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Abstract

In space dimension larger or equal to two, the non-linear Klein-Gordon equation with
small, smooth, decaying initial data has global in time solutions. This no longer holds
true in one space dimension, where examples of blowing up solutions are known. On the
other hand, it has been proved that if the nonlinearity satisfies a convenient compatibility
condition, the “null condition”, one recovers global existence and that the solutions satisfy
the same dispersive bounds as linear solutions. The goal of this paper is to show that, in
the case of cubic semi-linear nonlinearities, this null condition is optimal, in the sense that,
when it does not hold, one may construct small, smooth, decaying initial data giving rise to
solutions that display inflation of their L∞ and L2 norms in finite time.

0 Introduction

It is well-known that quasi-linear Klein-Gordon equations with smooth, small, decaying initial
data have global in time solutions, in space dimension larger or equal to 3, as it has been proved
independently by Klainerman [21] and Shatah [28]. The same holds true in 2 space dimension,
according to Simon-Taflin [29] and Ozawa, Tsutaya and Tsutsumi [27]. On the other hand, in
one space dimension, finite time blow-up may occur. Examples of non-linearities for which this
happens have been obtained by Yordanov [32] and Keel and Tao [18]. In [10], we introduced for a
general quasi-linear non-linearity a “null condition”, expressed explicitly in terms of the quadratic
and cubic parts of the nonlinearity, and we conjectured that, under that null condition, small
data that are smooth and have some decay at infinity should give rise to global solutions. We
showed in [11, 12] that this conjecture holds true for C∞

0 initial data. We refer to Lindblad and
Soffer [23, 24, 25] for nonlinearities depending only on u, to Hayashi and Naumkin [17] and to
Stingo [31] for more general data, and to the bibliography of [11] for references about the state
of the art at the time of publication of that paper.
The goal of the present paper is to show that, in the case of cubic semi-linear nonlinearities, i.e.
for the equation

(1) (∂2t − ∂2x + 1)u = P (u, ∂tu, ∂xu)

where P is a polynomial homogeneous of degree three, our null condition is optimal, in that sense
that if it is not satisfied, one can construct solutions, with small and decaying initial data, that
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do not enjoy the same dispersive bounds as the ones that hold true for linear solutions (or non-
linear global solutions when the null-condition is satisfied). More precisely, the null condition
was obtained in [10] extracting from the PDE an ODE which has global solutions for small data
if and only if the null condition holds. When this is the case, the asymptotics of the solution
of this ODE give the asymptotic behavior of the global solution of the PDE. When the null
condition is not satisfied, this ODE blows-up at some finite time, depending on the parameter
y = x

t ∈]− 1, 1[. The minimal blow-up time for y describing ]− 1, 1[ is of the form e
T∗
ϵ2 for some

T∗ > 0 (when blowing-up occurs in the future), ϵ ≪ 1 being the size of the initial condition. In
[10] it was shown that the solution exists and has L∞ norm at time t which is O( ϵ√

t
) for t < e

A
ϵ2 ,

for any constant A < T∗. The main result of this paper (see Theorem 1.2.1 below) asserts that
one may construct initial data so that for t = T (ϵ) close enough to e

T∗
ϵ2 , one has inflation of

norms in the sense that√
T (ϵ)(∥u(T (ϵ))∥L∞ + ∥∂tu(T (ϵ))∥L∞) ≥ cT (ϵ)

1
2
−c ∼ e

c′
ϵ2 , ϵ→ 0

for positive constants c, c′. In other words, the solution is still small at time T (ϵ), but expo-
nentially large when compared to the size of linear solutions. Of course, this norm inflation
result does not mean that the solution does blow-up, but we explain in the remarks that follow
the statement of Theorem 1.2.1 that this is the best we may expect, if we want to single out a
property of the solution that follows only from the violation of the null condition, and that is in
contrast with the kind of estimates that hold true under the null condition.

The proof of the main theorem relies on the construction of an approximate blowing-up solution,
that was inspired to us by the papers of Cazenave, Martel and Zhao [6] and Cazenave, Han
and Martel [5]. In these references, the authors construct blowing-up solutions for Schrödinger
equations of the form

(2) (i∂t − ∂2x)u = α|u|2u, α ∈ C− R.

(Actually, their result is not limited to one space dimension nor to cubic nonlinearities). They
first look for an approximate solution given in terms of a profile that satisfies some ODE and
blows-up at time t = 1. Next they write the equation satisfied by the difference between this
approximate solution and the exact one. They prove that this equation has a global backwards
solution with zero initial condition at (or close to) the blow-up time. The sum of this solution
and of the approximate one brings thus an exact solution to (2) that blows-up at time t = 1. See
also Liu and Zhang [26] and for blowing-up solutions of Schrödinger equations with small data,
the preprint of Kita [19].
Our general strategy is the same, except that we have to cope with some difficulties inherent to
the Klein-Gordon equation. To describe it, let us write equation (1) as a first order system on
(u+, ū+), where u+ is a new complex valued unknown deduced from u, with first equation

(3) (Dt −
√
1 +D2

x)u+ =M (1)(u+, u+, u+) +M (2)(u+, u+, ū+)

+M (3)(u+, ū+, ū+) +M (4)(ū+, ū+, ū+),

M (j) being non local expression of their arguments homogeneous of degree 3. The difference with
(2) comes from M (1),M (3),M (4) which are not invariant under u+ → zu+ for z ∈ U(1). On the
other hand these terms are “non characteristic” ones, since when computed on a linear solution,
they oscillate along a non characteristic phase for the linear part of (3). Our proof has thus two
steps, as in [6, 5]. First, we construct an approximate solution starting from small initial data
(ϵf0, ϵg0) with f0, g0 in S(R). If the null condition is not satisfied, choosing f0, g0 conveniently,
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we had constructed in [10] an approximate solution defined on some interval [1, e
T∗
ϵ2 [ as

(4) u1app(t, x) = 2Re
[ ϵ√

t
a1,1(ϵ

2 log t,
x

t
)ei

√
t2−x2 +

ϵ3

t
3
2

a3,3(ϵ
2 log t,

x

t
, ϵ)e3i

√
t2−x2 +O(ϵt−

5
2 )
]
,

where a1,1(s, y), a3,3(s, y, ϵ) are functions supported for |y| ≤ 1, smooth in (s, y) for s < T∗.
As a consequence of the violation of the null condition, one may construct a1,1(s, y), a3,3(s, y, ϵ)
that blow-up if s → T∗−, so that (4) provides a useful approximate solution only for t < e

A
ϵ2

with A < T∗. If one wants to study what happens for t close to e
T∗
ϵ2 , one has to construct a

more accurate approximate solution, gluing (4) for say t < e
3T∗
4ϵ2 to another approximate solution,

defined on e
T∗
2ϵ2 < t < e

T∗
ϵ2 , given by an Ansatz of the form

u2app(t, x) = 2Re
[ N∑
ℓ=1
ℓ odd

ϵ2−ℓt−
ℓ
2 ei

√
t2−x2aℓ,1(ϵ

2 log t,
x

t
, ϵ)

+
N∑
ℓ=3
ℓ odd

∑
3≤q≤ℓ
q odd

ϵ2q−ℓt−
ℓ
2 eiq

√
t2−x2aℓ,q(ϵ

2 log t,
x

t
, ϵ)

]
,

(5)

where aℓ,q(s, y, ϵ) are functions that blow-up at s = T∗ like (T∗−s)−
ℓ
2
−0. If s = ϵ2 log t is close to

T∗, the aℓ,q terms in the two sums in (5) are thus larger and larger, so that (5) cannot provide an
approximate solution. But we may exploit the dispersive decay factor t−

ℓ
2 and limit ourselves to

times t < T (ϵ), where T (ϵ) is such that T (ϵ)−1(T∗ − ϵ2 log T (ϵ))−1 ≪ 1. Under this restriction,
(5) provides a function satisfying (1) up to a small remainder. Moreover, T (ϵ) is close enough to

e
T∗
ϵ2 so that u2app(T (ϵ), x)

√
T (ϵ) will be large (actually of size e

c′
ϵ2 ) in L∞.

The second step of the proof is to look for an exact solution u(t, x) = uapp(t, x) + r(t, x),
where uapp is the approximate solution obtained gluing together u1app and u2app above, and r a
remainder that will be zero as well as its time derivative at t = T (ϵ). Then r solves the backwards
equation with force term deduced from (1) replacing u by uapp + r. One has to show that if the
approximate solution has been constructed in an accurate enough way, the remainder r exists
down to time t ∼ 1 and that at this initial time, it perturbs the initial condition (ϵf0, ϵg0) used to
construct the approximate solution only at order o(ϵ). The general strategy employed to prove
such properties is to use the methods that are useful in the study of global existence (normal
forms, energy estimates for the action of x± t x⟨x⟩ on the solution of the reduced system obtained
by normal forms for the remainder). A difference with problems of global existence is that the
equation satisfied by the remainder contains linear terms (coming from the linearization on the
approximate solution). The coefficients of these linear term being expressions on the approximate
solution, they are relatively large close to T (ϵ), and thus cannot be treated as perturbations. In
order to overcome this difficulty, we use an idea of Cazenave, Han and Martel [5]: we remark that
in a Gronwall inequality, the growth of the amplifying factor coming from this large coefficient
is more than compensated by the fact that the source term against which it is integrated – that
comes from the error in the equation applied to the approximate solution – may be made as
small as we want.
The plan of the paper is as follows: in section 1, we recall the definition of the null condition and
state the main theorem. Section 2 is devoted to the construction of the approximate solution. In
section 3, we study the remainder given by the difference between the exact and the approximate
solution. We express it as a solution of a 2 × 2-system with source term, and obtain energy
estimates for the Sobolev norm of the remainder and for the L2 norm of the action of L+ =
x + t Dx⟨Dx⟩ on it. Finally, in section 4, we conclude the proof using a bootstrap argument and a
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Klainerman-Sobolev estimate to control L∞ norms. The appendix is devoted so some technical
results used in the proof.

To conclude this introduction, let us give some references to other works concerning the con-
struction of blowing-up solutions for non-linear wave equations instead of Klein-Gordon ones. In
the quasi-linear case, recall that in three space dimension, the null condition has been introduced
by Christodoulou [9] and by Klainerman [20, 22] who proved that global existence with small
decaying initial data holds true under that assumption. In two space dimensions, Alinhac [3]
defined the (more complicated) corresponding version of the null condition and proved also global
existence when it holds.
When the null condition is not satisfied, the study of blowing-up solutions and of their asymptotic
behavior had been undertaken by Alinhac in a series of papers [2, 1, 4]. For more recent references
on that and further results, we refer to the book of Speck [30] and especially its preface and
introduction. We notice also that the situation considered in all these papers is pretty different
from the one we encounter in the present work, as in these quasi-linear models, the singularities
that form are of shock type, i.e. the quantities that blow-up are second order derivatives, while
in our setting, the function itself (or its time derivative) will display norm inflation. For the
construction of blowing-up solutions for semi-linear wave equations with a nonlinearity depending
only on the function itself, and not on its derivatives, we refer to the papers of Cazenave, Martel
and Zhao [8, 7] and their bibliographies.

1 Statement of the main theorem

1.1 Semi-linear Klein-Gordon equation and null condition

We consider the cubic semi-linear Klein-Gordon equation in one space dimension

(1.1.1) (∂2t − ∂2x + 1)u = P (u, ∂tu, ∂xu)

where P is a polynomial homogeneous of degree 3, with real coefficients, that we write under the
form

(1.1.2) P (u, ∂tu, ∂xu) =
3∑

k=0

Pk(u; ∂tu, ∂xu)

where Pk(T ;Z1, Z2) is homogeneous of degree k in (Z1, Z2) and 3−k in T , with real coefficients.
We define for y ∈]− 1, 1[

(1.1.3) ω0(y) =
1√

1− y2
, ω1(y) = − y√

1− y2

and we set

pk(ω0(y), ω1(y)) = Pk(1;ω0(y), ω1(y))

ϕ(y) = (p1 + 3p3)(ω0(y), ω1(y))

ψ(y) = −(3p0 + p2)(ω0(y), ω1(y)).

(1.1.4)

We recall the following definition from [10]:

Definition 1.1.1 One says that the nonlinearity in (1.1.1) satisfies the null condition if ϕ ≡ 0.
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Assume that the null condition is satisfied and take in (1.1.1) initial conditions of the form
u(1, x) = ϵf(x), ∂tu(1, x) = ϵg(x) with f, g ∈ C∞

0 (R). Then, it has been proved in [11, 12]
(see also Stingo [31]), including in the case of quasi-linear equations with quadratic and cubic
nonlinearities (for which one has to modify the expression of ϕ in (1.1.4)) that, if the null condition
is satisfied, for ϵ > 0 small enough, the solution to (1.1.1) is globally defined for t ≥ 1 and satisfies
L∞ bounds of the form ∥∂kxu(t, ·)∥L∞ = O(ϵt−

1
2 ) when t goes to +∞. The solution thus decays

like a solution of the linear Klein-Gordon equation in one space dimension. Of course, a similar
statement holds when t goes to −∞. On the other hand, it was proved as well that scattering
does not hold (one has only modified scattering).
We are interested here in the case when the null condition is not satisfied, and we want to
construct initial data that generate inflation of the norms of the solution in finite time i.e. we
want to show for instance that the L∞ norm will not satisfy the dispersive bounds that hold
true under the null condition. Consequently, in order to ensure that the null condition does not
hold, we assume

(1.1.5) sup
y∈]−1,1[

ϕ(y) > 0.

This will allow us to construct solutions that display norm inflation at some positive time. If
in (1.1.5) ϕ was replaced by −ϕ, we would in the same way get inflation of the norms at some
negative time.

1.2 Main theorem and norm inflation

Let f0, g0 be two real valued functions in S(R). We associate to them

(1.2.1) Γ(y) =
1

8π
(1− y2)−1|f̂0(ω1(y))− i

√
1− y2ĝ0(ω1(y))|

2

which is a smooth function on ]−1, 1[ that, extended by zero outside this interval, gives a smooth
function on R. (This function was introduced in [10], formula (1.18), but the expression given
there is correct only if f0, g0 satisfy some evenness or oddness conditions. In general, the correct
expression is (1.2.1)). By (1.1.5), we may choose f0, g0 in S(R) such that supy∈]−1,1[(Γ(y)ϕ(y))
is positive, and we define T∗ > 0 by

(1.2.2)
1

T∗
= sup

y∈]−1,1[
(Γ(y)ϕ(y)).

As Γ(y) vanishes at infinite order at y = ±1, and ϕ grows at most polynomially at these points,
the supremum is reached at some points in ]− 1, 1[. We shall assume

y → Γ(y)ϕ(y) reaches its maximum at a unique point y0 ∈]− 1, 1[.

Moreover, there is κ0 ∈ N∗ such that ∂αy (Γ(y)ϕ(y))|y=y0 = 0

for α = 0, . . . , 2κ0 − 1 and ∂2κ0y (Γ(y)ϕ(y))|y=y0 < 0.

(1.2.3)

On course, one may always choose functions f̂0, ĝ0 in S(R) such that (1.2.3) holds, because of
(1.1.5).
Let γ > 0, δ′ > 0 be fixed positive numbers. For ϵ > 0 small, define

(1.2.4) ϵ′ = ϵ
− 2+γ+2δ′

1+2δ′ exp
(
− T∗
ϵ2(1 + 2δ′)

)
≪ 1.

Let u(ϵ′) be the unique small solution satisfying u(0) = 0 of the equation

u = ϵ′ exp
( u

1 + 2δ′

)
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so that u(ϵ′) = ϵ′ +O(ϵ′2), ϵ′ → 0. We define

(1.2.5) T (ϵ) = exp
(T∗
ϵ2

− u(ϵ′)
)
= e

T∗
ϵ2 (1− ϵ′ +O(ϵ′2)), ϵ′ → 0.

Our main theorem is the following one:

Theorem 1.2.1 Let f0, g0 ∈ S(R) be given such that assumption (1.2.3) holds. Let c > 0, θ > 0
be given small numbers. Let s0 ∈ N be a large enough integer. There is δ′0 > 0 and for any
δ′ ∈]0, δ′0], any γ ≥ 2(δ′ + 2), there are ϵ0 > 0, C > 0 such that for any ϵ ∈]0, ϵ0[, there are
functions x→ (f(x, ϵ), g(x, ϵ)) in Hs0+1(R)×Hs0(R), small in the sense that

∥f(·, ϵ)∥Hs0+1 + ∥g(·, ϵ)∥Hs0 ≤ Cϵ1−θ

∥xf(·, ϵ)∥H1 + ∥xg(·, ϵ)∥L2 ≤ Cϵ1−θ,
(1.2.6)

so that the unique solution u of (1.1.1) with initial data

(1.2.7) u(1, x) = ϵ(f0(x) + f(x, ϵ)), ∂tu(1, x) = ϵ(g0(x) + g(x, ϵ))

is defined for t ∈ [1, T (ϵ)] and satisfies

∥u(T (ϵ), ·)∥L∞ + ∥∂tu(T (ϵ), ·)∥L∞ =
ϵ√
T (ϵ)

I(ϵ)

∥u(T (ϵ), ·)∥L2 + ∥∂tu(T (ϵ), ·)∥L2 = ϵJ(ϵ),

(1.2.8)

where

(1.2.9) I(ϵ) ≥ cT (ϵ)
1
2
−c, J(ϵ) ≥ cT (ϵ)

1
2
− 1

4κ0
−c
.

Remarks: • By (1.2.5), T (ϵ) is exponentially large when ϵ → 0+. Then (1.2.8) and the first
inequality (1.2.9) show that one has inflation of the estimate of the L∞ norm of the solution
by a factor I(ϵ) in comparison with the O(ϵ/

√
T (ϵ)) bound that holds when the null condition

is satisfied. In the same way, if κ0 ≥ 2, (1.2.8) and the lower bound for J(ϵ) in (1.2.9) imply
inflation of the L2 norms in comparison with the O(T (ϵ)α) (α > 0 arbitrary) bound that holds
under the null condition.
• The solution u will be written as the sum of an approximate solution and of a remainder. The
lower bounds (1.2.8) are those of this approximate solution (constructed from f0, g0) at time
T (ϵ).
• The exact solution will be given by the sum of the approximate solution and of an error
obtained solving a backwards Klein-Gordon equation with zero data at t = T (ϵ) and source term
determined by the approximate solution. This error generates in the initial conditions (1.2.7)
the O(ϵ2−θ) perturbation of (ϵf0, ϵg0).
• As mentioned in the introduction, our method of proof is inspired by the construction of
blowing-up solutions for nonlinear Schrödinger equations by Cazenave, Martel and Zhao [6] and
Cazenave, Han and Martel [5]. For Klein-Gordon equations that do not satisfy the null condition,
we cannot expect to get in general blowing-up solutions, but only norm inflation. Actually, the
null condition provides a global existence criterium only in the framework of small data: in order
to uncover it, one has to make some reductions (through normal forms) in order to eliminate
some non-characteristic contributions to the nonlinearity. These reductions bring new terms in
the nonlinearity, vanishing at order five at the origin. As long as data are small, these quintic
corrections are negligible, but they could play a prominent role for larger solutions. As a toy
example, consider the ODE ẏ = 1

2y
3, with data y(0) = ϵ, whose solution y(t) = ϵ√

1−tϵ2 blows-up
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at time t = 1
ϵ2

. The perturbed equation ẏ = 1
2y

3(1 − y2) with the same initial condition has
solutions that are globally defined for t ≥ 0. If we set

a(ϵ) =
(
1− ϵ2 log

ϵ2

1− ϵ2

)− 1
2

the solution satisfies

(1.2.10) y(t)
(
1− y(t)2 log

y(t)2

1− y(t)2

)− 1
2
=

ϵa(ϵ)

(1− tϵ2a(ϵ)2)
1
2

.

At time tϵ = ϵ−2a(ϵ)−2(1 − ϵ2−2δ) with δ > 0 small, we deduce from (1.2.10) that y(tϵ) will be
of size essentially ϵδ, much larger than the size ϵ of the initial data (though still small). This is
the same phenomenon as the one that happens in the theorem.

2 Construction of approximate solution

2.1 Construction for moderate time

Our first goal is to construct an approximate solution for equation (1.1.1) with initial condition

(2.1.1) u(1, ϵ) = ϵf0(x), ∂tu(1, ϵ) = ϵg0(x)

where (f0, g0) are functions in S(R) chosen so that (1.2.2) and (1.2.3) hold true. In this sub-
section, we construct the solution up to time e

3T∗
4ϵ2 , following essentially [10]. We introduce the

notation

(2.1.2) p(ξ) =
√
1 + ξ2, L± = x± tp′(Dx).

We first take as an approximate solution over an interval [1, ϵ−1+θ], where θ > 0 is small, the
solution u0 of the linear equation

(∂2t − ∂2x + 1)u0 = 0

u0(1, ·) = ϵf0, ∂tu0(1, ·) = ϵg0.
(2.1.3)

Proposition 2.1.1 Set

(2.1.4) r0(t, x) = (∂2t − ∂2x + 1)u0 − P (u0, ∂tu0, ∂xu0).

Then for any s0 ∈ N, θ > 0, c > 0, there is C > 0 such that∫ cϵ−1+θ

1
∥r0(τ, ·)∥Hs0 dτ ≤ Cϵ3−0

∫ cϵ−1+θ

1
∥L±r0(τ, ·)∥H1 dτ ≤ Cϵ2+θ.

(2.1.5)

Moreover, if for |y| < 1, we denote

(2.1.6) φ(y) =
√
1− y2,

then for t ≥ 1, we may write u0 under the form

(2.1.7) u0(t, x) = 2Re
[ ϵ√

t
eitφ(x/t)

(
a01

(x
t

)
+

1

t
b01

(x
t

)
+

1

t2
c01

(
t,
x

t

))]
+ ϵe(t, x)
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where a01(y), b
0
1(y), (resp. c01(t, y)) are smooth functions on R (resp. [1,+∞[×R), supported for

|y| ≤ 1, with

(2.1.8) a01(y) =
ei
π
4

2
√
2π

(1− y2)−
3
4
[
f̂0(ω1(y))− i

√
1− y2ĝ0(ω1(y))

]
for |y| < 1, with c01 satisfying for any α, β,N in N

(2.1.9) |∂αt ∂βy c01(t, y)| ≤ Cα,β,N t
−α(1− |y|)N ,

and where e(t, x) is a real valued function in S([1,+∞]× R).

Proof: Expansion (2.1.7) is given in Proposition 2.1.1 of [10]. To get estimates (2.1.5), we
just notice that r0(t, x) = −P (u0, ∂tu0, ∂xu0) may be written according to (2.1.7) as the sum of
an element of S([1,+∞[×R) that is O(ϵ3) in that space, that trivially satisfies (2.1.5), and of
expressions of the form

ϵ3

t
3
2

eiqtφ(x/t)c
(
t,
x

t

)
for some function c of the same form as c01 in (2.1.9) and some q in Z. Such terms satisfy (2.1.5).
This concludes the proof 2

Our next step is to construct the approximate solution for t up to e
3T∗
4ϵ2 . We first introduce the

solution s→ a1,1(s, y) of the differential equation

ω0(y)∂sa1,1(s, y) =
1

2
(ϕ(y) + iψ(y))|a1,1(s, y)|2a1,1(s, y)

a1,1(0, y) = a01(y),
(2.1.10)

where a01(y) ∈ C∞
0 (R) with support in [−1, 1] is defined in (2.1.8) and where ω0(y), ϕ(y), ψ(y)

have been introduced in (1.1.3), (1.1.4). It follows from (2.1.10) that

∂s|a1,1(s, y)|2 = ϕ(y)ω0(y)
−1|a1,1(s, y)|4

when |y| < 1, so that

(2.1.11) |a1,1(s, y)|2 =
|a01(y)|

2

1− |a01(y)|
2
ϕ(y)

√
1− y2s

=
Γ(y)ω0(y)

1− Γ(y)ϕ(y)s

using the definition (2.1.8) of a01 and notation (1.2.1). By (1.2.2), a1,1 is thus defined for s ∈ [1, T∗[
and plugging (2.1.11) in (2.1.10), we get the explicit expression

(2.1.12) a1,1(s, y) = a01(y)(1− Γ(y)ϕ(y)s)−
1
2 exp

[
− i

2

ψ(y)

ϕ(y)
log(1− Γ(y)ϕ(y)s)

]
.

