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We theoretically study the coherent nonlinear response of electrons confined in semiconductor
quantum wells under the effect of an electromagnetic radiation close to resonance with an inter-
subband transition. Our approach is based on the time-dependent Schrödinger-Poisson equation
stemming from a Hartree description of Coulomb-interacting electrons. This equation is solved
by standard numerical tools and the results are interpreted in terms of approximated analytical
formulas. For growing intensity, we observe a red-shift of the effective resonance frequency due
to the reduction of the electric dipole moment and the corresponding suppression of the depolar-
ization shift. The competition between coherent nonlinearities and incoherent saturation effects is
discussed. The strength of the resulting optical nonlinearity is estimated across different frequency
ranges from Mid-IR to THz with an eye to on-going experiments on Bose-Einstein condensation of
intersubband polaritons and to the speculative exploration of quantum optical phenomena such as
single-photon emission in the Mid-IR and THz windows.

I. INTRODUCTION

Intersubband (ISB) transitions in semiconductor quan-
tum wells (QW) play a crucial role in a number of opto-
electronic devices across a wide range of wavelengths,
from the visible down to the IR and the THz ranges1. A
most celebrated example is the quantum cascade laser,
which is one of the most widespread semiconductor-
based sources of coherent radiation for the Mid-IR and
THz ranges of the electromagnetic spectrum2. Nonlin-
ear optical effects in these wavelength regions are also
attracting a great interest, in particular for what con-
cerns the realization of passively mode-locked pulsed
laser sources3,4, optical combs5,6 as well as switching,
modulation and harmonic generation when combined
with meta-surfaces7–9.

Many among these developments are based on incoher-
ent optical nonlinearities which result from a saturation
mechanism due to the shelving of electrons into optically
dark states and the consequent reduction of the effective
oscillator strength of the transition10–13. Since they stem
from an incoherent dynamics and have a relatively slow
time-scale determined by the decay rate of the dark exci-
tations, these nonlinearities can hardly result into coher-
ent processes. On the other hand, coherent nonlineari-
ties associated to ultrafast processes like Rabi oscillations
of a two-level transition has been widely studied under
strong pulsed illuminations14–16. The goal of this work
is to contribute building a general theoretical picture of
the nonlinear response of ISB transitions encompassing
the two regimes.

The simplest theoretical description of the nonlinear
optical response of electrons in quantum wells is based
on master equations that only include a few discrete elec-
tronic states9,16,17. While this is accurate in the low
electronic density limit, at higher densities Coulomb in-

teractions start playing a significant role deforming and
mixing the single-electron states. At the level of linear
response to weak beams, they are responsible for the de-
polarization shift of the ISB transition18–21. For growing
light intensities, many intriguing phenomena have been
anticipated17, in particular the saturation of the optical
transition was predicted to give to a corresponding re-
duction of the depolarization shift and, thus, a sizable
frequency shift of the transition22. Effects of this kind
have been experimentally investigated under quasi-cw il-
luminations12 and theoretically analyzed for the case of
pulsed illuminations23.

While existing approaches are sufficient to obtain ac-
curate predictions for the effective nonlinear optical re-
sponse in many specific configurations, the objective of
this work is to develop a theory that is able to quan-
titatively capture the coherent dynamics of electrons
in generic configurations and include the subtle inter-
play between nonlinear effects and Coulomb interac-
tions. Taking inspiration from earlier works22,23, we
make use of a mean-field description of the electron dy-
namics based on a Hartree approximation of Coulomb
interactions. This approach yields a time-dependent
Schrödinger-Poisson equation for the quantum electronic
wavefunction in a potential that self-consistently includes
the Coulomb interaction as a non-local nonlinear inter-
action term. Here, as a key advance, we numerically
solve the time-dependent Schrödinger-Poisson equation
to obtain predictions for the nonlinear optical response
of the electronic system for arbitrary levels of excitation
strength and electronic density.

The structure of the paper is the following. In Sec. II
we introduce the physical system under investigation
and we present our theoretical framework based on the
Schrödinger-Poisson equation. This formalism is first ap-
plied in Sec. III to the calculation of the linear opti-
cal response under weak illumination, recovering, among
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other, the depolarization shift of the ISB transition due
to Coulomb interactions at high electronic densities.

In Sec.IV we move on to study the nonlinear optical
response to stronger excitations. In particular we point
out a marked intensity-dependence of the ISB resonance
and of the effective dipole moment. The numerical re-
sults are interpreted in terms of a nonlinear quenching
of the oscillator strength and the consequent suppres-
sion of the depolarization shift. Analytical scaling laws
connecting the nonlinear response in different wavelength
regions from the Mid-IR to the THz are then extracted
from the numerics. A critical discussion of the relation
between the coherent nonlinearities and competing inco-
herent nonlinearities due to the shelving of electrons in
dark states is finally provided.

In Sec. V, we investigate the consequences of these
nonlinearities for a stack of doped QWs embedded in an
optical cavity and operating in the strong light-matter
coupling regime. Besides the direct red-shift due to the
suppressed depolarization shift, in the microcavity case
a sizable shift of the polariton branches also occurs from
the reduction of the oscillator strength at high intensi-
ties. While these two effects are in competition on the
lower polariton branch, they add up constructively to
reinforce the upper polariton nonlinearity. These pre-
dictions are of great importance in the context of inter-
subband polariton physics with potential application to
ISB polariton condensation and lasing24,25. As a final,
more speculative topic, in Sec. VI we discuss the promise
of ISB nonlinearities in view of translating to the Mid-
and Far-IR domains those polariton blockade effects that
were originally predicted for interband exciton-polaritons
in the near-infrared and visible range26–28, so to explore
quantum nonlinear optics phenomena in a novel spectral
window. Conclusions and perspectives are finally drawn
in Sec. VII.

II. THE MODEL AND THE STATIC
PROPERTIES

We consider electrons in quantum well systems that
are translationally invariant along the xy plane perpen-
dicular to the growth axis z. All electrons are assumed to
be initially located in the lowest subband of the QW and
share the same wavefunction ψ(z) along the growth axis
z. The total antisymmetry condition of the (fermionic)
electronic wavefunction is ensured by the electronic mo-
tion along the xy plane, all electronic states of the lowest
subband being filled up to a given Fermi energy. Future
work will deal with the extension of our formalism to the
multi-subband case20,21,29 where the electron density is
so large that the Fermi energy exceeds the ISB transi-
tion energy and the coupled evolution of several wave-
functions corresponding to the different subbands has to
be simultaneously determined.

At the level of the Hartree description of Coulomb in-
teractions, we neglect quantum correlations among elec-

trons and we assume that each electron is subject to
the electrostatic potential generated by the average elec-
tron density. This picture can be formalized in a time-
dependent non-local nonlinear Schrödinger-Poisson (SP)
equation,

iℏ
∂ψ(z, t)

∂t
= − ℏ2

2m∗
∂2ψ

∂z2
+ VQW (z)ψ(z)

+
2π e2

ϵ

∫
dz′ |z − z′|

[
σimp(z

′)− σel|ψ(z′)|2
]
ψ(z)

− e E(t) z ψ(z) (1)

for the single-particle electron wavefunction ψ(z), nor-
malized to

∫
dz |ψ(z)|2 = 1.

