
HAL Id: hal-04064111
https://hal.science/hal-04064111v1

Submitted on 11 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Learning QUBO Models for Quantum Annealing: A
Constraint-based Approach

Florian Richoux, Jean-François Baffier, Philippe Codognet

To cite this version:
Florian Richoux, Jean-François Baffier, Philippe Codognet. Learning QUBO Models for Quantum
Annealing: A Constraint-based Approach. International Conference on Computational Science, Jul
2023, Prague, Czech Republic. �hal-04064111�

https://hal.science/hal-04064111v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Learning qubo Models for Quantum Annealing:
A Constraint-based Approach

Florian Richoux1,3, Jean-François Baffier2,3, and Philippe Codognet3

1 AIST, Tokyo, Japan
2 IIJ Research Lab, Tokyo, Japan

3 JFLI, CNRS / Sorbonne University / University of Tokyo, Tokyo, Japan
florian@richoux.fr jf@baffier.fr codognet@is.s.u-tokyo.ac.jp

Abstract. Quantum Annealing is an optimization process taking ad-
vantage of quantum tunneling to search for the global optimum of an
optimization problem, although, being a heuristic method, there is no
guarantee to find the global optimum. Optimization problems solved by a
Quantum Annealer machine are modeled as Quadratic Unconstrained Bi-
nary Optimization (qubo) problems. Combinatorial optimization prob-
lems, where variables take discrete values and the optimization is under
constraints, can also be modeled as qubo problems to benefit from Quan-
tum Annealing power. However, defining quadratic penalty functions
representing constraints within the qubo framework can be a complex
task. In this paper, we propose a method to learn from data constraint
representations as a combination of patterns we isolated in Q matrices
modeling optimization problems and their constraint penalty functions.
We actually model this learning problem as a combinatorial optimization
problem itself. We propose two experimental protocols to illustrate the
strengths of our method: its scalability, where correct pattern combina-
tions learned over data from a small constraint instance scale to large
instances of the same constraint, and its robustness, where correct pat-
tern combinations can be learned over very scarce data, composed of
about 10 training elements only.

Keywords: Quantum Annealing · QUBO · Machine Learning · Con-
strained Optimization Problems · Constraint Satisfaction Problems

1 Introduction

As Quantum Computing is getting more real with the effective development of
quantum processors, one can distinguish two approaches: the gate-based paradigm,
in which the main industrial players such as IBM, Google, Intel and many start-
up companies (IonQ, Rigetti, IQM, Pasqal, . . .) have developed systems with
up to a few hundreds of qubits, and the adiabatic computation paradigm, in
which companies like D-Wave Systems have developed systems with thousands
of qubits.

Quantum Annealing (QA) is an instance of adiabatic computation that is
interesting in the current Noisy Intermediate-Scale Quantum (NISQ) era, and it

2 F. Richoux et al.

has been applied in the field of combinatorial optimization. Indeed, combinato-
rial problems can be modeled as Quadratic Unconstrained Binary Optimization
(qubo) as input language and solved by QA systems.

More complex Constrained Optimization and Constraint Satisfaction Prob-
lems, coming from the Constraint Programming or Operations Research do-
mains, are now being tackled with qubo modeling and QA solving [6], although
the size of the current QA machines still prevent experiments on large instances.
Nevertheless, an interesting issue which is appearing is the modeling of com-
plex problems in the constraint-based approach, and, although it is easy to add
penalties into the objective function to represent simple constraints appearing in
the problem, it could be difficult to express in a qubo formulation the penalties
corresponding to complex constraints as found in the Constraint Programming
paradigm. Indeed, if some constraints are such as the one-hot or the permutation
(two-way one-hot) constraints are easy to represent in qubo, as we illustrate in
Section 3, this is not the case for more general constraints. Many classical com-
binatorial problems are usually modeled with integer variables and constraints
over those integer variables. Thus, to transform those models into qubo, one
has first to encode integer variables by binary variables (this is not difficult) and
then to transform the constraints over integer values as penalties over binary
variables, which may not be obvious at all. Therefore, an approach that would
automatically create the qubo penalties corresponding to integer constraints
would be valuable. We can do that by learning the qubo matrix representation
corresponding to a constraint from the solution and non-solution candidates.

Learning constraints from data has been explored in different directions.
Paulus et al [18] proposes to integrate a combinatorial optimization module
directly into a neural network as a layer, learning both the constraints and their
costs from data. Another approach is proposed by Kumar et al [14], where the
constraints and the objective function of Mixed-Integer Linear Programs are
learned from data. However, unlike our work, these two papers deal with linear
constraints only, and they both learn constraints on a fixed number of variables.
In comparison, our method can handle linear and non-linear constraints, and
it learns a constraint representation that is independent of the number of vari-
ables. This work is inspired from [20], where a method to learn error functions
representing constraints is proposed. This paper describes a model, named In-
terpretable Compositional Network, to learn error functions as an interpretable
composition of elementary operations, in such a way that the learned composi-
tions are independent of the number of the target constraint. The main difference
with this current paper is that error functions are not necessarily quadratic but
must verify a structured property upon error values implying a hierarchy among
non-solution candidates, which is not necessary in the present qubo setting.