In particular, a1,1 is a smooth function of (s, y) ∈ [0, T∗[×] − 1, 1[ that extended by zero for
|y| ≥ 1 is smooth on [0, T∗[×R, since a01 and Γ are C∞ on R, supported in [−1, 1].
We shall construct an approximate solution of (1.1.1) defined for t ∈ [cϵ−1+θ, e

3T∗
4ϵ2 ] that will

match with u0 defined in Proposition 2.1.1.

Proposition 2.1.2 There are, in addition to function a1,1 introduced in (2.1.12), smooth func-
tions (s, y) → a13,3(s, y) (resp. (s, y, ϵ) → a15,3(s, y, ϵ), (resp. (s, y, ϵ) → a15,5(s, y, ϵ)) defined on
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[0, 3T∗4 ] × R (resp. on [0, 3T∗4 ] × R × [0, 1]), supported for |y| ≤ 1, such that if we define for

cϵ−1+θ ≤ t ≤ e
3T∗
4ϵ2

u1app(t, x) = 2Re
[ ϵ√

t
a1,1(ϵ

2 log t,
x

t
)eitφ(x/t)

+
ϵ3

t
3
2

a13,3(ϵ
2 log t,

x

t
)e3itφ(x/t)

+
ϵ

t
5
2

a15,3(ϵ
2 log t,

x

t
, ϵ)e3itφ(x/t)

+
ϵ5

t
5
2

a15,5(ϵ
2 log t,

x

t
, ϵ)e5itφ(x/t)

]
(2.1.13)

the following holds true: The remainder

(2.1.14) r1app(t, x) = (∂2t − ∂2x + 1)u1app − P (u1app, ∂tu
1
app, ∂xu

1
app)

may be written as

(2.1.15) r1app(t, x) = 2Re
[
ϵt−

5
2 eitφ(x/t)c̃5,1

(
ϵ2 log t,

x

t
,
1

t
, ϵ
)]

+ F 1
app

where c̃5,1(s, y, h, ϵ) is continuous on [0, 3T∗4 ] × R×]0, 1] × [0, 1], with uniform estimates for the
function and all its ∂s, ∂y, h∂h-derivatives, supported for |y| ≤ 1, and F 1

app satisfies for any s ∈ N
estimates ∫ exp(3T∗/4ϵ2)

cϵ−1+θ

∥F 1
app(t, ·)∥Hs dt ≤ Cϵ2−θ∫ exp(3T∗/4ϵ2)

cϵ−1+θ

∥L±F
1
app(t, ·)∥H1 dt ≤ Cϵ2−θ.

(2.1.16)

Before starting the proof of the proposition, we introduce some notation. We shall denote by P
the ring of continuous functions (y, h, ϵ) → ω(y, h, ϵ) defined on ]− 1, 1[×]0, 1]× [0, 1], such that
for any α, α′ in N2, there is Kα,α′ in N such that (1− y2)Kα,α′∂αy (h∂h)

α′
ω is uniformly bounded.

Then the space of functions of (y, h, ϵ) defined and continuous on R×]0, 1] × [0, 1], bounded as
well as their ∂y, h∂h derivatives on that domain, and supported for |y| ≤ 1, is a P-module. If
(s, y) → a(s, y) is a smooth function on [0, T∗[×R, supported for |y| ≤ 1, and if q, ℓ are (odd)
integers with 1 ≤ |q| ≤ ℓ, we notice that

(∂2t − ∂2x + 1)
[
eitqφ(x/t)t−

ℓ
2a(ϵ2 log t,

x

t
)
]

= (1− q2)t−
ℓ
2 eitqφ(y)a(s, y)|s=ϵ2 log t,y=x/t

+ 2iqt−
ℓ
2
−1eitqφ(y)ω0(y)[ϵ

2∂sa−
1

2
(ℓ− 1)a](s, y)|s=ϵ2 log t,y=x/t

+ t−
ℓ
2
−2eitqφ(y)R2(a)(s, y, ϵ)|s=ϵ2 log t,y=x/t,

(2.1.17)

where ω0 has been defined in (1.1.3) andR2(a) belongs to the P-module generated by ∂αs ∂α
′

y a(s, y),
α+ α′ ≤ 2.
Let us compute first the linear part in the expression (2.1.14) of r1app.

Lemma 2.1.3 There is a smooth function (s, y, ϵ) → b5,3(s, y, ϵ) (resp. (s, y, ϵ) → b5,1(s, y, ϵ)),
defined on [0, 3T∗4 ] × R × [0, 1], supported for |y| ≤ 1, which is fully determined by a13,3 (resp.
a1,1) in (2.1.13), there are continuous functions (s, y, h, ϵ) → b7,q(s, y, h, ϵ), defined on [0, 3T∗4 ]×
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R×]0, 1] × [0, 1], supported for |y| ≤ 1, bounded as well as their ∂s, ∂y, (h∂h)-derivatives, for
q = 3, 5, 7, fully determined by a1,1, a13,3, a

1
5,3, a

1
5,5 such that the following equality holds true:

(∂2t − ∂2x + 1)u1app = 2Re
[
2iω0(y)

ϵ3

t
3
2

eitφ(y)∂sa(s, y)

− 8
ϵ3

t
3
2

e3itφ(y)a13,3(s, y)

+
ϵ

t
5
2

eitφ(y)b5,1(s, y, ϵ)

− ϵ

t
5
2

e3itφ(y)[8a15,3(s, y, ϵ)− b5,3(s, y, ϵ)]

− 24
ϵ5

t
5
2

e5itφ(y)a15,5(s, y, ϵ)

+
ϵ

t
7
2

5∑
q=1

eitqφ(y)b17,q(s, y,
1

t
, ϵ)

]
|s=ϵ2 log t,y=x/t.

(2.1.18)

Proof: We apply (2.1.17) to each term in the definition (2.1.13) of u1app. The a1,1-term in
(2.1.13) brings the first term in the right hand side of (2.1.18) and the third one. If we apply
(2.1.17) to the t−

3
2 ϵ3e3iφ(y)a13,3(s, y) term in (2.1.13), we get the second term in the right hand

side of (2.1.18), the b5,3 term (that depends only on a13,3) and contributions to the last sum.
In the same way, applying (2.1.17) to the ϵt−

5
2a15,3e

3iφ-term in (2.1.13), we get the a15,3-term in
(2.1.18) and contributions to the last sum. Finally, the last term of (2.1.13) brings the a15,5-term
in (2.1.18) and contributions to the last sum. 2

Next we compute the nonlinear part in the definition (2.1.15) of r1app.

Lemma 2.1.4 There are continuous functions (s, y) → c3,q(s, y), q = 1, 3 (resp. (s, y, ϵ) →
c5,q(s, y, ϵ), 1 ≤ q ≤ 5, q odd, resp. (s, y, h, ϵ) → c7,q(s, y, h, ϵ), 1 ≤ q ≤ 15, q odd) defined on
[0, 3T∗4 ]×R (resp. [0, 3T∗4 ]×R× [0, 1], resp. [0, 3T∗4 ]×R×]0, 1]× [0, 1]), supported for |y| ≤ 1, with
all their ∂s, ∂y, h∂h-derivatives bounded, such that P (u1app, ∂tu1app, ∂xu1app) may be written under
the form

2Re
[
ϵ3t−

3
2

∑
q=1,3

eitqφ(y)c3,q(s, y)

+ ϵ3t−
5
2

∑
q=1,3

eitqφ(y)c5,q(s, y, ϵ) + ϵ5t−
5
2 eit5φ(y)c5,5(s, y, ϵ)

+ ϵ3t−
7
2

∑
q odd

1≤q≤15

eitqφ(y)c7,q(s, y,
1

t
, ϵ)

]
|s=ϵ2 log t,y=x/t.

(2.1.19)

Moreover, c3,1 is given by

(2.1.20) c3,1(s, y) = i(ϕ(y) + iψ(y))|a1,1(s, y)|2a1,1(s, y)

with ϕ, ψ defined in (1.1.4) and

c3,3 depends only on a1,1

c5,q, q = 1, 3, 5, depends only on a1,1, a
1
3,3

c7,q, q odd, 1 ≤ q ≤ 15, depends only on a1,1, a
1
3,3, a

1
5,q′ , q

′ = 3, 5.

(2.1.21)
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Proof: For the proof, we introduce the notation

U1(t, x) =
ϵ√
t
eitφ(x/t)a1,1

(
ϵ2 log t,

x

t

)
U3(t, x) =

ϵ3

t
3
2

e3itφ(x/t)a13,3
(
ϵ2 log t,

x

t

)
.

(2.1.22)

Then, by (2.1.13), we may write

(2.1.23) P (u1app, ∂tu
1
app, ∂xu

1
app)− P (2Re (U1 + U3, ∂t(U1 + U3), ∂x(U1 + U3)))

as a linear combination of expressions of the form

ϵpt−
ℓ
2 eiqtφ(x/t)c

(
ϵ2 log t,

x

t
, ϵ
)

with p ≥ 3, ℓ ≥ 7, 1 ≤ |q| ≤ 15, q odd and c(s, y, ϵ) smooth on [0, 3T∗4 ]×R× [0, 1], supported for
|y| ≤ 1, i.e. (2.1.23) contributes to the last term in (2.1.19). We are thus reduced to the study
of P (U1 + U3) where

Uj = (Uj + Ūj , ∂t(Uj + Ūj), ∂x(Uj + Ūj)).

By Taylor expansion,

(2.1.24) P (U1 + U3) = P (U1) +DP (U1) · U3

modulo terms that contribute again to the last term in (2.1.19). The last term DP (U1) · U3

may be written as contributions to the t−
5
2 -expression in (2.1.19) with coefficients c5,q satisfying

(2.1.21) and as contributions to the last term in (2.1.19). It remains to study

(2.1.25) P (U1) = P (U1 + Ū1, ∂t(U1 + Ū1), ∂x(U1 + Ū1)).

When computing ∂tU1, ∂xU1, if the derivative does not fall on the exponential, we get an extra
t−1 factor, so that (2.1.25) may be written as new contributions to the last two sums in (2.1.19)
and as the expression

(2.1.26)
ϵ3

t
3
2

P
(
eitφ(y)a1,1(s, y)Ω(y) + e−itφ(y)ā1,1(s, y)Ω(y)

)
with the notation

(2.1.27) Ω(y) = (1, iω0(y), iω1(y)).

Then (2.1.26) provides the t−
3
2 -term in (2.1.19), and to prove (2.1.20) we have to compute

explicitly the eitφ(y)-term in (2.1.26), which gives

c3,1(s, y) = DP (a1,1(s, y)Ω(y)) · ā11(s, y)Ω(y)
= |a1,1(s, y)|2a1,1(s, y)DP (Ω(y)) · Ω(y)

(2.1.28)

since P is homogeneous of degree 3. The explicit expression of c3,1 given by (2.1.20) follows from
the following lemma. 2

Lemma 2.1.5 Let P be the cubic polynomial given by (1.1.2) and let Ω be given by (2.1.27).
Then

(2.1.29) DP (Ω(y)) · Ω(y) = i(ϕ(y) + iψ(y))

with ϕ, ψ defined in (1.1.4). Moreover,

(2.1.30) D2P (Ω(y)) · (Ω(y),Ω(y)) = 2i(ϕ(y) + iψ(y)).
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Proof: Since P is homogeneous of order three, DP (X)X = 3P (X) whence D2P (X)(Y,X) =
2DP (X) · Y , so that (2.1.29) implies (2.1.30). Let us show (2.1.29). Writing (T,Z1, Z2) the
variables of P , we have by (2.1.27)

DP (Ω) · Ω =
∂P

∂T
(1, iω0, iω1)− iω0

∂P

∂Z1
(1, iω0, iω1)− iω1

∂P

∂Z2
(1, iω0, iω1)

= (T∂T − Z1∂Z1 − Z2∂Z2)P (1, iω0, iω1).

(2.1.31)

Write the decomposition (1.1.2) P (T,Z1, Z2) =
∑3

k=0 Pk(T ;Z1, Z2) where Pk is homogeneous of
degree k in (Z1, Z2) and 3− k in T . We get that (2.1.31) is given by

(3P0 − P2)(1, iω0, iω1) + (P1 − 3P3)(1, iω0, iω1)

= (3P0 + P2)(1, ω0, ω1) + i(P1 + 3P3)(1, ω0, ω1).

Going back to the definition (1.1.4) of ϕ, ψ we obtain (2.1.29). 2

Proof of Proposition 2.1.2: By (2.1.14), r1app is the difference of (2.1.18) and (2.1.19). We
choose first a1,1 as the solution to equation (2.1.10). By (2.1.20) this implies that the first term
in the right hand side of (2.1.18) cancels out the c3,1-term in (2.1.19). By (2.1.21), the c3,3-
term in (2.1.19) is now determined, and we may eliminate it from (2.1.19) choosing a13,3(s, y) =
−1

8c3,3(s, y) in (2.1.18). By (2.1.21), the c5,q’s are now determined, as are b5,1 and b5,3 in (2.1.18),
according to the statement of Lemma 2.1.3. The b5,1 contribution to (2.1.18) and the c5,1 one in
(2.1.19) will form part of the c̃5,1-term in (2.1.15). On the other hand, if we set

a15,3 = −1

8
(c5,3ϵ

2 − b5,3)

a15,5 = − 1

24
c5,5,

we cancel out the t−
5
2 -terms in (2.1.18) and (2.1.19).

We are thus left with only the t−
7
2 contributions coming from (2.1.18), (2.1.19), that are all of

the form

(2.1.32) ϵeitqφ(y)t−
7
2 c(s, y,

1

t
, ϵ)|s=ϵ2 log t,y=x/t

for continuous functions on [0, 3Y∗4 ]× R×]0, 1]× [0, 1], supported for |y| ≤ 1, bounded as well as
their ∂s, ∂y, (h∂h)-derivatives. The Sobolev norms of (2.1.32) integrated for t ≥ cϵ−1+θ is thus
O(ϵ3−2θ) which is better than the first inequality (2.1.16). If we make act L± on (2.1.32) before
computing the H1 norm, we lose an extra power of t and get instead after integration a O(ϵ2−θ)
bound that brings the second estimate (2.1.16). This concludes the proof. 2

Next we glue together the function u0 solution to (2.1.3), which is an approximate solution of
(2.1.1) for small times according to Proposition 2.1.1, and the function u1app defined by (2.1.13),
that is also an approximate solution for intermediate times.

Proposition 2.1.6 Let χ0 in C∞(R) be equal to one close to zero. Define for 1 ≤ t ≤ e
3T∗
4ϵ2

(2.1.33) uMapp(t, x) = χ0(ϵ
1−θ(t− 1))u0(t, x) + (1− χ0)(ϵ

1−θ(t− 1))u1app(t, x)

and

(2.1.34) rMapp(t, x) = (∂2t − ∂2x + 1)uMapp − P (uMapp, ∂tu
M
app, ∂xu

M
app).
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One may write

(2.1.35) rMapp(t, x) = 2Re
[ ϵ
t
5
2

eitφ(y)χ1(ϵ
1−θt)c5,1(s, y,

1

t
, ϵ)

]
|s=ϵ2 log t,y=x/t + FM

app(t, x)

where χ1 ∈ C∞(R) is equal to zero close to zero and equal to one outside a neighborhood of
zero, c5,1(s, y, h, ϵ) is a continuous function, bounded as well as its ∂s, ∂y, (h∂h)-derivatives on
[0, 3T∗4 ]× R×]0, 1]× [0, 1], supported for |y| ≤ 1, and where FM

app satisfies

(2.1.36)
∫ exp(3T∗/4ϵ2)

1
∥FM

app(t, ·)∥Hs dt ≤ Csϵ
2−θ

for any s ∈ N and

(2.1.37)
∫ exp(3T∗/4ϵ2)

1
∥L±F

M
app(t, ·)∥H1 dt ≤ Cϵ2−θ.

Proof: We decompose rMapp using notation (2.1.4), (2.1.14) as

(2.1.38) rMapp = rMapp,L + rMapp,NL + χ0(ϵ
1−θ(t− 1))r0 + (1− χ0)(ϵ

1−θ(t− 1))r1app

with

rMapp,L = (∂2t − ∂2x + 1)uMapp − χ0(ϵ
1−θ(t− 1))(∂2t − ∂2x + 1)u0

−(1− χ0)(ϵ
1−θ(t− 1))(∂2t − ∂2x + 1)u1app

(2.1.39)

and

rMapp,NL = −P (uMapp, ∂tuMapp, ∂xuMapp) + χ0(ϵ
1−θ(t− 1))P (u0, ∂tu0, ∂xu0)

+(1− χ0)(ϵ
1−θ(t− 1))P (u1app, ∂tu

1
app, ∂xu

1
app).

(2.1.40)

Let us study successively (2.1.39) and (2.1.40).
• Study of (2.1.39)
By the definition (2.1.33) of uMapp, we may write (2.1.39) as

(2.1.41) 2ϵ1−θχ′
0(ϵ

1−θ(t− 1))(∂tu0 − ∂tu
1
app) + ϵ2−2θχ′′

0(ϵ
1−θ(t− 1))(u0 − u1app).

By (2.1.7) and (2.1.13), we have

u0(t, x)− u1app(t, x) = 2Re
[ ϵ√

t
eitφ(y)(a01(y)− a1,1(s, y))

+
ϵ

t
3
2

eitφ(y)c3,1(y,
1

t
)

+
ϵ3

t
3
2

e3itφ(y)c3,3(s, y)

+
ϵ

t
5
2

e3itφ(y)c5,3(s, y, ϵ)

+
ϵ

t
5
2

e5itφ(y)c5,5(s, y, ϵ)
]
|s=ϵ2 log t,y=x/t

+ ϵe(t, x)

(2.1.42)

where the functions cℓ,q(s, y, h, ϵ) are continuous functions of their arguments s ∈ [0, 3T∗4 ], y ∈ R,
h ∈]0, 1], ϵ ∈ [0, 1], supported for |y| ≤ 1, bounded as well as their ∂s, ∂y, (h∂h)-derivatives on
their domain of definition, and where e(t, x) is in S([1,+∞[×R).
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Denote by χ̃0 some function in C∞
0 (]0,+∞[). If we take eventually a time derivative of the second

term in the right hand side of (2.1.42) and multiply it by ϵ1−θχ̃0(ϵ
1−θ(t−1)) = t−1tϵ1−θχ̃0(ϵ

1−θ(t−
1)) we get an expression of the form of the first term in the right hand side of (2.1.35). This
shows that the contribution of the c3,1-term in (2.1.42) to (2.1.41) has such a form.
We need thus to prove that all other terms in (2.1.42) give, when plugged in (2.1.41), contributions
to FM

app in (2.1.35). By (2.1.10), a1,1(0, y) = a01(y), so that the product of the first term in the
right hand side of (2.1.42) by ϵ1−θχ̃0(ϵ

1−θ(t− 1)) is bounded in modulus by

(2.1.43)
ϵ

t
5
2

ϵ1−θt|χ̃0(ϵ
1−θ(t− 1))|ϵ2t log t1|x/t|≤1.

Similar or better estimates hold if we take ∂t or ∂x-derivatives, so that the contribution of the
first term in the right hand side of (2.1.42) to (2.1.41) satisfies, as well as its derivatives, bound
(2.1.43). As the L2(dx)-norm of (2.1.43) is O(ϵ2+θ−0t−21t∼ϵ−1+θ), we see that a bound of the
form (2.1.36) holds. If we make act L± on the corresponding term before computing a H1 norm,
we get a bound in O(ϵ2+θ−0t−11t∼ϵ−1+θ) which implies that (2.1.37) holds as well.
We are thus reduced to showing that the third to the last terms in the right hand side of (2.1.42)
give also contributions satisfying (2.1.36), (2.1.37) when plugged inside (2.1.41). This is evident
for the last term. The other ones bring to (2.1.41) expressions of the form

(2.1.44)
ϵa

t
ℓ
2
+1
χ̃(ϵ1−θ(t− 1))eiqtφ(y)c(s, y, ϵ)|s=ϵ2 log t,y=x/t

with either a = 3, ℓ = 3 or a = 1, ℓ ≥ 5. The L2 norm of (2.1.44) and its derivatives is
O(ϵat−

ℓ+1
2 1t∼ϵ−1+θ) whose integral largely satisfies (2.1.36). To obtain (2.1.37), one has to make

act L± on (2.1.44), which makes appear one factor t, so that the H1 norm is O(ϵat−
ℓ−1
2 1t∼ϵ−1+θ).

Because of the conditions on a, ℓ one gets a O(ϵ2−θ) bound as in (2.1.37). This concludes the
estimate of (2.1.39).
• Estimate of (2.1.40)
From the definition (2.1.33) of uMapp, we may write (2.1.40) as the sum of expressions

(2.1.45) P (uMapp, χ0∂tu0 + (1− χ0)∂tu
1
app, ∂xu

M
app)− P (uMapp, ∂t(χ0u0 + (1− χ0)u

1
app), ∂xu

M
app)

and of

χ0P (u0, ∂tu0, ∂xu0) + (1− χ0)P (u
1
app, ∂tu

1
app, ∂xu

1
app)

− P (χ0u0 + (1− χ0)u
1
app, χ0∂tu0 + (1− χ0)∂tu

1
app, χ0∂xu0 + (1− χ0)∂xu

1
app).

(2.1.46)

Difference (2.1.45) may be bounded point-wise by

(2.1.47) Cϵ1−θ|χ′
0(ϵ

1−θ(t− 1))||u0 − u1app|
( ∑
α+β≤1

(
|∂αt ∂βxu1app|+ |∂αt ∂βxu0|

))2
.

The difference u0 − u1app is given by (2.1.42), so that its modulus is bounded from above on
the support of χ′

0(ϵ
1−θ(t − 1)) by Cϵt−

3
2 (using that the first term in (2.1.42) is O

(
ϵ√
t
s
)

with

s = ϵ2 log t = O
(
1
t

)
if t ∼ ϵ−1+θ). In addition, u1app, u0 are O(ϵt−

1
2 ), as well as their derivatives.

Then (2.1.47) is bounded from above by

(2.1.48) Cϵ4−θ|χ′(ϵ1−θ(t− 1))|t−
5
2 (1|x|≤t +O(⟨x⟩−N )).

A similar bound holds for the derivatives of (2.1.45), so that (2.1.36) is largely satisfied. To get
(2.1.37), one has to bound the L2 norm of (2.1.48) multiplied by t, so that the conclusion follows
as well.
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It remains to study (2.1.46), that may be written as

(2.1.49) χ0(1− χ0)M(u0, ∂tu0, ∂xu0, u
1
app, ∂tu

1
app, ∂xu

1
app)

for some cubic expression M . Since by (2.1.7), (2.1.13), u0, u1app and their derivatives are
O(ϵt−

1
2 1|x|≤t) + O(ϵt−N ⟨x⟩−N ), we get that the Sobolev norm of (2.1.49) is O(ϵ3t−11t∼ϵ−1+θ),

which brings an estimate of the form (2.1.36). In the same way, the integrand in (2.1.37) is
O(ϵ31t∼ϵ−1+θ) which gives a O(ϵ2+θ) bound for the integral.
This concludes the proof, since we have shown that (2.1.39) may be written as a contribution to
the c5,1 term in (2.1.35) and as a remainder that may be integrated to FM

app, since (2.1.40) is also
of the form FM

app and since the remaining terms χ0r0 + (1 − χ0)r
1
app in (2.1.38) are of the form

of the right hand side of (2.1.35) by Proposition 2.1.1 and (2.1.15). 2

2.2 Construction for large time

Our next goal is to extend the approximate solution that has been constructed up to time e
3T∗
4ϵ2

in order to almost reach the blow-up time e
T∗
ϵ2 . At this time, the main part of the profile (2.1.13)

blows-up and we introduce a notation for spaces describing the solution close to the blow-up
time.