VQW (z) is the effective confining potential of the QW
and, for simplicity, we have assumed a parabolic elec-
tronic band with a z-independent effective mass m∗ at
all points. Generalization to non-parabolic and/or space-
dependent mass case can be carried out with straightfor-
ward modifications. e is the electron charge and ϵ is the
background dielectric constant. Furthermore, σimp(z) is
the z-dependent three-dimensional density of the dopant
impurities and the three-dimensional electronic density
is given by σel |ψ(z)|2 in terms of the overall surface
electron density σel. The global neutrality is ensured
by
∫
dz σimp(z) = σel. The non-locality of the nonlin-

ear interaction term stems from the long-range nature of
the Coulomb potential between electrons which, in the
present planar geometry, is proportional to the distance
|z − z′|. In the limit of a vanishing electronic density,
the nonlinear interaction term vanishes and the evolu-
tion of the single-particle wavefunction ψ reduces to a
linear Schrödinger equation. Finally, the last term ac-
counts for the time-dependent electric field E(t) of the
electromagnetic wave that excites the electrons.
The first step of our calculation consists of determin-

ing the static distribution of charges in the ground state
of the system. Because of the Coulomb interaction, the
ground state wavefunction is in fact distorted from the
lowest eigenstate of the QW potential VQW (z) and can
be obtained as the self-consistent minimum energy eigen-
state ψg(z) of the nonlinear SP equation,

Eg ψg(z) = − ℏ2

2m∗
∂2ψg

∂z2
+ VQW (z)ψg(z)+

+
2π e2

ϵ

∫
dz′ |z − z′|

[
σimp(z

′)− σel|ψg(z
′)|2
]
ψg(z) .

(2)

In order to numerically solve this eigenvalue equation for
ψg(z) and the single-particle energy Eg in specific con-
figurations, an imaginary-time evolution technique has
been adopted. This is a standard numerical technique
used to determine the ground state of interacting many-
body systems at the level of mean-field approximation,
for instance dilute Bose-Einstein condensates of ultracold
atoms30. A brief account of the principles of this numer-
ical method can be found in Appendix A.
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FIG. 1: (a) Example of imaginary-time SP evolution of the
energy starting from a simply guessed wavefunction (a Gaus-
sian centered on the well) and converging towards the ground
state. The insets show the spatial profile of the total poten-
tial including the QW and the Coulomb interaction potentials
(black lines) and the squared modulus of the electronic wave-
function (blue lines) at different imaginary times. The top
inset refers to an early imaginary time indicated by the arrow,
well before the convergence of the algorithm. The bottom in-
set refers instead to a late imaginary time after convergence.
Within each panel, the solid/dashed lines refer to different
values of the electron density, respectively negligible (solid)
and substantial (dashed). (b): Results of the calculation for
two different locations of the impurities, as indicated by the
red arrows. The black solid line shows the total potential ex-
perienced by the electrons. The blue lines show the squared
modulus of several single-particle eigenstates for an electron
density of 3 · 1012 cm−2. Each wavefunction is shifted up-
wards by an amount corresponding to its eigenenergy. In all
calculations within this work, we take values ϵ = 12.9 for the
background dielectric constant and m∗ = 0.067mel for the
effective mass of electrons.

Examples of such calculations are illustrated in Fig. 1.
The convergence of the energy to the ground state energy
is illustrated in Fig. 1(a) for two different values of the
electron density (solid and dashed lines). Snapshots of
the electronic wavefunction approaching the ground state
are shown as blue lines in the insets of this panel. Here,
the black lines display the total potential Vtot(z) felt by
electrons, equal to the sum of the QW potential VQW (z)
and the Coulomb interaction potential.

Plots of the final wavefunction are shown in Fig.1(b)
for the same QW thickness and total electron density
σel = 3 · 1012 cm−2 but different spatial distributions of
the dopant impurities, either symmetrically located out-
side the well (modulation doping, left panel) or inside in
the well (right panel), indicated by the red arrows. As

before, the solid black lines display the total potential
Vtot(z) felt by electrons, while the blue lines show the
squared modulus |ψi(z)|2 of the different eigenstates in
the total potential, corresponding to the different sub-
bands. The baseline of each wavefunction is vertically
shifted by the energy of each electronic eigenstate. For
the sake of simplicity, throughout all this work, we will
always assume that the electron population is initially
concentrated in the lowest subband.

III. LINEAR DYNAMICS

FIG. 2: (a): Example of the time-dependence of the elec-
tric field amplitude of the incident pulse (red) and of the
induced electronic polarization (green). The insets show the
total potential Vtot(z) (black) and the squared modulus of
the electronic wavefunction (blue and orange) at two different
times indicated by the stars in the main graph. (b) Numeri-
cally evaluated ISB transition frequency in the linear regime
of weak excitations, as a function of the electron density (solid
and dashed lines), compared with the prediction E21 of the
static Hartree approximation (squares) discussed in the text
and in the Appendix B. The bare transition frequency Eo

21 is
indicated by the horizontal black dotted line. The dopant im-
purities are located either outside the well (modulation dop-
ing, dashed line and open symbols) or inside the well (solid
line and filled symbols.
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The energy differences between the single-particle en-
ergy levels shown in the Fig.1(b) give a qualitative indi-
cation of the transition energies, but an accurate deter-
mination of the collective mode frequencies requires the
use of the full SP equation (1) since the electronic mo-
tion unavoidably leads to a time-dependent modification
of the Coulomb potential. In the literature on intersub-
band transition, this frequency shift goes under the name
of depolarization shift18–21.

An exact prediction for the collective oscillation fre-
quencies in the linear regime of weak excitations could
be obtained by linearizing the SP equation (1) around
the ground state ψg determined in the previous Section.
This gives the linearized equation of motion

iℏ
∂ δψ(z, t)

∂t
= − ℏ2

2m∗
∂2δψ(z)

∂z2
+ VQW (z) δψ(z)

+
2π e2

ϵ

∫
dz′ |z − z′|

{[
σimp(z

′)− σel|ψg(z
′)|2
]
δψ(z)+

−σel
[
δψ∗(z′)ψg(z

′) + ψ∗
g(z

′) δψ(z′)
]
ψg(z)

}
(3)

for the perturbation δψ(z) defined as ψ(z) =
e−iEgt/ℏ[ψg(z) + δψ(z, t)]. Differently from the Bogoli-
ubov equations for atomic gases with contact interac-
tions31,32, here the linearized equation features a nonlo-
cal Coulomb interaction term.

