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†Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, 91405, Orsay,
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Abstract

In the present work, we introduce a simple means of obtaining an analytical (i.e.

grid-free) canonical polyadic (CP) representation of a multidimensional function which

is expressed in terms of a set of discrete data. For this, we make use of an initial CP

guess, even not fully converged, and a set of auxiliary basis functions (finite basis repre-

sentation, FBR). The resulting CP-FBR expression constitutes the CP counterpart of

our previous Tucker SOP-FBR approach. However, as is well-known, CP expressions

are much more compact. This has obvious advantages in high-dimensional quantum

dynamics. The power of CP-FBR lies in the fact that it requires a grid much coarser

than the one needed for the dynamics. In a subsequent step, the basis functions can

be interpolated to any desired density of grid points. This is useful, for instance, when

different initial conditions (e.g. energy content) of a system are to be considered. We

show the application of the method to bound systems of increased dimensionality: H2

(3D), HONO (6D) and CH4 (9D).

Introduction

Tensors are ordered collections of data which naturally arise in scientific and engineering

problems when grid representations are employed. In computational science tensors are

commonly referred to as multidimensional arrays. Tools to deal with these ubiquitous data

structures are of high relevance in any real application in all branches of science and engineer-

ing[1]. Hereafter, we will focus on the grid-based representation of quantum operators for

molecular quantum dynamics. However, the ideas we will put across are straightforwardly

applicable to any grid-based problem.

Let us consider an f -dimensional (fD) discrete (grid, I) representation of the configura-
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tion space of a molecule (Q). One can represent this as the mapping:

Q ≡ (q1, . . . , qf ) → (i1, . . . , if ) ≡ I (1)

where we have defined the composite indices (I and Q) as a tuple of f indices (i1, . . . , if )

associated to f physical coordinates, (q1, . . . , qf ), e.g. distances, valence or dihedral angles.

In the case of a non-linear isolated molecular system f=3N-6 with N being the number of

atoms. Hereafter, the number f will also be referred to as the number of degrees of freedom

(DOF). We shall represent the dimensionality of the problem with the letter f for the sake

of consistency with the MCTDH literature (f from German Freiheitsgrade, literally DOF).

Quantities expressed in configuration space read:

V (q1, . . . , qf ) ≡ V (Q) (2)

and when mapped onto a grid

V (Q) → V (I) (3)

In other words, they are represented by tensors:

V (I) ∈ RN1×N2...×Nf (4)

here Nκ represents the number of grid points employed in the discretisation of the κ-th DOF

(κ = 1, 2, . . . f). Furthermore, in our specific application, we shall concentrate in problems

for which the function underlying the tensor elements is smooth and well-behaved. This

is the most common situation when dealing with physical properties. However, it should

be also noticed that this behaviour will strongly depend on the choice of the underlying

set of coordinates. At this point, it is convenient to highlight that the minimum grid size
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or, alternatively, the minimum density of the grid is given a priori by the specific needs of

the problem under consideration, e.g. the total energy content of the system as well as the

availability of computer resources. Obviously, the size of the grid will imply an exponential

growth of data-points and the concomitant number of operations to perform with them,

the so-called curse of dimensionality.[2] To illustrate this, consider, for instance, the direct

mapping of the Coulomb potential on a Cartesian grid for the explicit quantum dynamics

of two electrons coupled to a continuum. This system would require of the order of ∼ 1012

grid points[3], or equivalently ∼ 103 GB of memory, which is beyond the capabilities of

small workstations and most common-sized cluster nodes. This problem illustrates a major

computational bottleneck in the field of grid-based (molecular) quantum dynamics.

In this context, the Multiconfiguration Time-Dependent Hartree (MCTDH) method [4–

7] for the resolution of the Time-Dependent Schrödinger Equation (TDSE) (in any of its

associated software implementations, for instance [8] or [9]) has played a major role in this

field. MCTDH is a variatonal method and thus tends to the exact result when the size of

the MCTDH basis set tends to infinity. Hence, for decades now, it has served both as tool of

choice and as method of reference for the development of other methods for multidimensional

wavepacket propagations. In this way, all quantities involved in MCTDH calculations have

to be formally represented on a grid, that is, every quantity has to have a value associated

to each one of the system configurations (grid points). These raw grid representations suffer

from aforementioned exponential scaling and consequently tensor decomposition methods

are mandatory whenever high-dimensionality studies (effectively for f > 3) are aimed for.

Arguably the main bottleneck in this field is the computation and suitable representation

of a potential energy surface (PES) or, more formally, the PES operator (V̂ ) .[10–15] The

latter, contrary to the case of elementary interactions, is specific for a molecular system (and,

generally, this also holds for its isotopologues).

Traditionally, in the context of MCTDH, an already existing PES needs to be pre-
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processed (refitted) in order to achieve the so-called sum-of-products (SOP) form:

V =
∑
r

cr
∏
κ

v(κ)r (5)

where the v(κ) are mono- (or low-dimensional) basis functions (aka factors) expressed on a

grid. In this work, we will solely consider the Tucker (Eq.6) and the canonic polyadic (CP)

forms (Eq.8) which are commonly used in MCTDH. The CP decomposition (CPD) is also

known as CANDECOMP or PARAFAC in the literature. In both ansätze, the PES value

for a configuration Vi1,...,if is approximated by a sum of products of so-called factor matrices

(v(κ)) or single-particle functions (SPP) auxiliary in the MCTDH literature. The set of

weights associated to each of the configurations (Hartree product) is known as core tensor

(Cj1...jf ) in Tucker form and simply weights (cr) in CP form. For comparable accuracy,

CP requires a much smaller number of terms than Tucker and this renders CP as the form

of choice to represent a high-dimensional operator on a grid. However, as it will be argued

later, the optimisation of the CP form might lead to well-known (at least in the mathematical

community) bottlenecks owing to the non-orthogonal nature of its bases (vide infra). On

the other hand, the corresponding algebraic process in Tucker is smooth and painless.

