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Abstract

Information Extraction (IE) pipelines aim to extract
meaningful entities and relations from documents and
structure them into a knowledge graph that can then
be used in downstream applications. Training and
evaluating such pipelines requires a dataset annotated
with entities, coreferences, relations, and entity-linking.
However, existing datasets either lack entity-linking la-
bels, are too small, not diverse enough, or automat-
ically annotated (that is, without a strong guarantee
of the correction of annotations). Therefore, we pro-
pose Linked-DocRED, to the best of our knowledge, the
first manually-annotated, large-scale, document-level IE
dataset. We enhance the existing and widely-used Do-
cRED dataset with entity-linking labels that are gen-
erated thanks to a semi-automatic process that guar-
antees high-quality annotations. In particular, we use
hyperlinks in Wikipedia articles to provide disambigua-
tion candidates. We also propose a complete framework
of metrics to benchmark end-to-end IE pipelines, and
we define an entity-centric metric to evaluate entity-
linking. The evaluation of a baseline shows promising
results while highlighting the challenges of an end-to-
end IE pipeline. Linked-DocRED, the source code for
the entity-linking, the baseline, and the metrics are dis-
tributed under an open-source license and can be down-
loaded from a public repository1.

Keywords— information extraction; document-level rela-
tion extraction; entity-linking; dataset

1 Introduction

Information Extraction (IE) aims to extract the meaningful
information from documents, that is, entities and relations
between these entities, to build or complement a Knowledge

1Available at https://github.com/alteca/Linked-DocRED.

Graph (KG). The resulting knowledge graph can then be used
for multiple downstream tasks such as recommender systems
[14], logical reasoning [4], or question answering [17]. Simi-
larly to [37, 28], we define IE as a four-step process with:

1. Named Entity Recognition (NER),

2. Coreference Resolution (Coref),

3. Relation Extraction (RE),

4. Entity-Linking (EL).

Information extraction can be seen as a supervised task
[37, 28, 32], a weakly-supervised task [10], or an unsuper-
vised task [13, 2], the most common setting being supervised
information extraction. Several datasets have been proposed
to train and evaluate such pipelines. The most recent ones
[36, 37, 23] focus on document-level information extraction, a
more realistic, albeit more challenging scenario than sentence-
level IE.

However, none of these datasets is entirely satisfactory for
the end-to-end evaluation of IE pipelines, covering the four
steps: NER, RE, Coref, and EL. On the one hand, most
datasets focus on NER, Coref, and RE, ignoring the last
entity-linking step [36, 5]. Nonetheless, entity-linking is one
of the most important steps, if not the most important, as it
transforms ambiguous extracted triples into structured and
disambiguated nodes and relations. The question of ambi-
guity in natural language is essential: a surface form can
refer to multiple entities (e.g., Georgia the Eastern Europe
country, or Georgia in the U.S.), and an entity can be ex-
pressed with multiple surface forms (e.g., Anakin Skywalker
and Darth Vader). Ignoring entity-linking hides an important
part of the complexity of extracting information.

On the other hand, datasets that provide entity-linking an-
notations are either too small, not diverse enough, too simple
(e.g., using sentences and not documents), or automatically
annotated [23, 37, 10, 12].

Therefore, we propose Linked-DocRED, to the best
of our knowledge, the first large-scale, manually labeled,
document-level IE dataset that provides annotations for en-
tities, coreferences, relations, and entity-linking. Linked-
DocRED aims to correct the shortcomings of existing datasets
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and to define a reproducible and more complete benchmark
for the training and evaluation of end-to-end IE pipelines.

Instead of creating a dataset from scratch, we enhance the
widely-used DocRED dataset [36] (already labeled with en-
tities, coreferences, and relations) by annotating each entity
with entity-linking. Since DocRED documents are taken from
Wikipedia articles, we propose to use Wikipedia hyperlinks
to generate entity-linking annotations. It allows us to cre-
ate a semi-automatic entity-linking process that guarantees a
human-quality annotation while being much faster and less
expensive to implement. A thorough evaluation of the entity-
linking process shows the quality of our labeling. Our method
can be replicated to other datasets based on Wikipedia arti-
cles, regardless of their language (e.g., HacRED [5]).

We also continue the work of Zaporojets et al. [37] by es-
tablishing a clear and coherent set of entity-centric metrics to
evaluate the performance of an IE pipeline. In particular, we
define an entity-centric metric to assess entity-linking. The
evaluation of a baseline method based on recent approaches
shows encouraging results but also demonstrates that this
task is still a difficult challenge, in particular, because of
cascading errors during successive steps of an IE pipeline.
We hope that Linked-DocRED can facilitate the discovery of
more performant IE pipelines.

Let us summarize our main contributions:

• We propose Linked-DocRED, the first large-scale,
manually-labeled, document-level IE dataset built semi-
automatically on top of the DocRED dataset. Linked-
DocRED contains four times more entities and two times
more relations than its closest competitor DWIE [37].

• We propose a new entity-linking method based on the
alignment between DocRED documents and Wikipedia
articles, providing high-quality labeling, a method that
can be applied to disambiguate other Wikipedia-based
datasets.

• We define a novel entity-centric metric to assess entity-
linking in order to provide a complete set of metrics to
evaluate an IE pipeline.

• We adapt state-of-the-art approaches to provide a simple
and reproducible baseline covering the four steps of an IE
pipeline, namely NER, Coref, RE, and EL. The experi-
mental results are promising, with, however, a large mar-
gin of progress, in particular for entity-linking, which, at
the end of the pipeline, is subject to the effects of cas-
cading errors.