An analytical solution for the eigenmodes of (3) can be
obtained only in suitable limits as discussed in Appendix
B. In the general case, it typically requires numerical
methods to diagonalize the linear problem? . For this
reason, in this work we adopt an equivalent, yet fully
numeric strategy that has the key advantage of being di-
rectly extended to the nonlinear regime. As it is sketched
in Fig.2(a), the idea is to simulate the real-time evolu-
tion starting from the ground state wavefunction ψg(z)
obtained by the imaginary-time evolution discussed in
the previous Section and look at the small oscillations
induced by a suitably chosen weak electromagnetic pulse
E(t).

The carrier frequency of the pulse is chosen to be in the
vicinity of the transition frequency of interest. The pulse
duration is chosen to be long enough in time not to excite
multiple excitation modes, but also short enough to give a
sufficiently wide bandwidth that easily covers the desired
transition. As a rule of thumb, Gaussian pulses with a
duration in the several 10 fs range are typically a good
choice to efficiently excite ISB transitions in the Mid-IR
without having to fine-tune the carrier frequency. The
overall pulse strength is chosen to be weak enough to be
well in the linear regime and avoid (for the moment) all
nonlinear effects.

We then record the temporal evolution of the system
at later times in response to the perturbation. As a key
observable, we calculate the time-dependence of the av-
erage electronic polarization

z(t) =

∫
dz z |ψ(z, t)|2 . (4)

An example of the temporal profile of the applied electric
field pulse is shown as a red line in Fig.2 together with the
resulting time-dependence of z(t) (blue curve). From this
latter, the transition frequency ωres and the oscillation
amplitude z̄ are straightforwardly obtained by means of
a sinusoidal fit of the form?

z(t) ≃ z̄ cos(ωrest+ φ) . (5)

Note that the fact that in our calculation the oscilla-
tions persist for indefinitely long times is a consequence
of having neglected all the electronic decoherence pro-
cesses33 that would lead to a decay of the dipole moment
at a characteristic rate γISB typically on the order of a
fraction of ps. Inclusion of decoherence processes into
our Schrödinger-Poisson formalism will be the subject of
future work.
The result of a few such calculations for realistic QW

parameters are shown in Fig.2(b), where the oscillation
frequency ωres in response to a very weak perturbation
in the linear regime is plotted as a function of the elec-
tron density for dopant impurities located outside the
well (modulation doping) or inside the well. For small
electron densities, the Coulomb interactions have a neg-
ligible effect and the oscillation frequency recovers the
energy separation Eo

21 of the two lowest eigenstates of the
linear Schrödinger equation in the bare potential VQW (z)
of the well.
The significant blue-shift of the oscillation frequency

that is observed for growing electron densities is a result
of Coulomb interactions. Here, the importance of the
depolarization shift18–21 is easily appreciated comparing
the numerically obtained oscillation frequency (solid and
dashed lines) with the static Hartree prediction given by
the energy difference E21 between the two lowest energy
single-particle orbitals in the total static potential Vtot in-
cluding interactions (square symbols)? . Additional an-
alytical insight on the physical origin of this frequency
difference is presented in Appendix B.

IV. NONLINEAR DYNAMICS

In the previous Section we have introduced our theo-
retical framework and we have given a first confirmation
of its efficiency by numerically recovering the well-known
depolarization shift of the oscillation frequency in the
weak excitation regime. In the present Section we move
on to the study of nonlinear effects. Among the many
nonlinear effects that ISB may feature in different con-
figurations, in this work we focus on the shifts of the
oscillation frequency that appear under stronger excita-
tions and on the related drop of the oscillator strength.
The numerical results will be interpreted in terms of sim-
ple analytical relations and scaling laws that allow to
quickly bridge different regimes and wavelength ranges.
The experimental consequences of our results will be fi-
nally discussed in comparison with competing incoherent
effects.



5

A. Numerical results

Nonlinear effects start being visible for larger values
of the applied electric field amplitude. As done in the
previous Section for the linear regime, the oscillation fre-
quency ωres and the oscillation amplitude z̄ are extracted
from the sinusoidal fit of the time-dependent dipole z(t)
at late times. Once again, provided the excitation pulse
spectrum is narrow enough to only excite the desired ISB
transition, we have verified that the extracted value of
ωres and z̄ do not depend on the details of the excitation
pulse but only on the energy that gets deposited in the
QW as expected on physical grounds.

As a crucial step to unravel the different mechanisms
underlying the nonlinear effects, we need to isolate the in-
trinsic nonlinear dependence of the oscillation frequency
on the excitation level from the nontrivial dynamics of
the excitation process during the electric field pulse. As
it was pointed out in Ref. 23, the amount of energy that
gets effectively delivered to the electrons may in fact be
strongly affected by nonlinear effects that push the tran-
sition frequency on- or off-resonance during the pulse it-
self.

To suppress these effects, we classify our numerically
extracted value of the oscillation frequency as a func-
tion of the additional energy (per electron) ∆E that is
deposited in the electronic motion at the end of the ex-
citation sequence. Once the pulse has gone, energy is
conserved, so ∆E can be estimated by numerically cal-
culating the increase in the SP energy

ESP =

∫
dz

[
ℏ2

2m∗

∣∣∣∣∂ψ∂z
∣∣∣∣2 + VQW (z) |ψ(z)|2

]
+

+
π e2

ϵ

∫
dz dz′ |z− z′|

[
σimp(z

′)− σel|ψ(z′)|2
]
|ψ(z)|2

(6)

between the wavefunction ψ at a generic late-time tlate
and the one at the initial time t = 0, ∆E = ESP (tlate)−
ESP (t = 0). An intuitive understanding of the physical
meaning of the ∆E parameter can be obtained by relat-
ing it to experimentally accessible quantities. For suffi-
ciently weak Coulomb interactions, we can neglect non-
linearities and approximately write ∆E = p2E

o
21, where

p1,2 are the fractional occupations of the ground and ex-
cited subband, p1+ p2 = 1. The point ∆E = Eo

21/2 then
corresponds to the saturation condition p2 = p1 = 1/2.
Whereas these arguments are exact in the low-density
limit, they remain qualitatively valid also in the presence
of sizable nonlinearities as long as Coulomb energy is a
relatively small correction to the bare transition energy
Eo

21. Additional remarks on the relation between ∆E
and the incident intensity in a microcavity geometry will
be given at the beginning of Sec.V

FIG. 3: Oscillation frequency ℏωres as a function of the de-
posited energy per electron ∆E. Different curves refer to
growing values of the electron density, from a very small
σel ∼ 0 cm−2 value (red triangles), to higher ones σel =
1 · 1012 cm−2 (green diamonds), 2 · 1012 cm−2 (yellow pen-
tagons) and 3 · 1012 cm−2 (blue dots). The two (a,b) panels
refer to different location of the dopant impurities outside (a)
and inside (b) the QW. Solid lines are guides to the eyes based
on a linear regression of the numerical data points. Within
each panel, the inset shows (black line) the total potential
Vtot(z) in the ground state and (blue lines) the squared mod-
ulus of several single-particle eigenstates in the total potential
for the highest value of the electronic density considered in
the main panels. Each wavefunction is shifted upwards by an
amount corresponding to its eigenenergy. For the chosen QW
parameters, the bare ISB transition is in the Mid-IR range at
an energy around 110 meV. The vertical dashed lines indicate
the position of the saturation point ∆E = Eo

21/2.