Definition 2.2.1 Let m ∈ R, y0 be a point in ] − 1, 1[ and κ0 ∈ N∗. We denote by Σm the
space of continuous functions (s, y, h, ϵ) → a(s, y, h, ϵ) defined on [0, T∗[×R×]0, 1] × [0, 1], with
values in C, smooth in (s, y, h), supported for |y| ≤ 1, that satisfy for any integers α, β, ζ,N , any
(s, y, h, ϵ) in the domain of definition, estimates

(2.2.1) |∂αs ∂βy (h∂h)ζa(s, y, h, ϵ)| ≤ Cα,β,ζ,N (T∗ − s+ |y − y0|2κ0)
m−α− β

2κ0 (1− |y|)N .

In particular, Σm is a P-module (for P defined after Proposition 2.1.2). Moreover, ∂αs ∂
β
y a belongs

to Σ
m−α− β

2κ0 ⊂ Σm−α−β. When a does not depend on one of the variables h or ϵ, we remove it
from notation.

Example: Consider the function a1,1(s, y) defined in (2.1.12) with a01 smooth on R, supported
for |y| ≤ 1. Then a1,1 is smooth on [0, T∗]×R− {(T∗, y0)} because of (1.2.2), (1.2.3). Moreover,
for y close to y0, (1.2.3) implies that Γ(y)ϕ(y) = 1

T∗
− (y − y0)

2κ0Θ(y) for some smooth positive
function Θ, so that we get estimates of the form (2.2.1) with m = −1

2 i.e. a1,1 belongs to Σ− 1
2 .

Our goal is to prove the following proposition:

Proposition 2.2.2 Let δ > 0 be a small number, N ∈ N. One may construct for all odd integers
q, ℓ satisfying 1 ≤ q ≤ ℓ ≤ N elements aℓ,q of Σ− ℓ

2
−δ(ℓ−1) with a1,1 given by (2.1.12) so that, if

we define for t ∈ [e
T∗
2ϵ2 , e

T∗
ϵ2 [, x ∈ R

u2app(t, x) = 2Re
[ N∑
ℓ=1
ℓ odd

ϵ2−ℓt−
ℓ
2 eitφ(y)aℓ,1(s, y, ϵ)

+

N∑
ℓ=3
ℓ odd

∑
3≤q≤ℓ
q odd

ϵ2q−ℓt−
ℓ
2 eitqφ(y)aℓ,q(s, y, ϵ)

]
|s=ϵ2 log t,y=x/t

(2.2.2)

then

(2.2.3) r2app = (∂2t − ∂2x + 1)u2app − P (u2app, ∂tu
2
app, ∂xu

2
app)
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may be written as the sum of the non-characteristic expression

(2.2.4) 2Re
[ 3N∑
ℓ=N+2
ℓ odd

∑
3≤q≤ℓ
q odd

ϵ2q−ℓt−
ℓ
2 eitqφ(y)dℓ,q(s, y, ϵ)

]
|s=ϵ2 log t,y=x/t

with for 3 ≤ q ≤ ℓ

(2.2.5) dℓ,q ∈ Σ− ℓ
2
−δ(ℓ−3)

and of a characteristic expression

(2.2.6) 2Re
3N∑

ℓ=N+4
ℓ odd

ϵ6−ℓt−
ℓ
2 eitφ(y)dℓ,1(s, y, ϵ)|s=ϵ2 log t,y=x/t

with

(2.2.7) dℓ,1 ∈ Σ− ℓ
2
−δ(ℓ−3).

Before proving the proposition, we establish several lemmas.

Lemma 2.2.3 Assume we are given N an odd integer and for any odd integers ℓ, q satisfying
1 ≤ q ≤ ℓ ≤ N continuous functions (s, y, ϵ) → aℓ,q(s, y, ϵ) on [0, T∗[×R × [0, 1], smooth in
(s, y), supported for |y| ≤ 1. Let P0 be the ring of functions (y, ϵ) → γ(y, ϵ) continuous on
] − 1, 1[×[0, 1], that are smooth in y and have at most algebraic growth, as well as their ∂y-
derivatives when y2 → 1 (uniformly in ϵ). For each q, ℓ as above, denote by Cℓ,q the P0-module
generated by all cubic expressions of the form

(2.2.8)
3∏
j=1

∂
αj
s ∂

βj
y aℓj ,qj (s, y, ϵ)

where ℓj ∈ N, qj ∈ Z are odd, αj , βj ∈ N, aℓj ,−qj = āℓj ,qj , and where the following inequalities
hold true:

(2.2.9)
3∑
j=1

(ℓj + 2αj + 2βj) ≤ ℓ, q = |q1 + q2 + q3|.

Introduce

(2.2.10) U(t, x) =

N∑
ℓ=1
ℓ odd

∑
1≤q≤ℓ
q odd

ϵ2q−ℓt−
ℓ
2 eitqφ(y)aℓ,q(s, y, ϵ)|s=ϵ2 log t,y=x/t.

Then we may write

P (2Re (U, ∂tU, ∂xU)) = 2Re
[ 3N∑
ℓ=3
ℓ odd

∑
3≤q≤ℓ
q odd

ϵ2q−ℓt−
ℓ
2 eitqφ(y)cℓ,q(s, y, ϵ)

+

3N∑
ℓ=3
ℓ odd

ϵ6−ℓt−
ℓ
2 eitφ(y)cℓ,1(s, y, ϵ)

]
|s=ϵ2 log t,y=x/t

(2.2.11)
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where cℓ,q belongs to Cℓ,q. Moreover, for 3 ≤ q ≤ ℓ,

(2.2.12) cℓ,q depends only on aℓ′,q′ , 1 ≤ q′ ≤ ℓ′ ≤ ℓ− 2.

In addition, c3,1 is given explicitly by

(2.2.13) c3,1(s, y) = i(ϕ(y) + iψ(y))|a1,1|2a1,1(s, y)

and for ℓ ≥ 5, one may decompose

(2.2.14) cℓ,1(s, y, ϵ) = c′ℓ,1(s, y, ϵ) + c′′ℓ,1(s, y, ϵ)

where c′ℓ,1 is given explicitly by

(2.2.15) c′ℓ,1(s, y, ϵ) = 2i(ϕ(y) + iψ(y))(|a1,1|2aℓ−2,1 +
1

2
a21,1āℓ−2,1)(s, y, ϵ)

and

c′′ℓ,1 depends only on aℓ′,q′ for 1 ≤ q′ ≤ ℓ′ ≤ ℓ− 4

or on aℓ−2,q′ , 3 ≤ q′ ≤ ℓ− 2 and a1,1.
(2.2.16)

Proof: We notice first that (2.2.9) implies that

(2.2.17)
3∑
j=1

(2|qj | − ℓj) ≥ 2q − ℓ

and that for terms (2.2.8) that are characteristic, i.e. such that q = |q1 + q2 + q3| = 1, we have
|q1|+ |q2|+ |q3| − q ≥ 2, so that

(2.2.18)
3∑
j=1

(2|qj | − ℓj) ≥ 2|q|+ 4− ℓ ≥ 6− ℓ.

Let us compute (2.2.11). From (2.2.10), and the expressions that may be obtained for ∂tU, ∂xU
from that formula, we see that the t−

ℓ
2 terms in (2.2.11) are given by the product of e±iqtφ(x/t)

(q ∈ N, q odd), of an element of Cℓ,q and of a power of ϵ of the form

(2.2.19) ϵ
∑3
j=1(2|qj |−ℓj)+a

for some a ≥ 0. In the non-characteristic case q ̸= 1, it follows from (2.2.17) that (2.2.19) is
O(ϵ2q−ℓ) and in the characteristic case, (2.2.19) will be O(ϵ6−ℓ) by (2.2.18). We thus obtain the
structure indicated in (2.2.11). Let us check properties (2.2.12) to (2.2.16).
Since in (2.2.9) all ℓj are larger or equal to one, and cℓ,q is given by a cubic expression of the
form (2.2.8), (2.2.12) holds necessarily.
Let us consider now specifically the characteristic terms cℓ,1 in (2.2.11) with ℓ ≥ 5. These terms
are given by (2.2.8) with indices satisfying (2.2.9). In this property, either one ℓj is equal to
ℓ − 2 and then the other ones are equal to one and αj = βj = 0 for all j, or all ℓj are smaller
or equal to ℓ − 4 (recall that they are odd). This last case corresponds to contributions c′′ℓ,1
satisfying the first alternative in (2.2.16). On the other hand, if one ℓj is equal to ℓ − 2, say
ℓ3 = ℓ− 2, then ℓ1 = ℓ2 = 1. If the q3 associated to ℓ3 satisfies |q3| ≥ 3, we get a contribution to
c′′ℓ,1 corresponding to the second alternative in (2.2.16). We are thus left with terms of the form
(2.2.8) with

(2.2.20) αj = βj = 0, ℓ3 = ℓ− 2, |q3| = 1, ℓ1 = ℓ2 = 1, |q1 + q2 + q3| = 1.
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These terms give c′ℓ,1 in (2.2.14) and have to be computed explicitly. Notice also that in the case
ℓ = 3, c3,1 is itself of that form. Moreover, we have also |qj | ≤ ℓj = 1, j = 1, 2 so that we see
that we have to compute those terms of (2.2.11) that oscillate on the phases ±tφ(y) and that
come from the contribution to U given by

(2.2.21) U ′(t, x) =
N∑
ℓ′=1

ϵ2−ℓ
′
t−

ℓ′
2 eitφ(y)aℓ′,1(s, y)|s=ϵ2 log t,y=x/t.

Denote U ′
ℓ′ the general term of that sum and set

(2.2.22) U ′
ℓ′ = (U ′

ℓ′ + Ū ′
ℓ′ , ∂t(U

′
ℓ′ + Ū ′

ℓ′), ∂x(U
′
ℓ′ + Ū ′

ℓ′))

We thus have to compute the contribution to (2.2.11) given by those terms in

(2.2.23) P
( N∑
ℓ′=1
ℓ′ odd

(U ′
ℓ′ + Ū ′

ℓ′)
)

that oscillate along the phases e±itφ(x/t) and that come from the terms (2.2.22) where ∂t and ∂x
act on the oscillatory factors coming from (2.2.21) (since in (2.2.20), αj = βj = 0 for any j).
Using notation Ω(y) = (1, iω0(y), iω1(y)) we see that we may reduce (2.2.23) to the expression

(2.2.24) P
(
2Re

[
Ω(y)eitφ(y)

N∑
ℓ′=1
ℓ′ odd

ϵ2−ℓ
′
t−

ℓ′
2 aℓ′,1(s, y)

])
|s=ϵ2 log t,y=x/t.

By (2.2.20) we are only interested in contributions to (2.2.24) that are at least quadratic in
a1,1, ā1,1 i.e. we may reduce (2.2.24) to

ϵ3P
(
2Re

[
Ω(y)eitφ(y)t−

1
2a1,1(s, y)

])
+

N∑
ℓ′=1
ℓ′ odd

ϵ2DP
(
2Re

[
Ω(y)eitφ(y)t−

1
2a1,1(s, y)

])
·
(
2Re

[
Ω(y)eitφ(y)t−

ℓ′
2 aℓ′,1(s, y)ϵ

2−ℓ′])|s=ϵ2 log t,y=x/t.
(2.2.25)

The first term in (2.2.25) has been already computed in (2.1.26), (2.1.28) and brings c3,1 given
by (2.2.13). The term in t−

ℓ
2 eitφ(y) coming from the sum in (2.2.25) is obtained when ℓ′ = ℓ− 2

and is equal to the eitφ(y)-term in

ϵ6−ℓt−
ℓ
2DP (Ωeitφa1,1 + e−itφΩ̄ā1,1) · (Ωeitφaℓ−2,1 + e−itφΩ̄āℓ−2,1).

Taylor expanding this expression, we see that we have to consider

ϵ6−ℓt−
ℓ
2 eitφ[a21,1āℓ−2,1DP (Ω) · Ω̄ + |a1,1|2aℓ−2,1D

2P (Ω) · (Ω̄,Ω)].

By (2.1.29), (2.1.30), this gives (2.2.15) and concludes the proof of the lemma. 2

We apply the preceding lemma to compute P (u2app, ∂tu2app, ∂xu2app).
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Corollary 2.2.4 Assume that u2app is given by (2.2.2). Then

P (u2app, ∂tu
2
app, ∂xu

2
app) = 2Re

[ 3N∑
ℓ=3
ℓ odd

ϵ6−ℓt−
ℓ
2 eitφ(y)cℓ,1(s, y, ϵ)

+
3N∑
ℓ=3
q odd

ℓ∑
q=3
ℓ odd

ϵ2q−ℓt−
ℓ
2 eitqφ(y)cℓ,q(s, y, ϵ)

]
|s=ϵ2 log t,y=x/t

(2.2.26)

where cℓ,q is an element of Σ− ℓ
2
−δ(ℓ−1)+2δ which, for q ≥ 3, depends only on aℓ′,q′ , 1 ≤ q′ ≤

ℓ′ ≤ ℓ− 2, where c3,1 is given by (2.2.13) and for ℓ ≥ 5, cℓ,1 may be decomposed under the form
(2.2.14) with (2.2.15) and (2.2.16) holding true.

Proof: The left hand side of (2.2.26) is (2.2.11) so that we obtain expression (2.2.26). The
coefficients cℓ,q belong to Cℓ,q i.e. are given (up to P0-multiplicative factors) by expressions of the

form (2.2.8) with indices satisfying (2.2.9). Since aℓj ,qj belongs to Σ−
ℓj
2
−(ℓj−1)δ, it follows from

the definition of these classes and from (2.2.9) that cℓ,q is in Σ− ℓ
2
−δ(ℓ−1)+2δ. The other assertions

of the corollary follow from (2.2.12) to (2.2.16). 2

In order to prove Proposition 2.2.2, we also need the following result.

Lemma 2.2.5 Let y → Θ(y) be a complex valued smooth function defined on ] − 1, 1[, with at
most algebraic growth when |y| → 1− as well as its derivatives. Let a(s, y) be an element of Σ− 1

2 .
Assume that there is an open neighborhood V of y0 in ]− 1, 1[ and c > 0 such that for any y in
V , any s ∈ [0, T∗[,

(2.2.27) |ReΘ(y)| ≥ c

(2.2.28) |a(s, y)| ≥ c(T∗ − s+ |y − y0|2κ0)−
1
2

and that a solves the ODE ∂sa(s, y) = Θ(y)|a(s, y)|2a(s, y). Let ℓ be an odd integer, ℓ ≥ 5 and
let r be an element of Σ− ℓ

2
−δ(ℓ−3). Let (s, y) → b(s, y) be the solution of

∂sb(s, y) = Θ(y)(2|a(s, y)|2b(s, y) + a(s, y)2b(s, y)) + r(s, y)

b(0, y) = 0.
(2.2.29)

Then b belongs to Σ− ℓ−2
2

−δ(ℓ−3).

Proof: We notice first that if y stays outside V , then by definition of Σ− 1
2 , the coefficients in

the right hand side of (2.2.29) are smooth functions on [0, T∗]× (R− V ), so that the same holds
true for the solution b, which is moreover supported for |y| ≤ 1.
We may thus assume that y stays close to y0, so that (2.2.27), (2.2.28) hold true. We introduce
B(s, y) =

[
b(s,y)

b(s,y)

]
that solves the system

(2.2.30) ∂sB(s, y) =M(s, y)B(s, y) +R(s, y)

with

R(s, y) =

[
r(s, y)

r(s, y)

]
,M(s, y) =

[
2Θ|a|2 Θa2

Θ̄ā2 2Θ̄|a|2.

]
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Define the two functions

(2.2.31) Φ1(s, y) =

[
ia(s, y)

−ia(s, y)

]
,Φ2(s, y) =

[
∂sa(s, y)

∂sa(s, y)

]
= |a(s, y)|2

[
Θa
Θ̄ā

]
.

Then Φj solves the homogeneous equation ∂sΦj = M(s, y)Φj and the wronskian w(s, y) of
Φ1(s, y), Φ2(s, y) is equal to 2iReΘ(y)|a(s, y)|4, so satisfies for y ∈ V , |w(s, y)| ≥ cA(s, y)−4

according to (2.2.27), (2.2.28) if we set

(2.2.32) A(s, y) = (T∗ − s+ |y − y0|2κ0)
1
2 .

The fact that a ∈ Σ− 1
2 and that (2.2.27), (2.2.28) hold for y close to y0 imply that the wronskian

matrix W (s, y) and its inverse W (s′, y) satisfy

W (s, y) =

[
O(A(s, y)−1) O(A(s, y)−3)
O(A(s, y)−1) O(A(s, y)−3)

]
,W (s′, y)−1 =

[
O(A(s′, y)) O(A(s′, y))
O(A(s′, y)3) O(A(s′, y)3)

]
.

Since s→ A(s, y) is decreasing, we conclude that for 0 ≤ s′ ≤ s

(2.2.33) W (s, y)W (s′, y)−1 = O
((A(s′, y)

A(s, y)

)3)
.

Writing the solution to (2.2.30) with zero initial condition at s = 0 under the form

(2.2.34)
∫ s

0
W (s, y)W (s′, y)−1R(s′, y) ds′

and using that r ∈ Σ− ℓ
2
−δ(ℓ−1)+2δ, we get from (2.2.33), (2.2.34)

|B(s, y)| ≤ C

∫ s

0
A(s′, y)3−ℓ−2δ(ℓ−1)+4δ ds′A(s, y)−3.

Since ℓ ≥ 5 and δ > 0, this is O(A(s, y)2−ℓ−2δ(ℓ−3)), i.e. B satisfies (2.2.1) with α = β = 0,
m = − ℓ−2

2 − δ(ℓ− 3) for y close to y0. If we take ∂y or ∂s derivatives in (2.2.34), we get in the
same way the estimates (2.2.1) for positive α or β. This concludes the proof. 2

Proof of Proposition 2.2.2: We shall compute first the action of ∂2t − ∂2x + 1 on u2app given by
(2.2.2) and use the fact that the last term in the expression (2.2.3) of r2app has been computed
in Corollary 2.2.4. We shall then construct the aℓ,q’s recursively in order to reduce r2app to an
expression of the form (2.2.4).
• Linear term in (2.2.3)
We apply (2.1.17) to the general term of the sums in (2.2.2). We get on the one hand the
characteristic contribution

2Re
[
2i

N+2∑
ℓ=3
ℓ odd

ϵ6−ℓt−
ℓ
2 eitφ(y)ω0(y)∂saℓ−2,1(s, y, ϵ)

]
|s=ϵ2 log t,y=x/t

+2Re
[N+4∑
ℓ=5
ℓ odd

ϵ6−ℓt−
ℓ
2 eitφ(y)R2(aℓ−4,1)(s, y, ϵ)

]
|s=ϵ2 log t,y=x/t

(2.2.35)

where R2(aℓ−4,1) belongs to the P-module generated by ∂αs ∂
β
y aℓ−4,1 for α+ β ≤ 2, so that

(2.2.36) R2(aℓ−4,1) ∈ Σ− ℓ
2
−δ(ℓ−5)
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by the definition of this class. On the other hand, the second sum in (2.2.2) provides to the
linear term in (2.2.3) the non-characteristic contribution

2Re
[ N∑
ℓ=3
ℓ odd

∑
3≤q≤ℓ
q odd

ϵ2q−ℓt−
ℓ
2 (1− q2)eitqφ(y)aℓ,q(s, y, ϵ)

]
|s=ϵ2 log t,y=x/t

+2Re
[N+2∑
ℓ=5
ℓ odd

∑
3≤q≤ℓ−2
q odd

ϵ2q+2−ℓt−
ℓ
2 eitqφ(y)R1(aℓ−2,q)

]
|s=ϵ2 log t,y=x/t

+2Re
[N+4∑
ℓ=7
ℓ odd

∑
3≤q≤ℓ−4
q odd

ϵ2q+4−ℓt−
ℓ
2 eitqφ(y)R2(aℓ−4,q)

]
|s=ϵ2 log t,y=x/t

(2.2.37)

whereR1(aℓ−2,q) (resp.R2(aℓ−4,q)) is in the P-module generated by ∂αs ∂
β
y aℓ−2,q (resp. ∂αs ∂

β
y aℓ−4,q)

for α + β ≤ 1 (resp. α + β ≤ 2). Thus, R1(aℓ−2,q) (resp. R2(aℓ−4,q)) is in Σ− ℓ
2
−δ(ℓ−3) (resp.

Σ− ℓ
2
−δ(ℓ−5)). It follows from (2.2.35) and (2.2.37) that

(∂2t − ∂2x + 1)u2app = 2Re
[
2i

N+2∑
ℓ=3
ℓ odd

ϵ6−ℓt−
ℓ
2 eitφ(y)ω0(y)∂saℓ−2,1(s, y, ϵ)

+

N∑
ℓ=3
ℓ odd

∑
3≤q≤ℓ
q odd

ϵ2q−ℓt−
ℓ
2 (1− q2)eitqφ(y)aℓ,q(s, y, ϵ)

+
N+4∑
ℓ=5
ℓ odd

ϵ6−ℓt−
ℓ
2 eitφ(y)bℓ,1(s, y, ϵ)

+
N+4∑
ℓ=5
ℓ odd

∑
3≤q≤ℓ−2
q odd

ϵ2q−ℓt−
ℓ
2 eitqφ(y)bℓ,q(s, y, ϵ)

]
|s=ϵ2 log t,y=x/t

(2.2.38)

where for 5 ≤ ℓ ≤ N + 4

bℓ,1 ∈ Σ− ℓ
2
−δ(ℓ−5) and depends only on aℓ−4,1

bℓ,q ∈ Σ− ℓ
2
−δ(ℓ−3) and depends only on aℓ′,q, ℓ′ ≤ min(ℓ− 2, N) when q ≥ 3.

(2.2.39)

• Nonlinear term in (2.2.3)
This term is given by formula (2.2.26)
• Determination of the aℓ,q’s
To prove Proposition 2.2.2, we have to choose recursively the aℓ,q’s in order to eliminate most
terms in the difference (2.2.2) between (2.2.38) and (2.2.26), to be left only with terms of the
form (2.2.4) or (2.2.6). We determine first the characteristic coefficient a1,1. Equating the
t−

3
2 eitφ(y)-terms in (2.2.26) and (2.2.38), and using expression (2.2.13) for c3,1, we obtain

ω0(y)∂sa1,1 =
1

2
(ϕ(y) + iψ(y))|a1,1(s, y)|2a1,1(s, y).

If we take for a1,1 the function (2.1.12), this equality is satisfied by (2.1.10), and the explicit
formula (2.1.12) shows that a1,1 belongs to Σ− 1

2 .
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We determine next coefficient a3,3, equating the t−
3
2 e3itφ(y) coefficients in (2.2.26) and (2.2.38).

We get −8a3,3 = c3,3 where c3,3 is determined by a1,1 according to Corollary 2.2.4 and belongs
to Σ− 3

2 ⊂ Σ− 3
2
−2δ.

Assume by induction that we have determined for some ℓ ≥ 5

(2.2.40) aℓ′,q′ , 1 ≤ q′ ≤ ℓ′ ≤ ℓ− 4 and aℓ−2,q′ , 3 ≤ q′ ≤ ℓ− 2.

Let us determine aℓ−2,1. Equating the t−
ℓ
2 eitφ(y)-terms in (2.2.26) and (2.2.38), we get using also

expressions (2.2.14) to (2.2.16)

(2.2.41) ∂saℓ−2,1(s, y) = Θ(y)[2|a1,1|2aℓ−2,1 + a21,1āℓ−2,1](s, y) + rℓ−2,1(s, y)

where Θ(y) = 1
2ω0(y)

−1(ϕ(y) + iψ(y)) and

(2.2.42) rℓ−2(s, y) = − i

2ω0(y)
(c′′ℓ,1(s, y)− bℓ,1(s, y)).