2 Related Work

As we have said in the introduction, we define information
extraction as a four-step process with [28, 37]:

1. Named Entity Recognition – extracting and typing the
surface forms of entities in a piece of text,

2. Coreference Resolution – identifying the surface forms
that refer to the same entity in a piece of text,

3. Relation Extraction – extracting and typing the relations
occurring between the extracted entities in a piece of
text,

4. Entity-Linking or Entity Disambiguation – identifying,
for an extracted entity, the corresponding resource in a
predetermined knowledge graph.

Recent papers often consider the first three tasks [40, 38,
16, 20, 33, 31], setting entity-linking aside. To the best of our
knowledge, only a handful of papers [32, 28, 9] are explor-
ing the end-to-end pipeline. In our opinion, entity-linking is
critical, as it constitutes the bridge between extracted triples,
which are ambiguous, and structured knowledge that down-
stream applications can use.

To train and evaluate IE pipelines, numerous datasets have
been proposed, covering a large spectrum of settings and ap-
plications:

• Some focus on general domain information (e.g., T-
REx [10], DocRED [36], or HacRED [5]), other on very
specific domains (scientific literature for SciERC [20],
biomedicine for FewRel 2.0 [12], or BC5CDR [19]).

• Some are manually annotated (e.g., DocRED [36],
FewRel [15] or HacRED [5]), others automatically gen-
erated such as T-REx [10] or NYT-10 [29].

• Some focus on sentences (e.g., FewRel [15, 12], or NYT-
10 [29]) others on documents (DocRED [36], Knowled-
geNet [23], or DWIE [37]).

We recall some characteristics of the major information
extraction datasets in Table 1.

FewRel [15, 12] It is large-scale, diverse (it contains
many different relation types), and annotated for the four
tasks, but it does not contain documents. This lack of docu-
ments also explains the low number of coreferences compared
to other datasets. Besides, FewRel does not contain new
knowledge (all entities are already present in the knowledge
base), simplifying the entity-linking, as there are no unknown
entities. It is thus not usable in practice for our scenario.

T-REx [10] Of the seven datasets, it is by far the largest,
with around 4.6 million documents. It is not usable in our
scenario, though, as the dataset was automatically labeled,
which means there is no strong guarantee of the quality of an-
notations. Nevertheless, it provides a huge source of distant-
supervision, which can be beneficial during training (even
though it is a lower-quality annotation).

KnowledgeNet [23] and BC5CDR [19] They con-
tain documents and are annotated for the four tasks. Simi-
larly to FewRel, BC5CDR has no new knowledge (all entities
are already present in the knowledge base). This default is ab-
sent of KnowledgeNet, with an appreciable presence of new
knowledge. However, BC5CDR and KnowledgeNet are too
small (see Table 1) and not diverse enough (with only 15 re-
lations types for KnowledgeNet and 1 for BC5CDR), which
raises questions regarding their representativeness for realistic
IE scenarios.

DWIE [37] Similar to KnowledgeNet and BC5CDR,
DWIE contains documents labeled for the four tasks. It is
more diverse and bigger, though, but still a lot smaller in
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Table 1: Quantitative comparison of Linked-DocRED and widely-used IE datasets. # Entities: number of entities
in the documents, ignoring coreferences; # Coref.: number of coreferences; Entity-Linking # New : number of
entities that do not exist in the reference knowledge graph; Relation # Inst.: number of relations between entities,
ignoring coreferences.

Dataset
Size Entities

# Coref.
Entity-Linking Relations

# Docs # Tokens # Entities # Types # Linked # New # Inst. # Types

FewRel [15, 12] - 1 397k 112k - 2k 112k 0 56k 80
T-REx [10] 4 650.0k 446 053k 69 962k - 17 617k 69 962k 0 208 774k 642
KnowledgeNet [23] 4.0k 734k 11k - 7k 9k 1.9k 13k 15
BC5CDR [19] 1.5k 343k 10k 2 19k 10k 0 48k 1
DWIE [37] 0.8k 501k 23k 311 20k 13k 10.0k 22k 65
HacRED [5] 9.2k 1 141k 99k 9 19k - - 68k 26
DocRED [36] 5.1k 1 001k 99k 6 34k - - 50k 96

Linked-DocRED 5.1k 1 001k 95k 6 38k 63k 6.4k 50k 96

terms of documents, entities, and relations compared to Ha-
cRED and DocRED. In any case, the analysis of the dataset’s
files suggests that entity-linking was automatically labeled
(multiple candidates with eighteen-digit precision probabili-
ties). As a result, it is not satisfactory for our purpose.

DocRED [36] and HacRED [5] They contain around
two to five times more documents and annotations than the
other manually annotated datasets, which makes them more
suitable to train and evaluate IE pipelines. Unfortunately,
they are not annotated with entity-linking.

Although several datasets have been proposed to evaluate
IE pipelines, none is entirely satisfactory. Indeed, FewRel
[15, 12] lacks documents and novel entities; T-REx [10] lacks
manual annotations and novel entities; KnowledgeNet [23]
and BC5CDR [19] are too small and not diverse enough;
DWIE has automatic entity-linking annotations [37]; and
HacRED [5], and DocRED [36] lack annotation for entity-
linking. As a result, it motivates us to create a new dataset
that would provide a complete and objective baseline to test
and develop end-to-end IE pipelines.

3 Dataset Generation

In this section, we describe the process we used to create
Linked-DocRED. First, creating an IE dataset from scratch
is a very expensive enterprise as it requires annotating docu-
ments for entities, coreferences, relations, and entity-linking.
In particular, entity-linking is very time-consuming due to the
ambiguity of natural language: an entity can have different
surface forms, and the same surface form can refer to multi-
ple entities (cf. Georgia presented in the introduction). At
the same time, we notice that one existing dataset, DocRED
[36], is almost adequate to train and evaluate an IE pipeline,
except for the lack of entity-linking annotations. DocRED is
also widely used and acknowledged for its quality as a bench-
mark, especially for document-level IE. Therefore, instead of
creating a new dataset from the ground up, we propose to
enhance DocRED with entity-linking.