1. Nonlinear shift of the oscillation frequency

Fig. 3 shows the oscillation frequency ωres as a func-
tion of the deposited energy ∆E for two different spatial
distributions of the dopant impurities, namely outside
(top) or inside (bottom) the well: as expected from the
approximated calculations in Ref. 22, the oscillation fre-
quency ℏωres shows an approximately linear red-shift for
growing ∆E.
For a given geometry, we notice from this figure that

the different lines corresponding to different values of the
electron density σel approximately cross at a single point
on the ℏωres = Eo

21horizontal line. Together with the lin-
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ear dependence of the linear-regime depolarization shift
on σel discussed above, this points towards an approxi-
mated analytical form

ℏωres

Eo
21

≃ 1 +
a0 e

2LQWσel
ϵEo

21

− a1 e
2LQWσel
ϵEo

21

∆E

Eo
21

(7)

for the resonance frequency, where the adimensional a0,1
parameters only depend on the well geometry and not
on the electron density. It is interesting to note how the
second term in (7) has a similar functional form as the
standard expression for the depolarization shift

ℏωres

Eo
21

=

√
Eo

21
2 + (ℏωpl)2

Eo
21

≃ 1 +
ℏ2ω2

pl

2Eo
21

2 (8)

where ωpl = [4πe2σel/(m
∗ϵLQW )]1/2 is the plasma fre-

quency of QW electrons and the a0 coefficient in (7)
is related to the adimensional geometrical parameter
ℏ2/(m∗L2

QWEo
21) of order one.

For the configurations of Fig.3, the a0,1 parameters
are approximated by a0 ∼ 0.35 and a1 ∼ 1.5 for the
top panel and by a0 ∼ 0.6 and a1 ∼ 1.3 for the bot-
tom one. As it is discussed in detail in Appendix B, the
smaller value of the weak-excitation frequency shift pa-
rameter a0 in the upper panel is mostly the effect of the
static Coulomb interactions with the doping impurities,
which are more significant when these latter are located
outside the well and counterbalance the effect of the dy-
namical distortion of the electronic distribution induced
by the excitation. On the other hand, the slope a1 of the
excitation-dependent shift has comparable values in the
two cases as it mostly depends on depolarization shift
effects. Quite interestingly, for the experimentally realis-
tic values of the electron density considered in the figure,
the nonlinear red shift can be comparable to the typical
linewidths of ISB transitions (around a few meV’s) al-
ready for deposited energies well below saturation of the
two-level ISB transition, that is ∆E ≪ Eo

21/2 ≃ 55meV
(vertical dashed line in the Figure). As we are going
to see in the next Subsec.IVC, this statement may need
revisiting if a sizable fraction of the electrons gets accu-
mulated in the QW as incoherent dark excitations.

2. Oscillation amplitude

Similar plots for the amplitude z̄ of the electron oscil-
lations as a function of the excitation energy are shown
in Fig.4 for the same well geometries and electron densi-
ties as in the previous figure. Physically, z̄ corresponds
to the effective electric dipole moment of the transition,
a quantity closely related to its oscillator strength.

The general features of this plot are easily understood
in the case of a negligible electron density (red triangles).
In this case, one recovers the usual behaviour of two-level
atoms. The squared dipole moment z̄2 grows linearly for

FIG. 4: Normalized squared amplitude of the oscillating elec-
tric dipole z̄ as a function of the deposited energy ∆E for the
same configurations shown in Fig.3. The vertical dashed lines
indicate the position of the saturation point ∆E = Eo

21/2.

small excitation energies ∆E, then saturates to a maxi-
mum value for ∆E = Eo

21/2 = 55 meV where the popula-
tion is equally distributed between the two levels, and fi-
nally decreases again in the population-inversion regime.

Except for an overall reduction of the dipole moment
due to the modification of the electronic wavefunctions
by Coulomb interactions, a qualitatively very similar be-
haviour is found for higher electron densities σel, with a
linear growth of z̄2 at small ∆E and a saturation at larger
∆E. For all geometries and all values of the electron
density considered, our simulations confirm the physical
expectation that the transition gets saturated when ap-
proximately half of the electronic population is in the
excited states of the well.

This behaviour can be summarized in an approximated
analytical form

(
z̄

LQW

)2

≃ b20

[
1− b1

∆E

Eo
21

] [
1− s1

e2σelLQW

ϵEo
21

]
∆E

Eo
21

,

(9)
where the adimensional b0,1 and s1 coefficients only de-
pend on the well geometry. In all considered cases, from
the data displayed in the Fig.4 one can extract a value
b1 ∼ 1 for the coefficient in the nonlinear dipole moment
reduction factor, which gives a factor 1/2 suppression
of the squared dipole moment when ∆E/Eo

21 ≃ 1/2 and
electrons are equally (yet coherently) distributed between
the two subbands. This is in stark contrast with the case
of incoherent nonlinearities, where an equal population
of the two states leads to a full quenching of the dipole
moment10–13.
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B. Scaling laws

The coefficients in the analytical forms (7) and (9) have
an interesting interpretation in terms of scaling laws. For
the purpose of this discussion, let us restrict for simplicity
to quantum wells of thickness LQW with infinitely high
barriers. As compared to the more realistic configuration
considered in the Figures, having infinite barriers only
introduces quantitatively minor differences.

If lengths are measured in units of the well thickness
ζ = z/LQW and, correspondingly, time in units of the
inverse kinetic energy τ = ℏt/(mL2

QW ), the Schrödinger-
Poisson equation can be recast in an adimensional form

i
∂ψ̃

∂τ
= −1

2

∂2ψ̃

∂ζ2
+ Ṽ (ζ) ψ̃ − Ẽ(τ) ζ ψ̃+

+ ηCoul

∫
dζ |ζ − ζ ′| [σ̃imp(ζ

′)− σel |ψ̃(ζ ′)|2] , (10)

where the renormalized wavefunction ψ̃ = L
1/2
QWψ is

normalized such that
∫
dζ |ψ̃(ζ)|2 = 1, the renormal-

ized impurity density is σ̃imp = σimpLQW , and elec-

tric field is Ẽ = eEmL3
QW /ℏ2. The function Ṽ (ζ) de-

scribes the infinite barriers and is defined as V = 0 for
|ζ| < 1/2 and +∞ otherwise. The relative strength of
the Coulomb interactions is quantified by the coefficient
ηCoul = 2πe2mL3

QWσel/ℏ2ϵ on the second line.
The universality of this form provides simple scaling

laws under which the coefficients in Eqs.(7) and (9) are
invariant. This provides a straightforward way to extend
our analytical results to all frequency ranges without the
need of repeating the numerical calculation. Specifically,
let us consider that the QW width is varied by a factor
α−1/2 so that the resonance frequency Eo

21 is multiplied
by α. Under this change, the Coulomb interaction pa-
rameter ηCoul (i.e. the relative value of the depolariza-
tion shift) stays constant if the electron density is varied
by a factor α3/2. For instance, reducing the resonance
frequency by a factor 10 from 110 meV (in the Mid-IR)
to 11 meV (corresponding to ∼ 2.7 THz) requires a ∼ 3
times wider well; keeping the same ηCoul then requires
a ∼ 30 times lower two-dimensional electron density. In
the next Section, we will see how this scaling impacts the
value of light intensity that is needed to observe nonlinear
effects.