By Corollary 2.2.4, and decompositions (2.2.14)-(2.2.16), c′′ℓ,1 is in Σ− ℓ
2
−δ(ℓ−3) and depends only

on aℓ′,q′ for 1 ≤ q′ ≤ ℓ′ ≤ ℓ− 4 and on aℓ−2,q′ , 3 ≤ q′ ≤ ℓ− 2. These coefficients are determined
by assumption (2.2.40). Moreover, by (2.2.39), bℓ,1 belongs to Σ− ℓ

2
−δ(ℓ−5) and depends only on

coefficients already determined. It follows that rℓ−2,1 is known and belongs to Σ− ℓ
2
−δ(ℓ−3). If we

supplement (2.2.41) by the initial condition aℓ−2,1(0, y) = 0, we may thus apply Lemma 2.2.5
with a ≡ a1,1 to conclude that aℓ−2,1 belongs to Σ− ℓ−2

2
−δ(ℓ−3) as wanted in the statement of the

proposition, if we check that assumptions (2.2.27), (2.2.28) hold. The first one, that is equivalent
to 1

2ω0(y0)
−1ϕ(y0) ̸= 0, follows from conditions (1.2.2), (1.2.3). The second one is implied by the

explicit expression (2.1.12) of a1,1 and the fact that by (2.1.8), (1.2.1) and (1.2.2), a01(y0) does
not vanish.
We have thus determined aℓ′,q′ for 1 ≤ q′ ≤ ℓ′ ≤ ℓ − 2. To obtain (2.2.40) with ℓ replaced by
ℓ + 2, we are left with finding aℓ,q for 3 ≤ q ≤ ℓ. Equating terms in t−

ℓ
2 eitqφ(y) in (2.2.26) and

(2.2.38), we obtain an equation

(2.2.43) (1− q2)aℓ,q = cℓ,q − bℓ,q ∈ Σ− ℓ
2
−δ(ℓ−3) ⊂ Σ− ℓ

2
−δ(ℓ−1)

where cℓ,q, bℓ,q depend only on aℓ′,q′ with 1 ≤ q′ ≤ ℓ− 2 by (2.2.39) and Corollary 2.2.4. Conse-
quently, the right hand side of (2.2.43) is already determined , so that we have defined aℓ−2,q for
3 ≤ q ≤ ℓ. We have finally recovered (2.2.40) at rank ℓ+ 2.
Consequently, we have eliminated all characteristic terms in (2.2.38) that are O(t−

ℓ
2 ) for ℓ ≤ N+2

and all non-characteristic terms that are O(t−
ℓ
2 ) for ℓ ≤ N . We are thus left with the terms in

the third (resp. fourth) sum in (2.2.38) corresponding to ℓ = N + 4 (resp. ℓ = N + 2 or N + 4)
and with the terms in the first (resp. second) sum in (2.2.26) corresponding to N + 4 ≤ ℓ ≤ 3N
(resp. N +2 ≤ ℓ ≤ 3N). These terms contribute to (2.2.4) and (2.2.6). This concludes the proof.

2

We construct now an approximate solution to equation (1.1.1) defied for t ∈ [1, e
T∗
ϵ2 [, gluing

together the approximate solution for moderate times uMapp defined in Proposition 2.1.6 and the
approximate solution u2app of Proposition 2.2.2.

Corollary 2.2.6 Let χ̃0 be in C∞
0 ([0, 3T∗4 [) be equal to one on [0, T∗2 ]. Define for t ∈ [1, e

T∗
ϵ2 [

(2.2.44) uapp(t, x) = χ̃0(ϵ
2 log t)uMapp(t, x) + (1− χ̃0)(ϵ

2 log t)u2app(t, x).
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Then

(2.2.45) rapp(t, x) = (∂2t − ∂2x + 1)uapp − P (uapp, ∂tuapp, ∂xuapp)

may be written as a sum

(2.2.46) 2Re
[ ϵ
t
5
2

eitφ(y)χ1(ϵ
1−θt)c5,1(s, y,

1

t
, ϵ)

]
|s=ϵ2 log t,y=x/t

+ (1− χ̃0)(ϵ
2 log t)r2app(t, x) + Fapp(t, x)

where χ1 is smooth, equal to zero close to zero and to 1 outside a neighborhood of zero, where
c5,1(s, y, h, ϵ) is a continuous function on [0,+∞[×R×]0, 1] × [0, 1], supported for s ≤ 3T∗

4 and
|y| ≤ 1, bounded as well as all its ∂s, ∂y, h∂h derivatives on that domain, where r2app given by

(2.2.3) is the sum of (2.2.4) and (2.2.6) and where Fapp is compactly supported for t ≤ e
3T∗
4ϵ2 and

satisfies ∫ exp(T∗/ϵ2)

1
∥Fapp(τ, ·)∥Hs dτ ≤ Cϵ2−θ∫ exp(T∗/ϵ2)

1
∥L±Fapp(τ, ·)∥H1 dτ ≤ Cϵ2−θ.

(2.2.47)

Proof: By the definition of uapp and (2.1.34), (2.2.3), we may write

rapp(t, x) = χ̃0(ϵ
2 log t)rMapp(t, x) + (1− χ̃0)(ϵ

2 log t)r2app(t, x)

+ 2
ϵ2

t
χ̃′
0(ϵ

2 log t)∂t(u
M
app − u2app)(t, x)

+
(ϵ4
t2
χ̃′′
0(ϵ

2 log t)− ϵ2

t2
χ̃′
0(ϵ

2 log t)
)
(uMapp − u2app)(t, x)

− P (uapp, ∂tuapp, ∂xuapp) + χ̃0(ϵ
2 log t)P (uMapp, ∂tu

M
app, ∂xu

M
app)

+ (1− χ̃0)(ϵ
2 log t)P (u2app, ∂tu

2
app, ∂xu

2
app)

= I + · · ·+VII.

(2.2.48)

We examine successively terms I to VII.
• Contribution of term I: By Proposition 2.1.6, we get contributions to the first term in
(2.2.46) and to Fapp.
• Contribution of term II: This is the second term in (2.2.46).
• Contribution of terms III + IV: On the support of χ̃′

0(ϵ
2 log t), uMapp coincides with u1app

by (2.1.33), so that we have to estimate u1app − u2app and its time derivative. This difference may
be computed from (2.1.13) and (2.2.2). The t−

1
2 terms cancel out. We are thus reduced to the

following terms:

– Characteristic terms in O(t−
3
2 ) coming from the t−

3
2a3,1 term in (2.2.2): this provides a

contribution to the first term in (2.2.46).

– Non-characteristic terms in O(t−
3
2 ) coming from the a3,3 term in (2.2.2) and the a13,3 term

in (2.1.13): when plugged inside III + IV, these terms give contributions

(2.2.49) Re
[ ϵ5
t
5
2

χ
0
(s)e3itφ(y)ã3,3(s, y,

1

t
, ϵ)

]
|s=ϵ2 log t,y=x/t
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where χ
0
∈ C∞

0 (]0,+∞[) and where ã3,3(s, y, h, ϵ) is continuous on [0,+∞[×R×]0, 1]×[0, 1],
supported for s ≤ 3T∗

4 and |y| ≤ 1, bounded as well as all its ∂s, ∂y, h∂h derivatives on that
domain. The Sobolev norm of (2.2.49) is O(ϵ5t−2) so that the first estimate (2.2.47) largely
holds. If we make act L± on (2.2.49) and bound the H1 norm, we get a O(ϵ5t−1) estimate.
Integrating for 1 ≤ t ≤ e

3T∗
4ϵ2 gives a 0(ϵ3) bound, better than the right hand side of the

second inequality (2.2.47). Thus (2.2.49) may be included in Fapp in (2.2.46).

– Characteristic or non-characteristic terms coming from (2.1.13) or (2.2.2) that are O(t−
5
2 ),

i.e. terms in a15,3, a15,5 in (2.1.13) and aℓ,q, ℓ ≥ 5 in (2.2.2): The contributions of all such
terms to III + IV may be written under the form

(2.2.50) Re
[ϵ6−ℓ
t
ℓ
2

χ
0
(s)eiqtφ(y)ãℓ,q(s, y,

1

t
, ϵ)

]
|s=ϵ2 log t,y=x/t

with ℓ ≥ 7 and ãℓ,q satisfying the same estimates as ã3,3 above. Then the Sobolev norm of
(2.2.50) or its H1 norm after action of L±, integrated for t in the support of χ

0
(ϵ2 log t) is

O(e−c/ϵ
2
), so that (2.2.47) is largely verified and these terms may be included inside Fapp.

• Contributions of V + VI + VII: We write this contribution as the sum of

(2.2.51) P (uapp, χ̃0∂tu
M
app+(1− χ̃0)∂tu

2
app, ∂xuapp)−P (uapp, ∂t(χ̃0u

M
app+(1− χ̃0)u

2
app), ∂xuapp)

and of
χ̃0P (u

M
app, ∂tu

M
app, ∂xu

M
app) + (1− χ̃0)P (u

2
app, ∂tu

2
app, ∂xu

2
app)

− P
(
χ̃0u

M
app + (1− χ̃0)u

2
app, χ̃0∂tu

M
app + (1− χ̃0)∂tu

2
app, χ̃0∂xu

M
app + (1− χ̃0)∂xu

2
app

)
.

(2.2.52)

Consider first (2.2.51). This expression may be bounded point-wise by

(2.2.53)
ϵ2

t
|χ̃′

0(ϵ
2 log t)||uMapp − u2app|

( ∑
α+β≤1

|∂αt ∂βxuMapp|+ |∂αt ∂βxu2app|
)2
.

We have seen in the study of III + IV that the t−
1
2 terms cancel out in uMapp − u2app, so that this

difference is O(ϵ−at−
3
2 ) for some a. The squared factor in (2.2.52) is moreover O(ϵ2/t) so that

we may get for (2.2.53) a bound in O(ϵ−at−
7
2 1|x|≤t). The same holds for derivatives of (2.2.51)

so that, computing its Hs norm or the H1 norm of the action of L± on it, we shall obtain as
at the end of the study of III + IV that the time integral of these quantities is O(e−c/ϵ

2
). Thus

(2.2.51) largely satisfies (2.2.47).
Finally, consider (2.2.52) that may be written −ψ(χ̃0(ϵ

2 log t)) with

ψ(µ) = P (µuMapp + (1− µ)u2app, µ∂tu
M
app + (1− µ)∂tu

2
app, µ∂xu

M
app + (1− µ)∂xu

2
app)

−µP (uMapp, ∂tuMapp, ∂xuMapp)− (1− µ)P (u2app, ∂tu
2
app, ∂xu

2
app).

As ψ(1) = ψ(0) = 0, we have

(2.2.54) |ψ(χ̃0(ϵ
2 log t))| ≤ (1− χ̃0)χ̃0 sup

µ∈[0,1]
|ψ′′(µ)|

≤ C(1− χ̃0)χ̃0

[
|uMapp − u2app|+ |∂t(uMapp − u2app)|+ |∂x(uMapp − u2app)|

]2
×

∑
α+β≤1

(
|∂αt ∂βxuMapp|+ |∂αt ∂βxu2app|

)
.

We have seen in the study of (2.2.51) that uMapp−u2app is O(ϵ−at−
3
2 ), as well as its derivatives, on

the support of (1− χ̃0)χ̃0(ϵ
2 log t). It follows that again (2.2.54) is O(ϵ−at−

7
2 ) and supported for

|x| ≤ t. As the same bound holds for derivatives of (2.2.52), we conclude that this term satisfies
as well (2.2.47). This concludes the proof. 2
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3 Reduction to a system and normal form

In this section, we shall reduce equation (1.1.1) to a first order system. We shall then look for
the solution as the sum of an approximate solution deduced from uapp constructed in section 2
and of a remainder. Finally, in subsection 3.2, we shall perform a normal form procedure in
order to eliminate part of the cubic nonlinearity.

3.1 Reduction to a system

Let us introduce a notation that will be used in the rest of the paper. We shall denote by
M0(ξ1, . . . , ξn) a smooth positive function on Rn, with values in R∗

+, such that M0(ξ1, . . . , ξn) is
equivalent to 1+max2(|ξ1|, . . . , |ξn|), where max2 stands for the second largest among |ξ1|, . . . , |ξn|.
For instance, we may take

(3.1.1) M0(ξ1, . . . , ξn) =
( ∑
α=(α1,...,αn)

|α|=n
max(αj)≤n−1

(ξα)2 + 1
) 1

2
(
1 +

n∑
j=1

ξ2j

)−n−1
2
.

Definition 3.1.1 Let n ∈ N∗, ν ∈ R, κ ∈ R+, β ∈ R+. We denote by Sκ,β(Mν
0 , n) the space of

smooth functions on R × Rn, (x, ξ1, . . . , ξn) → m(x, ξ1, . . . , ξn), with values in C, satisfying for
any α0 ∈ N, α ∈ N∗, N ∈ N estimates

(3.1.2) |∂α0
x ∂αξm(x, ξ1, . . . , ξn)| ≤ Cα0,α,NM0(ξ)

ν+κ(α0+|α|)(1 + βhβ|ξ|)−N .

Remark: Most of the time we shall only need the special case β = 0, so that the last factor
in the right hand side of (3.1.2) disappears. If m is in Sκ,0(M

ν
0 , n) and χ ∈ C∞

0 (Rn), then
m(x, ξ)χ(hβξ) is in Sκ,β(Mν

0 , n) for β > 0.

If m is in Sκ,β(Mν
0 , n) and if u1, . . . , un are in S(Rn), we set

(3.1.3) Op(m)(u1, . . . , un) =
1

(2π)n

∫
eix(ξ1+···+ξn)m(x, ξ1, . . . , ξn)

n∏
j=1

ûj(ξj) dξ1 · · · dξn.

In appendix A.2, we observe that (3.1.3) remains meaningful when uj belongs to Sobolev spaces
of high enough order, so that we may use (3.1.3) for the solution to our problem.
Let u → u(t, x) be defined on [1, T [×R for some T ∈]1, e

T∗
ϵ2 [ with values in R, which is in

C0([1, T [, Hs(R)) ∩ C1([1, T [, Hs−1(R)) for some large enough s, solving equation (1.1.1). We
define, with the notation p(Dx) =

√
1 +D2

x,

(3.1.4) u± = (Dt ± p(Dx))u

so that

(3.1.5) u− = −ū+, u =
1

2
p(Dx)

−1(u+ − u−), ∂tu =
i

2
(u+ + u−).

If I = (i1, i2, i3) is an element of {−,+}3, we set uI = (ui1 , ui2 , ui3). If we express u and its
derivatives from (3.1.5) in (1.1.2), we may write

(3.1.6) P (u, ∂tu, ∂xu) = −
∑

I∈{−,+}3
Op(mI)(uI)
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for some mI ’s in S0,0(1, 3) (with constant coefficients). Consequently equation (1.1.1) is equiva-
lent to

(3.1.7) (Dt − p(Dx))u+ =
∑

I∈{−,+}3
Op(mI)(uI).

Of course, by conjugation, using (3.1.5), we have

(3.1.8) (Dt + p(Dx))u− =
∑

I∈{−,+}3
Op(m−

I )(uĪ)

where Ī = −I and

(3.1.9) m−
I (x, ξ1, . . . , ξn) = (−1)nm(x,−ξ1, . . . ,−ξn).

Let us construct from the approximate solution uapp of Corollary 2.2.6 an approximate solution
uapp+ of equation (3.1.7). We shall do that when the time t stays smaller than the time T (ϵ) defined
in (1.2.5). We shall use the following inequality, with δ > 0 introduced in Proposition 2.2.2 and
δ′ > 0, γ > 0 to be chosen:

There is ϵ0 ∈]0, 1] such that if 0 < ϵ < ϵ0 and t ∈ [e
T∗
2ϵ2 , T (ϵ)[ then

t−
1
2 (T∗ − ϵ2 log t)−

1
2
−δ < ϵ

γ
2
−δ′(T∗ − ϵ2 log t)δ

′−δ.
(3.1.10)

Actually, this inequality is trivial if T∗ − ϵ2 log t ≥ ϵ2 since, as t ≥ e
T∗
2ϵ2 , the factor t−

1
2 in

the left hand side is then exponentially decaying, so that (3.1.10) holds for small enough ϵ. If
u = T∗−ϵ2 log t

ϵ2
≤ 1, then inequality (3.1.10) is equivalent to

(3.1.11) ue
− u

1+2δ′ > ϵ
− 2+γ+2δ′

1+2δ′ e
− T∗
ϵ2(1+2δ′)

whose right hand side is the quantity ϵ′ introduced in (1.2.4). Since u → ue
− u

1+2δ′ is strictly
increasing on [0, 1] if δ′ > 0, inequality (3.1.11) is equivalent to u > u(ϵ′) where u(ϵ′) has been
defined before (1.2.5). But by the definitions of u and of T (ϵ) in (1.2.5), this means t < T (ϵ).
In the sequel, the parameters δ, δ′, γ will be chosen positive, with δ and δ′ small, satisfying the
inequalities

(3.1.12) δ′ > δ, γ ≥ 2(δ′ + 2).

We notice for further reference that (3.1.10) implies that t−1(T∗ − ϵ2 log t)−1 = O(1), so that,
when t ∈ [1, T (ϵ)[ the definition (2.2.1) of classes Σm shows that

(3.1.13) a ∈ Σm ⇒ ∂αt ∂
β
x [a(ϵ

2 log t,
x

t
,
1

t
, ϵ)] = b(ϵ2 log t,

x

t
,
1

t
, ϵ)

for some b in Σm. We define from the approximate solution uapp of Corollary 2.2.6

(3.1.14) ũapp+ = (Dt + p(Dx))uapp, ũ
app
− = −ũapp+

and ũappI = (ũappi1
, ũappi2

, ũappi3
) if I = (i1, i2, i3). Then, by (2.2.44), (2.2.45), (2.2.46) and (3.1.6)

(3.1.15) (Dt − p(Dx))ũ
app
+ −

∑
I∈{−,+}3

Op(mI)(ũ
app
I )

= −
( ϵ

t
5
2

eitφ(y)χ1(ϵ
1−θt)c5,1(s, y,

1

t
, ϵ) +

ϵ

t
5
2

e−itφ(y)χ1(ϵ
1−θt)c5,−1(s, y,

1

t
, ϵ)

)
|s=ϵ2 log t,y=x/t

− Fapp(t, x)− (1− χ̃0)(ϵ
2 log t)r2app(t, x)
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where c5,−1 = c̄5,1 is supported for s ≤ 3T∗
4 , |y| ≤ 1 and Fapp(t, x) for t ≤ e

3T∗
4ϵ2 , and satisfies

(2.2.47). In the right hand side of (3.1.15), we have a eitφ(x/t)-term that is characteristic for
Dt − p(Dx) and a e−itφ(x/t)-term that is non-characteristic for the same operator. We start by
eliminating the non-characteristic term introducing a modification uapp+ of ũapp+ . We first define
this function and study its structure.

Lemma 3.1.2 Define

(3.1.16) uapp+ (t, x) = ũapp+ (t, x)− ϵ

2t
5
2

e−itφ(y)χ1(ϵ
1−θt)

√
1− y2c5,−1(s, y,

1

t
, ϵ)|s=ϵ2 log t,y=x/t.

Then we may write for 1 ≤ t ≤ T (ϵ),

uapp+ (t, x) = χ0(ϵ
1−θ(t− 1))u0,+(t, x)

+ eitφ(y)(1− χ0)(ϵ
1−θ(t− 1))

ϵ√
t
a+1,1(s, y)|s=ϵ2 log t,y=x/t

+
N+1∑
ℓ=3
ℓ odd

∑
1≤|q|≤ℓ
q odd

eitqφ(y)t−
ℓ
2a+ℓ,q(s, y,

1

t
, ϵ)eℓ,q(t, ϵ)|s=ϵ2 log t,y=x/t

+ ϵr(t, x)

(3.1.17)

where χ0 has been introduced in Proposition 2.1.6, where we denoted

(3.1.18) u0,+(t, x) = (Dt + p(Dx))u0,

where a+1,1(s, y) = 2(1 − y2)−
1
2a1,1(s, y), a1,1 being defined in (2.1.12), where a+ℓ,q(s, y, h, ϵ) are

elements of Σ− ℓ
2
−δ(ℓ−1) and where eℓ,q(t, ϵ) satisfy for any ζ

(t∂t)
ζeℓ,q(t, ϵ) = O(ϵ) if t ≤ e

3T∗
4ϵ2

(t∂t)
ζeℓ,q(t, ϵ) = O(ϵ2|q|−ℓ) if t ≥ e

T∗
2ϵ2 , q ̸= −1

(t∂t)
ζeℓ,−1(t, ϵ) = O(ϵ4−ℓ) if t ≥ e

T∗
2ϵ2

(3.1.19)

and where r(t, x) is a smooth function satisfying for all α, β,N ,

(3.1.20) |∂αt ∂βx r(t, x)| ≤ C(t+ |x|)−N .

Moreover,we may write u0,+(t, x) under the form

(3.1.21) u0,+(t, x) =
ϵ√
t
eitφ(x/t)a+1

(x
t
,
1

t

)
+

ϵ

t
3
2

e−itφ(x/t)a−1

(x
t
,
1

t

)
+ ϵr0(t, x)

where a±1 (y, h) are continuous on R×]0, 1], bounded as well as their ∂y and h∂h-derivatives on
that domain, supported for |y| ≤ 1, and where r0 satisfies (3.1.20).

Proof: Consider first an element aℓ,q of Σ− ℓ
2
−δ(ℓ−1), with 1 ≤ |q| ≤ ℓ. We may apply Corol-

lary A.1.4 of the appendix to compute p(Dx)[e
iqtφ(x/t)aℓ,q(ϵ

2 log t, xt ,
1
t , ϵ)] since the assumption

t(T∗−s)
1

2κ0 ≥ c of the appendix is satisfied: this is trivial for s ≤ T∗
2 and holds for s = ϵ2 log t ≥ T∗

2
and t < T (ϵ) by (3.1.10) (for ϵ small enough). By this corollary and estimates (2.2.1), we have

(3.1.22) (Dt + p(Dx))
[
eiqtφ(y)aℓ,q(s, y,

1

t
, ϵ)

]
|s=ϵ2 log t,y=x/t

=
(q +√

1 + (q2 − 1)y2√
1− y2

)
eitqφ(y)aℓ,q(s, y,

1

t
, ϵ)|s=ϵ2 log t,y=x/t

+
1

t
eitqφ(y)a1ℓ,q(s, y,

1

t
, ϵ)|s=ϵ2 log t,y=x/t + r(t, x)
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where a1ℓ,q is in Σ− ℓ
2
−1−δ(ℓ−1) and r satisfies (3.1.20).

We compute first ũapp+ in (3.1.16) from its definition (3.1.14) making act (Dt + p(Dx)) on the
definition (2.2.44) of uapp. Using expression (2.1.33) of uMapp, we get

ũapp+ = χ0(ϵ
1−θ(t− 1))(Dt + p(Dx))u0

+ (1− χ0)(ϵ
1−θ(t− 1))χ̃0(ϵ

2 log t)(Dt + p(Dx))u
1
app

+ (1− χ̃0)(ϵ
2 log t)(Dt + p(Dx))u

2
app

− iϵ1−θχ′
0(ϵ

1−θ(t− 1))u0(t, x)

+ i
(
ϵ1−θχ′

0(ϵ
1−θ(t− 1))− ϵ2t−1χ̃′

0(ϵ
2 log t)

)
u1app(t, x)

+ iϵ2t−1χ̃′
0(ϵ

2 log t)u2app(t, x)

= I + · · ·+VI.

(3.1.23)

We study successively terms I to VI above in order to obtain expressions (3.1.17) from (3.1.16).
• Term I: This provides the first term in the right hand side of (3.1.17) by (3.1.18).
• Term II: Recall that u1app is given by (2.1.13). We may apply (3.1.22) to all terms in that
sum. Since each of these terms is supported for s = ϵ2 log t ≤ 3T∗

4 and since the first term in the
right hand side of (3.1.22) vanishes if q = −1, we shall get that

(3.1.24) II = (1− χ0)(ϵ
1−θ(t− 1))χ̃0(s)

ϵ√
t
eitφ(y)a+1,1(s, y, ϵ)|s=ϵ2 log t,y=x/t

+
5∑
ℓ=3
ℓ odd

∑
1≤|q|≤ℓ
q odd

(1− χ0)(ϵ
1−θ(t− 1))

ϵ

t
ℓ
2

eitqφ(y)a+,1ℓ,q (s, y,
1

t
, ϵ)|s=ϵ2 log t,y=x/t

+ ϵr(t, x)

with a+,11,1 (s, y) defined in the statement of the lemma, and where the a+,1ℓ,q , ℓ = 3, 5 are elements of

Σ− ℓ
2
−δ(ℓ−1) and are supported for 0 ≤ s ≤ 3T∗

4 and |y| ≤ 1. Thus, (3.1.24) provides a contribution
to the last sum in (3.1.17) and to ϵr. Notice also that the last term in (3.1.16) may be written
also as a contribution to the sum in (3.1.17) with ℓ = 5, q = −1.
• Term III: We make act Dt + p(Dx) on the sums (2.2.2). Consider first the contributions
coming from the second sum

(3.1.25) (Dt + p(Dx))
[
ϵ2|q|−ℓt−

ℓ
2 eitqφ(y)aℓ,q(s, y, ϵ)

]
|s=ϵ2 log t,y=x/t.