To create entity-linking annotations, we do not want to rely
on any entity-linker (for instance DBPedia Spotlight [22]),
as they would introduce biases. Indeed, entity-linkers are

imperfect (in fact, even human annotation is imperfect) and
have advantages and drawbacks. So, if an IE pipeline uses the
same entity-linker for its predictions, it will reproduce the
same behavior and obtain overstated (biased) results. The
only valid choice for us is to rely on manual annotations to
limit the introduction of bias in Linked-DocRED.

Our entity-linking aims to link every entity of DocRED to
a resource in Wikipedia. For the entities that do not exist
in Wikipedia, we will assign them a unique identifier of the
form #DocRED-<id># (e.g., Ben Skywalker2 in Figure 5). We
will also provide the Wikidata identifier associated with the
Wikipedia resource. Providing these two identifiers is benefi-
cial: Wikipedia gives access to verbose and descriptive texts
about the entity, and Wikidata to the interconnected struc-
ture of a knowledge graph.

A document in DocRED is a Wikipedia abstract, that is,
the first paragraphs of a Wikipedia article. If we take the
instance presented in Figure 5, the document corresponds
to the Wikipedia abstract of Luke Skywalker3. The hyper-
links in the Wikipedia article are interesting: they surround a
term for which they indicate the URL of the Wikipedia article
defining it. It is a form of entity-linking, to be more precise, a
form of manual entity-linking because Wikipedia contributors
manually edit these hyperlinks. Besides, we note that there
is a direct mapping (same sentence, same position) between
a lot of DocRED entities in the document and hyperlinks in
the corresponding Wikipedia article (e.g., Star Wars, George
Lucas, Mark Hamill, Padmé Amidala, or Galactic Empire in
Figure 5). Using these hyperlinks with this very strict map-
ping is the basic idea we developed for our semi-automatic,
high-quality entity-linking.

The general process we used to annotate DocRED with
entity-linking is presented in Figure 1. The main step is map-
ping entities with Wikipedia hyperlinks, which is the second
module of Figure 1 (Hyperlinks Alignment). It is not suffi-
cient to fully disambiguate our dataset, which explains the
three steps that follow it. In the next parts, we will describe
each constituent in the disambiguation process for a DocRED

2This entity is not in Wikipedia at the time we write this
article.

3Available at https://en.wikipedia.org/wiki/Luke_

Skywalker.
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Wikipedia

DocRED
instance

(1) Abstract 
Identification

(2) Hyperlinks-
Alignment

(3) Links-in-Page
(4) Common-
Knowledge

(5) Manual 
Annotation

2020 DBpedia
abstract dump

Wikipedia
abstract

Figure 1: Architecture of the semi-automatic entity-linking process implemented to disambiguate Linked-DocRED.

document.

NUM and TIME Entities

Within DocRED, 25 171 entities (26.6%) are numerals (NUM)
or temporal (TIME) entities. In a knowledge graph such as
Wikidata or DBpedia, these entities are not considered re-
sources (associated with a unique URI) but literals, which
are not disambiguated. Although the disambiguation of dates
and numbers could be interesting, we apply the same rule for
Linked-DocRED and create a particular identifier #ignored#
to indicate no disambiguation for NUM and TIME entities.

3.1 Wikipedia Abstract Identification

To access the hyperlinks and map them to our entities, we
first need to get the Wikipedia article associated with our
DocRED document (the first step in Figure 1). Although
DocRED does not contain the URL of the source Wikipedia
page, we have access to the article title and, obviously, the
abstract text. A possible solution is to do a full-text search
on the title or abstract to find the most similar Wikipedia
article.

A second aspect to consider is that DocRED was pub-
lished in 2019, meaning that many Wikipedia pages have been
modified since, which can lead to poor results with full-text
searches. To mitigate this issue, we downloaded the 2020-
01 DBPedia abstracts dump4, which is the oldest available
this day. We have also tested with Wikipedia dumps, but
we found them of lower quality (some abstracts were trun-
cated, and others contained abnormal characters). From the
DBpedia dump, 5.6M of Wikipedia abstracts were indexed in
ElasticSearch5.

For a given DocRED document, we then perform a full-
text search comparing the instance text to the abstracts in
ElasticSearch to identify the Wikipedia abstract most similar
to our document. Internally, ElasticSearch uses bag-of-words
and the BM25 metric [30] to perform its full-text search. This
setup is very efficient and fast in returning good Wikipedia
candidates, but it does not consider the ordering of the words
in the Wikipedia article. To have the best confidence possible,
we propose to rank the candidates using a similarity metric
based on the Levenshtein distance [18] (which measures the
number of modifications to make to transform the first string
into the second):

simtext(t1, t2) = 1− dLevenshtein(t1, t2)

max(len(t1), len(t2))
, (1)

4Available at https://databus.dbpedia.org/dbpedia/text/

long-abstracts.
5Available at https://www.elastic.co/elasticsearch/.

0.0 0.2 0.4 0.6 0.8 1.0

simtext

0.0

0.2

0.4

0.6

0.8

1.0

W
ik

ip
ed

ia
Id

en
ti

fi
ca

ti
o

n
ra

ti
o

Figure 2: Results of the manual annotation to deter-
mine the threshold of simtext to maximize the correct
Wikipedia article identification. We show the confidence
interval with α = 0.05 (no confidence interval if all in-
stances of the bin have been annotated).

where t1 and t2 are the two strings to be compared, len com-
putes the length of a string, and dLevenshtein is the Leven-
shtein distance.