2 Quantum Annealing and qubo

Quantum Annealing (QA) has been proposed as a concrete form of adiabatic
computation more than two decades ago by Kadowaki et al. [12] and Farhi et

Learning qubo Models for QA: A Constraint-based Approach 3

al. [8], and takes advantage of the physical phenomenon of quantum tunneling,
allowing to traverse energy barriers in the energy landscape as long as they are
not too large [23,19]. QA has gained momentum in the last decade with the de-
velopment of special hardware based on QA, such as the quantum computers of
D-Wave Systems [4,16] and, more recently, the so-called “quantum-inspired” sys-
tems which are realized with classical (non-quantum) electronics by Fujitsu [1],
Hitachi [24], Toshiba [11] or Fixstars Amplify [15]. These systems are sometimes
referred to as Ising Machines, as they can solve problems stated as Hamiltonians
in the Ising model and are aimed to solve a large class of combinatorial problems
[22,17], including industrial applications [25].

Interestingly, such a formulation is equivalent to the modeling in Quadratic
Unconstrained Binary Optimization, a formalism whose roots go back to pseudo-
binary optimization in the late 60’s and which has been proposed as a simple
but powerful modeling language for combinatorial problems about 15 years ago
[2]. qubo is now seen as a general modeling language for a variety of combina-
torial problems [13,10]. For these reasons, qubo has become the standard input
language for Ising machines.

Simply put, a qubo problem is given by a vector of n binary variables
x1, · · · , xn and a quadratic expression over x1, · · · , xn that has to be minimized,
which, without loss of generality, is of the form

∑
i≤j qijxixj . Therefore, a qubo

problem is determined by a vector x of n binary decision variables and an upper
triangular n × n square matrix Q with coefficients qij . The qubo problem can
thus be written: minimize y = xTQx, where xT is the transpose of x.

Moreover, in order to use qubo to model Constrained Optimization Prob-
lems (cop) from the field of Operations Research, e.g., the well-known Traveling
Salesman problem (TSP) or Quadratic Assignment Problem (QAP), one has to
find a way to represent constraint expressions in qubo models. This can be done
by using penalties and adding them in the objective function to minimize, that
is, as quadratic expressions whose value is minimal when the constraint is satis-
fied. An easy way to formulate such a penalty is to create a quadratic expression
which has value 0 if the constraint is satisfied and a positive value otherwise,
representing somehow the degree of violation of the constraint.

Although this works fine for simple constraints, defining the penalties corre-
sponding to complex constraints can, however, become complicated. This is the
starting point of our work investigating an automatic manner to generate qubo
penalties corresponding to complex constraints.

3 Motivating Example

3.1 Basic Example

Consider the problem of coloring the n nodes of a graph with k colors such that
no adjacent nodes have the same color. The classical way to model such a problem
in qubo is to consider, for each node i of the graph, k binary variables xij , j ∈
{1, . . . , k} such that xij = 1 if the node i has the color j, and xij = 0 otherwise.

4 F. Richoux et al.

−1 2 2 0 0 0 0 0 0
0 −1 2 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 2 2 0 0 0
0 0 0 0 −1 2 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 2 2
0 0 0 0 0 0 0 −1 2
0 0 0 0 0 0 0 0 −1

Qc

−1 1 1 1 0 0 1 0 0
0 −1 1 0 1 0 0 1 0
0 0 −1 0 0 1 0 0 1
0 0 0 −1 1 1 1 0 0
0 0 0 0 −1 1 0 1 0
0 0 0 0 0 −1 0 0 1
0 0 0 0 0 0 −1 1 1
0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 −1

Q′

c

Fig. 1: qubo matrices corresponding to the penalties in Examples 1 and 2

Then, one has to devise an objective function that will be minimal when adjacent
nodes have different colors. But the problem variables are also subject to the
constraints that each node has only a single color, i.e., that

∑k
1 xij = 1.

This is the well-known one-hot constraint: among k Boolean variables, exactly
one has to be equal to 1 and others have to be equal to 0. It is classically used
for the representation of integer variables with a domain of size n by n Boolean
variables, although other encoding such as domain-wall or unary are possible
[5,7].

Let us remark that
∑k

j=1 xij = 1 ⇐⇒ (
∑k

j=1 xij − 1)2 = 0, and by devel-
oping this expression, a quadratic penalty expression is obtained:

2

n∑
i=1

∑
j<j′

xijxij′ −
n∑

i=1

k∑
j=1

xij

This penalty has to be added to the qubo objective function of the original
problem in order to enforce the original one-hot constraint of the initial problem.

Example 1 Consider a qubo model with 9 binary variables xij , i ∈ {1, 2, 3}, j ∈
{1, 2, 3}, and an objective function f to minimize over xij , subject to the three
one-hot constraints:

∑3
j=1 x1j = 1,

∑3
j=1 x2j = 1,

∑3
j=1 x3j = 1.

The 9×9 qubo matrix Q can be decomposed as the sum Q = Qo+Qc, with
Qo being the 9 × 9 matrix corresponding to the objective function f , and Qc

the 9× 9 matrix corresponding to the three one-hot constraints. The Qc matrix
representing the penalty is depicted in Figure 1.