According to (3.1.22), we get a first term which is of the form of the (ℓ, q)-term in the sum
(3.1.17) with 3 ≤ |q| ≤ ℓ. The second term in the right hand side of (3.1.22) may be also be
written under this form: actually, we may write it from

t−
ℓ
2 eitqφ(y)(T∗ − s)a1ℓ,q(s, y,

1

t
, ϵ)eℓ,q(t, ϵ)|s=ϵ2 log t,y=x/t

with eℓ,q(t, ϵ) = ϵ2|q|−ℓt−1(T∗ − ϵ2 log t)−1χ
1
(ϵ2 log t) for some function χ

1
supported for s ≥ T∗

2 .
Then property (3.1.10) shows that for t < T (ϵ), eℓ,q satisfies the second inequality (3.1.19) when
3 ≤ |q| ≤ ℓ.
We consider next the contributions coming from the first sum in (2.2.2). We have to study

(3.1.26) (Dt + p(Dx))
[
ϵ2−ℓt−

ℓ
2 eitφ(y)aℓ,1(s, y, ϵ)

]
|s=ϵ2 log t,y=x/t

(3.1.27) (Dt + p(Dx))
[
ϵ2−ℓt−

ℓ
2 e−itφ(y)aℓ,−1(s, y, ϵ)

]
|s=ϵ2 log t,y=x/t
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with aℓ,−1 = aℓ,1. We apply (3.1.22) to (3.1.26). We get a first term that may be written

(3.1.28) ϵ2−ℓt−
ℓ
2 2(1− y2)−

1
2 eitφ(y)aℓ,1(s, y, ϵ)|s=ϵ2 log t,y=x/t.

For ℓ = 1, this brings the second term in the right hand side of (3.1.17), when we combine
it with the first term in the right hand side of II in (3.1.24), since we defined a+1,1(s, y, ϵ) =

2(1 − y2)−
1
2a1,1(s, y, ϵ). Terms (3.1.28) with ℓ ≥ 3 contribute to the last sum in (3.1.17) with

q = 1. On the other hand, the second term in the right hand side of (3.1.22) applied to (3.1.26)
is of the form

(3.1.29) ϵ2−ℓt−
ℓ+2
2 eitφ(y)a1ℓ,1(s, y,

1

t
, ϵ)|s=ϵ2 log t,y=x/t

with a1ℓ,1 in Σ− ℓ+2
2

−δ(ℓ−1) ⊂ Σ− ℓ+2
2

−δ(ℓ+2−1). For any ℓ ≥ 1, we may incorporate that term to
the sum in (3.1.17) with coefficients eℓ+2,1 satisfying (3.1.19) with q = 1. Notice also that the
remainder in (3.1.22) may be incorporated to the one in (3.1.17), in spite of the negative powers
of ϵ that may appear, since term III is supported for t ≥ e

T∗
ϵ2 , so that the rapid decay in (3.1.20)

brings also smallness in ϵ.
We still have to cope with (3.1.27). Because the oscillatory term is e−itφ(x/t), when we apply
(3.1.22) with q = −1, the first term disappears, and we are left only with a term of the form
(3.1.29) with eitφ replaced by e−itφ. Such a term may be rewritten as

ϵ4−ℓe−itφt−
ℓ
2a+ℓ,−1(s, y,

1

t
, ϵ)|s=ϵ2 log t,y=x/t

for some a+ℓ,−1 in Σ− ℓ
2
−δ(ℓ−1) and ℓ ≥ 3 i.e. brings a contribution to the sum in (3.1.17) with

q = −1 and a coefficient eℓ,−1 which is O(ϵ4−ℓ) as in the last equality (3.1.19) and not just
O(ϵ2−ℓ).
This concludes the treatment of term III in (3.1.23).
• Term IV: If we use expansion (2.1.7) of u0 and again (3.1.22), we see that this term may
be rewritten as a contribution to the t−

3
2 e±itφ term in the sum (3.1.17), with a coefficient e3,1

satisfying the first bound (3.1.19) and to the remainder ϵr.
• Term V: Using (2.1.13), we see in the same way that this term may be written as a contribution
to the sum in (3.1.17), with coefficients eℓ,q satisfying the first bound (3.1.19).
• Term VI: We use (2.2.2), which implies that VI may be written as a contribution to the
last sum in (3.1.17) with coefficients satisfying the second or third equality in (3.1.19). This
concludes the proof of equality (3.1.17).
To obtain (3.1.21), we notice that we may apply Corollary A.1.4 in the special case when functions
a(s, y, h, ϵ) of that corollary are replaced by smooth functions of the sole variable y supported
for |y| ≤ 1 and use again (3.1.22) in that context. Using expansion (2.1.7) of u0, we thus get
(3.1.21). 2

Next we shall check that the function uapp+ defined in (3.1.16) will provide an approximate solution
for the nonlinear equation given by the left hand side of (3.1.15).

Proposition 3.1.3 Let N0 be an integer. Then if we define the approximate solution uapp+ by
(3.1.16), (3.1.17), with N large enough relatively to N0, u

app
+ solves an equation

(3.1.30) (Dt − p(Dx))u
app
+ −

∑
I∈{−,+}3

Op(mI)(u
app
I ) = −(F + rapp)
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where uappI = (uappi1
, uappi2

, uappi3
), and where the source term is given from a function F (t, x)

supported for 1 ≤ t ≤ e
3T∗
4ϵ2 , that satisfies for any s0 in R∫ +∞

1
∥F (t, ·)∥Hs0 dt ≤ Cs0ϵ

2−θ∫ +∞

1
∥L+F (t, ·)∥H1 dt ≤ Cϵ2−θ

(3.1.31)

and from a function (t, x) → rapp(t, x) supported for t ≥ e
T∗
2ϵ2 that satisfies for any t < T (ϵ), any

s0

∥rapp(t, ·)∥Hs0 ≤ Cs0t
−2ϵN0(T∗ − ϵ2 log t)N0

∥L+rapp(t, ·)∥H1 ≤ Ct−1ϵN0(T∗ − ϵ2 log t)N0 .
(3.1.32)

Proof: To compute the left hand side of (3.1.30), we use the definition (3.1.16) of uapp+ , (3.1.15)
and the fact that we may apply Corollary A.1.4 with ψ = −φ in order to compute the action of
Dt − p(Dx) on the last term in (3.1.16). (Notice that the assumption t(T∗ − s)

1
2κ0 ≥ c holds on

the support of that function). By (A.1.27), the action of that operator on this last term is equal
to

(3.1.33)
ϵ

t
5
2

e−itφ(y)χ1(ϵ
1−θt)c5,−1(s, y,

1

t
, ϵ)|s=ϵ2 log t,y=x/t

modulo a term of the same form where t−
5
2 is replaced by t−

7
2 and c5,−1 by a function c7,−1

satisfying the same conditions, and modulo a remainder satisfying (A.1.28) and supported for
s ≤ 3T∗

4 . Since (3.1.33) compensates the second term in the right hand side of (3.1.15), we get
more precisely

(Dt − p(Dx))u
app
+ −

∑
I∈{−,+}3

Op(mI)(ũ
app
I )

= −
[ ϵ
t
5
2

eitφ(y)χ1(ϵ
1−θt)c5,1(s, y,

1

t
, ϵ)

+
ϵ

t
7
2

e−itφ(y)χ1(ϵ
1−θt)c7,−1(s, y,

1

t
, ϵ)

+ χ1(ϵ
1−θt)ϵr(s, y,

1

t
, ϵ)

]
|s=ϵ2 log t,y=x/t

− (1− χ̃0)(ϵ
2 log t)r2app − Fapp = I + · · ·+V

(3.1.34)

where c7,−1(s, y, h, ϵ) is continuous on [0,+∞[×R×]0, 1] × [0, 1], supported for s ≤ 3T∗
4 and

|y| ≤ 1, bounded as well as all its ∂s, ∂y, h∂h-derivatives, where χ1 is a new function supported
inside a neighborhood of zero (that may vary from line to line), and where r satisfies (A.1.28)
and is supported for s ≤ 3T∗

4 . If in the cubic term in the left hand side of (3.1.34), we replace
ũapp+ by uapp+ using (3.1.16), we generate in the right hand side a perturbation

(3.1.35)
∑

I∈{−,+}3

(
Op(mI)(u

app
I +∆app

I )−Op(mI)(u
app
I )

)
where

(3.1.36) ∆app
+ =

ϵ

2t
5
2

e−itφ(y)χ1(ϵ
1−θt)

√
1− y2c5,−1(s, y,

1

t
, ϵ)|s=ϵ2 log t,y=x/t.
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It remains to show that terms I to V in (3.1.34) and (3.1.36) may be written as contributions to
F + rapp in the right hand side of (3.1.30). We start with the terms supported for s ≤ 3T∗

4 i.e. I
to III and V in (3.1.34) and (3.1.35).
• Term I in (3.1.34): Since c5,1 is bounded, as well as its ∂s and ∂y derivatives, and supported
for |y| ≤ 1, the Sobolev norm of I is O(ϵt−2), so that its integral for t ≥ ϵ−1+θ is O(ϵ2−θ) as in
(3.1.31). If we make act L+ on I and use (A.1.32) with q = 1 (and a symbol a supported for
s ≤ 3T∗

4 ), we obtain the same estimate for the H1 norm of L+I integrated for t ≥ ϵ−1+θ, so that
the second inequality (3.1.31) holds as well.
• Term II in (3.1.34): The reasoning is the same, except that we use (A.1.32) with q = −1, so
that the first term in the right hand side of this equality remains. We thus get a O(|x|) = O(t)

factor, which is compensated by the fact that c7,1 is O(t−
7
2 ) instead of O(t−

5
2 ).

• Term III in (3.1.34): By (A.1.28), this term is rapidly decaying in t and |xt |, so that the
bounds (3.1.31) are trivial when integrating for t ≥ ϵ−1+θ.
• Term V in (3.1.34): This term is Fapp coming from (3.1.15) which by (2.2.47) satisfies
(3.1.31).
• Term (3.1.35): Note that ∆app

+ in (3.1.36) is supported for s ≤ 3T∗
4 , as the same holds for

c5,1. We have to study terms of the form

Op(mI)(u
app
i1
, uappi2

,∆app
i3

), Op(mI)(u
app
i1
,∆app

i2
,∆app

i3
), Op(mI)(∆

app
i1
,∆app

i2
,∆app

i3
)(3.1.37)

with I = (i1, i2, i3) ∈ {−,+}3, ∆app
− = −∆app

+ and mI in S0,0(1, 3). By inequality (A.2.3) of
Appendix A.2, there is ρ0 ∈ R+ such that for any s0 ∈ N, the Hs0 norm of any term in (3.1.37)
is bounded from above by

(3.1.38) C
(
∥uapp+ ∥W ρ0,∞ + ∥∆app

+ ∥W ρ0,∞
)2∥∆app

+ ∥Hs0

+
(
∥uapp+ ∥W ρ0,∞ + ∥∆app

+ ∥W ρ0,∞
)
∥∆app

+ ∥W ρ0,∞∥uapp+ ∥Hs0 .

Notice that for t in the support of (3.1.17) i.e. ϵ−1+θ ≤ t ≤ e
3T∗
4ϵ2 , we have

(3.1.39) ∥uapp+ (t, ·)∥Hs0 = O(ϵ), ∥uapp+ (t, ·)∥W ρ0,∞ = O
( ϵ√

t

)
(3.1.40) ∥∆app

+ (t, ·)∥Hs0 = O(ϵt−2), ∥∆app
+ (t, ·)∥W ρ0,∞ = O(ϵt−

5
2 ).

Actually, uapp+ is given by (3.1.17), with the eℓ,q’s bounded by the first inequality (3.1.19) by our
assumption on t, and with s in (3.1.17) smaller than 3T∗

4 , so that the functions a+ℓ,q(s, y, h, ϵ) are
uniformly bounded. Then (3.1.39) follows. On the other hand, (3.1.40) follows from (3.1.36).
If we plug these estimates inside (3.1.38), we get a bound in O(ϵ3t−3), whose time integral largely
satisfies the first inequality (3.1.31). If we make act on (3.1.35) L+ before computing the L2

norm, we get an O(ϵ3t−2) estimate that is still sufficient to obtain (3.1.31).
• Term IV in (3.1.34): Term IV is supported for t ≥ e

T∗
2ϵ2 and is expressed in terms of r2app

coming from (3.1.15), i.e. from (2.2.46), and is given by (2.2.3) i.e. by the sum of (2.2.4) and
(2.2.6). The general term in these sums is bounded from above if t < T (ϵ), by

(3.1.41) Cϵ6−ℓt−
ℓ
2 (T∗ − ϵ2 log t)−ℓ

(
1
2
+δ
)
1|x|≤t

≤ Ct−
5
2 ϵ6−ℓ(T∗ − ϵ2 log t)−5

(
1
2
+δ
)[
ϵ
γ
2
−δ′(T∗ − ϵ2 log t)δ

′−δ]ℓ−5
1|x|≤t,

where we have used (3.1.10) and that ℓ ≥ N + 2 ≥ 5. As we assumed that (3.1.12) holds, if N
is so large that

(δ′ − δ)(N − 3) ≥ N0 + 5
(1
2
+ δ

)
,
(γ
2
− δ′ − 1)(N − 3) ≥ N0 − 1,
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we get a bound in ϵN0t−
5
2 (T∗ − ϵ2 log t)N0 .

If we take ∂x derivatives of the general sum in (2.2.4), (2.2.6), we may use (3.1.13) to see that
we still get expressions of the same type so that (3.1.41) will still hold true. This implies that
for any s0 in N

∥(1− χ̃0)(ϵ
2 log t)r2app(t, ·)∥Hs0 ≤ Ct−2ϵN0(T∗ − ϵ2 log t)N0

i.e. the first estimate (3.1.32) holds. The second one holds in the same way, since the action of
L+ makes lose at most O(t). This concludes the proof of the proposition. 2

To finish this subsection, we introduce the equation satisfied by the difference v+ = u+ − uapp+

between the solution of (3.1.7) and the approximate solution uapp+ of Lemma 3.1.2.

Proposition 3.1.4 The function v+ = u+ − uapp+ satisfies, with symbols m(j)
I in S0,0(1, 3),

(Dt − p(Dx))v+ =
∑

I∈{−,+}3
Op(m

(1)
I )(vi1 , vi2 , vi3)

+
∑

I∈{−,+}3
Op(m

(2)
I )(vi1 , vi2 , u

app
i3

)

+
∑

I∈{−,+}3
Op(m

(3)
I )(vi1 , u

app
i2
, uappi3

)

+ F + rapp

(3.1.42)

where F is supported for t ≤ e
3T∗
4ϵ2 , rapp is supported for t ≥ e

T∗
2ϵ2 and F (resp. rapp) satisfies

(3.1.31) (resp. (3.1.32)).

Proof: One has just to make the difference between (3.1.7) and (3.1.30). 2

3.2 Normal forms

We shall denote, identifying {−,+} to {−1, 1},

Ic = {I = (i1, i2, i3) ∈ {−,+}3;
3∑
ℓ=1

iℓ = 1}

Inc = {I = (i1, i2, i3) ∈ {−,+}3;
3∑
ℓ=1

iℓ ̸= 1}

(3.2.1)

the set of characteristic and non characteristic indices. We shall eliminate by normal forms all
non-characteristic terms in the right hand side of (3.1.42). We recall that normal forms for
Klein-Gordon equations have been introduced by Shatah [28] and for further results on these
methods, we refer to the review paper of Germain [16] and references therein.
Consider I = (i1, i2, i3) ∈ Inc. Up to permutations, we have thus either (i1, i2, i3) = (1, 1, 1), or
(i1, i2, i3) = (1,−1,−1), or (i1, i2, i3) = (−1,−1,−1). We set

(3.2.2) DI(ξ1, ξ2, ξ3) = i1

√
1 + ξ21 + i2

√
1 + ξ22 + i3

√
1 + ξ23 −

√
1 + (ξ1 + ξ2 + ξ3)2.

Since i2 = i3, we may write with some c > 0

|DI(ξ1, ξ2, ξ3)| ≥
√
1 + ξ22 +

√
1 + ξ23 − |ξ2 + ξ3|

≥ c(1 + min(|ξ2|, |ξ3|)−1 ≥ cM0(ξ1, ξ2, ξ3)
−1
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if M0(ξ1, ξ2, ξ3) is defined by (3.1.1) and so is equivalent to the second largest among 1 + |ξ1|,
1 + |ξ2|, 1 + |ξ3|. This implies that for any non-characteristic index I, DI(ξ1, ξ2, ξ3)

−1 belongs
to the class S1,0(M0, 3) of Definition 3.1.1. Consider the symbols m(ℓ)

I in the right hand side of
(3.1.42) and define when I ∈ Inc

(3.2.3) m̂
(ℓ)
I (ξ1, ξ2, ξ3) = m

(ℓ)
I (ξ1, ξ2, ξ3)DI(ξ1, ξ2, ξ3)

−1 ∈ S1,0(M0, 3).

We shall prove:

Proposition 3.2.1 Define from the solution v+ of (3.1.42)

w+ = v+ −
∑

I=(i1,i2,i3)
I∈Inc

[
Op(m̂

(1)
I )(vi1 , vi2 , vi3) + Op(m̂

(2)
I )(vi1 , vi2 , u

app
i3

)

+Op(m̂
(3)
I )(vi1 , u

app
i2
, uappi3

)
]
.

(3.2.4)

Then w+ solves for t < T (ϵ) an equation of the form

(Dt − p(Dx))w+ =
∑

I=(i1,i2,i3)
I∈Ic

[
Op(m

(1)
I )(vi1 , vi2 , vi3) + Op(m

(2)
I )(vi1 , vi2 , u

app
i3

)

+Op(m
(3)
I )(vi1 , u

app
i2
, uappi3

)
]
+R

(3.2.5)

where R is a sum of terms of the following form:
• A contribution F (t, x), supported for t ≤ e

3T∗
4ϵ2 , satisfying (3.1.31).

• A term rapp(t, x), supported for e
T∗
2ϵ2 ≤ t, satisfying (3.1.32).

• “Quintic” terms of the form

Op(m̃)(vJ1 , u
app
J2

), |J1|+ |J2| = 5, |J1| ≥ 1

Op(m̃)(vJ1 , u
app
J2
, Fi3), |J1|+ |J2| = 2,

Op(m̃)(vJ1 , u
app
J2
, rapp,i3), |J1|+ |J2| = 2,

(3.2.6)

for different symbols m̃ belonging to S1,0(Mν
0 , 5) (resp. S1,0(Mν

0 , 3)) for the first line (resp. the sec-
ond and third lines) for some ν ∈ N, where we denoted F+ = F, F− = −F̄ , rapp,+ = rapp, rapp,− =
−rapp.

Proof: We make act Dt − p(Dx) on (3.2.4). We get using (3.2.3) and (3.2.2)

(Dt − p(Dx))w+ = (Dt − p(Dx))v+ −
∑

I=(i1,i2,i3)
I∈Inc

[
Op(m

(1)
I )(vi1 , vi2 , vi3)

+Op(m
(2)
I )(vi1 , vi2 , u

app
i3

) + Op(m
(3)
I )(vi1 , u

app
i2
, uappi3

)
]
+R′

(3.2.7)

where R′ is a sum of expressions of the following form, up to permutation of factors:

(3.2.8) Op(m
(ℓ)
I )((Dt − i1p(Dx))vi1 , vi2 , vi3)

(3.2.9) Op(m
(ℓ)
I )((Dt − i1p(Dx))vi1 , vi2 , u

app
i3

)

(3.2.10) Op(m
(ℓ)
I )((Dt − i1p(Dx))vi1 , u

app
i2
, uappi3

)
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(3.2.11) Op(m
(ℓ)
I )(vi1 , vi2 , (Dt − i3p(Dx))u

app
i3

)

(3.2.12) Op(m
(ℓ)
I )(vi1 , u

app
i2
, (Dt − i3p(Dx))u

app
i3

)

where I = (i1, i2, i3) is in Inc.
In (3.2.8), we replace (Dt − i1p(Dx))vi1 by the right hand side of (3.1.42) if i1 = 1, and by
the opposite of the conjugate of this right hand side if i1 = −1. Using Lemma A.2.1, we
get expressions of the form (3.2.6). The same conclusion holds for (3.2.9), (3.2.10). Using
(3.1.30) instead of (3.1.42), we see in the same way that (3.2.11), (3.2.12) may be written as
contributions to (3.2.6). Thus R′ contributes to R in (3.2.5). Finally, if in the right hand side of
(3.2.7), we replace (Dt−p(Dx))v+ by its expression coming from (3.1.42), the non-characteristic
contributions cancel each other, and we are left only with the characteristic ones, as in the right
hand side of (3.2.5), and the contribution F + rapp to R. This concludes the proof. 2

To prepare the energy estimates of next section, we notice that getting bounds on w+ or v+ will
be essentially equivalent, up to small errors.

Lemma 3.2.2 There is ρ0 ∈ N such that for any s0 in N

(3.2.13) ∥w+ − v+∥Hs0 ≤ C[∥v+∥2W ρ0,∞ + ∥uapp+ ∥2W ρ0+s0,∞ ]∥v+∥Hs0

∥L+(w+ − v+)∥L2 ≤ C∥v+∥2W ρ0,∞ [∥L+v+∥L2 + t∥v+∥L2 ]

+ C[∥L+u
app
+ ∥W ρ0,∞ + t∥uapp+ ∥W ρ0,∞ ](∥v+∥W ρ0,∞ + ∥uapp+ ∥W ρ0,∞)∥v+∥L2 .

(3.2.14)

Proof: To get (3.2.13), we express w+ − v+ from (3.2.4). We apply (A.2.3) to the first term in
the sum in the right and side. To treat the two remaining ones, we use (A.2.8) with ℓ = 2 or
ℓ = 1 respectively. We obtain a bound by the right hand side of (3.2.13).
Let us prove (3.2.14). We may write for any functions f1, f2, f3 and any symbol m in S1,0(M0, 3)

L+Op(m)(f1, f2, f3) = Op(m̃)(f1, f2, f3) + Op(m)(f1, f2, xf3) + tp′(Dx)Op(m)(f1, f2, f3)

for some m̃ in S1,0(M2
0 , 3). Writing then xf3 = (x+ i3tp

′(Dx))f3 − i3tp
′(Dx)f3, we obtain

L+Op(m)(f1, f2, f3) = Op(m)(f1, f2, Li3f3) + Op(m̃)(f1, f2, f3)

− i3tOp(m)(f1, f2, p
′(Dx)f3) + tp′(Dx)(f1, f2, f3).

(3.2.15)

We write L+(w+ − v+) from (3.2.4) on which we make act L+. We apply to the Op(m̂
(1)
I )-term

in (3.2.4) equality (3.2.15) with (f1, f2, f3) = (vi1 , vi2 , vi3). By (A.2.4) applied with j = 3, we
get that the L2 norm of the action of L+ on the first term in the sum (3.2.4) is estimated from

(3.2.16) (∥L+v+∥L2 + t∥v+∥L2)∥v+∥2W ρ0,∞ .

In the same way, applying (3.2.15) to (f1, f2, f3) = (vi1 , vi2 , u
app
i3

), and using (A.2.4) with j = 1,
we estimate the L2-norm of the action of L+ on the Op(m̂

(2)
I )-term in (3.2.4) by

(3.2.17) (∥L+u
app
+ ∥W ρ0,∞ + t∥uapp+ ∥W ρ0,∞)∥v+∥W ρ0,∞∥v+∥L2 .

Finally, doing the same for the Op(m̂
(3)
I )-term, we get a bound in

(∥L+u
app
+ ∥W ρ0,∞ + t∥uapp+ ∥W ρ0,∞)∥uapp+ ∥W ρ0,∞∥v+∥L2 .