Although this similarity metric ranks precisely the can-
didates (logically, the DocRED document and the correct
Wikipedia candidate are the closest in terms of editing dis-
tance), it cannot determine whether the first Wikipedia can-
didate is the right article. Indeed, our DBPedia dump is
incomplete6: it does not contain every Wikipedia abstract,
which means that some DocRED documents cannot be found.
To filter those instances, we propose to determine a threshold
with our similarity metric. We select a sample of 1 000 Do-
cRED documents with their first Wikipedia candidate, strati-
fied with simtext (20 bins of size 0.05, containing 50 instances
each), and we manually determine whether the Wikipedia
candidate is correct or not. The results are shown in Figure
2. For each bin, we also compute the confidence interval for
the proportion with α = 0.05, using the Wilson approxima-
tion [35], due to the low number of samples per bin and the
proportion being close to 0 or 1. Some bins contain less than
50 elements (e.g., ]0.15, 0.20], ]0.35, 0.40], or ]0.40, 0.45]), in
which case we annotate all instances, so there is no confidence
interval.

In Figure 2, for simtext > 0.5, the proportion of correctly
identified Wikipedia articles is close to 1 (above 0.95). There-
fore, we propose to set our threshold at simtext > 0.5 and
check DocRED documents with simtext ≤ 0.5 manually. Us-
ing this threshold, we automatically identify the Wikipedia

6At the time we write this article, there are around 6.6M
Wikipedia articles compared to the 5.6M in the DBpedia dump.

4

https://databus.dbpedia.org/dbpedia/text/long-abstracts
https://databus.dbpedia.org/dbpedia/text/long-abstracts
https://www.elastic.co/elasticsearch/


article for 4 694 documents (93%). We manually determine
the Wikipedia abstract for the remaining 357 documents and
could not find the Wikipedia article for 23 instances (we think
these articles have been completely removed from Wikipedia).

3.2 Hyperlinks Alignment

In this module (second step in Figure 1), we implement the
mapping between the DocRED document’s entities and hy-
perlinks in the Wikipedia article we have found previously.
We want to find direct intersections (same sentence and posi-
tion) between entities in our DocRED instance and hyperlinks
in the Wikipedia article. To do that, we need to align pre-
cisely our DocRED text with the Wikipedia abstract. The
problem is that there are minor differences between the two
texts (due to the preprocessing applied on DocRED instances
that removes Cyrillic, Arabic, and Asiatic characters; or some
parts of the abstract), which make this step nontrivial.

To overcome this difficulty, we propose to use the
Needleman-Wunsch algorithm [25], which was initially pro-
posed to optimally align two nearly-identical DNA se-
quences, allowing insertions, deletions, and substitutions of
nucleotides. This algorithm is easily generalizable to string
alignment by replacing the notion of nucleotides with charac-
ters. It allows us to produce a translation table to convert a
character position in the DocRED instance to a position in
the Wikipedia article. Once we have this translation table, it
is simple to compute intersections between surface forms of
entities as annotated in DocRED and Wikipedia hyperlinks
and thus generate candidate entity-linkings.

We have, however, no warranty on the quality of the pro-
posed candidates. Intuitively, if the intersection is exact, the
entity-linking should be accurate, but it becomes more diffi-
cult with a partial intersection (e.g., Columbia University in
the City of New York is the same as Columbia University, but
Columbia is not the same entity as Columbia University). A
simple measure could be to keep only exact intersections, but
we would discard many good disambiguations.

Instead, we propose to evaluate the impact of the quality
of the intersection on the disambiguation. To do this, we ap-
ply a method similar to that of section 3.1. We first compute
simtext (see Eq. 1) between the DocRED entity text and the
matched Wikipedia hyperlink, which allows us to quantify the
quality of the intersection. We then select a sample of 1 000
entities and their matched hyperlinks, stratified on simtext

(with 20 bins of 0.05), and manually determine whether the
entity-linking is correct. For each bin, we also compute a con-
fidence interval for a proportion with α = 0.05. The results
are shown in Figure 3.

We can see three regimes:

• simtext < 0.35 – few entities are correctly disambiguated,
which is logical given that the entity and the hyperlink
are dissimilar,

• simtext ∈ [0.35, 0.75] – entities and hyperlinks are rela-
tively similar, but the probability of wrong entity-linking
is still high,

• simtext > 0.75 – the proportion is close to 1 (0.984): of
the 250 annotated pairs, only four are wrongly linked.
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Figure 3: Results of the manual annotation to evalu-
ate the disambiguation quality depending on the simtext

between the entity and the hyperlink. We show the con-
fidence interval with α = 0.05.

Considering this Figure 3, we decide to keep only entity-
linking candidates with the highest entity-linking proportion,
that is, with simtext > 0.75. By doing so, we disambiguate
40 826 entities of DocRED (43.3%) as shown in Figure 4.

This module provides annotations with high confidence, as
we are 1. very strict with intersections and textual similarity,
and 2. relying on manual annotations of Wikipedia contribu-
tors.

3.3 Links in Page

In a Wikipedia article, the first mention of an entity is as-
sociated with a hyperlink, while the following, most often,
are not. As a result, the entity may be disambiguated in the
Wikipedia article but not in the specific span of text we are
considering. A workaround is to check if there is a hyper-
link on the Wikipedia page with the same surface form as the
entity we are disambiguating (the third step in Figure 1). Us-
ing this approach, we disambiguate 6 741 additional entities
(7.1%).