The above transformation is straightforward, and the corresponding qubo
penalty is easy to derive mathematically from the initial constraint (as is the
qubo matrix), but this might not always the case.

More interestingly, we can see that the 9 × 9 matrix corresponding to the
penalty part of the qubo model (i.e., the constraint part of the initial problem)
shows a particular structure with 3×3 submatrix around the diagonal. Could the
penalty part of the qubo matrix representing constraints coming from integer
problems be seen as a combination of basic patterns such as submatrices? If so,

Learning qubo Models for QA: A Constraint-based Approach 5

could we learn automatically such matrix representation? We will see that the
answer to both questions is “yes”.

3.2 A More Complex Example

Let us consider now a slightly more complex example: permutation constraints.
Many classical combinatorial optimization problems, such as the well-known
Traveling Salesman Problem (TSP) and the Quadratic Assignment Problem
(QAP), or Constraint Satisfaction problems such as the N-queens and Magic
Square puzzles are usually modeled with a vector of integer decision variables
which are subject to the constraint that each feasible solution forms a permuta-
tion. In the Constraint Programming community, such a permutation constraint
is a special case of the AllDifferent constraint, which has been the subject of
large literature and various solving techniques [9].

To enforce that n integer variables xi with values in {1, . . . , n} represent
a permutation, we need to enforce that each value j ∈ {1, . . . , n} is assigned
once and only once. When translated to qubo, with n binary variables xij ,
j ∈ {1, . . . , n}, encoding an integer variable xi of the original problem formula-
tion, this amounts to the so-called two-way one-hot constraints: 2 × n one-hot
constraints with one set of n constraints corresponding to each of the n variables
xi stating that it can have only one value k and one set of n constraints for each
of the n values k stating that it can be assigned to only one variable xi.

These 2× n one-hot constraints are as follows:

∀i ∈ {1, . . . , n},
n∑

j=1

xij = 1 ∀j ∈ {1, . . . , n},
n∑

i=1

xij = 1

Adding all corresponding penalty expressions together and simplifying the
quadratic expression gives the following penalty for the permutation constraint:

n∑
i=1

∑
j<j′

xijxij′ +

n∑
j=1

∑
i<i′

xijxi′j −
n∑

i=1

n∑
j=1

xij

Example 2 Consider a combinatorial problem on 3 integer variables x1, x2, x3,
with values in {1, 2, 3} subject to a permutation constraint and an objective
function f to minimize over xi.

If each original integer variable is encoded by 3 binary variables with one-hot
encoding, the corresponding qubo model will have 9 binary variables xij , i ∈
{1, 2, 3}, j ∈ {1, 2, 3}, and the 9×9 qubo matrix can be decomposed as the sum
Q′ = Q′

o+Q′
c, with Q′

o corresponding to the translation of the objective function
f to minimize over xij , and Q′

c corresponding to the permutation constraint. The
Q′

c matrix representing the penalty is depicted in Figure 1.
This matrix is somewhat different from the one in Example 1, but a similar

pattern of 3×3 submatrices around the diagonal can be observed, together with
patterns on the lines.

6 F. Richoux et al.

4 Method Design

The main contribution of this paper is to propose a method to automatically
learn from data a pattern composition representing a Q matrix, such that Q
corresponds to a target constraint c. This method is directly inspired from the
method proposed in [20], to learn error functions from data in an interpretable
and scalable fashion. We call such a pattern composition a Q matrix repre-
sentation. The data is the training set obtained from an instance of c, i.e., the
constraint c over a fixed number of variables taking their values over domains of
a fixed size.

Let’s consider a constraint c and an instance ι of c. A candidate of ι is an
assignment of all variables composing ι. A candidate is said to be positive if
it satisfies c, and negative otherwise. We denote by S the set of all possible
tuples (x, y), where x is a candidate of the constraint instance ι, and y ∈ {0, 1}
describes if x is a positive or a negative candidate, such that

y =

{
1 if x is a positive candidate
0 if x is a negative candidate.

Giving some positive and negative candidates of instance ι of a constraint c,
our goal is to learn a pattern composition representing a Q matrix corresponding
to c, i.e., Q must verify the following property:

∀(x, y) ∈ S, xTQx is minimal iff y = 1 (1)

Variables of discrete constraints take their value from a domain composed
of integers. However, qubo problems are considering binary variables only. As
written in the introduction, there are several ways to convert constraint variables
into qubo variables: unary expansion, binary expansion, etc. In this work, we
will only consider one-hot encoding: a constraint variable xi over a k-ary domain
will be encoded by a k-dimensional binary vector, such that the j-th element xij

of this vector is set to true if and only if xi = j holds.
To represent a discrete constraint, Q can be composed of integers only. If we

aim to represent a constraint over n variables xi taking their value in a k-ary do-
main, then, due to the one-hot encoding of the variables, Q is an upper triangular
matrix of size nk × nk. Our method is based on learning a correct combination
of submatrix patterns. The one-hot constraint is systematically added into this
pattern combination.