Together with (3.2.16) and (3.2.17), this gives (3.2.14). 2
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4 Construction of the solution and proof of the main theorem

Recall that we want to construct a solution u to equation (1.1.1) that displays inflation of its
norms and that we have rewritten that equation as a first order system (3.1.7)-(3.1.8). We look
next for the solution (u+, u− = −ū+) of that system under the form u+ = uapp+ + v+, where
uapp+ is the approximate solution defined in (3.1.16), that solves (3.1.30), and that blows-up at

time e
T∗
ϵ2 , and where v+ is the perturbation introduced in Proposition 3.1.4, that solves equation

(3.1.42). We shall construct v+ solving that equation backwards, starting at time T (ϵ) introduced
in (1.2.5), with initial condition v+|t=T (ϵ) = 0. In order to show that v+ exists up to time t = 1,
and remains under control down to that time, we shall prove in this section a priori estimates for
∥v+(t, ·)∥Hs0 for s0 large enough and ∥L+v+(t, ·)∥L2 . In order to do so, we shall exploit the fact
that ∥v+∥W ρ0,∞ remains small, so that Lemma 3.2.2 will imply that the Hs (resp. L2) norm of
v+ (resp. L+v+) is equivalent to the Hs (resp. L2) norm of w+ (resp. L+w+), where w+ solves
equation (3.2.5), in which the explicit cubic terms in the right hand side are all characteristic. In
the following subsections, we shall successively prove estimates for ∥v+(t, ·)∥Hs0 , ∥L+v+(t, ·)∥L2

and then perform the bootstrap argument that gives the proof of the main theorem.

4.1 Sobolev estimates

In the estimates of this subsection and the following ones, it will be important to track the
dependence of some constants on other ones. We shall fix indices of smoothness ρ0, s0 (that
will be taken large enough), as well as the parameters δ, δ′, γ that satisfy (3.1.12). A universal
constant will be a constant that depends eventually on these parameters, but on no other quantity.
Next, we shall have constants like N (the order at which we construct the approximate solutions
(3.1.17)) or N0 in (3.1.32), as well as the constants A0, A1, B that we introduce below in the
estimates of v+. It will be important to track how other constants depend on them. Because of
that, when we introduce a constant like K(A0, A1, B, . . . ), we mean that K depends only on the
quantities explicitly mentioned in the argument.

Proposition 4.1.1 Let ρ0 ∈ N be fixed such that the estimates of Proposition A.2.2 of the
appendix hold. Let s0 ∈ N be given. There is an integer N0,min > 0 such that for any N0 ≥ N0,min,
the following holds:
The choice of ρ0, s0, N0 determines the constants in the right hand side of (3.1.31), (3.1.32). For
any couple of constants (A0, B) with A0 large enough relatively to N0, there is ϵ0 ∈]0, 1] such that,
for any ϵ ∈]0, ϵ0], the following bootstrap holds: Denote by v+ the backwards solution of (3.1.42),
with initial condition v+(T (ϵ), ·) = 0, and source term F + rapp (with F, rapp satisfying (3.1.31),
(3.1.32)). Assume that this solution is defined on an interval [T, T (ϵ)] for some T ∈ [1, T (ϵ)[
and that the following a priori estimates hold true for any t ∈ [T, T (ϵ)]:

(4.1.1) ∥v+(t, ·)∥W ρ0,∞ ≤ B√
t
ϵ2−θ.

Then, for any t ∈ [T, T (ϵ)] one has

(4.1.2) ∥v+(t, ·)∥Hs0 ≤ A0

2
ϵ2−θ(T∗ − ϵ2 log t)N0 .
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Before starting the proof, we introduce a notation for the cubic terms in the right hand side of
(3.1.42), namely

F3(v+, u
app
+ ) =

∑
I∈{−,+}3

Op(m
(1)
I )(vi1 , vi2 , vi3)

+
∑

I∈{−,+}3
Op(m

(2)
I )(vi1 , vi2 , u

app
i3

)

+
∑

I∈{−,+}3
Op(m

(3)
I )(vi1 , u

app
i2
, uappi3

).

(4.1.3)

As m(j)
I is in S0,0(1, 3), independent of x, we may apply (A.2.3) to the first sum in (4.1.3) and

(A.2.8) to the second and third ones, with ℓ = 2 and ℓ = 1 respectively. We get for any s0 ∈ N

(4.1.4) ∥F3(v+, u
app
+ )∥Hs0 ≤ C(∥v+∥2W ρ0,∞ + ∥uapp+ ∥2W ρ0+s0,∞)∥v+∥Hs0 .

To prove Proposition 4.1.1, we shall need a bound for ∥uapp+ ∥W ρ0+s0,∞ in the right hand side of
(4.1.4).

Lemma 4.1.2 For any ρ > 0, there are C0(ρ), θ′ > 0 and for any N ∈ N, there is a constant
K(N) such that the approximate solution uapp+ given by (3.1.17) with that value of N satisfies

∥uapp+ ∥W ρ,∞ ≤ C0(ρ)
ϵ√
t
(T∗ − ϵ2 log t)−

1
2

+K(N)
ϵ1+θ

′

√
t
(T∗ − ϵ2 log t)−

1
2 +K(N)

ϵ√
t
.

(4.1.5)

Remark: We shall use (4.1.5) to estimate ∥uapp+ ∥W ρ0+s0,∞ in the right hand side of (4.1.4), so
that the first multiplicative constant in the right hand side C0(ρ0 + s0) = C0 will be a universal
constant with the terminology introduced at the beginning of this section. In particular, it is
independent of N . The two other constants in (4.1.5) do depend on N , but they are either
multiplied by a small factor ϵθ′ or are not affected by the large factor (T∗ − ϵ2 log t)−

1
2 .

Proof: We bound the W ρ,∞-norm of each term in the right hand side of (3.1.17).
• By (3.1.18) and (3.1.21), the first term in the right hand side of (3.1.17) has W ρ,∞-norm
bounded by C(ρ) ϵ√

t
for some constant C(ρ) depending only on ρ.

• In the second term in the right hand side of (3.1.17), a+1,1(s, y) is equal 2(1 − y2)−
1
2a1,1(s, y),

where a1,1 is the element of Σ− 1
2 given explicitly by (2.1.12). It depends only on the initial data

of (2.1.10). By the definition (2.2.1) of class Σ− 1
2

(4.1.6) ∂ℓx

(
a+1,1

(
ϵ2 log t,

x

t

))
= t−ℓbℓ

(
ϵ2 log t,

x

t

)
for some bℓ ∈ Σ− 1

2
−ℓ. Since by (3.1.10), t−ℓ(T∗−ϵ2 log t)−ℓ = O(1), the W ρ,∞ norm of the second

term in the right hand side of (3.1.17) is bounded by C0(ρ)
ϵ√
t
(T∗ − ϵ2 log t)−

1
2 for some constant

C0(ρ) depending only on ρ.
• Consider next the W ρ,∞ norm of each term in the last sum in (3.1.17). Since as above in
(4.1.6), any ∂x derivative may be written as an expression of the same form as the general term
in that sum, it is enough to bound the L∞ norm, that is smaller than

(4.1.7) Cℓt
− ℓ

2 (T∗ − ϵ2 log t)−
ℓ
2
−δ(ℓ−1)eℓ(t, ϵ)
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with a factor eℓ(t, ϵ) that satisfies according to (3.1.19)

eℓ(t, ϵ) = O(ϵ) if t ≤ e
3T∗
4ϵ2

eℓ(t, ϵ) = O(ϵ2−ℓ) if t ≥ e
T∗
2ϵ2 .

(4.1.8)

Using (3.1.10), we estimate (4.1.7) when t ≥ e
T∗
2ϵ2 by

(4.1.9) Cℓt
− 1

2 (T∗ − ϵ2 log t)−
1
2 eℓ(t, ϵ)ϵ

(ℓ−1)
(
γ
2
−δ′

)
.

Using (4.1.8), (3.1.12) and the fact that ℓ ≥ 3, we get that (4.1.9) is estimated by the second
term in the right hand side of (4.1.5) with θ′ ≥ 2. The sum of all these terms for 3 ≤ ℓ ≤ N +1,
ℓ odd, is thus also controlled by this quantity.
For t ≤ e

3T∗
4ϵ2 (4.1.8) implies that the sum of expressions (4.1.7) is smaller than the last term in

(4.1.5). This concludes the proof of the lemma. 2

We show next

Lemma 4.1.3 Assume the a priori inequality (4.1.1) and that the source term in (3.1.42) sat-
isfies (3.1.31), (3.1.32). Let N0 be given in N. Then there are a universal constant C0 and a
constant K(N0) depending on N0, a constant K(B) depending on B in (4.1.1), such that

∥v+(t, ·)∥Hs
0
≤
∫ T (ϵ)

t
[∥F (τ, ·)∥Hs0 + ∥rapp(τ, ·)∥Hs0 ] dτ

+K(N0)ϵ
2

∫ T (ϵ)

t
[ϵ2θ

′
(T∗ − ϵ2 log τ)−1 + 1]∥v+(τ, ·)∥Hs0

dτ

τ

+ C0ϵ
2

∫ T (ϵ)

t
(T∗ − ϵ2 log τ)−1∥v+(τ, ·)∥Hs0

dτ

τ

+K(B)ϵ4−2θ

∫ T (ϵ)

t
∥v+(τ, ·)∥Hs0

dτ

τ

(4.1.10)

for any t ∈ [T, T (ϵ)].

Proof: We write the backwards energy inequality for the solution to (3.1.42) with zero initial
condition at t = T (ϵ) using notation (4.1.3). We obtain
(4.1.11)

∥v+(t, ·)∥Hs0 ≤
∫ T (ϵ)

t
∥F3(v+, u

app
+ )(τ, ·)∥Hs0 dτ+

∫ T (ϵ)

t
∥F (τ, ·)∥Hs0 dτ+

∫ T (ϵ)

t
∥rapp(τ, ·)∥Hs0 dτ.

Under the first integral in the right hand side, we plug (4.1.4). By estimate (4.1.1), the ∥v+∥2W ρ0,∞

term in the right hand side of (4.1.4) brings the last term in (4.1.10). To study the contribution
of the ∥uapp+ ∥2

W ρ0+s0,∞ term of (4.1.4), we apply (4.1.5) with ρ = ρ0 + s0 for a N taken large
enough relatively to N0 so that Proposition 3.1.3 holds. We obtain thus from the right hand side
of (4.1.5) the second and third terms in the right hand side of (4.1.10), with a constant K that
depends on N , and thus on N0. This concludes the proof. 2

Proof of Proposition 4.1.1: We make the change of variable t = e
s
ϵ2 with s ∈ [0, S(ϵ)], S(ϵ) =

ϵ2 log T (ϵ), and rewrite (4.1.10) as

(4.1.12) f(s) ≤
∫ S(ϵ)

s
g(σ) dσ +

∫ S(ϵ)

s
ψ(σ)f(σ) dσ
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where

f(s) = ∥v+(e
s
ϵ2 , ·)∥Hs0

g(σ) = e
σ
ϵ2 ϵ−2[∥F (e

σ
ϵ2 , ·)∥Hs0 + ∥r(e

σ
ϵ2 , ·)∥Hs0 ]

ψ(σ) = K(N0)(ϵ
2θ′(T∗ − σ)−1 + 1) + C0(T∗ − σ)−1 +K(B)ϵ2−2θ.

(4.1.13)

Denote

(4.1.14) Φ(s) = −
∫ S(ϵ)

s
ψ(σ) dσ

so that (4.1.12) implies by Grownwall inequality

(4.1.15) f(s) ≤
∫ S(ϵ)

s
eΦ(s′)−Φ(s)g(s′) ds′.

Assume that ϵ is small enough so that in the expression of ψ(σ) in (4.1.13), K(N0)ϵ
2θ′ +

K(B)ϵ2−2θ ≤ 1. Then (4.1.14) implies that for T ≤ s ≤ s′ ≤ T (ϵ) < T∗

eΦ(s′)−Φ(s) ≤ e(K(N0)+1)T∗
( T∗ − s

T∗ − s′

)C0+1
.

We thus get from (4.1.15)
(4.1.16)

∥v+(e
s
ϵ2 , ·)∥Hs0 ≤ K(N0)

∫ S(ϵ)

s

( T∗ − s

T∗ − s′

)C0+1
e
s′
ϵ2 ϵ−2

[
∥F (e

s
ϵ2 , ·)∥Hs0 + ∥rapp(e

s
ϵ2 , ·)∥Hs0

]
ds′

for a new constant K(N0). We use next (3.1.31), (3.1.32) to estimate the right hand side. If
s ≥ 3T∗

4 , then the F (e
s
ϵ2 , ·)-contribution in the right hand side of (4.1.16) vanishes, so that by

(3.1.32), we get an estimate by

(4.1.17) Cs0K(N0)

∫ S(ϵ)

s
(T∗ − s)C0+1(T∗ − s′)−C0−1+N0e−

s′
ϵ2 ϵN0−2 ds′.

If N0 > C0, which may be imposed since C0 is a universal constant, we get a bound in
K(N0)e

− s
ϵ2 (T∗ − s)N0+1ϵN0−2 (for a new K(N0)) that largely implies an estimate of the form

(4.1.2), if we assume N0 ≥ 4 and ϵ < ϵ0 small enough.
If on the other hand in (4.1.16), s < 3T∗

4 , the integral in the right hand side of (4.1.16) for
s ∈ [3T∗4 , S(ϵ)] is estimated as above and the remaining one by

K(N0)

∫ 3T∗/4

s
(T∗ − s)C0+1(T∗ − s′)−C0−1e

s′
ϵ2 ϵ−2∥rapp(e

s′
ϵ2 , ·)∥Hs0 ds′

+4C0+1K(N0)

∫ e3T∗/4

1
∥F (τ, ·)∥Hs0 dτ.

(4.1.18)

The first term may be bounded again by (4.1.17) and then by K(N0)ϵ
2−θ if N0 is large enough.

By (3.1.31), the last contribution to (4.1.18) is also in K(N0)ϵ
2−θ for a new constant depending

on N0. If the constant A0 is chosen large enough in function of N0, we may ensure that (4.1.2)
holds. This concludes the proof. 2
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4.2 Estimates for the action of L+

We want to prove estimates for the L2 norm of L+v+ analogous to those of Proposition 4.1.1
in the case of Sobolev norms. To do so, we shall have to use the auxiliary unknown w+ of
Proposition 3.2.1.

Proposition 4.2.1 Assume given large enough integers ρ0, s0. Assume also given a large enough
integer N1 and an integer N0 satisfying N0 ≥ N1+1+2δ. For any constant A0 > 0 (that depends
on the preceding ones), there is A1 > 0 and, for any constant B > 0 (that may depend on A0, A1),
there is ϵ0 ∈]0, 1], such that the following holds true for any ϵ ∈]0, ϵ0]:
Let T ∈]0, T (ϵ)[ and let v+ be a solution of equation (3.1.42) defined on [T, T (ϵ)], with the initial
condition v+(T (ϵ), ·) = 0, such that v+ satisfies for any t ∈ [T, T (ϵ)] the following estimates:

∥v+(t, ·)∥W ρ0,∞ ≤ B√
t
ϵ2−θ

∥v+(t, ·)∥Hs0 ≤ A0ϵ
2−θ(T∗ − ϵ2 log t)N0 .

(4.2.1)

Then for any t ∈ [T, T (ϵ)], we have the estimate

(4.2.2) ∥L+v+(t, ·)∥L2 ≤ A1

2
ϵ2−θ(T∗ − ϵ2 log t)N1 .

To prove the proposition, we first need an estimate for ∥L+u
app
+ ∥W ρ,∞ for any ρ.

Lemma 4.2.2 For any ρ > 0, any N ∈ N∗, there is a constant K(ρ,N) such that if uapp+ is
defined by (3.1.17), one has for any t ≤ T (ϵ) the bound

(4.2.3) ∥L+u
app
+ (t, ·)∥W ρ,∞ ≤ K(N, ρ)

ϵ√
t
(T∗ − ϵ log t)−

3
2
−2δ.

Proof: We make act L+ on (3.1.17). We get a first term

(4.2.4) χ0(ϵ
1−θ(t− 1))L+u0,+.

If we apply to expression (3.1.21) of u0,+ Corollary A.1.5 with q = 1 or q = −1, we conclude that
the W ρ,∞-norm of (4.2.4) is O(ϵ/

√
t). Applying again Corollary A.1.5 with q = 1 to the second

term in the right hand side of (3.1.17), we get that the action of L+ on it gives an expression

(4.2.5) eitφ(y)(1− χ0)(ϵ
1−θ(t− 1))

ϵ√
t
(ã+1,1(s, y,

1

t
, ϵ) + r̃(s, y,

1

t
, ϵ)|s=ϵ2 log t,y=x/t

with ã+1,1 in Σ
− 1

2
− 1

2κ0 ⊂ Σ− 3
2 and r̃ with all its ∂s, ∂y, h∂h-derivatives smaller than hN ⟨y⟩−N

for any N . Then the W ρ,∞ norm of (4.2.5) is O
(
ϵ√
t
(T∗ − ϵ2 log t)−

3
2

)
since the action of each

∂x-derivations makes lose at most 1 + t−1(T∗ − ϵ2 log t)−1, which is O(1) (using (3.1.10) when t
satisfies eT∗/2ϵ2 < t < T (ϵ)).
We consider next the action of L+ on the last sum in (3.1.17). We have on the one hand the
characteristic terms corresponding to q = 1, ℓ ≥ 3. We apply Corollary A.1.5 with q = 1 to see
that the action of L+ on these terms is given by a sum for 3 ≤ ℓ ≤ N + 1 of expressions

(4.2.6) eitφ(y)t−
ℓ
2a+,2ℓ,1 (s, y,

1

t
, ϵ)eℓ,1(t, ϵ)|s=ϵ2 log t,y=x/t

with a+,2ℓ,1 in Σ− ℓ
2
−1−δ(ℓ−1) and eℓ,1(t, ϵ) given by (3.1.19), modulo a remainder ϵr̃, with r̃ as in

(4.2.5), so that it will trivially satisfy a bound of the form (4.2.3). In (4.2.6), eℓ,1(t, ϵ) = O(ϵ) if
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t ≤ eT∗/2ϵ
2 , so that in this case bounds (4.2.3) hold immediately. If t > eT∗/2ϵ

2 , we bound the
modulus of (4.2.6) by

t−
ℓ
2 (T∗ − ϵ2 log t)−

ℓ
2
−1−δ(ℓ−1)ϵ2−ℓ = t−

1
2 (t−

1
2 (T∗ − s)−

1
2
−δ)ℓ−1ϵ2−ℓ(T∗ − s)−

3
2 |s=ϵ2 log t.

By (3.1.10) this is O
(
ϵ√
t
(T∗ − ϵ2 log t)−

3
2

)
since (ℓ− 1)(γ2 − δ′)+ 2− ℓ ≥ 1 by (3.1.12). Since the

same estimates hold for ∂x-derivatives of (4.2.6), we get for the W ρ,∞ norm of the action of L+

on the characteristic terms in the sum in (3.1.17) a bound by the right hand side of (4.2.3).
We still have to study the non-characteristic terms in that sum i.e. those for which q ̸= 1. By
Corollary A.1.5 and (3.1.10), we get that the action of L+ on these terms gives

(4.2.7) eitqφ(y)t−
ℓ
2
+1a+,2ℓ,q (s, y,

1

t
, ϵ)eℓ,q(t, ϵ)|s=ϵ2 log t,y=x/t

with a+,2ℓ,q in Σ− ℓ
2
−δ(ℓ−1), ℓ ≥ 3, modulo again a remainder that is again like ϵr̃ in (4.2.5). The

modulus of (4.2.7) is bounded by

(4.2.8) t−
ℓ
2
+1(T∗ − ϵ2 log t)−

ℓ
2
−δ(ℓ−1)|eℓ,q(t, ϵ)|

= t−
1
2 (t−

1
2 (T∗ − s)−

1
2
−δ)ℓ−3(T∗ − s)−

3
2
−2δ|eℓ,q(t, ϵ)||s=ϵ2 log t.

By (3.1.10), we estimate that from

(4.2.9) t−
1
2 ϵ(ℓ−3)

(
γ
2
−δ′

)
|eℓ,q(t, ϵ)|(T∗ − ϵ2 log t)−

3
2
−2δ

if t ≥ eT∗/2ϵ
2 . If ℓ = 3, q = −1, the last inequality (3.1.19) gives a bound of the form (4.2.3).

If ℓ = 3, |q| = 3, the second estimate (3.1.19) shows that eℓ,q(t, ϵ) = O(ϵ3), so that we obtain
again the wanted bound. If ℓ ≥ 5, using that eℓ,q(t, ϵ) = O(ϵ2−ℓ) and (3.1.12), we obtain that
(4.2.9) is controlled by the right hand side of (4.2.3). When t ≤ eT∗/2ϵ

2 , the first estimate (3.1.19)
shows that the bound by (4.2.3) holds trivially. Finally, since similar bounds are satisfied by
∂x-derivatives, we get that the non-characteristic terms in the sum in (3.1.17) are controlled as
in (4.2.3). This concludes the proof. 2

We prove next a lemma relating estimates for L+v+ and L+w+

Lemma 4.2.3 Let v+ be a function defined on some interval [T, T (ϵ)] satisfying for any t ∈
[T, T (ϵ)] estimates

(4.2.10) ∥v+(t, ·)∥W ρ0,∞ ≤ B√
t
ϵ2−θ

for some constant B. There is ϵ0 > 0, depending on B, such that if ϵ ∈]0, ϵ0[ and (4.2.10) holds,
then w+ defined by (3.2.4) from v+ and uapp+ given by (3.1.16) satisfies

(4.2.11) ∥L+v+(t, ·)∥L2 ≤ 2∥L+w+(t, ·)∥L2 +K(N,Bϵ1−θ)ϵ2(T∗ − ϵ2 log t)−1−2δ∥v+(t, ·)∥L2

(with N equal to the order at which uapp+ has been constructed in (3.2.15)).

Proof: By (4.1.5) and (4.2.3) we have

(4.2.12) ∥L+u
app
+ (t, ·)∥W ρ0,∞ + t∥uapp+ (t, ·)∥W ρ0,∞

≤ ϵK(N)
√
t(T∗ − ϵ2 log t)−

1
2
−2δ[1 + t−1(T∗ − ϵ2 log t)−1].
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On the other hand, still by (4.1.5) and the a priori estimate of ∥v+(t, ·)∥W ρ0,∞ in (4.2.10), we
have

(4.2.13) ∥uapp+ (t, ·)∥W ρ0,∞ + ∥v+(t, ·)∥W ρ0,∞ ≤ ϵK(N,Bϵ1−θ)√
t

(T∗ − ϵ2 log t)−
1
2 .

Using (3.1.10), we see that the product of (4.2.12) by (4.2.13) is smaller than

ϵ2K(N,Bϵ1−θ)(T∗ − ϵ2 log t)−1−2δ.

Plugging this in (3.2.14), and using also the a priori estimate (4.2.10) of ∥v+(t, ·)∥W ρ0,∞ , we get

∥L+(w+ − v+)(t, ·)∥L2 ≤ K(Bϵ1−θ)
ϵ2

t
∥L+v+(t, ·)∥L2 +K(Bϵ1−θ)ϵ2∥v+(t, ·)∥L2

+ϵ2K(N,Bϵ1−θ)(T∗ − ϵ2 log t)−1−2δ∥v+(t, ·)∥L2

(4.2.14)

which implies (4.2.11). This concludes the proof. 2

We prove next an energy inequality for ∥L+w+(t, ·)∥L2 .

Lemma 4.2.4 Assume that for t in some interval [T, T (ϵ)] the following a priori estimate holds
true

(4.2.15) ∥v+(t, ·)∥W ρ0,∞ ≤ B√
t
ϵ2−θ.