This approach is of lower quality compared to Hyperlinks
Alignment. However, we are strict on selecting hyperlinks
(exact match between the hyperlink and the surface form of
the entity).

3.4 Common Knowledge

When analyzing the remaining undisambiguated entities, we
notice that some of them are very common: famous per-
sons (e.g., Bill Gates, Barack Obama), well-known companies
(Facebook, Apple, ...), or common-knowledge places (United
States, Spain, Paris, New York, etc.). These entities are so
famous that they are not associated with hyperlinks, as it is
supposed that everyone knows them already.

To add this notion of common knowledge (the fourth step in
Figure 1), we select the entities mentioned at least three times
in the dataset and manually annotate them. We take par-
ticular care to detect entities with ambiguities, for instance,
French can refer to France, the French language, or the French
people; or Georgia points to the eastern-European country or
the U.S. state. The ambiguity about French can be solved by
looking at the types: France is a location (LOC), the French
Language is classified as miscellaneous (MISC), and French
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People is identified as an organization (ORG). However, the
only possibility for Georgia is to label each instance manu-
ally (see next section). After this filtering step, we annotate
around 1 000 entities, which leads to the disambiguation of
7 684 more entities (8.1%).

We estimate the quality of the entity-linking to be as good
as the Links in Page module, as the two processes are similar.

3.5 Manual Annotation

We manually annotate the remaining 14 125 entities to guar-
antee a high-quality entity-linking. Among these entities,
we expect to be able to disambiguate the majority, but we
also anticipate encountering entities that are not present in
Wikipedia. To facilitate the labeling process, we designed an
interface with Label Studio7.

The annotation is done document by document. The an-
notators must label every remaining entity (three entities per
document on average). To help them, a list of five candidates
per entity is provided from which they can choose. These
candidates are determined by searching on a famous web
search engine using the surface form and filtering to keep only
Wikipedia results. They can also manually enter a Wikipedia
URL or a coreference with another entity in the document.
Finally, they can indicate that the entity does not have a
Wikipedia page (new knowledge).

A single annotator labeled all the entities to ensure maxi-
mal coherence in the entity-linking scheme. During the man-
ual annotation, he identified 523 errors in the dataset8: 361
entities were wrongly typed, 148 mentions needed to be cor-
rected (the entity’s boundaries were wrong), and 14 mentions
were not entities. These errors have been corrected.

Inter-Annotator Agreement To better understand
the quality of the manual annotation, we selected a sample
of 1 018 entities, and three annotators disambiguated them to
check if the entity-linkings were similar. On this sample, we
compute the Cohen’s kappa coefficient [7], and obtain

κentity−linking = 0.679.

This κentity−linking score shows a strong inter-annotator
agreement, especially considering the diversity of Wikipedia
resources (more than 6.6M articles in Wikipedia). Looking
more precisely at the disagreements, we notice that for 30%
of them, one annotator indicated that the entity does not
exist in Wikipedia, while the other was able to find it. It
shows the difficulty of being exhaustive in the search for a
Wikipedia resource. If we correct these disagreements, we
obtain a κentity−linking = 0.816, which indicates a very strong
agreement between annotators.

Overall, this inter-annotator agreement analysis exhibits
the high quality of the annotation. The main weakness is the
complexity of determining with certainty that an entity does
not exist in Wikipedia. As a result, in the final dataset, we
distinguish a manual annotation leading to a Wikipedia re-
source from a manual annotation leading to ”does not exist.”

7Available at https://labelstud.io/.
8This error identification step is not exhaustive.

If the entity is considered new, we provide a unique entity-
linking identifier of the form #DocRED-<id>#. As the confi-
dence is lower in this case, we provide the list of candidates
that were refused by the annotators, as they are candidates
that an entity-linker can easily predict, and we are sure that
these candidates are wrong.

hyperlinks-alignment

43.3%

num/time
26.6%

manual

14.9%
common-knowledge

8.1%
links-in-page

7.1%

Figure 4: Modules used to disambiguate the 94 547 en-
tities of Linked-DocRED (see section 3 for the details).

This five-step process allows us to label all entities in
Linked-DocRED. The participation of all methods in the dis-
ambiguation can be seen in Figure 4.

To find the Wikidata id for each disambiguated entity, we
use the metadata of the Wikipedia resource (the property
wikibase item).

4 Dataset

As we have said earlier, Linked-DocRED comprises Wikipedia
abstracts annotated with entities, coreferences, relations, and
entity-linking. The main statistics of the dataset are shown
in the last line of Table 1.

The instance 2774 of the train split is shown in Figure
5. The entities in the document are highlighted (pink for
PER, orange for MISC, blue for ORG, green for LOC, grey
for TIME, and brown for NUM). Two examples of entities
are displayed below the document, with their mentions and
the Wikipedia resource determined during entity-linking. Ben
Skywalker does not exist in Wikipedia; therefore, it is asso-
ciated with the unique id #DocRED-6032#. Two examples of
relations are also displayed. Finally, at the bottom, a small
part of the knowledge graph representing the knowledge con-
tained in the document is shown. In particular, we can see
entities and relations that do not exist in Wikipedia / Wiki-
data (related to the node #DocRED-6032#).

4.1 Entities, Coreferences, Relations

We are using the entities, coreferences, and relations labels of
DocRED; therefore, we recall the annotation process imple-
mented by Yao et al. [36].