In any case, as a general statement, it should be evident that any reduction on the

grid necessary to compute a given decomposition will be highly beneficial. In the case

of grid-based methods, this was the underlying idea behind all different POTFIT-related

flavours.[13, 14, 16] Moreover, during the last decade, several groups have also proposed

powerful fitting methods in this very same spirit, such as neural-network based ones,[17].

The interested reader is referred to our previous publication in which an extensive discussion

on this topic and the extended list of references is provided.[18] At this point, it is necessary

to mention that it has been recently shown the possibility of obtaining an analytical CP

expansion through a Gaussian Regression process.[19] In the context of MCTDH, a major

breakthrough has been the introduction of a Monte Carlo based Canonical Polyadic Decom-
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position (MCCPD) of the potential by Schröder.[20] MCCPD has been shown to be able to

refit potential energy surfaces with a surprisingly good accuracy with a much larger number

of degrees of freedom than with the different variants of POTFIT.

In this same line of thought, some of us have recently shown that it is also possible

to achieve this by turning these tensor-decomposed expressions into an analytical form

through the use of a set of basis functions, hence the name of sum-of-products finite-basis-

representation (SOP-FBR).[18] In this respect, we have only recently find out that a related

idea was suggested by Long and Long[21] for the specific case of 3D SVD problems. Unfor-

tunately no follow-up was proposed and, hence, our contribution is independent and general.

Back to SOP-FBR, in order to achieve this form one can use a set of ab initio points (geom-

etry and associated energy) directly. SOP-FBR yields an analytical Tucker-form expression

for multidimensional PES with an accuracy that outperforms a direct (algebraic) POTFIT

algorithm. Furthermore, in SOP-FBR the use of grids much coarser than the primitive ones,

required by POTFIT, leads to a much lower computational cost, both in terms of memory

requirements and CPU time. In view of these advantageous features, in this work we propose

the extension of the SOP-FBR concept to the CP form, hence the name of CP-FBR ansatz.

The basic idea is presented in Figure 1. We start from an initial CPD guess which in the

case of large systems will be obtained from MCCPD on a coarse grid (which is not dense

enough for quantum dynamics). The CPD guess will be turned into an analytical form by

the use of a set of basis sets (adapted to the problem), as we did in SOP-FBR.[18] Having

an analytical expression for the PES has the great advantage that there is no need to refit

(e.g. PF or MCCPD) many times the potential whenever the density of the grid has to be

changed (vide infra). Consequently, CP-FBR further extends the power of MCCPD (and

hence MCTDH) to deal with high-dimensional systems by: (i) providing its analytical CP

expression; and thus (ii) by reducing the computational cost of achieving a high-dimensional

CP representation of the, say, PES. Note in passing that our approach can be used with any

potential-like operator, not only the PES. This includes numerically computed KEO and
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extrapotentials.[22]

r = 1 r = 1 r = 1

r = R r = R r = R

λ1

λR

λ1 λ1

λR λR

... ... ...
≈ → →

Figure 1: Schematic illustration of the CP-FBR process. A reference tensor coarser than the
targeted tensor is decomposed in CP format (leftmost step). The resulting coarse 1D (or low-D)
factor matrices are fitted into a continuous function or basis (central step). Finally, the continuous
factors are expressed in the sought denser (primitive) grid within the same boundaries as the coarse
reference one (rightmost step). It should be noted that both weights (λR

i=1) and rank (R) remain
unaltered.

This article is structured as follows. First, we introduce the notation together with the

basic theory around the aforementioned grid-based tensor decomposition methods (Tucker

and CP). Then we discuss the computation of the Finite Basis Representation (FBR) in the

context of the the Canonical Polyadic (CP) form. Finally, we shall illustrate its power and

discuss its behaviour through its application to fully general 3D, 6D and 9D problems in

spectroscopy. This article concludes with a summary of our results and future perspectives.

Theory

In the following subsections, we will present and succinctly discuss the most common tensor

decomposition algorithms in the context of the MCTDH method for quantum dynamics and

the necessary tensor notation used in this paper.

Grid-based Tucker and CP representations

As discussed in the Introduction section, MCTDH grid-based quantities, particularly the

PES, are expressed in SOP form. This form has two main advantages, it enables the ex-

pression of (ubiquitous) multidimensional integrals into sums of product of low-dimensional
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integrals and it reduces the exponential scaling.[6] We will not discuss here the powerful

multilayer potfit[14] or the tree-tensor network states approaches[23] which are out of the

scope of the present work. The most common of the non-recursive approaches make use of

the so-called Tucker form which reads:

Vi1,...,if ≈ V Tucker
i1,...,if

= V Tucker
I =

m1∑
j1=1

· · ·
mf∑
jf=1

Cj1...jf

f∏
κ=1

v
(κ)
iκ,jκ

=
∑
J

CJΩIJ (6)

In the expression above, we have utilised the composite indices I ≡ (i1, . . . , if ) and J ≡

(j1, . . . , jf ) and have defined the configurations ΩIJ (Hartree products). Then the expression