Q being an upper triangular matrix, we consider two kinds of submatrices:
k × k triangle submatrices containing the diagonal of Q and representing the
properties of a variable xi, and k×k square submatrices representing properties
between two variables xi and xj , with i ̸= j.

Our method considers 14 square and 3 triangle submatrix patterns, depicted
in Figure 2. Square submatrix patterns can be composed by summing their el-
ements, however, we consider some square submatrix patterns to be mutually
exclusive. Indeed, it would make not sense for instance to enforce both the prop-
erties xi = xj and xi ̸= xj at the same time. Square patterns 12, 13, 14, and

Learning qubo Models for QA: A Constraint-based Approach 7

triangle pattern 3 take some parameters. It is important to keep in mind that
submatrices and their patterns are on binary variables.

We can divide square submatrix patterns into 3 categories:

• Comparison patterns from Square 1 to 6, representing some comparison
properties between xi and xj . For instance, xi ̸= xj (Fig. 2a).

• Position patterns from Square 7 to 11, encoding properties such that the
values of the i-th and j-th variables xi and xj depend on their respective
position i and j. For instance, favoring xi = i and xj = j (Fig. 2g).

• Complex patterns for Square 12, 13 and 14. For instance, the repel property
described in the next paragraph (Fig. 2l).

Due to the page limitation, we chose not to explain all patterns. Instead,
we focus here on the less trivial ones. For Square pattern 14 (Fig. 2n) and
triangle pattern 3 (Fig. 2q), bxi

represents the coefficient of the variable xi in a
linear combination

∑
bxi

xi = a. Square patterns 12 (Fig. 2l) and 13 (Fig. 2m),
respectively called repel and attract, take a parameter p. These patterns look
like a diagonal magnetic field with an intense value p in its center (repel) or
on its borders (attract), which decays towards the borders (repel) or the center
(attract). This is illustrated in Figure 2 with p = 3. The intuitive idea behind
these patterns is that variables xi and xj are repelling or attracting each others,
until their values are separated by at least a distance p, such that |xi − xj | > p
holds (repel), or until they are closed enough, below a k−p threshold, such that
|xi − xj | < k − p holds (attract).

Consider the function m determining if a candidate x is such that xTQx is
minimal or not:

m(x,Q) =

{
1 if xTQx is minimal,
0 otherwise.

Learning a correct combination of submatrix patterns from a training set
X ⊆ S is a machine learning problem, but it can also be tackled as a combina-
torial problem. We modeled this as a Constrained Optimization Problem (cop)
described in Table 1.

We have 14 binary variables to describe which square patterns are combined
to give a global pattern for square submatrices, and one variable over a ternary
domain indicating which pattern is selected for triangle submatrices. Thus, all
square submatrices together will share the same pattern, as well as all triangle
submatrices. Although our method still works if we decide to combine different
patterns for each submatrix individually, this way of doing has the advantage
of learning the Q matrix representation quicker. Moreover, it is motivated by
the fact that natural constraints in Constraint Programming usually apply the
same property over all variables in their scope (for instance, all variables must
be assigned to a different value). If it is not the case, then the target constraint
can certainly be decomposed into a series of smaller constraints. For instance,
let’s assume we work with the constraint c(x1, x2, x3) := "x1 + x2 + x3 = 5
such that x1 < x2 holds". Here, x1 and x2 have a property x1 < x2 that is
not shared by x3. But the constraint c can be decomposed into two constraints

8 F. Richoux et al.

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

(a) Square 1

xi ̸= xj

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

(b) Square 2

xi = xj

0 0 0 0 0
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0

(c) Square 3

xi ≤ xj

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

(d) Square 4

xi < xj

0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0

(e) Square 5

xi ≥ xj

1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

(f) Square 6

xi > xj

0 0 0 −1 0

−1 −1 −1 −1 −1
0 0 0 −1 0
0 0 0 −1 0
0 0 0 −1 0

(g) Square 7
Favor xi = i

0 0 0 1 0
1 1 1 1 1
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0

(h) Square 8
Avoid xi = i

−1 0 −1 0 −1
0 0 0 0 0

−1 0 −1 0 −1
0 0 0 0 0

−1 0 −1 0 −1

(i) Square 9

Favor
xi, xj ̸= {i, j}

1 0 1 0 1
0 0 0 0 0
1 0 1 0 1
0 0 0 0 0
1 0 1 0 1

(j) Square 10

Avoid
xi, xj ̸= {i, j}

0 0 0 1 0
1 1 1 −1 1
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0

(k) Square 11
Swap xi, xj

3 2 1 0 0
2 3 2 1 0
1 2 3 2 1
0 1 2 3 2
0 0 1 2 3

(l) Square 12

Repel

0 0 1 2 3
0 0 0 1 2
1 0 0 0 1
2 1 0 0 0
3 2 1 0 0

(m) Square 13

Attract

 2bxibxj 2bxibxj+1 2bxibxj+2

2bxi+1bxj 2bxi+1bxj+1 2bxi+1bxj+2

2bxi+2bxj 2bxi+2bxj+1 2bxi+2bxj+2

(n) Square 14

Linear combination

0 0 0 0 0
0 0 0 0
0 0 0
0 0
0

(o) Triangle 1

Neutral

−1 0 0 0 0

−1 0 0 0
−1 0 0

−1 0
−1

(p) Triangle 2

Favor xi

−(2a−bxi)bxi 2bxibxi+1 2bxibxi+2

−(2a−bxi+1)bxi+1 2bxi+1bxi+2

−(2a−bxi+2)bxi+2

(q) Triangle 3

Linear combination

Fig. 2: Submatrix patterns used in our method, with their property. Simple ex-
amples are displayed with k = 5; complex examples (n) and (q) with k = 3.

c1(x1, x2, x3) := x1 + x2 + x3 = 5 and c2(x1, x2) := x1 < x2, where all variables
in their scope share the same properties.