C. Competing incoherent nonlinearities

Our theoretical developments so far provide a simple,
yet realistic model of those coherent optical nonlineari-
ties that stem from the intrinsic nonlinearity of the elec-
tronic motion and the Coulomb interactions. As such,
our results directly provide an estimate of the magnitude
of coherent nonlinear processes, for instance the nonlin-
ear frequency shift of the ISB resonance or, equivalently,

the strength of the parametric coupling in wave-mixing
processes.
It is however crucial to keep in mind that other non-

linear processes of incoherent nature are also typically at
play for intersubband transitions in QWs. Electrons in
QWs are in fact subject to different decoherence mech-
anisms that lead to a fast effective decay of the inter-
subband excitations into relatively long-lived dark elec-
tronic excitations33. This results in a sizable reduction in
the density of active electrons participating to the elec-
tronic transition and thus in a quenching of the oscillator
strength and, as pointed out in early works22, of the de-
polarization shift.
Leaving aside the shift of the transition frequency due

to the static Coulomb interactions with the dark excita-
tions (which is typically small in simple wells, but may
become sizable in strongly asymmetric configurations17),
the coherent optical response can still be captured by
our theory provided we identify at each time the electron
density with the one of active electrons, σel → σact

el and
we estimate the evolution of σact

el in time using a simple
rate-equation model,

σ̇act
el = γd(σel − σact

el )− γISBσ
act
el

∆E

Eo
21

(11)

where γISB is the decay rate of the coherent ISB excita-
tions (of density approximately given by σact

el ∆E/Eo
21 ≃

p2σ
act
el ) and γd is the (typically much slower) decay rate

of the dark excitations. Estimates for this latter are typ-
ically in the 10 ps range, much longer than the charac-
teristic decay of the coherent ISB excitation on the order
of a fraction of ps.
At steady-state under a monochromatic excitation, the

fraction of active electrons is reduced to

σact
el

σel
=

1

1 + ∆E
Eo

21

γISB

γd

. (12)

Since in typical samples γd ≪ γISB , the reduction in the
density of active electrons can be important already at
small excitation levels ∆E/Eo

21 ≪ 1. This suggests that
in quasi-CW illumination regimes the nonlinear shift of
the resonances receives a dominant contribution from in-
coherent saturation effects. If one is interested in inco-
herent nonlinear processes such as bleaching and/or a
frequency shift of the ISB transition, the long relaxation
time γd is a beneficial feature to reduce the required in-
cident power34.
In spite of the presence of incoherent effects, the co-

herent nonlinearities that underlie wave-mixing effects re-
main however active and display an interestingly differ-
ent scaling with σel: given the form of the last, nonlinear
term of (7), the excitation level ∆E/Eo

21 needed to obtain
a given value of the (coherent) nonlinear shift decreases as
σ−1
el for growing electron density σel for fixed QW geome-

try. Via (12), this implies that the incoherent saturation
effect can be reduced by increasing the electron density
σel. Furthermore, under the experimentally reasonable
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assumption that γd does not change much when mov-
ing from the Mid-IR towards the THz range, this same
equation suggests that the relative effect of the incoher-
ent nonlinearities is reduced for longer wavelengths.

Finally, it is important to note that all these argu-
ments hold a continuous-wave illumination of the sample
by, e.g., a quantum cascade laser source35. A promising
alternative to further suppress the incoherent effects is to
use a pulsed excitation. In this regime, the experiment
can be carried out on a fast enough time scale that the
interesting coherent nonlinear dynamics occurs before a
sizable amount of dark excitations is generated36.

V. OPTICAL NONLINEARITIES IN
MICROCAVITIES

One of the most promising configurations to exploit
the optical nonlinearities discussed in the previous Sec-
tion to observe useful optical processes is to embed the
QWs within high-Q microcavity devices so to enter the
so-called strong light-matter coupling regime. In this
regime, the elementary excitation modes have the mixed
light-matter character of polaritons, which allows for an
efficient coupling of the electronic degrees of freedom to
the optical fields and therefore enhances the effect of the
nonlinearities. Building a complete theory of the nonlin-
ear dynamics of such microcavity devices is a task that
goes far beyond this work for which preliminary steps
have been reported in Ref. 25,34,36. As such, the goal of
this Section is to obtain a quantitative estimate of the ac-
tual strength of the ISB nonlinearities in a configuration
that is most promising for applications.

As a specific benchmark quantity, we will consider
the light intensity value that is needed to have a fre-
quency shift of the polariton mode comparable to the
linewidth. This is the typical condition under which im-
portant nonlinear effects such as optical bistability37 or
optical parametric oscillation start occurring25. The dis-
cussion that follows will mostly concentrate on the latter
effect, which is a promising strategy to achieve lasing and
Bose-Einstein condensation effects in novel wavelength
regions24,38. Since the amplitude of the parametric cou-
pling between the pump and the signal/idler modes is
quantitatively related to the frequency shift, it is nat-
ural to characterize the parametric oscillation threshold
in terms of the ratio between the frequency shift and the
decay rate.

Even though our theory is fully general and can be
applied to generic devices, for the sake of concreteness
we keep in mind the specific example of double-metal
microcavities, a most promising work-horse for studies
of ISB polaritons in both the THz and mid-infrared fre-
quency ranges39. In these devices, the QWs are sand-
wiched between two metallic layers. The back metallic
layer is left unpatterned and acts as a perfectly reflect-
ing plane, while the front one is periodically patterned
to allow optical access from the far field. Owing to this

single-sided geometry, all spectroscopic information can
be obtained from reflectivity measurements since there
is no transmitted beam. Furthermore, the efficiency of
the nonlinear process can be optimized by independently
tailoring the different decay channels39,40 so to reach the
so-called critical coupling regime with external radiation,
where radiative and non-radiative losses are equal and on
resonance all incident light is funneled into the cavity41.
Under this condition, the energy density stored in the

cavity is simply related to the incident power Pinc by
εst γpol = Pinc where γpol is the polariton decay rate.
In the strong-coupling regime, the energy of a polariton
mode is shared by its light and matter component in
proportion to the Hopfield coefficients, so the excitation
density in each well and per electron is given by

σel∆E =
|uX |2 εst
Nw

=
Pinc |uX |2

Nwγpol
(13)

where Nw is the number of QWs coupled to the cavity
mode and |uX |2 is Hopfield coefficient quantifying the
matter component of the polariton.