Then for t in the same interval, one has an inequality

(4.2.16)

∥(Dt − p(Dx))L+w+(t, ·)∥L2 ≤ ϵ2

t

[
(T∗ − ϵ2 log t)−1(C0 +K(N,B)ϵθ

′′
) +K(N)

]
∥L+v+(t, ·)∥L2

+
ϵ2

t
(T∗ − ϵ2 log t)−2−2δ(K(N) +K(N,B)ϵθ

′′
)∥v+(t, ·)∥Hs0 +RL(t) +RH(t),

where C0 is a universal constant, θ′′ > 0 and RH ,RL satisfy∫ +∞

1
∥RL(t)∥L2 dt ≤ (K(N) +K(N,B)ϵθ

′′
)ϵ2−θ

∥RH(t)∥L2 ≤ K(N,B)t−1ϵN0(T∗ − ϵ2 log t)N0−1

(4.2.17)

where N0 is the integer introduced in Proposition 3.1.3, and RL is supported for t ≤ e3T∗/4ϵ
2.

Proof: We make act L+ on equation (3.2.5) to get

(Dt − p(Dx))L+w+ =
∑

I=(i1,i2,i3)
I∈Ic

[
L+Op(m

(1)
I )(vi1 , vi2 , vi3) + L+Op(m

(2)
I )(vi1 , vi2 , u

app
i3

)

+L+Op(m
(3)
I )(vi1 , u

app
i2
, uappi3

)
]
+ L+R

= I + · · ·+ IV.

(4.2.18)

We estimate the L2 norm of the terms in the right hand side. Since the index I is characteristic,
we may use Proposition A.3.1 in order to estimate I + II + III.
• Estimate of I, II, III
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By (A.3.1), we get

(4.2.19) ∥I∥L2 ≤ C∥v+∥2W ρ0,∞(∥Lv+∥L2 + ∥v+∥Hs0 ) ≤ CB2 ϵ
4−2θ

t
(∥Lv+∥L2 + ∥v+∥Hs0 )

by (4.2.15). We estimate II using (A.3.2). We get

∥II∥L2 ≤ 2C∥v+∥W ρ0,∞∥uapp+ ∥W ρ0,∞(∥Lv+∥L2 + ∥v+∥Hs0 )

+ C∥v+∥W ρ0,∞(∥L+u
app
+ ∥W ρ0,∞ + ∥uapp+ ∥W ρ0,∞)∥v+∥L2 .

Using (4.2.15), bound (4.1.5) of uapp+ which implies

(4.2.20) ∥uapp+ (t, ·)∥W ρ0,∞ ≤ K(N)
ϵ√
t
(T∗ − ϵ2 log t)−

1
2 ,

and (4.2.3), we get

(4.2.21) ∥II∥L2 ≤ K(N,B)
ϵ3−θ

t
(T∗ − ϵ2 log t)−

1
2 ∥L+v+(t, ·)∥L2

+K(N,B)
ϵ3−θ

t
(T∗ − ϵ2 log t)−

3
2
−2δ∥v+(t, ·)∥Hs0 .

To estimate III, we use (A.3.3). We obtain

∥III∥L2 ≤ 2C∥uapp+ ∥W ρ0,∞(∥Luapp+ ∥W ρ0,∞ + ∥uapp+ ∥W ρ0,∞)∥v∥L2

+C∥uapp+ ∥2W ρ0,∞(∥Lv+∥L2 + ∥v+∥Hs0 ).

Using (4.1.5) to estimate ∥uapp+ ∥W ρ0,∞ and (4.2.3), we obtain a bound

(4.2.22) ∥III∥L2 ≤ C0
ϵ2

t
(T∗ − ϵ2 log t)−1(∥Lv+∥L2 + ∥v+∥Hs0 )

+K(N)
ϵ2

t
(ϵ2θ

′
(T∗ − ϵ2 log t)−1 + 1)(∥Lv+∥L2 + ∥v+∥Hs0 )

+K(N)
ϵ2

t
(T∗ − ϵ2 log t)−2−2δ∥v+(t, ·)∥L2 .

Summing (4.2.19), (4.2.21) and (4.2.22), we deduce

∥I + II + III∥L2 ≤ ϵ2

t
[C0(T∗ − ϵ2 log t)−1 +K(N,B)ϵθ

′′
(T∗ − ϵ2 log t)−1 +K(N)]∥L+v+∥L2

+(K(N) +K(N,B)ϵθ
′′
)
ϵ2

t
(T∗ − ϵ2 log t)−2−2δ∥v+(t, ·)∥Hs0

(4.2.23)

for some θ′′ > 0, which is controlled by the right hand side of (4.2.16).
• Estimate of IV
We estimate now the L2-norm of the last term L+R in (4.2.18), where R is the last term in (3.2.5)
and has the structure described in the statement of Proposition 3.2.1. The contribution L+F to
L+R satisfies (3.1.31) and is supported for t ≤ e

3T∗
4ϵ2 , so may be incorporated to RL in (4.2.16),

with RL satisfying (4.2.17). The contribution L+rapp to L+R is supported for t ≥ e
T∗
2ϵ2 and

satisfies (3.1.32), so that we may incorporate it to RH in (4.2.16), with RH satisfying (4.2.17).
We are left with studying the quintic terms obtained making act L+ on (3.2.6). We consider first
the action of L+ on the first term in (3.2.6). Since |J1| ≥ 1, the first argument in Op(m̃)(· · · ) is
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equal to v±. When we make act L+ = x+ tp′(Dx) on it, we argue as in (3.2.15), and rewrite the
resulting expression as a sum of terms of the following form

Op(m)(L±v±, vJ ′
1
, uapp

J ′
2
)

Op(m)(v±, vJ ′
1
, uapp

J ′
2
)

tp′(Dx)Op(m)(v±, vJ ′
1
, uapp

J ′
2
)

± tOp(m)(p′(Dx)v±, vJ ′
1
, uapp

J ′
2
)

(4.2.24)

whee |J ′
1| + |J ′

2| = 4 and m is a new symbol in the class S1,0(Mν
0 , 3) for some ν, with constant

coefficients. We apply (A.2.4) with j = 1 to all these expressions. We get an estimate of their
L2 norms by

(4.2.25) (∥v+∥W ρ0,∞ + ∥uapp+ ∥W ρ0,∞)4(∥L+v+∥L2 + t∥v+∥L2).

By (4.2.20) and the a priori assumption (4.2.15), we get a bound

K(N,B)
ϵ4

t
(T∗ − ϵ2 log t)−2[t−1∥L+v+∥L2 + ∥v+∥L2 ].

Using again that by (3.1.10) t−1(T∗ − ϵ2 log t)−1 = O(1), we get finally the upper bound

(4.2.26) K(N,B)
ϵ4

t
(T∗ − ϵ2 log t)−1∥L+v+∥L2 +K(N,B)

ϵ4

t
(T∗ − ϵ2 log t)−2∥v+∥L2

which is better than the right hand side of (4.2.16). Finally, we have to estimate the L2 norm of
the action of L+ on the last two terms in (3.2.6). Arguing again as in (3.2.15), we have to study

Op(m)(vJ1 , u
app
J2
, Li3Gi3)

Op(m)(vJ1 , u
app
J2
, Gi3)

tp′(Dx)Op(m)(vJ1 , u
app
J2
, Gi3)

tOp(m)(vJ1 , u
app
J2
, p′(Dx)Gi3)

(4.2.27)

for symbols m in S1,0(M
ν
0 , 3) with constant coefficients, |J1| + |J2| = 2, G+ = F or rapp, G− =

−F̄ or − rapp. Using (A.2.4) with j = 3, we bound the L2 norm of all these terms by

(4.2.28) (∥v+∥W ρ0,∞ + ∥uapp+ ∥W ρ0,∞)2(∥L+G+∥L2 + t∥G+∥L2).

When G+ = F , since this term is supported for t ≤ e3T∗/4ϵ
2 , it follows from (4.2.20) and (4.2.15)

that this is bounded by

K(B,N)ϵ2(∥L+F (t, ·)∥L2 + ∥F (t, ·)∥L2).

By (3.1.31), the integral in t of that quantity is O(K(B,N)ϵ4−θ), so may be incorporated to RL

satisfying (4.2.17).
When G+ = rapp, we use again (4.2.20) and (4.2.15) to bound (4.2.28) by

(
K(N)

ϵ2

t
(T∗ − ϵ2 log t)−1 +K(B)

ϵ2

t

)
∥L+rapp(t, ·)∥L2

+K(N,B)ϵ2(T∗ − ϵ2 log t)−1∥rapp(t, ·)∥L2 .

If we plug (3.1.32) in this inequality, we largely get an estimate in

ϵ2

t
K(N,B)ϵN0(T∗ − ϵ2 log t)N0−1
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so that we obtain a contribution to RH satisfying (4.2.17). Combining this to (4.2.23) and
(4.2.26) we get (4.2.16). 2

Proof of Proposition 4.2.1: We assume a priori inequalities (4.2.1). For ϵ0 > 0 small enough, if
ϵ < ϵ0, inequality (4.2.11) holds. Plugging this inequality in the right hand side of (4.2.16), and
assuming also ϵ0 small enough so that K(N,B)ϵθ

′′ ≤ 1 and Bϵ1−θ ≤ 1, we get

(4.2.29) ∥(Dt − p(Dx))L+w+(t, ·)∥L2 ≤ ϵ2

t
2
[
(C0 + 1)(T∗ − ϵ2 log t)−1 +K(N)

]
∥L+w+(t, ·)∥L2

+
ϵ2

t
K(N)(T∗ − ϵ2 log t)−2−2δ∥v+(t, ·)∥Hs0 +RL(t) +RH(t).

In the right hand side of (4.2.29), we plug the second a priori estimate (4.2.1) and we write the
energy inequality associated to (4.2.29), starting from time t = T (ϵ) at which L+w+ vanishes.
We get for T ≤ t ≤ T (ϵ), using also (4.2.17),

∥L+w+(t, ·)∥L2 ≤
∫ T (ϵ)

t
2
[
(C0 + 1)(T∗ − ϵ2 log τ)−1 +K(N)

]
∥L+w+(τ, ·)∥L2ϵ2

dτ

τ

+K(N,A0)ϵ
2−θ

∫ T (ϵ)

t
(T∗ − ϵ2 log τ)N0−2−2δϵ2

dτ

τ

+

∫ T (ϵ)

t
∥RL(τ)∥L2 dτ

+K(N,B)ϵN0−2

∫ T (ϵ)

t
(T∗ − ϵ2 log τ)N0−1ϵ2

dτ

τ
.

(4.2.30)

We set t = e
s
ϵ2 , τ = e

s′
ϵ2 , S(ϵ) = ϵ2 log T (ϵ)

f(s) = ∥L+w+(e
s
ϵ2 , ·)∥L2

g(s) = ϵ2−θ(K(N,A0) + ϵθK(N,B))(T∗ − s)N1−1 + ∥RL(e
s
ϵ2 )∥L2ϵ−2e

s
ϵ2

(4.2.31)

with N1 ≤ N0−1−2δ and N1 large enough so that N0 ≥ 4. We may thus rewrite (4.2.30) under
the form

(4.2.32) f(s) ≤
∫ S(ϵ)

s
ψ(s′)f(s′) ds′ +

∫ S(ϵ)

s
g(s′) ds′

with

(4.2.33) ψ(s) = 2(C0 + 1)(T∗ − s)−1 + 2K(N).

We may apply estimate (4.1.15), with notation (4.1.14). We obtain, with new constants,

∥L+w+(e
s
ϵ2 , ·)∥L2 ≤

∫ S(ϵ)

s

( T∗ − s

T∗ − s′

)2(C0+1)
[ϵ2−θ

(
K(N,A0) + ϵθK(N,B)

)
(T∗ − s′)N1−1

+K(N)∥RL(e
s′
ϵ2 , ·)∥L2ϵ−2e

s′
ϵ2 ] ds′.

(4.2.34)

Since C0 is a universal constant, we may take N1 large enough so that N1 − 2(C0 + 1) > 0.

Moreover, as RL(e
s′
ϵ2 , ·) is supported for s′ ≤ 3T∗

4 , (T∗ − s′)−1 stays bounded on the support of
that function. Using (4.2.17), we get finally

∥L+w+(e
s
ϵ2 , ·)∥L2 ≤ ϵ2−θ(K(N,A0) + ϵθ

′′
K(N,B))(T∗ − s)N1
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for some constants depending on N,A0, B and a new θ′′ > 0. By (4.2.11) and the second a priori
inequality in (4.2.1), we get

∥L+v+(t, ·)∥L2 ≤ ϵ2−θ(K(N,A0) + ϵθ
′′
K(N,B))(T∗ − ϵ2 log t)N1

for new constants K(N,A0),K(N,B), using again that N0 ≥ N1 + 1 + 2δ. We take A1 large
enough so that K(N,A0) ≤ A1

4 and ϵ < ϵ0 small enough so that ϵθ′′K(N,B) ≤ A1
4 in order to

obtain (4.2.2). 2

4.3 Proof of the main theorem

We shall deduce from the preceding subsections the proof of Theorem 1.2.1. Let us recall how
the constants are chosen:
• One fixes first θ > 0 small and δ, δ′, γ satisfying (3.1.12), with δ, δ′ small. One fixes also ρ0 ∈ N
large enough so that the estimates in Proposition A.2.2 hold true (for a fixed large enough ν)
and ρ0 larger than ρ̃0 in Proposition A.3.1. This ρ0 is universal and does not depend on any of
the constants that we shall introduce in the forthcoming points. It determines the constant C0

in Lemma 4.1.2.
• On chooses next s0 ∈ N large enough, such that Proposition A.3.1 holds true and large enough
in function of ρ0 so that Proposition A.4.1 holds true.
• One takes N1 large enough as in Proposition 4.2.1. Once N1 has been chosen, we take N0 so
that Proposition 4.2.1 and Proposition 4.1.1 hold true. Once N1 and N0 have been fixed, the
order N at which one has to construct the approximate solution so that uapp+ in Proposition 3.1.3
satisfies (3.1.30)-(3.1.32) is also determined.
• Once N0 is determined, the constant A0 is taken large enough in Proposition 4.1.1.
• Once A0 is fixed, the constant A1 is determined by Proposition 4.2.1. Next we choose B large
enough relatively to A0, A1 as in (4.3.4) below.
• Finally, ϵ is taken in ]0, ϵ0] for some ϵ0 small enough in function of all preceding constants.

Proof of Theorem 1.2.1: To construct the solution u of the theorem, one considers the solution
(u+, u− = −ū+) of the equivalent system (3.1.7), (3.1.8): one looks for u+ under the form
u+ = uapp+ + v+ where uapp+ is defined in (3.1.16) and v+ satisfies equation (3.1.42). One then
wants to solve this equation for v+ backwards from t = T (ϵ), with zero initial data at t = T (ϵ),
and prove that the solution exists down to time t = 1. By local existence theory, there is
T0 < T (ϵ) such that the solution exists on [T0, T (ϵ)] and we denote by T ≥ 1 the infimum of the
T̃ ≥ 1 such that the solution exists on [T̃ , T (ϵ)] and satisfies for all t ∈ [T̃ , T (ϵ)] a priori estimates

∥v+(t, ·)∥Hs0 ≤ A0ϵ
2−θ(T∗ − ϵ2 log t)N0

∥L+v+(t, ·)∥L2 ≤ A1ϵ
2−θ(T∗ − ϵ2 log t)N1

∥v+(t, ·)∥W ρ0,∞ ≤ B
ϵ2−θ√
t

(4.3.1)

where the parameters s0, ρ0, N0, N1, A0, A1, B are chosen as explained at the beginning of this
subsection. If we apply Proposition 4.1.1, we get that it implies that for t in the same interval

(4.3.2) ∥v+(t, ·)∥Hs0 ≤ A0

2
ϵ2−θ(T∗ − ϵ2 log t)N0

if ϵ < ϵ0 small enough. Then, applying Proposition 4.2.1, we get for ϵ < ϵ0,

(4.3.3) ∥L+v+(t, ·)∥L2 ≤ A1

2
ϵ2−θ(T∗ − ϵ2 log t)N1 .
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By (A.4.7), we deduce from the first two inequalities (4.3.1)

(4.3.4) ∥v+(t, ·)∥W ρ0,∞ ≤ C
ϵ2−θ√
t
(A1 +

√
A0

√
A0 +A1) ≤

B

2
√
t
ϵ2−θ

if B is chosen large enough relatively to A0, A1.
By the bootstrap (4.3.2), (4.3.3), (4.3.4), we get that the solution v+ exists on [1, T (ϵ)] and
satisfies (4.3.1) at any t in that interval. Writing these estimates at t = 1, we get from (4.3.1)

∥u+(1, ·)− uapp+ (1, ·)∥Hs0 = O(ϵ2−θ)

∥x(u+(1, ·)− uapp+ (1, ·))∥L2 = O(ϵ2−θ).
(4.3.5)

By (3.1.16) and recalling that χ1 vanishes close to zero, we get for small enough ϵ,

∥u+(1, ·)− ũapp+ (1, ·)∥Hs0 = O(ϵ2−θ)

∥x(u+(1, ·)− ũapp+ (1, ·))∥L2 = O(ϵ2−θ).
(4.3.6)

The definition (3.1.4) (resp. (3.1.14)) of u+ (resp. ũapp+ ) from u (resp. uapp) and the fact that u,
uapp are real valued functions imply

∥u(1, ·)− uapp(1, ·)∥Hs0+1 + ∥Dtu(1, ·)−Dtuapp(1, ·)∥Hs0 = O(ϵ2−θ)

∥x(u(1, ·)− uapp(1, ·))∥H1 + ∥x(Dtu(1, ·)−Dtuapp(1, ·))∥L2 = O(ϵ2−θ).
(4.3.7)

By (2.2.44), (2.1.33) and (2.1.3), (uapp(1, ·), ∂tuapp(1, ·)) are the initial conditions (ϵf0, ϵg0) cho-
sen in the statement of the theorem so that (1.2.3) holds. Thus (4.3.7) shows that the initial
conditions of our solution u have structure (1.2.7), with the perturbation (f(x, ϵ), g(x, ϵ)) satis-
fying (1.2.6).
It remains to prove (1.2.8). At time t = T (ϵ), the value of u (resp. ∂tu) is given by uapp(T (ϵ), ·)
(resp. ∂tuapp(T (ϵ), ·)). By (2.2.44), these quantities are equal to u2app(T (ϵ), ·) (resp. ∂tu2app(T (ϵ), ·))
with u2app given by (2.2.2). All contributions corresponding to ℓ ≥ 3 in (2.2.2), as well as their
derivatives, have modulus bounded from above by

(4.3.8) ϵ2−ℓT (ϵ)−
1
2 (T∗ − ϵ2 log T (ϵ) + |y − y0|2κ0)−

1
2
(
T (ϵ)−

1
2 (T∗ − ϵ2 log T (ϵ))−

1
2
−δ)ℓ−1

.

Since ℓ ≥ 3, (3.1.10) implies a bound in

(4.3.9) T (ϵ)−
1
2 (T∗ − ϵ2 log T (ϵ))−

1
2

(
ϵ
γ
2
−δ′(T∗ − ϵ2 log T (ϵ))δ

′−δ
)ℓ−1

ϵ2−ℓ.

By (1.2.5), (1.2.4), T∗ − ϵ2 log T (ϵ) = ϵ2u(ϵ′) is exponentially small in e−
c
ϵ2 , so that since δ′ > δ

(4.3.9), and thus all terms with ℓ ≥ 3 in (2.2.2) computed at t = T (ϵ), are negligible relatively to
ϵT (ϵ)−

1
2 (T∗ − ϵ2 log T (ϵ))−

1
2 . On the other hand, by (2.1.12) and (1.2.3), (1.2.2), the coefficient

of ϵ√
t
eitφ(x/t) in (2.2.2), computed at t = T (ϵ), xt = y0 satisfies

|a1,1(ϵ2 log T (ϵ), y0)| = |a01(y0)|
(
1− ϵ2 log T (ϵ)

T∗

)− 1
2

since Γ(y0)ϕ(y0) = T−1
∗ by (1.2.2), (1.2.3). Moreover, since |a01(y0)| = (1 − y20)

− 1
4Γ(y0)

1
2 by

(2.1.8), (1.2.1), with Γ(y0) ̸= 0 by (1.2.2), we get that all terms with ℓ ≥ 3 in (2.2.2) at time
T (ϵ) are o(ϵT (ϵ)−

1
2 |a1,1(ϵ2 log T (ϵ), y0)|). We conclude that the main contribution to (2.2.2) at

time t = T (ϵ) and x = y0T (ϵ) is

2Re
[
ϵT (ϵ)−

1
2 eiT (ϵ)φ(y0)a1,1(ϵ

2 log T (ϵ), y0)
]
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and its time derivative is

2Re
[
ϵT (ϵ)−

1
2 iω(y0)e

iT (ϵ)φ(y0)a1,1(ϵ
2 log T (ϵ), y0)

]
.

Thus

|u2app(T (ϵ), y0T (ϵ))|+ |∂tu2app(T (ϵ), y0T (ϵ))| ∼ ϵT (ϵ)−
1
2 |a1,1(ϵ2 log T (ϵ), y0)|

∼ ϵT (ϵ)−
1
2 (T∗ − ϵ2 log T (ϵ))−

1
2

∼ T (ϵ)−
1
2u(ϵ′)−

1
2 ∼ T (ϵ)−

1
2 ϵ′−

1
2

(4.3.10)

by (1.2.5). If c > 0 is given and if δ′ in (1.2.4) is taken small enough with respect to c, one has
ϵ′ ≤ e−

T∗
ϵ2

(1−2c) ∼ T (ϵ)−1+2c. Thus (4.3.10) is bounded from below by T (ϵ)−c which gives the
first equality (1.2.8).
To get the second one, we proceed in the same way, except that we have to estimate from below

ϵ√
T (ϵ)

∥∥a1,1(ϵ2 log T (ϵ), x

T (ϵ)
)
∥∥
L2(dx)

= ϵ∥a1,1(ϵ2 log T (ϵ), y)∥L2(dy).

By (1.2.3), the example following Definition 2.2.1 and the expression (2.1.12) of a1,1, one has

|a1,1(s, y)| ∼ (T∗ − s+ |y − y0|2κ0)−
1
2

so that if κ0 > 0,

∥a1,1(ϵ2 log T (ϵ), y)∥L2(dy) ∼ (T∗ − ϵ2 log T (ϵ))
− 1

2
+ 1

4κ0 .

We have seen above that (T∗ − ϵ2 log T (ϵ))−1 ≥ T (ϵ)1−2cϵ−2. Then the second inequality (1.2.8)
for the a1,1-term in (2.2.2) with the lower bound (1.2.9) follows from that, up to changing the
definition of c. Since the contributions to (2.2.2) indexed by ℓ ≥ 3 are bounded point-wise by
(4.3.8) and thus by T (ϵ)−

1
2 |a1,1(ϵ2 log T (ϵ), x

T (ϵ))|e
− c
ϵ2 for some c > 0, as seen after (4.3.9), they

are negligible perturbations, so that (1.2.8), (1.2.9) hold for u2app(T (ϵ), ·). This concludes the
proof. 2

A Appendix

A.1 Pseudo-differential operators

In this subsection, we prove several results on pseudo-differential operators used in the bulk of
the proof.

Definition A.1.1 Let p(x, ξ) be a smooth function on R×R, satisfying for some µ ∈ R and all
α, β in N

(A.1.1) |∂αx ∂
β
ξ p(x, ξ)| ≤ Cα,β(1 + |ξ|)µ−|β|.

Then if u ∈ S(R), we set

(A.1.2) p(x,Dx)u =
1

2π

∫
eixξp(x, ξ)û(ξ) dξ
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and if h ∈]0, 1] is a semi-classical parameter, we set

p(x, hDx)v =
1

2π

∫
eixξp(x, hξ)v̂(ξ) dξ

=
1

2πh

∫
ei

(x−y)ξ
h p(x, ξ)v(y) dydξ

(A.1.3)

where the last integral is an oscillatory one. This is related to (A.1.2) by the conjugation formula

(A.1.4) Θ−1
h ◦ p(x, hDx) ◦Θh = p(hx,Dx)

if we define

(A.1.5) (Θhu)(x) =
1√
h
u
(x
h

)
.