Like expressed above, we forbid some square pattern combinations: We can-
not have more than one square pattern from Square 1 to Square 6 in the combi-
nation, and couples of patterns Square 7 – Square 8, Square 9 – Square 10, and
Square 12 – Square 13 are mutually exclusive. The 4 first constraints in Table 1
are here to forbid such combinations.

Learning qubo Models for QA: A Constraint-based Approach 9

Table 1: cop model to learn Q from data X ⊆ S

Variables
vf1 , . . . , vf14 , vh
One variable vfi for each possible square pattern i,
a unique variable vh for the triangle pattern.

Domains Dfi = {0, 1}, with 1 ≤ i ≤ 14
Dh = {1, 2, 3}

Constraints
∑6

i=1 vfi ≤ 1
vf7 + vf8 ≤ 1
vf9 + vf10 ≤ 1
vf12 + vf13 ≤ 1∑

(x,y)∈X |m(x,Q)− y| = 0

Objective function min
∑14

i=1 vfi , minimizing the number of
(square) submatrix patterns in the composition.

The fifth constraint in our cop model makes sure the learned Q matrix
representation can correctly handle all positive and negative candidates from
the training set X.

One strength of this model is its independence regarding the size of the target
constraint instance: whatever the size of the data, i.e., the number of variables
in candidates or the size of the domains, our model will still be composed of 15
variables to express any pattern combinations describing any constraints. This
makes our model scalable, allowing the learning of a Q matrix representation
over a small instance of a constraint c that is valid for all instance sizes of the
same constraint, as shown in Experiment 1.

5 Experiments

To show the versatility of our method, we tested it on five different constraints:
AllDifferent, Ordered, LinearSum, NoOverlap1D, and Channel. Following the
XCSP3-core specifications† [3], those global constraints belong to four major
constraint families: Comparison (AllDifferent and Ordered), Counting/Summing
(LinearSum), Packing/Scheduling (NoOverlap1D) and Connection (Channel).
These constraints are also among the 25 most popular and common constraints [3].
We give a brief description of those five constraints below:

• AllDifferent ensures that variables must all be assigned to different values.
• Ordered ensures that an assignment of n variables (x1 , . . . , xn) must

be ordered, given a total order. In this paper, we choose the total order ≤.
Thus, for all indices i, j ∈ {1, n}, i < j implies xi ≤ xj .

• LinearSum ensures that the equation x1 + x2 + . . . + xn = p holds, with
the parameter p a given integer.

†see also http://xcsp.org/specifications

10 F. Richoux et al.

• NoOverlap1D considers variables as tasks, starting from a certain time
(their value) and each with a given length p (their parameter). The constraint
ensures that no tasks are overlapping, i.e., for all indices i, j ∈ {1, n} with
n the number of variables, we have xi + pi ≤ xj or xj + pj ≤ xi. To have a
simpler code, we have considered in our system that all tasks have the same
length p.

• Channel ensures that the i-th variable xi assigned to j with j ̸= i implies
that xj is assigned to i. In other words, Channel accepts all permutations of
the vector (1, . . . , n) such that each variable has been swapped with another
variable at most once.

5.1 Experimental protocols

We set up two different experimental protocols to show the scalability, the ro-
bustness, and more globally, the efficiency of our method.

Like presented in Section 4, learning pattern compositions of Q matrices from
data is handled as a combinatorial optimization problem. To model and solve this
problem, we use the framework ghost [21] which runs a stochastic local search
solver to solve problems. Due to this stochastic solving, all learning and testing
have been done 100 times, but over the same pre-computed training sets, to not
let the randomness of sampled sets impact the results in some way. Training and
test sets that are too large to be complete have been pre-computed using Latin
hypercube sampling to have a good diversity among drawn candidates. These
sets have been generated such that they contain an equal number of positive
and negative candidates. ghost’s solver requires a timeout, such that it tries to
improve the best solution found until it reaches the given timeout. We set it to
1 second. We did not fine-tune the solver parameters, running our experiments
with their default values. In addition to our two experiments, we did 100 runs
for each training set of Experiment 1 and 2 disabling the objective function, to
see how fast our method can find a correct Q matrix representation. Indeed,
without an objective function, ghost’s solver does not take into account the
timeout and halts as soon as it finds a solution satisfying all constraints in the
cop model.