A. Nonlinearity from the depolarization shift

Deep in the strong coupling, the frequency shift of the
polariton mode is |uX |2 times the one of the matter exci-
tation37. This result can be combined with the analytical
formula (7) for the ISB frequency shift to obtain an ex-
plicit expression for the power-dependent frequency-shift
of the polariton,

∆(ℏωres) = −a1
e2LQW

ϵ

|uX |4

NwγpolEo
21

Pinc . (14)

From this formula, assuming for simplicity |uX |2 = 1/2
and a typical number Nw = 10 of wells, we can estimate
that an intensity around 1MW/cm2 is required to ob-
tain a red-shift of the polariton mode comparable to the
polariton linewidth ℏγpol = 5 meV. Quite interestingly,
note that this formula does not involve the electron den-
sity. This is of course valid as long as one remains in
the strong coupling regime34. In contrast, as we have
pointed out in Sec.IVC, the incoherent saturation effect
at a given value of the nonlinear frequency shift is smaller
for a large electron density.
Based on the scaling laws discussed above, and plug-

ging in the typical experimental observation that the
quantity ℏγpol/Eo

21 (that is, the Q factor) is typically
constant across the different frequency windows, one ob-
tains that that the required power to achieve a red-shift
comparable to ℏγpol scales as α7/2 and thus quickly de-
creases as one moves to longer wavelengths. As a con-
crete example, reducing the resonance frequency by a
factor 10 from 110 meV to 11 meV (corresponding to
∼ 2.7 THz) reduces the Pinc by a remarkable factor
∼ 3000 towards the few 100W/cm2 range. Further re-
ductions could come from a reduction of the number Nw
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of wells (keeping a fixed overlap factor), an improvement
of the cavity Q-factor, or a clever design of the cavity so
to spatially concentrate the light intensity in subwave-
length volumes42,43.

B. Nonlinearity from the saturation of polariton
splitting

When dealing with microcavity configurations, it is im-
portant to remind that an additional frequency shift of
the polariton modes arises from the nonlinear saturation
of the dipole moment which induces a corresponding re-
duction of the polariton Rabi splitting37.
Within our theory, this effect is captured by the non-

linear dependence of the dipole moment in (9), which
gives a corresponding variation of the oscillator strength,
f ≃ f0 (1− b1 ∆E/E

o
21). In terms of the polariton split-

ting ΩR, this results into

ΩR = Ωo
R +∆ΩR ≃ Ωo

R

(
1− b1

∆E

Eo
21

)
. (15)

where the linear-regime Rabi frequency is given by

Ωo
R =

(
2πe2Nwσelη

ϵm∗Lcav

)1/2

. (16)

Here, η is an adimensional parameter of geometric origin,
typically of order one, while Lcav is the thickness of the
cavity.

It is interesting to quantitatively compare the magni-
tude of the nonlinear shift due to the ISB frequency shift
(7) to the one coming from this reduction of ΩR. To this
purpose, we can consider the ratio

∆ΩR

∆(ℏωres)
=
b1
a1

ΩR

Eo
21

ϵEo
21

e2σelLQW
. (17)

Plugging in the specific parameters for the Mid-IR QW
considered above with an electron density σel = 3 ·
1012 cm−2, a QW density Nw/Lcav = 0.02 nm−1 and
η = 1/2, one obtains Ωo

R ≃ 16meV. Inserting this value
into (17), one finds that the ratio of the two nonlinearities
is in the order of unity. Interestingly, the last factor on
the RHS of (17) is constant under our usual scaling while,
for a given overlap factor Nw/Lcav, the ratio Ωo

R/E
o
21 dis-

plays a slow variation as α−1/4. As a result, one can not
expect major changes in this ratio when moving from
Mid-IR towards the THz range. This confirms that our
arguments on the scaling of the required incident power
with operation wavelength remain valid when we include
this saturation nonlinearity.

Note that a very different behaviour is expected for
the two polariton branches. For the upper polariton,
both mechanisms give rise to a red-shift and cooperate
to reinforce the nonlinear effect. For the lower polariton,
instead, they push in opposite directions and, depending
on the actual value of the Hopfield coefficients, they may

cancel out, suppressing the final value of the effective
nonlinearity. These arguments suggest that in the ISB
case the upper polariton branch is more favourable for
nonlinear optics experiments. This conclusion? is to be
contrasted with the exciton-polariton case where the fre-
quency shift of the exciton under the effect of the repul-
sive binary interactions is in the blue direction, making
the lower polariton a more favourable choice for nonlinear
optics experiments37.

VI. EFFECTIVE QUANTUM HAMILTONIAN

Even though the theory presented in this work is based
on the excitation of the electronic system by classical
light, our results are a good starting point to attempt
a phenomenological quantum theory of optical nonlin-
earities of electrons in QWs. Such a development is of
utmost importance if one is to extend quantum optics
concepts, tools and applications originally developed for
visible or near-IR light44 to devices operating in longer
wavelength ranges. Building a complete theory of quan-
tum nonlinearities is a task that goes way beyond this
work, so we will restrict here to some semi-quantitative
reasonings that offer an intuitive feeling of the strength
of the effect.
Indicating with Ψ̂X(r) the (approximately bosonic)

field operator describing the bright ISB excitation mode
of the electrons in the QW20,45,we can write a model
Hamiltonian in the form:

H = ℏωlin

∫
d2r Ψ̂†

X(r) Ψ̂X(r)+

+
ℏωnl

2

∫
d2r Ψ̂†

X(r) Ψ̂
†
X(r) Ψ̂X(r) Ψ̂X(r)+

− e d0

∫
d2r E(r, t)Ψ̂†

X(r)

(
1−

Ψ̂†
X(r) Ψ̂X(r)

nsat

)
+

−h.c. (18)

where ℏωlin = Eo
21 + a0 e

2LQW /ϵ is the linear oscilla-
tion frequency and the binary interaction energy ℏωnl =
−a1 e2LQW /ϵ accounts for the red-shift of the resonance.
Note that this effective interaction term has an opposite
sign compared to the exciton-polariton case37.
The term describing the coupling to the applied elec-

tric field E(r, t) has the physical meaning of an effective
transition dipole. At linear regime its value is

d0 = b0LQW

[
1− s1

e2σelLQW

ϵEo
21

]
√
σel, (19)

while at higher densities displays a saturation behaviour
of saturation density nsat = σel/b1. As usual, the oper-

ator Ψ̂†
X(r) Ψ̂X(r) indicates the in-plane density of ISB

excitation quanta. In the language of Ref. 46, our quan-
tum Hamiltonian (18) refers to the “bosonic” regime of a
relatively large number of electrons and relatively weak
excitation.
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As a simplest example of application of this model
Hamiltonian, it is interesting to estimate the strength
of the single-excitation nonlinearity in a subwavelength
resonator of lateral area Scav where the electromagnetic
field is confined in all three-dimensions47–50. As a fig-
ure of merit, we will consider the frequency shift ∆1 of
the polariton resonance when a single quantum of exci-
tation is injected into the device. When ∆1 exceeds the
linewidth γpol, the presence of a single quantum of ex-
citation is able to push the oscillation frequency away
from resonance with the incident light and, in this way,
prevent the injection of a second quantum of energy into
the device. This phenomenon goes under the name of
photon/polariton blockade and is experimentally visible
as strong non-classical features in the transmitted and
reflected light such as antibunching26,37,51.