Ω
(ν)
IνJν refers to a configuration in which the factor corresponding to the ν-th DOF has

been integrated out. In that case, one can write the equivalent, but computationally more

advantageous,[13, 24] expression:

V Tucker
I =

∑
Jν

D
(ν)
Jν Ω

(ν)
IνJν (7)

From all of the above, it should be clear that it is always possible to re-express any PES

in Tucker form on a grid. Let us discuss some of its features. As observed, the original

tensor (V) is re-expressed into another tensor (core tensor, C) of the same dimensionality

which contains the weights of the configurations or Hartree products (products of factor

matrices, SPPs, v(κ)). Several algorithms have been proposed for this POTFIT (PF) being

the pioneer.[24] The interested reader is deferred to the abundant literature, in particular,

to the variational PF variants which enable the use of larger grids than PF.[13, 16] The

Tucker factor matrices are orthonormal (both on grid and basis spaces).[24] Provided that

a sufficiently dense grid is considered their shape is smooth, at least for the set of jκ lowest

functions (this value depends on the case). This fact was observed by the original authors[24]

as well as others.[18, 25] With respect to the core tensor elements, their value typically spans

a very range of values making if feasible its pruning.[18] Despite these nice properties, the

core tensor suffers dramatically from the curse of dimensionality. As mentioned above,
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it is convenient to recall that several POTFIT flavors exist that partially circumvent this

limitation.[13, 16]. This is also true for some types of neural networks as shown by Manzhos

and Carrington[25], exploited by Brown and coworkers[26] as well as Koch and Zhang, the

latter in the context of Gaussian expansion of wave packets.[27]

To alleviate the dimensionality issues associated to the exponential growth of the core,

Schröder[20] has recently introduced a (Monte Carlo based) CP decomposition scheme (MC-

CPD) which is also of SOP form. In its normalised version a CPD reads:

V CP
i1,...,if

=
R∑

r=1

λr

f∏
κ=1

v
(κ)
iκ,r

(8)

where {λ}Rr=1 is a vector of weights and v(κ) are the factor matrices. As it can be readily

observed, CP is much more computationally convenient than Tucker in terms of memory.

Indeed, λ is a vector and C is a tensor and typically R ≪
∏f

κ=1mκ. Furthermore, CP ex-

pansions are surprisingly accurate even for low ranks (R). This is due to the non-orthogonal

character of their factor matrices. This very last feature is actually the source of some diffi-

culties (multilinearity, swamping) when considering the optimisation of the CP ansatz.[28]

Sum-of-products finite basis set representation (X-FBR, X=Tucker/SOP,

CP)

To finalize this section, we will briefly discuss our recent grid-free approach leading to ana-

lytical SOP PES. [18] A SOP-FBR expression reads:

V (q1, . . . , qf ) =

m1∑
j1

· · ·
mf∑
jf

Cj1,...,jf

f∏
κ

(
tκ∑
µ

c
(κ)
µ,jκ

Tµ(qκ)) (9)

Several observations common to all Tucker-related methods have led to some of us to

suggest this ansatz. First, the PES SOP representation is typically of a much lower rank

than the actual rank of the full primitive tensor, that is
∏f

κ mκ ≪
∏f

κ Nκ (see Eqs.4 and 6).
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In other words, one needs much less factors (SPPs) than grid points to expand the potential.

Second, the (discrete) values of the lowest-j factor matrices (SPPs) can be easily fitted to

a suitable family of, say, orthogonal polynomials. We call the latter Schmidt basis sets in

analogy to electronic structure methods. The choice of the latter depends on the type of

PES to fit: topologically similar PES (e.g. without singularity, such as in the Coulomb

potential or in the presence of conical intersections) require similar basis sets. Finally, the

core can be pruned as it is effectively sparse.[18] This means that every single potential con-

figuration (Hartree product, ΩIJ) is not necessary for most common applications (reactivity

or vibrational spectroscopy). This, in turn, is simply the same idea underlying multicon-

figurational methods such as MCSCF. At this point, it is convenient to point out that our

experience indicates that the pruning cannot be done through a simple index summation rule.

A SOP-FBR expression can be obtained through a combination of global and local opti-

misations of an objective function. This is typically defined as the rmse of the energy in the

SOP-FBR parameter space ({Cj1,...,jf}, {cµ,jκ}). Considering the analysis above, the formally

large number of SOP-FBR parameters can be dramatically reduced and, moreover, we have

observed that it is possible to freeze the factors (SPPs). Consequently, the whole SOP-FBR

process would consist on fine tuning (local optimisation) the core coefficients which have

survived the pruning. A good guess for both core (and factors, if needed) can be readily

obtained through the use of an approximated level of electronic structure theory such as a

semiempirical Hamiltonian (or a reparametrisation thereof).[15]

The CP-FBR approach

In the following, we will consider a high-dimensional problem that might be beyond the reach

of both grid-based (PF and related methods) and grid-free (SOP-FBR) Tucker format. In

other words, a system for which the Tucker rank (
∏f

κ=1 mκ) is such that the core tensor
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exceeds or requires a large fraction of the available memory. Note that for this estimate one

should also take into account memory required for the storage of several other quantities, for

instance, the wave function. Also the computation of the reference data is not a negligible

aspect either. In those cases, the CP format as introduced in MCCPD is of clear advantage

over Tucker since typically R ≪
∏f

κ=1mκ.