We have hold-out test sets of assignments from larger dimensions to evaluate
the quality of our learned Q matrix representations. We did not re-run batches
of experiments to keep the ones with the best results, as it should always be the
case with such experimental protocols.

All experiments have been done on a computer with a Core i9 9900 CPU and
32 GB of RAM, running on Ubuntu 22.04.2. Programs have been compiled with
GCC with the 03 optimization option. Our entire system, its C++ source code,
and experimental setups are accessible on Zenodo§ and GitHub.

Experiment 1: scalability One of the key-points of our method is that we can
learn the pattern composition of a Q matrix from data about a small instance

§https://doi.org/10.5281/zenodo.7800168

Learning qubo Models for QA: A Constraint-based Approach 11

of a constraint c, i.e., over few variables and small domains, which gives us the
blueprint to build Q matrices handling large instances of c.

In this experiment, we learn Q matrix representations upon complete train-
ing sets composed of all possible tuples (x, y), with x a candidate of the target
constraint instance and y the binary value indicating if x is a solution of the con-
straint or not, as explained at the beginning of Section 4. These small, complete
training sets are built considering constraint instances with 4 variables over do-
mains of size 4, giving complete training sets with 256 candidates, except for the
constraint NoOverlap1D for which such an instance size does not make sense.
The training set for NoOverlap1D takes into account 3 variables over domains
of size 7 (and with a parameter p = 2 for the length of each task), leading to
a training set with 73 = 343 candidates. The parameter p of the LinearSum
constraint instance was fixed to 10, giving the constraint

∑4
i=1 xi = 10, with

xi ∈ {1, . . . , 4}, 1 ≤ i ≤ 4.
To test both the scalability of our method, we test the learned matrix rep-

resentations over significantly larger constraint instances, with 30 variables over
domains of size 30. Indeed, a learned composition can be represented by a vec-
tor of 15 elements, one for each variable of our cop model, independently of
the size of the Q matrix and the constraint instance it represents. Those test
sets containing too many candidates (3030 ≃ 2× 1044) to be fully tested or even
fully generated, we build them in order to get exactly 10,000 build positive and
10,000 drawn negative candidates, giving 20,000 unique candidates. Once again,
we need to make an exception for NoOverlap1D due to the nature of this con-
straint. Its test set is then composed of 10,000 built positive and 10,000 drawn
negative candidates of a constraint instance with 20 variables and domains of
160 elements (with p = 6), giving a space of 16020 ≃ 1.2 × 1044 candidates. Q
matrices built for these test sets are then of size 900× 900, except for NoOver-
lap1D which has a Q matrix of size 3200 × 3200, going to the limit of what
current Quantum Annealing machines can handle nowadays. All test sets are
pre-generated, i.e., sampled once and kept for all experiments.

Experiment 2: robustness In Experiment 1, we learn pattern compositions
of Q matrices to represent constraint instances over complete training sets, i.e.,
composed of all possible candidates. However, providing such complete sets to
learn Q matrix representations may not always be convenient. To test the ro-
bustness of our method, we learn Q matrix representations over training sets of
constraint instances that are too large to be completely generated in a reasonable
time: 12 variables over domains of 12 elements (1212 ≃ 9 × 1012). Instead, we
sample 5 positive and 5 negative candidates only in such spaces, then we test the
learned Q matrix representations on the same test sets than for Experiment 1.
For NoOverlap1D, we sample 5 positive and 5 negative candidates of an instance
with 8 variables over domains of 35 elements (and p = 3), leading to a space
composed of 358 ≃ 2.2× 1012 candidates.

In addition, we also tested how restricted training sets can be until we observe
significant efficiency drops. For this, we repeated this experimental protocol with

12 F. Richoux et al.

Table 2: Success rates over 100 runs on test sets. Timeout is fixed at 1s for each
run.

Experiment AllDifferent Ordered LinearSum NoOverlap1D Channel

1 100 100 100 100 100
2 100 100 100 97 100

training sets composed of 2, 4, 6, 8, 10 and 12 candidates, each time with half
positive and half negative candidates. Like test sets, these training sets are pre-
generated.

5.2 Experimental results

Table 2 shows the number of times, over 100 runs and for each target constraint, a
Q matrix representation has been learned and corresponds to a correct Q matrix,
i.e., satisfying the property of Equation 1 over tuples (x, y) of the constraint test
set. This first line corresponds to the results of Experiment 1, demonstrating that
our method perfectly scales, learning Q matrix representation over small training
sets of about 300 candidates and successfully tested over 20,000 randomly drawn
candidates from a huge candidate space of about 2×1044 candidates. The second
line is the results of Experiment 2. It shows that our method is able to learn
correct Q matrix representations from very sparse data: here, we learn Q matrix
representation from 5 positive and 5 negative candidates, randomly drawn from
candidate spaces of about 9 × 1012 candidates. All learned Q matrices shown
themselves to be correct on test sets, except 3 times for NoOverlap1D. Indeed,
for these 3 times, the solver has been trapped into some local optimum, finding
a correct pattern composition for the training set but containing unnecessary
patterns, that lead to incorrectly handled candidates in the NoOverlap1D test
set. More specifically, almost all positive candidates from the NoOverlap1D test
set were incorrectly handled and considered as negative candidates. Having false
negatives is indeed more frequent than false positive because a positive candidate
xp with any values of xT

p Qxp above the expected minimal value will be considered
to be a negative candidate, but mistaking a negative candidate xn as a positive
one requires having xT

nQxn to be equals to the expected minimal value. Having
a value xT

nQxn below the expected minimal value in the test set is unlikely
because it would imply that all positive candidates would be considered as false
negatives.