In order to estimate ∆1, we first note that the energy of
a single quantum of excitation will distribute among the
Nel = σelScav electrons present in the resonator, giving
an excitation density ∆E/Eo

21 = 1/Nel. As a result,

∆1

γpol
≃ a1e

2LQWσel
ϵEo

21

Eo
21

ℏγpol
1

Nel
. (20)

For the Mid-IR configuration considered in this work,
the first fraction on the RHS is of order 0.4, so blockade
∆1/γpol ≥ 1 requires the number of electrons Nel to be a
sizable factor below the Q factor of the cavity, indicated
here by the Eo

21/(ℏγpol) factor. Assuming that electrons
are uniformly distributed in the cavity area with a given
two-dimensional density, this imposes an upper bound on
the cavity area.

As a quantitative benchmark, for the electron den-
sity value σel = 3 · 1012 cm−2 used so far, each elec-
tron effectively occupies a region of ∼ 30 nm2. Using
sub-wavelength nano-antennas and comparable electron
densities, it was possible to achieve a lateral confinement
of the field strong enough to observe strong light-matter
coupling in the mid-infrared with a few 103 electrons con-
fined in an area of a characteristic linear size of 100 nm50.
Based on our scaling arguments for the different coef-

ficients in (20), it is immediate to see that the criterion
based on the Q factor and the number Nel of electrons
directly extends to longer wavelength regimes and leads
to comparable if not more promising predictions for THz
radiation. The larger dipole moment of the transition
reduces in fact the required electronic density for strong
coupling and thus weakens the constraint on the maxi-
mum physical size of the patch cavity to observe block-
ade. As a result, ultra-strong light-matter coupling has
been observed using a cyclotron transition of less than
100 electrons coupled to a sub-THz nanogap hybrid LC
microcavities48 and using a 3 THz ISB transition of a few
1000 electrons coupled to a LC resonator49,52.

Comparing these values with the Q factors in the 20
range that are presently available and considering the
perspectives of further improvement sketched in the orig-
inal works, these results are extremely promising in view
of reaching polariton blockade in the Mid-IR and THz

domains in the next future. Given the present state of
technology, it is likely that a main experimental hurdle
along this path will consist of the development of efficient
single photon detectors to measure quantum correlations
for such long-wavelength radiation.

VII. CONCLUSIONS AND PERSPECTIVES

To summarize, in this work we have developed a gen-
eral theory of the coherent optical nonlinearities associ-
ated to intersubband transitions in semiconductor quan-
tum wells including the quantum mechanical motion of
electrons and their Coulomb interactions. As most rel-
evant observable quantities, simple expressions for the
intensity-dependence of the oscillation frequency and the
dipole moment of the intersubband transition are de-
rived. Interesting scaling laws in the operation wave-
length are highlighted and crucial differences from com-
peting processes such as incoherent saturation effects are
pointed out. The consequences of these optical nonlin-
earities on intersubband polaritons in microcavity geome-
tries are investigated and quantitative estimates across
different ranges of wavelengths from the Mid-IR to the
THz are put forward. These predictions appear promis-
ing in view of the observation of novel phenomena such
as parametric gain and Bose-Einstein condensation of in-
tersubband polaritons. Finally, as a more speculative di-
rection, we have explored the potential of intersubband
polaritons as a platform for exploting blockade effects to
generate antibunched light in longer wavelength ranges
where quantum optics is still much less developed.

The theoretical framework discussed in this work will
be of great use in future work to design structures with
more complex potentials, so to maximize the strength
of the nonlinear response for different processes such as
intensity-dependent frequency shifts, harmonic genera-
tion, and coherent wave-mixing processes. On the longer
run, our results will be a useful starting point to build a
fully quantum optical theory to guide experiments aim-
ing at extending, e.g., photon blockade phenomena and
single-photon emission to novel wavelength regimes.
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Appendix A: Imaginary-time evolution

In this Appendix, we briefly review the main prin-
ciples underlying the imaginary-time evolution method
used to find the wavefunction ψg(z) and the energy Eg

of the lowest-energy eigenstate of the time-independent
Schrödinger-Poisson equation (2).

The partial differential equation encoding the
imaginary-time evolution is obtained from the real-time
evolution equation (1) by rotating the time variable
t→ −iβ in the complex plane,

∂ψ(z, β)

∂β
= −1

ℏ

{
− ℏ2

2m∗
∂2ψ

∂z2
+ VQW (z)ψ(z)+

+
2π e2

ϵ

∫
dz′ |z − z′|

[
σimp(z

′)− σel
|ψ(z′)|2

||ψ||2

]
ψ(z)

}
.

(A1)

The factor involving the norm of the wavefunction

||ψ||2 =

∫
dz |ψ(z)|2 (A2)

is required at the denominator of the interaction term
since the imaginary-time evolution (in contrast to the
real-time one) does not conserve the norm.

At long times β → ∞, the imaginary-time evolution
typically converges to an exponentially decreasing wave-
function

ψ(z, β) ≃ ψ∞(z) e−βE∞ (A3)

from which one extracts the ground state wavefunc-
tion ψg(z) = ψ∞(z)/||ψ∞|| and the ground state energy
Eg = E∞. Inserting the ansatz (A3) into (1), one indeed
recovers the time-independent SP equation of the form
(2).

In a practical calculation, we can choose a generic
wavefunction as the initial state ψ(z, β = 0). We then
have to numerically evolve ψ(z, β) in β according to (A1)
until we reach convergence. This is determined by look-
ing at the convergence of the SP energy of ψ(z, β) to a
constant value. The imaginary-time evolution (as well
as the following real-time one) is carried out using a
split-step method: the evolution at each time-step is
Trotter-split into the non-commuting kinetic and poten-
tial energy parts and each of them is sequentially im-
plemented in the space in which it is diagonal, namely
k-space for the kinetic energy and real-space for the po-
tential and interaction energy terms. At each time-step,
inter-conversion between the k- and the real-space and
back is performed by Fast Fourier Transform.