Entities & Coreferences Entities are automatically ex-
tracted and typed using spaCy9. To generate coreferences
candidates, the entities are linked to Wikidata, with two ba-
sic approaches 1. exact match between the surface form and
a Wikidata entity label, or 2. using the TagMe entity linker

9Available at https://spacy.io/.
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Luke Skywalker (train, 2774)

[0] Luke Skywalker is a fictional character and the main protagonist of the

original film trilogy of the Star Wars franchise created by George Lucas. [1]

The character, portrayed by Mark Hamill, is an important figure in the

Rebel Alliance's struggle against the Galactic Empire. [2] He is the twin

brother of Rebellion leader Princess Leia Organa of Alderaan, a friend and

brother-in-law of smuggler Han Solo, an apprentice to Jedi Masters Obi-

Wan "Ben" Kenobi and Yoda, the son of fallen Jedi Anakin Skywalker

(Darth Vader) and Queen of Naboo / Republic Senator Padmé Amidala

and maternal uncle of Ben Solo / Kylo Ren. [3] The now non-canon Star

Wars Legends depicts him as a powerful Jedi Master, husband of Mara

Jade, the father of Ben Skywalker and maternal uncle of Jaina, Jacen and

Anakin Solo. [4] In 2015, the character was selected by Empire magazine

as the 50th greatest movie character of all time. [5] On their list of the 100

Greatest Fictional Characters, Fandomania.com ranked the character at

number 14.

Id 12 Type PER

Mentions Anakin Skywalker, 

Darth Vader

Resource Darth_Vader (Q12206942)

Id 18         Type PER

Mentions Ben Skywalker

Resource #DocRED-6032#

Head 0 (Luke Skywalker)

Tail 1 (Star Wars)

Relation present_in_work

Evidence 0

Head 18 (Ben Skywalker)

Tail 2 (George Lucas)

Relation creator

Evidence 0, 3

Star_Wars

Star Wars

label

#DocRED-6032#

Ben Skywalker

label

George_Lucas

George Lucas

label

Darth_Vader

Anakin Skywalker

label

Darth Vader

label

present_in_work

creator

present_

in_work

creator

characters

Luke_Skywalker

Luke Skywalker

label

child

present_

in_work

(1)

(2)

(3)

(4)

Figure 5: Example instance of Linked-DocRED. From
top to bottom: (1) Text of a document with highlighted
entities, (2) Two examples of extracted entities with
their Wikipedia and Wikidata resources, Ben Skywalker
has no corresponding resource in Wikipedia, (3) Two
examples of relations, (4) Small part of the knowledge
graph built from the entities and relations of the docu-
ment.

[11]. As a side note, this primitive entity-linking is not re-
tained in their published dataset because its objective is not
to be precise but to generate coreference and relations can-
didates. The entities and coreferences candidates are then
corrected and complemented by human annotators.

Relations Using the basic entity-linking, candidate re-
lations are generated under the distant-supervision setting.
Distant-supervision implies that if two entities, linked by a
relation r in a knowledge graph (e.g., Wikidata), appear in
the same document, then they express the relation r in the
document. Other candidates are generated using RE models
(not explained by Yao et al. [36]). The candidates are vali-
dated and supplemented by the annotators. Besides, annota-
tors also indicate the sentences that support the existence of
the relation in the document (evidence in Figure 5).

As we can see in Table 1, our entity-linking does not impact
the annotation of relations of DocRED, as the statistics of
Linked-DocRED are identical to DocRED. However, it mod-
ifies coreferences (and entities indirectly): we identify 4 013
new coreferences that were not detected in DocRED. For ex-

ample, in the instance 2774 of the train split (see Figure
5), Darth Vader and Anakin Skywalker were not identified as
coreferences.

4.2 Entity-Linking

The entity-linking annotation process is described in Section
3. To sum up, we rely on human annotations elicited by a
semi-automatic process, as shown in Figure 1: (1–3) we map
entities with Wikipedia hyperlinks to benefit from Wikipedia
contributor’s annotations, (4) we use common knowledge
(that was manually annotated), and (5) we manually label
the remaining entities. This process leads to the disambigua-
tion of every entity in Linked-DocRED. As we see in Table
1, 67% of the entities are associated with a Wikipedia page
and a Wikidata resource, and 7% are identified as new re-
sources unknown in Wikipedia. The remaining 26% entities
are numerals or temporal data that are not disambiguated,
following Wikidata’s and DBpedia’s schemes.

For each entity in Linked-DocRED, we provide the follow-
ing:

• wikipedia resource: the identifier of the Wikipedia
page, for instance Darth Vader for entity 12 in Figure
5.
If the entity is ignored (NUM or TIME), we have instead
#ignored#.
If the entity is new (unknown in Wikipedia), a unique
identifier is provided of the form #DocRED-<id>#, for ex-
ample, #DocRED-6032# for entity 18 in Figure 5.

• wikidata resource: the identifier of the Wikidata en-
tity, for instance Q12206942 for entity 12 in Figure 5.

• wikipedia not resource: in the case of a new entity
(unknown in Wikipedia), we provide the list of candi-
dates that the annotator refused. They can be used to
check that an entity-linker is not predicting them.

• method: the method used to disambiguate this entity
(see Figure 4).

• confidence: a confidence value from three choices: A,
B, C.

Indeed, each entity-linking in Linked-DocRED is associ-
ated with a confidence indicator. We define three possible
classes:

• A (very high confidence) – if the entity is linked using
hyperlinks alignment, manual annotation, or is ignored
(NUM and TIME),

• B (high confidence) – if the entity is linked using links
in page or common knowledge,

• C (medium confidence) – if the annotator indicates that
the entity does not exist in Wikipedia.