Hereafter, we will consider the standard Alternating Least Squares CP algorithm (CP-

ALS) for small systems, for which the full grid can be taken into account. More specifically,

we have made use of the Python[29] and Numpy [1] based Tensorly implementation for

this.[30] For larger systems beyond 6D, we use the recent and powerful Monte Carlo flavour

of CP-ALS, the so-called MCCPD.[20] By construction, MCCPD lives on the primitive grid

and the required Monte Carlo sampling points are randomly chosen from it according to a

distribution law (e.g. Boltzmann). This becomes an expensive task for large dimensional

systems where the number of required sampling points, that is, the set of configurations

which is taken as representative of the volume of configuration space accessible for a given

set of conditions, becomes large. In addition to this, an integration over all DOF following

1D-cuts[20] must be performed for each and every sampling point. As a rule of thumb one

could consider that the cuts increase the number of points by a factor ∼ 10× f so that for

a 10D problem, on would need to multiply the number of PES evaluations on the sampling

points by a factor 100. These aspects are very important whenever modifications to the

density of the grid are necessary since this would imply new (full) MCCPD calculation. This

is typically the case in two common situations: (i) non converged results for propagation for

one (or several) DOF or (ii) a series of simulations requiring new physical, say, initial con-

ditions (e.g. higher energy content of the system). The former aspect is universal to all QD

calculations and the latter is more common in scattering studies, e.g. bimolecular collisions

or molecule-surface scattering. To circumvent these issues and to achieve an analytical repre-

sentation of the PES, we have devised a simple two-grid scheme which leads to an analytical
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PES in Canonical Polyadic form. For this, we use a set of auxiliary basis functions (FBR),

hence the name CP-FBR. In what follows, we shall adopt most of the ideas and conventions

presented in the previous Section on SOP-FBR.[18] In a nutshell, first, it should be empha-

sized that the CP-FBR is performed on a grid much less dense than the primitive one (aka

Discrete Variable Representation, DVR[31–36]). Second, CP-FBR delivers an analytical CP

expression from an initial CPD guess computed on this coarse grid. And third, the CP-FBR

can be interpolated to primitive grids of any density, thus circumventing the aforementioned

problems.

Let us consider a primitive grid (DVR), denoted by Ĩ, as the one needed for numerically

converged QD calculations. This grid will consist of
∏f

κ=1Nκ grid points. Let us also define

a coarser one (I) as in MGPF[13]. It should be highlighted that this coarse grid is not

dense enough for the convergence of the sought QD calculation. Moreover, it will consist

of
∏f

κ=1 nκ grid points with typically N/n > 2. The underlying hypothesis in the CP-FBR

approach is that it is possible to obtain an analytical expression in CP format valid for both

fine and coarse grids (see Figure 1):

V CP (Q) =
R∑

r=1

λr

f∏
κ=1

v(κ)r (q(κ)) Q = (q
(1)
i1
, . . . , q

(f)
if

) (10)

where q
(κ)
iκ

is the value of the physical coordinate corresponding to the κ-th DOF at the iκ

grid point and Q is a collective representation thereof. More specifically, the CP-FBR factor

matrices are expressed by expansion in terms of tκ basis sets (Tµ(q
(κ))):

v(κ)r (q(κ)) =
tκ∑

µ=1

cµ,rTµ(q
(κ)) (11)

as it was done for the Tucker SOP-FBR form.[18] In other words, it should be possible to

express the target PES within a given set of boundary conditions (DVR limits, thus problem
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dependent) as a weighted sum of R Hartree products of analytical factor matrices (SPPs)

expressed in a given finite basis. As previously discussed, the latter are universal for topolog-

ically equivalent potentials so that one can apply the same type of basis functions (Tµ(q
(κ)))

to topologically equivalent PES (or more generally, tensors).[18] In this sense, a Coulomb

potential (r−1), owing to its singularity, would not be topologically equivalent to the PES of,

say, an isolated molecular system. In what follows, we will describe our current algorithm for

the computation of the CP-FBR expression. Note in passing that this analytical CP-FBR

form is differentiable ad infinitum.

The actual CP-FBR workflow is presented in Figure 2. It should be noted that when us-

ing MCCPD the reference points are usually given as a (DVR) grid-based Metropolis MC

trajectory. As observed in the flowchart, one needs first to define a coarse grid (I). For

the sake of efficiency, the choice of the coarse grid points should be such that it is signifi-

cantly smaller than the one needed for the dynamics but sufficiently large to capture a good

fraction of the correlation between the different DOFs (PES topography). This condition

was achieved in MGPF via an algebraic process (see optimisation of MGPF grids). [13] In

CP-FBR, we obtain a Monte Carlo estimate of the physically meaningful subset of points

within our coarse grid using MCCPD. This is analogous to the guess in Tucker SOP-FBR.