These three incorrectly learned Q matrix representations for NoOverlap1D
is not a serious problem in practice: users can get around this problem either by
considering more candidates in the training set, or setting a timeout longer than
1 second to let the solver more time to find an optimal solution, or finally in the
worst case, running again the learning. Since learning a Q matrix representation
only takes one second in our current setup, users can easily afford re-learning a
Q matrix representation if the first learning outputs an incorrect one.

Learning qubo Models for QA: A Constraint-based Approach 13

Table 3: Success rate over 100 runs on test sets, regarding the size of the incom-
plete training sets. Timeout is fixed at 1s for each run.

Nb candidates AllDifferent Ordered LinearSum NoOverlap1D Channel

12 100 100 100 92 100
10 100 100 100 96 100
8 37 100 100 97 100
6 33 100 100 92 10
4 27 100 100 39 10
2 0 0 19 8 0

−1 2 2 2 0 −1 −1 −1 0 −1 −1 −1 0 −1 −1 −1
0 −1 2 2 −1 0 1 1 1 −1 −1 −1 1 −1 −1 −1
0 0 −1 2 1 −1 −1 −1 −1 1 0 1 1 −1 −1 −1
0 0 0 −1 1 −1 −1 −1 1 −1 −1 −1 −1 1 1 0
0 0 0 0 −1 2 2 2 −1 1 −1 −1 −1 1 −1 −1
0 0 0 0 0 −1 2 2 −1 0 −1 −1 −1 0 −1 −1
0 0 0 0 0 0 −1 2 1 −1 0 1 −1 1 −1 −1
0 0 0 0 0 0 0 −1 −1 1 −1 −1 1 −1 1 0
0 0 0 0 0 0 0 0 −1 2 2 2 −1 −1 1 −1
0 0 0 0 0 0 0 0 0 −1 2 2 −1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 −1 2 −1 −1 0 −1
0 0 0 0 0 0 0 0 0 0 0 −1 1 1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1

Learned Q matrix for the Channel constraint

−1 0 0 0

−1 0 0
−1 0

−1

Triangle 2
Favor xi

0 0 −1 0

−1 −1 −1 −1
0 0 −1 0
0 0 −1 0

Square 7

Favor xi = i

−1 0 −1 0
0 0 0 0

−1 0 −1 0
0 0 0 0

Square 9

Favor
xi, xj ̸= {i, j}

0 0 1 0
1 1 −1 1
0 0 1 0
0 0 1 0

Square 11

Swap xi, xj

Fig. 3: Q matrix for Channel and patterns in the learned composition.

In Experiment 2, we learned Q matrix representation from training sets com-
posed of 5 positive and 5 negative candidates. We tested how many candidates
were needed to correctly learn pattern compositions for our different constraints.
Table 3 sums up these trials, showing the success rate over 100 runs of repre-
sentation learning with training sets of size n, with n

2 positive and n
2 negative

candidates. Unsurprisingly, we can see no correct representations can be learned
with one positive and one negative candidate only. However, four balanced candi-
dates is sufficient to perfectly learn the Q matrix representation of the constraints
Ordered and LinearSum.

Figure 3 illustrates a Q matrix obtained with our method, for the Channel
constraint with 4 variables over domains of size 4, and the patterns that are
taking part of the learned combination. The one-hot constraint is not depicted
as a pattern in this figure, but it is always implicitly added in the combination.

14 F. Richoux et al.

6 Conclusion

In this paper, we presented a method to learn a pattern composition representing
the penalty part of a qubo matrix, which can be difficult to do manually for
complex constraints. We showed that this can be done with a limited set of
examples and, via two experimental protocols, that our method has excellent
scalability and robustness properties.

The current limitations of our method is the incapacity to handle ancillary
variables. Indeed, some constraints require additional binary variables that do
not directly represent integer variables from the target constraint, but are nec-
essary to model some interactions between integer variables. Adding automati-
cally the right number of ancillary variables to handle constraints like Element
or NValues would be a natural extension of our work.

A second limitation is the lack of input size-dependent patterns, such as the
size of domains, for instance. Such patterns would be greatly helpful to model
some constraints like Minimum, seeing their satisfaction depending on some fixed
values, without having a combinatorial explosion of the number of patterns that
could severely hurt the learning efficiency. However, defining such generic and
input size-dependent patterns might be challenging.