These indicators give a qualitative assessment of the quality
of the disambiguation. To give a quantitative estimation of
the probability of correct entity-linking, we selected a sample
of 1 000 entities for indicator A and 1 000 entities for indicator
B. A human annotator manually checked these entities to
determine whether the entity-linking was correct. It allows
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Table 2: Proportion of Linked-DocRED entities associ-
ated with each confidence indicator and estimation of
the correct entity-linking probability (the confidence in-
terval with α = 0.05 is also shown).

Confidence Indicator A B C

Proportion in
78.0% 15.2% 6.8%

Linked-DocRED
Correct entity-linking

0.979 ± 0.009 0.950 ± 0.014 -
probability

us to estimate the probability of correct entity-linking and
we also compute a confidence interval for the proportion with
α = 0.05. We provide no estimation for indicator C as it
is complicated to be sure that an entity does not exist in
Wikipedia. The results are shown in Table 2.

We see that the probabilities are close to 1 for indicators
A and B, demonstrating the entity-linking quality of Linked-
DocRED. We note that the probability is a little higher for
indicator A. Besides, we notice that 78% of Linked-DocRED
entities are scored as A, that is, with the highest confidence.
Overall, the confidence is excellent throughout the whole
dataset.

5 Experiments

5.1 Baseline

As we have seen in section 2, an end-to-end IE pipeline can be
seen as a four-module process with 1. Named Entity Recogni-
tion, 2. Coreference Resolution, 3. Relation Extraction, and
4. Entity-Linking. Our objective for this baseline is to pro-
vide a simple IE pipeline with comparable results to current
state-of-the-art approaches. Recent papers that use DocRED
as a benchmark focus on document-level RE [38, 34, 16, 42],
ignoring NER and Coreference Resolution.

Named Entity Recognition We propose to use the
simple yet effective span-based NER proposed by Zhong and
Chen [41, 33, 21] (PURE). This model relies on BERT [8],
which can only handle documents with at most 512 tokens.
As we have documents with more than 512 tokens, we pro-
pose to replace BERT with Longformer [3], which can encode
documents up to 4 096 tokens, with only a marginal decrease
in performance compared to BERT.

Coreference Resolution We propose to implement a
well-used model, NeuralCoref10. This model uses NER, pars-
ing, and pos-tagging features to predict coreferences.

Relation Extraction We do not use the DocRED base-
line, as it is based on Bi-LSTMs and GloVe embeddings [26],
which no longer correspond to the best state-of-the-art mod-
els, such as those based on large language models. Simi-
larly to Prieur et al. [28], we propose to use ATLOP [42] to
extract relations. Contrary to concurrent approaches (e.g.,

10Available at https://github.com/huggingface/

neuralcoref.

[38, 39, 37, 40, 6]), who often represent the knowledge explic-
itly as a graph, which can be processed with Graph Neural
Networks (GNN) for inference; Zhou et al. [42] propose to
use implicit knowledge representations produced with BERT,
which results in a simple, efficient and effective model.

In the rest of the paper, we call this NER-Coref-RE en-
semble PNA (for PURE [41], NeuralCoref, and ATLOP [42]).
This pipeline is trained using the hyperparameter values pro-
posed by the authors of PURE [41], NeuralCoref, and ATLOP
[42].

Entity-Linking We propose two very simple models: EL-
Wikidata and EL-Wikipedia because entity-linking has not
been studied much in the context of end-to-end IE pipelines
([28, 37, 32] use very basic approaches).

For EL-Wikidata, we search each mention m of an entity e
in Wikidata using the Wikidata search API. This API returns
a ranked list of n candidate Wikidata entities most related
to the mention: C(m) = [c0, c1, ..., cn−1], c0 being the best
candidate. We give each candidate a score sel, corresponding
to its index in C(m)

sel(m, ci) =

{
i if ci ∈ C(m),

n+ 1 otherwise.
(2)

To aggregate the candidates for all the mentions of an en-
tity, we sum the sel(m, ci)

sel(ci) =
∑
m∈e

sel(m, ci). (3)

The ranking is obtained by sorting the scores in ascending
order, the first candidate (with the lower score) being the
best.

EL-Wikipedia follows the same principle as EL-Wikidata,
replacing the Wikidata search API by the Wikipedia one.

5.2 Metrics

Metrics to evaluate an end-to-end IE pipeline is a complex
subject due to the existence of two points of view: mentions
(low-level) and entities (higher-level). Most of the extraction
is done with entities in mind, so evaluating the pipeline from
the entity perspective makes sense. However, comparing one
true entity with a predicted one is nontrivial because they can
contain different mentions (no exact intersection) or mentions
that are nearly identical but not equal (differences in bound-
aries, for example).

NER F1 The NER is the only module working with entity
mentions. Similarly to previous works (e.g., Zhong and Chen
[41]), we consider a predicted mention to be correct if its
boundaries and type are the same as the ones of a ground
truth mention. We use the micro aggregation for entity types
to compute the F1 score11.

11As a side note, F1 micro is equal to the accuracy in the case
of a single label prediction.
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Table 3: Evaluation of the PNA baseline and other approaches on the dev split of Linked-DocRED. For Entity
F1 and Relation F1, the soft metric is displayed along with the hard aggregation in parenthesis. ATLOP [42] has
access to ground truth entities and coreferences during evaluation.

NER - Coref - RE Entity-Linking
Method Mention F1 ↑ Coref. B3 ↑ Entity F1 ↑ Relation F1 ↑ Method Hit@1 ↑ Hit@5 ↑ NF ↓ MR ↓

Verlinden et al. [32] - - - (71.8) - (25.7) - - - - -
ATLOP [42] - - - - 63.4 (63.4) - - - - -

Ground Truth - - - - - -
EL-Wikipedia 52.3 61.7 32.1 2.1
EL-Wikidata 59.0 68.5 26.3 1.7

PNA (ours) 77.2 80.4 83.9 (82.9) 48.9 (41.1)
EL-Wikipedia 46.0 53.9 40.8 2.1
EL-Wikidata 51.1 59.1 36.2 1.7

Coref. B3 To evaluate coreferences, we use the B3 met-
ric [1], which is used to evaluate clustering. This metric,
among others, is recommended to evaluate coreference reso-
lution models [27, 24, 37].