Using this information, an initial CP guess on the coarse grid (using either CP-ALS[30] or

MCCPD[20]) can be obtained. It should be noted that the use of CP-ALS would imply

sampling the coarse grid in full, hence it is limited to small-medium systems. In both cases,

after fixing a rank (R), one obtains a series of weights and factors, which will be considered

as normalised hereafter. The latter are matrices whose columns correspond to the mapping

of a basis function on the coarse grid (see the upper panel of Figure 3). The quality of a

CPD decomposition depends on number of configurations in the expansion (rank, R) used

to represent the tensor. However a large rank may lead to overfactoring (multilinearity)

and, unfortunately, determining the exact rank of a given tensor is not a trivial task and

it still constitutes an open question.[37] Furthermore, in the specific case of CP-FBR, an
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important aspect to consider is the smoothness of the factors on the coarse grid. In this

regard, the choice of the rank is also relevant. Indeed, the behaviour of factors may vary

dramatically when going beyond the actual rank (see Fig. 3). This is illustrated in Figure

3 where we display the variation of the CP factors, corresponding to the valence angle in

the water molecule, upon an increase in the rank (from R=15 to R=30). As observed, they

become noisy (highly peaked) thus hindering the fitting step. In fact, none of them is smooth

anymore and this would even prevent a simple pruning. Concerning this possibility, the in-

crease in the rank leads to weights presenting a distribution qualitatively similar to that of

those from a lower rank expansion (see Figure 4). However, the number of weights above

a certain pruning threshold increases with the rank, thus also hindering the aforementioned

direct pruning. Fortunately for us, as it will be illustrated, it is possible to obtain analytical

CP-FBR PES for relatively small values of the rank (see Results section).

14



Figure 2: CP-FBR flowchart for the generation of a PES representation for quantum dynamics
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Rank = 15 Rank = 30 

Rank = 30 Rank = 15 

Figure 3: Effect of rank in the smoothness of factors for the illustrative case of the valence angle
in water. Upper panel, discrete values of the factors on the coarse grid points. Lower panel,
interpolated lines on those points for the sake of better visualization. The phase of the factors
is random and has not been corrected. Upon increase of the rank, the factors lose their smooth
behaviour.

The task at hand now is to find a suitable number of fitting functions (e.g. Chebyshev

polynomials) that will lead to a satisfactory representation of the factors on the coarse grid

while, at the same time, providing a good quality interpolation towards the fine grid (DVR).

This was achieved by performing a series of 1D fits for which we used available numpy imple-

mentation of least square fits to Chebyshev series of a first kind, numpy.polynomial.chebyshev.chebfit.

It should be clear that by simply increasing the number of fitting polynomials, we consis-

tently improve the quality of the representation on the coarse grid. However, from a certain

point, one reaches saturation (excellent fit on the coarse grid) and a further increase will lead

to a poorer interpolation (aka overfitting). This is illustrated in Figure 5. The quality of

16



Rank = 30Rank = 15

Figure 4: Effect of rank in the distribution of weights. Upon increase of the rank, more weights
lie above a given threshold thus preventing efficient pruning.

interpolation is assessed through a validation set generated from the fine grid (hence different

from the coarse one). For the sake of benchmarking, we have used validation sets which are

slightly denser than the ones used for the initial CP decomposition. The objective function

to be minimized is rmse on the validation set. For this, we increase sequentially for each

DOF (or combinations thereof) the number of fitting functions (the rest been kept fixed)

until improvement in the rmse is below, say, 0.01 cm−1 or when it starts to increase thus

signaling overfitting (see Fig.5) The actual process will be illustrated in each of the study

systems presented in the Results section. Note that the use of a grid (coarse/fine) is not

necessary, one can directly use a list of reference points. As a final remark, it will be shown

that the CP-FBR approach preserves to a good degree the rmse on the coarse grid when

transferring to the fine grid.

Results and discussion

In the following section we will present the application of our method to several systems

of increasing size. As a proof of concept we have considered two benchmark systems: H2O

(3D) and HONO (6D) as well as a higher-dimensionality application, methane (9D). The
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Figure 5: Variation of rmse (cm−1) upon increase of order of fitting polynomials. Overfitting
can be clearly observed.

assessment of the quality of our representation is done through measurements of the quality

of the fit (e.g. correlation plots, cumulative rmse plots, etc.) as well as calculations of

vibrational eigenstates using the Improved Relaxation algorithm.[38]

Proof of concept, single-well: H2O (3D)

As first application, we have considered the water molecule (H2O) through the use of the

Polyanski-Jensen-Tennyson H16
2 O spectroscopically refined PES known as PJT2.[39] The

definition of coarse and fine grids, together with the choice of the DVR functions is presented

in Table 1. A PES tensor mapped on the coarse grid was initially decomposed using the CP

routine from the Tensorly library[30] using a rank of R = 15. The so-obtained factors were

fitted using coarse grid as reference geometries and fine as validation. As observed, the fine

grid is about 13 times the size of the coarse one.

The two O-H bonds were taken as equivalent and, consequently, the order of the fitting

Chebyshev polynomials for both DOF was kept identical. The angular basis was optimized

independently in a subsequent step. The variation of the rmse at every iteration of the

optimisation is displayed in Figure 6. It can be observed the differential behaviour of the

rmse upon increase of the of order of the fitting polynomials for different DOF. This has
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Table 1: Definition of the DVR grid for water molecule. O-H bond distances (r1
and r2) are expressed in bohrs and the H-O-H angle (θ) in radians. The number
of DVR points is given for both coarse (n) and primitive (N) grids. Fit indicates
the Chebyshev order.

