio-temporal brain data,”
Neural Networks: The Official Journal of the International Neural
Network Society, vol. 52, pp. 62–76, Apr. 2014.

[85] Y. Luo et al., “EEG-Based Emotion Classification Using Spiking Neural
Networks,” IEEE Access, vol. 8, pp. 46 007–46 016, 2020.

[86] E. Ceolini et al., “Hand-gesture recognition based on EMG and event-
based camera sensor fusion: A benchmark in neuromorphic computing,”
Frontiers in Neuroscience, vol. 14, 2020.

[87] M. R. Azghadi et al., “Hardware implementation of deep network
accelerators towards healthcare and biomedical applications,” IEEE
Transactions on Biomedical Circuits and Systems, vol. 14, no. 6, pp.
1138–1159, 2020.

[88] G. Zhan et al., “Applications of spiking neural network in brain computer
interface,” in 9th International Winter Conference on Brain-Computer
Interface (BCI), 2021, pp. 1–6.

[89] K. Kumarasinghe, N. Kasabov, and D. Taylor, “Brain-inspired spiking
neural networks for decoding and understanding muscle activity and
kinematics from electroencephalography signals during hand move-
ments,” Scientific Reports, vol. 11, no. 1, p. 2486, Dec. 2021.

[90] S. Sharmin, N. Rathi, P. Panda, and K. Roy, “Inherent Adversarial
Robustness of Deep Spiking Neural Networks: Effects of Discrete Input
Encoding and Non-linear Activations,” in Computer Vision – ECCV
2020, A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds. Springer
International Publishing, 2020, pp. 399–414.

[91] Y. Kim and P. Panda, “Visual explanations from spiking neural networks
using inter-spike intervals,” Scientific Reports, vol. 11, no. 1, p. 19037,
Sep. 2021.

[92] Y. Kim, Y. Venkatesha, and P. Panda, “PrivateSNN: Privacy-Preserving
Spiking Neural Networks,” in Thirty-Sixth AAAI Conference on Artificial
Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Appli-
cations of Artificial Intelligence, IAAI 2022, The Twelveth Symposium
on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual
Event, February 22 - March 1, 2022. AAAI Press, 2022, pp. 1192–
1200.

[93] N. Skatchkovsky, H. Jang, and O. Simeone, “Federated neuromorphic
learning of spiking neural networks for low-power edge intelligence,”
in ICASSP 2020 - 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2020, pp. 8524–8528.

[94] Y. Venkatesha, Y. Kim, L. Tassiulas, and P. Panda, “Federated learning
with spiking neural networks,” IEEE Transactions on Signal Processing,
vol. 69, pp. 6183–6194, 2021.

[95] J. K. Eshraghian, X. Wang, and W. D. Lu, “Memristor-based binarized
spiking neural networks: Challenges and applications,” IEEE Nanotech-
nology Magazine, vol. 16, no. 2, pp. 14–23, 2022.

Manon Dampfhoffer received the M.Sc. degree
in Informatics and Applied Mathematics from the
Grenoble Institute of Technology, France, in 2019.
She is currently working toward the Ph.D. degree
at Univ. Grenoble Alpes, France, in the Systems-
on-Chip and Advanced Technologies (LSTA) lab-
oratory at CEA LIST and Spintec laboratory. Her
current research focuses on models and algorithms
for implementing energy-efficient Spiking Neural
Networks on neuromorphic hardware at the edge.

Thomas Mesquida joined CEA in 2019, after a PhD
in microelectronics. His past research included in-
formation encoding within Spiking Neural Network,
with a focus on inter-spike interval, its hardware
implementations and applications. He is currently
pursuing the development lightweight spiking and
hybrid neural network implementations for embed-
ded applications, combining memory technology,
information encoding and learning method for quan-
tized networks.

Alexandre Valentian joined CEA LETI in 2005,
after an MSc and a PhD in microelectronics. His past
research activities included design technology co-
optimization, promoting the FDSOI technology (no-
tably through his participation in the SOI Academy),
2.5D/3D integration technologies and non-volatile
memory technology. He is currently pursuing the
development of bio-inspired circuits for AI, combin-
ing memory technology, information encoding and
dedicated learning methods. Since 2020, he heads
the Systems-on-Chip and Advanced Technologies

(LSTA) laboratory at CEA LIST. Dr Valentian has authored or co-authored
80 conference and journal papers.

Lorena Anghel received the Ph.D. degree (cum
laude) from Grenoble INP in 2000. From 2016
to 2020, she was the Vice President of Grenoble
INP, in charge of industrial relationships, where she
is currently the Scientific Director. She is also a
Full Professor with Grenoble INP and a member
of the Research Staff of the Spintec Laboratory.
She has published more than 130 publications in
international conferences and symposia. She has
supervised 24 Ph.D. students. Her research interests
include hardware design and test of neural networks,

on-line testing, fault tolerance, and reliable design and verification. She was
a recipient of several best paper and outstanding paper awards. She had
fulfilled positions, such as the General Chair and the Program Chair for many
prestigious IEEE conferences including the IEEE VTS, the IEEE ETS, and
the IEEE On-Line Test Symposium.