The imaginary-time method is most transparent in the
non-interacting limit where the nonlinear term in the evo-
lution equation is negligible. In this case, we can decom-
pose the initial wavefunction

ψ(z, β = 0) =
∑
j

aj(β = 0)ψj(z) (A4)

on the orthonormal basis of eigenfunctions ψo
j=1,2,...(z)

of the Schrödinger problem in the bare quantum well po-
tential, with energy Eo

j=1,2,.... The random initial con-
dition reflects into a random choice of the initial value
aj(β = 0) of the expansion coefficients. By linearity,
the imaginary-time evolution acts independently on each
of them, aj(β) = aj(0) e

−βEo
j . At late times β → ∞,

only the lowest-energy eigenvector survives (the higher
ones j ≥ 1 are exponentially suppressed at least as
e−β(Eo

2−Eo
1 )) and ψ(z, β) converges to the lowest-energy

eigenvector,

ψ(z, β) ≃ a1e
−βEo

1 ψo
1(z) (A5)

recovering the limiting form (A3).

From this discussion, it is immediate to see that the
correct ground state is found independently on the choice
of the initial wavefunction provided a1(β = 0) ̸= 0, a con-
dition which is satisfied by any randomly-chosen initial
wavefunction. This independence from the initial condi-
tion, mathematically proven in the non-interacting case,
has been numerically verified to also hold in the interact-
ing case by repeating the calculation for different choices
of the initial wavefunction.

Appendix B: Analytical study of the oscillation
frequency in the limit of low electron density

As a further verification of the numerical calculations
and a quick guiding tool for the design of new structures,
it is interesting to look at the linearized equation (3)
in the small electron density limit where an analytical
treatment is possible. The discussion in this Appendix is
inspired from the Bogoliubov theory of the weakly inter-
acting Bose gas31.

We indicate with ψo
1,2(z) the two lowest states of the

quantum well for negligible electron density. In the limit
of a weak excitation, we can expand the linearized dy-
namics in the basis of these two states only,

ψ(z, t) = e−iEo
1 t/ℏ×

× [ψo
1(z) + α(t)ψo

2(z)u2 + α∗(t)ψo
2(z) v2] (B1)

where α(t) is the excitation amplitude and [u2, v2]
T is

the projection of the linearized eigenmode [u(z), v(z)]T

on the excited ψ2 state to which we are restricting our
attention, with the usual normalization |u2|2 − |v2|2 = 1.

Plugging the ansatz (B1) into the linearized SP dy-
namics (3) and imposing a harmonic evolution of the
excitation amplitude, α(t) = ᾱ e−iωrest, we get to the
eigenvalue equation,

L

 u2

v2

 = ℏωres

 u2

v2

 (B2)
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with

L =

 Eo
21 +∆H +∆x ∆x

−∆x −Eo
21 −∆H −∆x

 . (B3)

Here, Eo
21 = Eo

2 − Eo
1 is the energy difference between

bare electronic levels. The terms accounting for the
Coulomb interactions are proportional to the dimen-
sional η̄ = 2πe2σel/ϵ coefficient quantifying the effective
strength of Coulomb interactions. In detail,

∆H = V21 − V11 (B4)

is the static Hartree shift of the transition under the effect
of the Coulomb interactions, expressed in terms of the
static Coulomb shift of the ψ1,2 states in the charge dis-
tribution determined by the ground state electrons and
the impurities,

V11 = −η̄
∫
dz

∫
dz′ |z − z′|

[
|ψo

1(z)|2 − σimp(z)
]
|ψo

1(z
′)|2

(B5)

V21 = −η̄
∫
dz

∫
dz′ |z − z′|

[
|ψo

1(z)|2 − σimp(z)
]
|ψo

2(z
′)|2

(B6)

and ∆x accounts for the dynamical distortion of the elec-
tronic distribution induced by the excitation,

∆x = −η̄
∫
dz

∫
dz′ |z − z′|ψo

1(z)ψ
o
2(z)ψ

o
1(z

′)ψo
2(z

′) .

(B7)
For low electron densities, all these quantities are small
compared to the bare transition energy Eo

21, so the reso-
nance energy ℏEres can be analytically calculated within
perturbation theory as

ℏωres ≃ Eo
21 +∆H +∆x − ∆2

x

2Eo
21

. (B8)

These quantities can be easily computed in the ideal-
ized case of an infinite well of thickness Lw for which the
wavefunctions and the energies of the two lowest states
and their energies have the following analytical forms,

ψo
1(z) =

√
2

Lw
cos

(
πz

Lw

)
, ℏEo

1 =
ℏ2

2m∗

(π
L

)2
(B9)

ψo
2(z) =

√
2

Lw
sin

(
2πz

Lw

)
, Eo

2 =
ℏ2

2m∗

(
2π

L

)2

.(B10)

In particular, the value of the integrals in (B5-B7) can
be straightforwardly estimated for different locations of
the impurities as summarized in the upper part of Table
I.

Inserting these values in the matrix (B3), one obtains
the prediction for the shift of the ISB transition listed in
the bottom part of Table I. In spite of the severe approx-
imations done, this prediction is in quite good quantita-
tive agreement with the full numerical calculation shown

outside
±10 nm

inside
±2 nm

center

V11/η̄ 0.79 -0.011 -0.06

V21/η̄ 0.73 -0.013 -0.02

∆H/η̄ -0.06 -0.002 0.04

∆x/η̄ 0.11 0.11 0.11

ℏωres − E21 9.5 meV 26.6 meV 37.7 meV

∆H -17.2 meV -0.55 meV 10.3 meV

TABLE I: Table of the Coulomb interaction integrals (B5-
B7) and of the energy shifts (B4) and (B8) for an infinite well
of thickness Lw = 12.7 nm for which the transition energy
∆eg=109.6 meV is comparable to the case considered in the
main text. The different columns refer to different locations
of the impurities, namely outside the well [as in the left panel
of Fig.1(b)], inside the well [as in the right panel of Fig.1(b)],
at the center of the well. The energy shifts on the last two
rows are evaluated for an electronic density σ = 3 · 1012 cm−2

corresponding to the rightmost points in Fig.2(b).

in Fig.3(b). Note how the resonance shift strongly de-
parts from the static Hartree prediction ∆H based on the
static Coulomb energy shift of single-particle orbitals.

It is interesting to remind that this crucial difference
between the single-particle energies and the collective ex-
citation frequencies also occurs in dilute Bose gas with
local interactions31,32. For instance, in a spatially ho-
mogeneous geometry, the single-particle states have the
quadratic dispersion of the kinetic energy, while the Bo-
goliubov dispersion of the collective excitation modes ob-
tained from the linearization of the GPE starts at low
wavevector with a sonic dispersion dominated by the in-
teraction effects and only later recovers the quadratic
form.
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56 Note that a positive interaction coefficient between ISB
polaritons g > 0 was assumed by two of us in Ref. 25.
This erroneous choice was motivated by the analogy with

the exciton-polariton case and, mutatis mutandis does not
bring major prejudice to the overall conclusions of that
work.
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