Coordinate DVR n N Range Fit
r1 sin 15 34 1.4500, 2.4500 13
r2 sin 15 34 1.4500, 2.4500 13
θ Leg 20 50 1.1400, 3.1416 16

r1 and r2 Ѳ

Figure 6: Variation of the rmse (cm−1) upon variation of the number of fitting functions.
In the upper part of the graph is specified which DOF is being optimized within a given
iteration. Final values are shown in Table 1

been observed in other grid based methods such as MGPF (see Table IV in Ref.[13]. The

global rmse of the CP-FBR PES (0.686 cm−1) compares well to the value from our initial

CPD decomposition (0.281 cm−1). A more thorough test of the quality of the CP-FBR

PES is obtained through the correlation and cumulative rmse plots, presented in Fig. 7 and

Fig.8, respectively. To further assess the quality of the PES, we computed the geometry

corresponding to the minimum of the CP-FBR PES using steepest descend method. The

obtained geometry compares very well with the one obtained using original PES, with an

agreement up to the fourth decimal (Table 2). It should be highlighted that in our SOP-FBR

approach, CP-FBR in this case, no a priori explicit knowledge of the physics of the problem

(e.g. energy barriers, minima) is utilised in the optimisation process.
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Figure 7: Correlation plot on the fine grid
for H2O

Figure 8: Cumulative RMSE (cm−1) on
the fine (primitive) (blue) and on the
coarse (red) grid for H2O

Table 2: Comparison of the geometrical parameters optimized with the steepest
descent method using the CP-FBR PES and the original routine. O-H bond
distances (r1 and r2) are given in bohrs and the H-O-H angle (θ) in radians. All
gradients were below 10−7 units.

PES r1 r2 θ
Reference 1.8102 1.8102 1.8239
CP-FBR 1.8102 1.8102 1.8238

Further assessment of the quality of our CP-FBR PES has been achieved through the

calculation of vibrational eigenstates and their comparison with the exact ones (exact expan-

sion) calculated under the same conditions (SPFs, integrator, etc.). It should be mentioned

that our grid definition is not meant to yield spectroscopically accurate eigenstates. Our

aim here is simply to compare the results obtained using our analytical CP-FBR approach

with an equivalent grid-based tensor-decomposed (refitted) PES. First, the ZPE value from

CP-FBR of 4644.238 cm−1 compares very well with the reference one of 4644.234 cm−1 as

well as the vibrational eigenstates which are in excellent agreement with the reference (exact)

calculations (see Table 3).
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Table 3: Comparison of the 20 lowest vibrational eigenvalues of H2O for the
original PES (POTFIT) and the CP-FBR one.

State Eigenenergies (cm−1)
CP-FBR POTFIT

ZPE 4644.24 4644.23
1 1594.23 1594.23
2 3151.68 3151.68
3 3681.12 3681.14
4 3779.57 3779.51
5 4670.76 4670.75
6 5256.67 5256.67
7 5353.37 5353.33
8 6149.39 6149.38
9 6796.91 6796.90
10 6894.15 6894.13
11 7278.66 7278.63
12 7333.69 7333.59
13 7497.74 7497.64
14 7581.88 7581.87
15 8299.68 8299.65
16 8402.48 8402.46
17 8831.88 8831.83
18 8884.26 8884.18
19 8944.09 8944.10
20 9049.27 9049.21

H

O

O

N

rOH

rON

rN=O
θ2

θ1 φ

Figure 9: Definition of the coordinates for HONO

Benchmark two-well system: HONO (6D)

We focus now on a more general problem, the 6D two-well system HONO molecule in the

cis-trans izomerization region. In recent years this has become a standard benchmark.[18,

26] As source of reference data, we use the CCSD(T)/cc-pVQZ-quality analytical PES of
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Richter et al.[40] In Figure 9 we present the definition of the polyspherical coordinates [41]

as those used in Refs. [42, 43]. Concerning the angles, Θ1 and Θ2 they were used as their

cosines, u1 and u2, respectively. The definition of the coarse grid is given in Table 4. In

this case, the guess decomposition (on the whole coarse grid) was done using the CP-ALS

routine from the Tensorly library. This is comparable to our previous SOP-FBR calculation

on the same system[18]. The CP rank was set to R=200. The validation set consisted of 106

geometries uniformly sampled from a slightly bigger grid defined in such a way to avoid the

coincidence with the coarse grid.

Table 4: Definition of the DVR grid for the HONO molecule. Bonds are given
in bohrs and angles in radians. The number of DVR points is given for both
coarse (n) and primitive (N) grids. Fit represents the Chebyshev order

Coordinate DVR n N Range Fit
rN=O HO 7 13 1.90, 2.60 5
rON HO 7 16 2.10, 3.25 6
rOH HO 8 18 1.30, 2.45 7

u1 (cos θ1) HO 7 13 -0.65, -0.10 5
u2 (cos θ2) HO 7 18 -0.65, 0.25 5

ϕ cos 15 32 0,π 10

The initial order of Chebyshev fitting basis was 4 for all DOFs. In Figure 10, we present

the variation (decrease) of the rmse upon optimization (fitting to higher order) for each DOF.

As initial remark, we observe that the rmse is already of chemical accuracy (∼ 350 cm−1)

for the lowest number of basis sets. The final rmse is 2.213 and 2.929 cm−1 on the reference

and the validation sets, respectively. A proof of the stability of our optimisation scheme is

that the final expansion order (see Table 4) nicely agrees (within a numerical error) to the

one obtained with the grid based method MGPF.[13]

To further prove our hypothesis of interpolation to any fine grid, we defined the (primi-

tive) grid shown in Table 4 and uniformly sampled 106 geometries from it. From the corre-

lation plot given in Figure 11 can be seen that CP-FBR values are in good agreement with

reference ones in entire range of energies (up to 105 cm−1). The cumulative rmse plot given in

Figure 12 confirms that value of 5.345 cm−1, even though slightly bigger, compares well with
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rN=O rON rOH u2u1 φ

Figure 10: Variation of the rmse (cm−1) upon variation of the number of fitting functions. In
the upper part of the graph is specified which DOF is being optimized with a given iteration.

values on reference and validation sets and is in good agreement with other methods.[18, 26]

ECP_FBR / cm-1

Figure 11: Correlation plot on the primitive
grid for HONO

Figure 12: Cumulative rmse (cm−1) on
coarse (red), fine (green) and primitive
(blue) grid for HONO

To further assess the topography of our CP-FBR PES, we located the stationary points.