References

1. Aramon, M., Rosenberg, G., Valiante, E., Miyazawa, T., Tamura, H., Katzgraber,
H.G.: Physics-inspired optimization for quadratic unconstrained problems using a
digital annealer. Frontiers in Physics 7, 48 (2019)

2. Boros, E., Hammer, P.L., Tavares, G.: Local search heuristics for quadratic uncon-
strained binary optimization (QUBO). J. Heuristics 13(2), 99–132 (2007)

3. Boussemart, F., Lecoutre, C., Audemard, G., Piette, C.: XCSP3-core: A
format for representing constraint satisfaction/optimization problems. arXiv
abs/2009.00514 (2020)

4. Bunyk, P.I., Hoskinson, E.M., Johnson, M.W., Tolkacheva, E., Altomare, F.,
Berkley, A.J., Harris, R., Hilton, J.P., Lanting, T., Przybysz, A.J., Whittaker,
J.: Architectural considerations in the design of a superconducting quantum an-
nealing processor. IEEE Transactions on Applied Superconductivity 24(4), 1–10
(2014)

5. Chancellor, N.: Domain wall encoding of discrete variables for quantum annealing
and QAOA. Quantum Science and Technology 4, 045004 (2019)

6. Codognet, P.: Constraint solving by quantum annealing. In: Silla, F., Marques, O.
(eds.) ICPP Workshops 2021: 50th International Conference on Parallel Processing,
USA, August 9-12, 2021. pp. 25:1–25:10. ACM (2021)

7. Codognet, P.: Domain-wall / unary encoding in QUBO for permutation problems.
In: 2022 IEEE International Conference on Quantum Computing and Engineering
(QCE). pp. 167–173 (2022)

8. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A
quantum adiabatic evolution algorithm applied to random instances of an np-
complete problem. Science 292(5516), 472–475 (2001)

Learning qubo Models for QA: A Constraint-based Approach 15

9. Gent, I.P., Miguel, I., Nightingale, P.: Generalised arc consistency for the alldif-
ferent constraint: An empirical survey. Artificial Intelligence 172(18), 1973–2000
(2008)

10. Glover, F.W., Kochenberger, G.A., Du, Y.: Quantum bridge analytics I: a tutorial
on formulating and using QUBO models. 4OR 17(4), 335–371 (2019)

11. Goto, H., Tatsumura, K., Dixon, A.R.: Combinatorial optimization by simulating
adiabatic bifurcations in nonlinear hamiltonian systems. Science Advances 5(4)
(2019)

12. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model.
Phys. Rev. E 58, 5355–5363 (Nov 1998)

13. Kochenberger, G.A., Hao, J., Glover, F.W., Lewis, M.W., Lu, Z., Wang, H., Wang,
Y.: The unconstrained binary quadratic programming problem: a survey. J. Comb.
Optim. 28(1), 58–81 (2014)

14. Kumar, M., Kolb, S., De Raedt, L., Teso, S.: Learning mixed-integer linear pro-
grams from contextual examples. arXiv e-prints abs/2107.07136, 1–11 (2021)

15. Matsuda, Y.: Research and development of common software platform for ising
machines. In: 2020 IEICE General Conference (2020)

16. McGeoch, C.C., Harris, R., Reinhardt, S.P., Bunyk, P.I.: Practical annealing-based
quantum computing. Computer 52(6), 38–46 (2019)

17. Mohseni, N., McMahon, P.L., Byrnes, T.: Ising machines as hardware solvers of
combinatorial optimization problems. Nature Rev. Phys. 4(6), 363–379 (2022)

18. Paulus, A., Rolínek, M., Musil, V., Amos, B., Martius, G.: Comboptnet: Fit the
right np-hard problem by learning integer programming constraints. In: Proceed-
ings of the 38th International Conference on Machine Learning (ICML 2021). pp.
8443–8453. PMLR, Online (2021)

19. Rajak, A., Suzuki, S., Dutta, A., Chakrabarti, B.K.: Quantum annealing: an
overview. Philosophical Transactions of the Royal Society A: Mathematical, Phys-
ical and Engineering Sciences 381(2241) (dec 2022)

20. Richoux, F., Baffier, J.F.: Automatic error function learning with interpretable
compositional networks. Springer Annals of Mathematics and Artificial Intelligence
pp. 1–35 (2023)

21. Richoux, F., Uriarte, A., Baffier, J.F.: GHOST: A combinatorial optimization
framework for real-time problems. IEEE Transactions on Computational Intelli-
gence and AI in Games 8(4), 377–388 (2016)

22. Tanahashi, K., Takayanagi, S., Motohashi, T., Tanaka, S.: Application of ising
machines and a software development for ising machines. Journal of the Physical
Society of Japan 88(6), 061010 (2019)

23. Tanaka, S., Tamura, R., Chakrabarti, B.K.: Quantum Spin Glasses, Annealing and
Computation. Cambridge University Press, USA, 1st edn. (2017)

24. Yamaoka, M., Okuyama, T., Hayashi, M., Yoshimura, C., Takemoto, T.: CMOS
annealing machine: an in-memory computing accelerator to process combinatorial
optimization problems. In: IEEE Custom Integrated Circuits Conference, Austin,
TX, USA, 2019. pp. 1–8. IEEE (2019)

25. Yarkoni, S., Raponi, E., Bäck, T., Schmitt, S.: Quantum annealing for industry ap-
plications: introduction and review. Reports on Progress in Physics 85(10), 104001
(sep 2022)