Entity F1 To provide a global metric to evaluate the ex-
traction of entities (taking into account NER and corefer-
ences), we recommend using the soft entity-level metric pro-
posed by Zaporojets et al. [37].

Relation F1 Comparing a predicted relation to a ground
truth relation is not trivial. Indeed, it is particularly difficult
to compare entities, as they are clusters of mentions, clusters
that can be both incomplete and impure. One solution can
be to discard all predicted entities that are not identical to
gold entities. But it does not seem fair to eliminate an en-
tity and all its relations if it is missing only one coreference.
Fortunately, Zaporojets et al. [37] proposed a soft entity-level
Relation F1 score, which tackles this problem. In a nutshell, it
compares the relations at a mention level, checking that both
predicted mentions correspond to gold entities and that there
is a relation between them. Then it aggregates the results at
the entity level.

In Table 3, for Entity F1 and Relation F1, we show the soft
metric but we also display the hard aggregation in parenthesis
(defined by Zaporojets et al. [37]), to compare with other
approaches.

Entity-Linking To evaluate entity-linking, we propose to
use the Hit@1, Hit@5, Not Found, and Mean Rank metrics.

• Hit@1. The proportion of entities where the correct re-
source is the first candidate returned by the entity-linker.

• Hit@5. The proportion of entities where the correct
resource is in the first five candidates returned by the
entity-linker.

• Not Found. The proportion of entities where the entity-
linker does not find the correct resource.

• Mean Rank. For found entities only, the average rank
where the correct resource is found.

We have the same aggregation problem for these metrics,
as our predicted entities are not strictly equal to the gold
entities. We employ the same idea as Entity F1. EL-Wikidata
and EL-Wikipedia return an ordered list of candidates for

each predicted entity. For each mention in the gold entities,
we find the corresponding predicted mention, if it exists, to
get the ordered list of candidates associated with the mention.
We then merge the candidates of all the linked mentions for
each gold entity, using the same principle described for EL-
Wikidata.

During entity-linking evaluation, NUM or TIME entities
are ignored as they are not disambiguated.

Finally, Linked-DocRED, like all IE datasets, is incom-
plete: there is no guarantee that all entities and relations
have been labeled. Precision measures have to be taken with
a grain of salt, as it is not always clear if a prediction is wrong
or if it corresponds to a missing entity, coreference, or rela-
tion. It impacts NER F1, Coref. B3, Entity F1 and Relation
F1. In practice, our proposed baseline is very balanced be-
tween Precision and Recall, which is a reassuring behavior.

5.3 Results

The evaluation results are shown in Table 3. We also display
the results of an IE pipeline from Verlinden et al. [32], and
the RE model ATLOP [42] with ground truth entities and
coreferences. All methods are trained on the train split of
Linked-DocRED and evaluated on its dev split. For Entity F1
and Relation F1, we show the soft metric and the hard metric
(in parenthesis, to provide a comparison with [32, 42]).

Firstly, the Mention F1, Coref. B3, and Entity F1, are
superior to 75%, which is in the range of what is currently
state-of-the-art for DocRED [32]. Compared to Verlinden
et al. [32], our baseline obtains better results in hard Entity
F1 (and Relation F1) while being much simpler to implement
and run. A similar observation was made by Prieur et al. [28]
on the DWIE dataset.

The performance of our baseline in RE is relatively low
when we look at Table 3. There is obviously some error cas-
cading, as the NER and the coreference resolver are imper-
fect. In fact, if we compare to ATLOP [42] with ground truth
entities and coreference, the difference in soft Relation F1 is
14.5 points (23% of difference). It demonstrates that a full
document-level relation extraction pipeline is a very challeng-
ing task.

The final step in our evaluation is entity-linking. Overall,
we can see a small advantage for EL-Wikidata compared to
EL-Wikipedia: +5.5 points for Hit@1 and Hit@5, −5 points
for Not Found, and −0.5 for Mean Rank. We think it is
linked to the fact that a Wikidata entity possesses multi-
ple surface forms at the same time (relations rdfs:label or

9



rdfs:aliases), which helps during the API search.
We observe an 8 point decrease in Hit@1, Hit@5, and Not

Found metrics when we compare the performance of gold en-
tities to those extracted with our baseline. In all cases, how-
ever, around 1/3 of entities are wrongly disambiguated (Not
Found), and only 50 − 60% of entities are correctly disam-
biguated with the first match (Hit@1). It is clear that the
entity-linking task is challenging, in particular when you take
into account an imperfect entity and coreference extraction.

6 Conclusion and Future Work

In this work, we introduce Linked-DocRED, to the best
of our knowledge, the first large-scale, document-level IE
dataset with manual annotations for entities, coreferences,
relations, and entity-linking. To do so, we develop a semi-
automatic entity-linking process that ensures human-quality
annotations. We also propose a new entity-centric entity-
linking metric to finalize the definition of a complete bench-
mark for end-to-end IE pipeline evaluation.

In the future, we plan to explore and improve informa-
tion extraction pipelines and particularly compare the per-
formance of explicit and implicit knowledge representations.
We further envision to close the loop of information extrac-
tion, that is, benefit from the already extracted knowledge
to improve the performance of the IE pipeline, which will in
turn, enrich the extracted knowledge graph.
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