For the sake of efficiency, we imposed the torsion to its optimal value and optimized other co-

ordinates with steepest descent method. Final gradients were all below 10−7 hartree/(bohr/radian).

As it can be seen in Table 5, the obtained values agree very well with the reference ones,

up to the fourth decimal for all DOFs, even though none of these geometries was explicitly

included in the reference data sets.
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Table 5: Comparison of the geometrical parameters optimized with the steepest
descent method on the CP-FBR and original PESs. All final gradients were
below 10−7.

Coordinate
PES rNO rON rOH θ1 θ2 ϕ

Trans
reference 2.2133 2.6967 1.8229 1.9315 1.7776 3.1416
CP-FBR 2.2134 2.6972 1.8235 1.9315 1.7776 3.1416

Cis
reference 2.2374 2.6312 1.8416 1.9752 1.8223 0
CP-FBR 2.2376 2.6304 1.8427 1.9753 1.8223 0

TS
reference 2.2009 2.8475 1.8180 1.9287 1.7577 1.5080
CP-FBR 2.2008 2.8475 1.8185 1.9286 1.7571 1.5080

Finally, we used the primitive DVR grid (analogous to that of Refs.[18, 26]) to calculate

the ZPE and several vibrational eigenstates. The obtained ZPE of 4365.39 cm−1 compares

well the reference (exact) value of 4367.73 cm−1. As for the vibrational states, values given

in Table 6 also exhibit a good agreement.

Vibrational eigenstates of CH4 using an analytical full-dimensional

(9D) CP-FBR PES

As a final example, we consider a 9D system, the methane molecule. We used the PES from

Zhang et al.[44] as reference. The coordinates system used is based on a mixed Radau (for

non reacting CH3 group) and Jacobi (for the remaining C-H bond) polyspherical coordinates

[41]. This follows reference [44] (see Fig. 13). Again, for the angles βs, θ1 and θ2 we use the

corresponding cosines, labeled as ub, u1 and u2, respectively.

Due to the size of a system, decomposition of a tensor taking into account the full

grid, even for a coarse grid, had memory requirements which rendered it impractical, at

least for the current CP-ALS implementation of Tensorly. For this reason, here we made

use of the powerful MCCPD algorithm to perform the decomposition on the coarse grid.

MCCPD used a set of Metropolis MC sampled grid-points of that grid. To focus on the low
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Table 6: Comparison of the lowest vibrational eigenstates of HONO for the
original PES and the CP-FBR one. ZPE from CP-FBR is 4365.39 and from
reference is 4367.73 cm−1. The states are denoted with an ordinal and the label
t (trans) or c (cis).

State Eigenenergies (cm−1)
CP-FBR Reference

ZPE 4365.39 4367.73
1c 92.79 94.05
2t 600.75 600.81
3c 709.15 710.65
4t 795.51 795.86
5c 942.67 944.12
6t 1055.43 1055.38
7t 1187.77 1188.02
8t 1264.30 1264.89
9c 1305.91 1306.59
10c 1311.22 1312.78
11t 1384.82 1385.35
12c 1403.28 1404.80
13c 1546.33 1547.81
14t 1574.27 1574.92
15t 1640.79 1640.85
16t 1690.37 1689.88
17c 1725.52 1725.95
18t 1762.06 1762.68
19c 1778.10 1779.61
20t 1828.65 1828.94

25



H3

H1

H2

H4

C

R1

R2
R3

R4

θ2

θ1

φ

βs

γs

Gs

GCH3

G
H3

Figure 13: Coordinate system for CH4.

Table 7: Coordinates and DVR functions used to define the primitive grid.
Distances are given in Bohrs and angles in Radians. The number of DVR points
on the coarse grid (n) and primitive grid (N). The column Fit presents the
Chebyshev order

Coordinate DVR n N Range Fit
ub sin 7 14 -0.85 0.3 6
γs sin 7 17 4.5 6 16
R1 HO 7 10 1.5 2.8 6
R2 HO 7 10 1.5 2.8 6
R3 HO 7 10 1.5 2.8 6
R4 sin 7 14 1.6 2.9 6
u1 sin 7 14 -0.9 0.25 7
u2 sin 7 14 -0.9 0.25 7
ϕ sin 7 19 1.3 3 7

energy region, we used Metropolis sampling at 3 different temperatures (kBT): 500, 1000

and 1500 cm−1 to generate set of 15000 points in total, from the coarse grid. According to

our experience, an MCCPD performed on such a small number of points seems to lead to a

not fully converged CP representation. By this, we mean that it predicts more accurately

the reference energies than any other geometry out of this reference set, even within the

same domain of energies. Interestingly, such a CPD can still be used as initial guess for our

CP-FBR fitting/interpolation. For the sake of assessment of the quality of our approach, we

have decided to define three different grids. Note that only two are necessary. These grids
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are: (i) coarse which refers to the sampling points required for the MCCPD as well as for

the fitting of the factors; (ii) validation from which 11500 points was sampled and used to

control overfitting; and (iii) primitive (DVR) grid which is the one needed for the quantum

dynamical simulation to be converged. Relevantly, neither the coarse grid nor the validation

are subsets of the primitive grid. It should be clear that the primitive grid is not used at

all in the CP-FBR process and hence our CP-FBR ansatz will be simply interpolated onto

the primitive grid, which is also the denser one. For the sake of comparison, we performed a

MCCPD directly on the primitive grid as well, using 70000 sampling points and keeping the

rank the same, at 250 Finally, as an extra (strictly speaking unnecessary) assessment, we

sampled (same conditions) a 10-times bigger number of geometries just for the sake of further

testing the obtained CP-FBR form. Concerning the factor fitting, we took into account the

symmetry of the molecule by treating on the same footing the Radau-defined C-H bonds and,

thus, optimizing them simultaneously. The same was applied to u1 and u2. We estimated

the quality of the resulting CP-FBR on the coarse, fine, and primitive grids. In Figure 14

we present the correlation plot for the primitive grid. It can be clearly observed that the

agreement between CP-FBR and original surface is best for the lowest energies. The same

behaviour is observed in Figure 15, where we present the comparison of the cumulative rmse

plots for CP-FBR on all of the three grids together with MCCPD for the coarse and the

primitive. Both methods show a good agreement in the targeted region up to 17000 cm−1.

As a final test, we calculated the ZPE and several vibrational eigenstates of methane and

compared our CP-FBR results with the ones obtained with MCCPD (on the primitive grid),

those from the reference values (see Ref. [44]), as well as experimental values. The values of

energies obtained for vibrational states are presented in Table 8. Our ZPE value of 9681.495

cm−1 is slightly lower than the one from the reference (9689.43 cm−1) and compares well with

the one from MCCPD (9681.07 cm−1). Concerning the vibrational eigenvalues, CP-FBR is

in good agreement with all of our reference values, particularly with MCCPD. Finally, the

CPU time for MCCPD on the primitive grid was 24m:06s whereas for the whole CP-FBR
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Figure 14: Correlation plot on the primitive
grid for CH4

Figure 15: Cumulative rmse (cm−1). Note
that the black trace (MCCPD on coarse
grid) lies right below the red trace (CP-
FBR on coarse grid).

process (i.e. MCCPD decomposition on the coarse grid and subsequent FBR fitting) took

12m:25s. It should be noted that our current CP-FBR implement is sub-optimal and not

fully automated.

Table 8: Obtained energies (in cm−1) for vibrational states (J=0), comparison
with values from the reference and experimental ones

State CP-FBR MCCPD Reference[44] Experimental[45]
ZPE 9681.50 9680.97 9689.43

(0001)F2

1308.92 1309.78 1309.19
1310.761309.85 1310.27 1309.83

1310.35 1310.91 1310.33

(0100)E
1529.56 1531.10 1530.40

1533.33
1530.87 1531.22 1530.83

(0002)A1 2588.06 2588.85 - 2587.04
(0002)F2 2611.81 2612.78 - 2614.26

Summary and conclusions

We have presented an approach for obtaining the canonical polyadic counterpart of Tucker

SOP-FBR,[18] hence the name CP-FBR. Our method yields an analytical CP form for

multidimensional tensors. CP-FBR requires a guess for which a non-converged initial CP
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decomposition can be taken. An important advantage of CP-FBR is that it enables direct

interpolation between a coarse grid and the target one (DVR) needed for dynamics. This is

achieved through fit of the factors using a set of auxiliary basis functions. CP-FBR has been

tested in systems of increasing size: water molecule (3D), HONO (6D) and methane (9D). In

all three cases, it was observed that the rmse was well preserved when transferring between

the coarse and primitive grids. The quality of the obtained expressions was carefully assessed

through correlation and cumulative rmse plots, topographical analysis, as well as calculation

of vibrational eigenstates with MCTDH. In sum, CP-FBR constitutes a further proof of

the possibility of obtaining the high-dimensional analytical representation of potential-like

operators, as epitomized by the PES. As shown previously in the case of a Tucker format,

the CP SPPs (factor matrices) can also be interpolated from a coarse (cheap, small) grid

to the primitive one (needed for QD). In a sense, this operation generalizes the seminal

ideas underlying the chnpot method of MCTDH. It does so taking into account global

information of coarse and fine grids, whereas chnpot is local and bound to a grid. Our

(CP-)FBR approach leads to a fully general expression and multidimensional function with

a topography that is in very good agreement with the reference level of electronic structure

theory. In addition to this, our X-FBR approaches (X=Tucker, CP) provide a conceptual

frame linking the generation of analytical (aka routine) high-dimensional PES in SOP form

using as reference an amount of information even coarser than the MC sets generated from

the primitive grid. We are currently using CP-FBR for the fit of high-dimensional unbound

PES. A future development will concern the efficient and parallel computation of energies

for single geometries using our CP-FBR form. This will enable the optimisation using lists

of points generated from the full set of stationary points as some of us already suggested.[15]

Our software will be freely available and interfaced to the MCTDH software package.

29



Availability of data

The data that support the findings of this study are available from the corresponding author

upon reasonable request.

Acknowledgements

The authors are very thankful to H.-D. Meyer and M. Schröder (Heidelberg) for the careful
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(19) Song, Q.; Zhang, X.; Peláez, D.; Meng, Q. Direct Canonical-Polyadic-Decomposition

of the Potential Energy Surface from Discrete Data by Decoupled Gaussian Process

Regression. J. Phys. Chem. Lett. 2022, 13, 11128–11135.
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