We want to study the action of p(Dx) on oscillating expressions of the form used to construct
an approximate solution in section 2. We define first

Definition A.1.2 Let x0 ∈]−1, 1[, κ0 ∈ N. We denote for m ∈ R by Σ̃m the space of continuous
functions

(x, λ, h, ϵ) → σ(x, λ, h, ϵ)

R× [1,+∞[×]0, 1]× [0, 1] → C

smooth in (x, λ, h), supported for |x| ≤ 1, that satisfy for any α, β, ζ,N in N, any (x, λ, h, ϵ) in
[−1, 1]× [1,+∞[×]0, 1]× [0, 1]

(A.1.6) |∂αx ∂
β
λ (h∂h)

ζσ(x, λ, h, ϵ)| ≤ Cα,β,ζλ
−m+α−β(1 + λ|x− x0|)m−α−2κ0β(1− |x|)N .

Let ψ :]− 1, 1[→ R be a smooth function such that for some A ∈ R+ and any α ∈ N

(A.1.7) |∂αxψ(x)| ≤ Cα(1− |x|)−A−|α|, ∀x ∈]− 1, 1[.

Finally, let ξ → p(ξ) be a symbol independent of x, satisfying (A.1.1).

Proposition A.1.3 Let σ be in Σ̃m. Then for any (x, λ, h, ϵ) satisfying λh ≤ 1, we have

p(hDx)[e
i
h
ψ(x)σ(x, λ, h, ϵ)] = p(dψ(x))σ(x, λ, h, ϵ)e

i
h
ψ(x)

+ hσ1(x, λ, h, ϵ)e
i
h
ψ(x) + r(x, λ, h, ϵ)

(A.1.8)

where σ1 ∈ Σ̃m−1 and where r is a continuous function on R× [1,+∞[×]0, 1]× [0, 1] smooth in
(x, λ, h), satisfying for any α, β, ζ,N ∈ N

(A.1.9) |∂αx ∂
β
λ (h∂h)

ζr(x, λ, h, ϵ)| ≤ ChN (1 + |x|)−N .

Proof: The left hand side of (A.1.8) is

(A.1.10)
1

2πh

∫
e
i
h
[(x−y)ξ+ψ(y)]p(ξ)σ(y, λ, h, ϵ) dydξ.

Let (x, y) → θ(x, y) be a smooth function on R×] − 1, 1[, supported for |x− y| ≪ 1 − |y|, such
that for any α, β

(A.1.11) |∂αx ∂βy θ(x, y)| ≤ C(1− |y|)−α−β.
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Assume also θ(x, y) = 1 if |x− y| ≤ c(1− |y|) for some small c > 0. If we insert the cut-off 1− θ
under the integral, and make N ′ integration by parts in ξ, we get an integrand bounded by

(A.1.12) ChN
′
λ−m(1 + λ|y − x0|)m(1− |y|)N−N ′⟨ξ⟩µ−N

′
(1 + |x− y|)−N ′

by (A.1.1), (A.1.6). If we make act on (A.1.10) h∂h, we get also a similar bound, with a different
N ′, using also (A.1.7). We thus see that (A.1.10) with the cut-off 1− θ under the integral brings
a contribution to r in (A.1.8), using that by assumption λ = O(1/h) in order to control any
positive power of λ like those coming from ∂x-derivatives. We are thus reduced to

(A.1.13)
1

2πh

∫
e
i
h
[(x−y)ξ+ψ(y)]θ(x, y)p(ξ)σ(y, λ, h, ϵ) dydξ.

Define

(A.1.14) ψ1(x, y) =

∫ 1

0
ψ′(τy + (1− τ)x) dτ.

As on the support of θ, 1− |x| ∼ 1− |y|, we see using (A.1.7) that for θ(x, y) ̸= 0

(A.1.15) |∂αx ∂βyψ1(x, y)| ≤ Cα,β(1− |y|)−A−1−α−β

and ψ(y) = ψ(x)− ψ1(x, y)(x− y), so that (A.1.13) may be written

(A.1.16)
1

2πh
ei
ψ(x)
h

∫
e
i
h
(x−y)ηθ(x, y)p(η + ψ1(x, y))σ(y, λ, h, ϵ) dydη.

Inside this integral, we decompose

(A.1.17) p(η + ψ1(x, y)) = p(ψ1(x, y)) + ηq(x, y, η)

where q(x, y, η) =
∫ 1
0 p

′(ψ1(x, y) + τη) dτ satisfies according to (A.1.1), (A.1.15) and for (x, y)
staying in the support of θ, bounds of the form

(A.1.18) |∂αx ∂βy ∂γη (η∂η)ζq(x, y, η)| ≤ C⟨η⟩max(µ−1,0)(1− |y|)−Kα,β,γ,ζ

for some positive exponents Kα,β,γ,ζ . We substitute (A.1.17) inside (A.1.16). The first term in
the right hand side of (A.1.17) gives the first term in the right hand side of (A.1.8). Consider
next the term in (A.1.16) coming from the last term in (A.1.17) i.e. the product of ei

ψ(x)
h by

(A.1.19) − i

2π

∫
e
i
h
(x−y)η q̃(x, y, η, λ, h, ϵ) dydη,

with
q̃(x, y, η, λ, h, ϵ) = ∂y[θ(x, y)q(x, y, η)σ(y, λ, h, ϵ)].

It follows from (A.1.6), (A.1.11), (A.1.18) that

(A.1.20) |∂α′
y ∂

γ
η (η∂η)

γ′(h∂h)
ζ q̃(x, y, η, λ, h, ϵ)|

≤ Cλ−m+1+α′
(1 + λ|y − x0|)m−1(1− |y|)N ⟨η⟩max(µ−1,0)

for any α′, γ, γ′, ζ,N . We perform inside integral (A.1.19) integrations by parts using the operator
⟨ ηλh⟩

−2(1− η
λ2h

Dy

)
. We shall obtain a new expression

(A.1.21)
∫
e
i
h
(x−y)η q̃1(x, y, η, λ, h, ϵ) dydη
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where q̃1 satisfies since λh ≤ 1 and since 1− |x| ∼ 1− |y| on the support of θ(x, y),

(A.1.22) |∂α′
y ∂

γ
η (η∂η)

γ′(h∂h)
ζ q̃1(x, y, η, λ, h, ϵ)|

≤ Cλ−m+1+α′
(λh)−γ

〈 η

λh

〉−N0

(1 + λ|y − x0|)m−1(1− |x|)N ⟨η⟩max(µ−1,0)

for an arbitrary large N0. We perform next integrations by parts in (A.1.21) using

⟨λ(x− y)⟩−2(1 + λ2h(x− y) ·Dη).

It follows from (A.1.22) that the modulus of (A.1.21) is bounded by

(A.1.23) Cλ−m+1

∫ 〈 η

λh

〉−N0

⟨λ(x− y)⟩−N0(1 + λ|y − x0|)m−1⟨η⟩max(µ−1,0) dydη(1− |x|)N .

Since λh ≤ 1, the modulus of (A.1.23) is O(hλ−m+1(1 + λ|x− x0|)m−1(1− |x|)N ).
If we make act a ∂x-derivative on the integral in (A.1.16), one ∂y-integration by parts to-
gether with (A.1.15) and estimates (A.1.6), (A.1.18), shows that we get the same estimates
as in (A.1.18)-(A.1.23), with m replaced by m − 1. In the same way, a ∂λ-derivative acting on
the integral gives rise to an extra factor λ−1(1 + λ|y − x0|)−2κ0 , that induces in the estimates of
(A.1.23) a corresponding factor λ−1(1 + λ|x− x0|)−2κ0 .
Finally, a h∂h-derivative acting on the exponential in (A.1.16) may be trade off against a η∂η-
derivative, so that by integration by parts, the final expression (A.1.23) has still the same esti-
mates. We thus see that (A.1.16) with p(η + ψ1(x, y)) replaced by ηq(x, y, η) may be written as
the second term in the right hand side of (A.1.8). This concludes the proof. 2

We shall translate Proposition A.1.3 on the class of symbols Σm introduced in Definition 2.2.1.
Notice that if a belongs to Σm and if for s ∈ [0, T∗[, we set

(A.1.24) λ = (T∗ − s)
− 1

2κ0 , s = T∗ − λ−2κ0 ,

then for a(s, y, h, ϵ) in Σm, the function

(A.1.25) σ(y, λ, h, ϵ) = a(T∗ − λ−2κ0 , y, h, ϵ)

satisfies by (2.2.1)

|σ(y, λ, h, ϵ)| ≤ Cλ−2κ0m(1 + λ|y − x0|)2κ0m(1− |y|)N

for any N i.e. bound (A.1.6) with α = β = ζ = 0 and m replaced by m̃ = 2κ0m. If we take a
∂y-derivative of σ, we get in the same way estimate (A.1.6) with m̃ = 2κ0m and α = 1. One
checks similarly that ∂λ, h∂h derivatives acting on (A.1.25) give rise to the similar bounds for
(A.1.6). In other words, with definition (A.1.25) of σ in terms of a, we have the equivalence

(A.1.26) a ∈ Σm ⇔ σ ∈ Σ̃m̃ with m̃ = 2κ0m.

Corollary A.1.4 Let p(ξ) be a function independent of x and satisfying (A.1.1). Let (s, y, h, ϵ) →
a(s, y, h, ϵ) be an element of Σm defined as in Definition 2.2.1 for some m in R. Let ψ be a real
phase function defined on ]− 1, 1[ satisfying (A.1.7). Then if t(T∗ − s)

1
2κ0 ≥ c > 0, we have

(A.1.27) p(Dx)
[
eitψ(

x
t
)a
(
s,
x

t
,
1

t
, ϵ
)]

= eitψ(
x
t
)p
(
ψ′(x

t

))
a
(
s,
x

t
,
1

t
, ϵ
)

+
1

t
eitψ(

x
t
)a1

(
s,
x

t
,
1

t
, ϵ
)
+ r

(
s,
x

t
,
1

t
, ϵ
)
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where a1 ∈ Σ
m− 1

2κ0 ⊂ Σm−1 and r satisfies

(A.1.28) |∂αs ∂βy (h∂h)ζr(s, y, h, ϵ)| ≤ CNh
N (1 + |y|)−N

for all α, β, ζ,N .

Proof: If we set h = 1
t , we have according to (A.1.5)

(A.1.29) a(s,
x

t
, h, ϵ) =

√
t(Θ−1

h a)(s, x, h, ϵ)

so that the left hand side of (A.1.27) may be written according to (A.1.4) as

(A.1.30)
1√
h
Θ−1
h

[
p(hDx)[e

i
ψ(x)
h a(s, x, h, ϵ)]

]
.

We notice that if λ is defined by (A.1.24), the assumption λh ≤ c of Proposition A.1.3 is
equivalent to the condition t(T∗ − s)

1
2κ0 ≥ c−1 that we impose in the corollary. If we apply

Proposition A.1.3 to the symbol σ defined from a by (A.1.25), we deduce that (A.1.30) is equal
to

(A.1.31)
1√
h
Θ−1
h

[
p(dψ(x))ei

ψ(x)
h a(s, x, h, ϵ) + hei

ψ(x)
h σ1(x, λ, h, ϵ) + r(x, λ, h, ϵ)

]
for some element σ1 ∈ Σ̃m̃−1 with m̃ = 2κ0m by (A.1.26). We denote by a1 ∈ Σ

m− 1
2κ0 the

symbol associated to σ1 by (A.1.26), so that by (A.1.29), we obtain (A.1.27) with r(s, x, h, ϵ) =
r(x, λ, h, ϵ) that satisfies (A.1.28) by (A.1.9), (A.1.24) and the fact that λ(s)h ≤ 1. This concludes
the proof. 2

Corollary A.1.5 Denote for |x| < 1, φ(x) =
√
1− x2 and set p(ξ) =

√
1 + ξ2. Let m be an

element of Σm and q be in Z. We have

(x+ tp′(Dx))[e
itqφ(x/t)a(s,

x

t
,
1

t
, ϵ)] = x

(
1− q√

1 + (q2 − 1)(x/t)2

)
eitqφ(x/t)a(s,

x

t
,
1

t
, ϵ)

+eitqφ(x/t)a1(s,
x

t
,
1

t
, ϵ) + r(s,

x

t
,
1

t
, ϵ)

(A.1.32)

for some a1 ∈ Σ
m− 1

2κ0 ⊂ Σm−1 and r satisfying (A.1.28) (with h = 1
t ).

Proof: We just apply (A.1.27) noticing that y+p′(qφ′(y)) = y
(
1− q√

1+(q2−1)y2

)
by the definition

of p, φ. 2

A.2 Properties of multilinear operators

We gather here some properties of multilinear operators that we use in the bulk of the proof.
Some of them follow from the appendices in [14].

51



Lemma A.2.1 Let m1 ∈ S1,0(M
ν1 , p), m2 ∈ S1,0(M

ν2 , q) for some p, q ∈ N∗, some ν1, ν2 ∈ N,
with the notation introduced in Definition 3.1.1. Assume moreover that m1,m2 have constant
coefficients. Then there is m in S1,0(M

ν1+ν2
0 , p+ q − 1) such that

(A.2.1) Op(m1)(u1, . . . , up−1,Op(m2)(up, . . . , up+q−1)) = Op(m)(u1, . . . , up+q−1)

for any functions u1, . . . , up+q−1.

Proof: Equality (A.2.1) follows from (3.1.3) setting

m(ξ1, . . . , ξp+q−1) = m1(ξ1, . . . , ξp−1, ξp + · · ·+ ξp+q−1)m2(ξp, . . . , ξp+q−1).

The conclusion follows from

M0(ξ1, . . . , ξp−1, ξp + · · ·+ ξp+q−1)
ν1M0(ξp, . . . , ξp+q−1)

ν2 ≤ CM0(ξ1, . . . , ξp+q−1)
ν1+ν2

since M0(ξ1, . . . , ξn) is equivalent to the second largest among |ξ1|+ 1, . . . , |ξn|+ 1. 2

We recall some results abound boundedness properties of operators associated to symbols in the
class Sκ,0(Mν

0 , p) from [14]. Recall that we defined

(A.2.2) ∥u∥W ρ,∞ = ∥⟨Dx⟩ρw∥L∞ .

Then, by Proposition D.1.1 of [14] (applied with h = 1 and to symbols independent of x, y with
the notation of that reference), we have

Proposition A.2.2 Let n ∈ N∗, κ ∈ N, ν ≥ 0. There is ρ0 ∈ N such that for any m ∈
Sκ,0(M

ν
0 , n), independent of x, the following estimates hold for any s ∈ N, any v1, . . . , vn

(A.2.3) ∥Op(m)(v1, . . . , vn)∥Hs ≤ Cs

n∑
j=1

(∏
ℓ̸=j

∥vℓ∥W ρ0,∞

)
∥vj∥Hs

and moreover, for any fixed j in {1, . . . , n}

(A.2.4) ∥Op(m)(v1, . . . , vn)∥L2 ≤ C
(∏
ℓ̸=j

∥vℓ∥W ρ0,∞

)
∥vj∥L2

(A.2.5) ∥Op(m)(v1, . . . , vn)∥Hs ≤ Cs

(∏
ℓ̸=j

∥vℓ∥W ρ0+s,∞

)
∥vj∥Hs

If one assumes in addition that m is supported for |ξ1| + · · · + |ξn−1| ≤ C(1 + |ξn|) for some
constant C, one gets instead of (A.2.3)

(A.2.6) ∥Op(m)(v1, . . . , vn)∥Hs ≤ Cs

(n−1∏
ℓ=1

∥vℓ∥W ρ0,∞

)
∥vn∥Hs

and for any j < n,

(A.2.7) ∥Op(m)(v1, . . . , vn)∥Hs ≤ Cs∥vj∥L2

(∏
ℓ̸=j
ℓ̸=n

∥vℓ∥W ρ0,∞
)
∥vn∥W ρ0+s,∞ .
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Without the support condition on m, we get instead for any 1 ≤ ℓ ≤ n− 1

(A.2.8) ∥Op(m)(v1, . . . , vn)∥Hs ≤ Cs

[ ℓ∑
j=1

(∏
ℓ′ ̸=j

∥vℓ′∥W ρ0,∞

)
∥vj∥Hs

+
n∑

j=ℓ+1

ℓ∑
j′=1

∥vj∥W ρ0+s,∞∥vj′∥L2

∏
ℓ′ ̸=j,j′
1≤ℓ′≤n

∥vℓ′∥W ρ0,∞

]
.

Finally, inequality (A.2.4) holds also for x-dependent symbols in Sκ,β(Mν
0 , n) for any κ ≥ 0, β ≥

0.

Proof: Estimates (A.2.3) and (A.2.4) are inequalities (D.6) and (D.7) of Proposition D.1.1 of
[14]. Inequality (A.2.5) follows from (A.2.4) if we make act s ∂x-derivatives on Op(m)(v1, . . . , vn)
and use Leibniz rule. In addition, (A.2.4) holds for general symbols in Sκ,β(M

ν
0 , n) by (iii) of

Proposition D.1.1 of [14]. Estimate (A.2.6) is just inequality (D.5) in [14]. Let us prove (A.2.7)
when j = 1 for instance. Using the support property of m, we may write for any α ∈ N, α ≤ s,

∂αxOp(m)(v1, · · · , vn) = Op(m̃)(v1, . . . , vn−1, ⟨Dx⟩svn)

for another symbol m̃ in Sκ,0(Mν
0 , n). Applying (A.2.4) we get (A.2.7).

To prove (A.2.8), we decompose

m(ξ1, . . . , ξn) =
n∑
j=1

mj(ξ1, . . . , ξn)

where mj is in Sκ,0(M
ν
0 , n) and is supported for |ξ1| + · · · + |̂ξj | + · · · + |ξn| ≤ C(1 + |ξj |). For

1 ≤ j ≤ ℓ, we apply (A.2.6) with n replaced by j to bound ∥Op(mj)(v1, · · · , vn)∥Hs by the first
sum in the right hand side of (A.2.8). For ℓ + 1 ≤ j ≤ n we bound ∥Op(mj)(v1, · · · , vn)∥Hs

using (A.2.7) with (j, n) replaced by (j′, j). This concludes the proof. 2

A.3 Action of L+ on characteristic cubic expressions

Consider m an element of S1,0(M0, 3) with constant coefficients, with the notation introduced
in Definition 3.1.1. Let I = (i1, i2, i3) be a characteristic index i.e. an element of {−1, 1}3 with
i1 + i2 + i3 = 1. The goal of this subsection is to obtain L2 estimates for the action of L+ on a
characteristic cubic term.

Proposition A.3.1 There are integers ρ̃0, s̃0 in N such that for any functions w1, w2, w3 the
following estimate holds true

(A.3.1) ∥L+Op(m)(w1, w2, w3)∥L2 ≤ C

3∑
ℓ=1

(
∥Liℓwℓ∥L2 + ∥wℓ∥H s̃0

) ∏
1≤j≤3
j ̸=ℓ

∥wj∥W ρ̃0,∞ .

In addition, one has also the bounds

∥L+Op(m)(w1, w2, w3)∥L2 ≤ C
(
∥Li1w1∥L2 + ∥w1∥H s̃0

)
∥w2∥W ρ̃0,∞∥w3∥W ρ̃0,∞

+ C∥w1∥W ρ̃0,∞
(
∥Li2w2∥L2 + ∥w2∥H s̃0

)
∥w3∥W ρ̃0,∞

+ C∥w1∥L2∥w2∥W ρ̃0,∞
(
∥Li3w3∥W ρ̃0,∞ + ∥w3∥W ρ̃0,∞

)(A.3.2)
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and

∥L+Op(m)(w1, w2, w3)∥L2 ≤ C
(
∥Li1w1∥L2 + ∥w1∥H s̃0

)
∥w2∥W ρ̃0,∞∥w3∥W ρ̃0,∞

+ C∥w1∥L2∥w2∥W ρ̃0,∞
(
∥Li3w3∥W ρ̃0,∞ + ∥w3∥W ρ̃0,∞

)
+ C∥w1∥L2

(
∥Li2w2∥W ρ̃0,∞ + ∥w2∥W ρ̃0,∞

)
∥w3∥W ρ̃0,∞ .

(A.3.3)

Moreover estimates similar to (A.3.2), (A.3.3) hold if one makes any permutation of (1, 2, 3) in
the right hand side.

To prove the proposition, we shall apply some results of [14]. In order to do so, we reduce
ourselves to the framework of the appendices of that reference, using the rescaling (A.1.5). Set
h = 1

t and

(A.3.4) vj = (Θhwj)(x) =
1√
h
wj

(x
h
).

Then if we set

(A.3.5) ∥v∥Hs
h
= ∥⟨hDx⟩sv∥L2 , ∥v∥W ρ,∞

h
= ∥⟨hDx⟩ρ∥L∞ ,

one has

(A.3.6) ∥vj∥Hs
h
= ∥wj∥Hs , ∥vj∥W ρ,∞

h
= h−

1
2 ∥wj∥W ρ,∞ .

Define

(A.3.7) Oph(m)(v1, v2, v3) =
1

(2π)3

∫
eix(ξ1+ξ2+ξ3)m(hξ1, hξ2, hξ3)

3∏
j=1

v̂j(ξj) dξ1dξ2dξ3.

Then

(A.3.8) Θ−1
h Oph(m)(Θhw1,Θhw2,Θhw3) = h−1Op(m)(w1, w2, w3).

Moreover, by (A.1.4), if we set

(A.3.9) L± =
1

h
Oph(x± p′(ξ)) =

1

h
(x± p′(hDx))

we get

(A.3.10) Θ−1
h ◦ L± ◦Θhw = L±w.

It follows from (A.3.4), (A.3.6)-(A.3.10), that inequality (A.3.1) is equivalent to

(A.3.11) ∥L+Oph(m)(v1, v2, v3)∥L2 ≤ C
3∑
ℓ=1

(
∥Liℓvℓ∥L2 + ∥vℓ∥H s̃0

h

) ∏
1≤j≤3
j ̸=ℓ

∥vℓ∥W ρ̃0,∞
h

.

In the same way, (A.3.2) is equivalent to

∥L+Oph(m)(v1, v2, v3)∥L2 ≤ C
[(
∥Li1v1∥L2 + ∥v1∥H s̃0

h

)
∥v2∥W ρ̃0,∞

h

∥v3∥W ρ̃0,∞
h

+∥v1∥W ρ̃0,∞
h

(
∥Li2v2∥L2 + ∥v2∥H s̃0

h

)
∥v3∥W ρ̃0,∞

h

+∥v1∥L2∥v2∥W ρ̃0,∞
h

(
∥Li3v3∥W ρ̃0,∞

h

+ ∥v3∥W ρ̃0,∞
h

)]
.

(A.3.12)
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and (A.3.3) is equivalent to

∥L+Oph(m)(v1, v2, v3)∥L2 ≤ C
[(
∥Li1v1∥L2 + ∥v1∥H s̃0

h

)
∥v2∥W ρ̃0,∞

h

∥v3∥W ρ̃0,∞
h

+ ∥v1∥L2∥v2∥W ρ̃0,∞
h

(
∥Li3v3∥W ρ̃0,∞

h

+ ∥v3∥W ρ̃0,∞
h

)
+ ∥v1∥L2

(
∥Li2v2∥W ρ̃0,∞

h

+ ∥v2∥W ρ̃0,∞
h

)
∥v3∥W ρ̃0,∞

h

]
.

(A.3.13)

Moreover, estimates of Proposition A.2.2 hold (uniformly in h ∈]0, 1]) if we replace everywhere
Op(m) by Oph(m), ∥·∥Hs by ∥·∥Hs

h
, ∥·∥W ρ,∞ by ∥·∥W ρ,∞

h
.

Proof of Proposition A.3.1: Let us decompose

m(ξ1, ξ2, ξ3) = mL(ξ1, ξ2, ξ3) +mH(ξ1, ξ2, ξ3)

mH(ξ1, ξ2, ξ3) =
3∑
j=1

mH
j (ξ1, ξ2, ξ3)

(A.3.14)

where for some β > 0 small, mL is supported for |ξ1|+ |ξ2|+ |ξ3| ≤ Ch−β , while mH
j is supported

for |ξℓ| ≤ C|ξj |, ℓ ̸= j and |ξj | ≥ ch−β , each of these symbols being in S1,0(M0, 3).
• Contribution of mH to (A.3.11)-(A.3.13)
Write

(A.3.15) L+Oph(m
H
1 )(v1, v2, v3) = Oph(m̃

H
1 )(v1, v2, v3) + Oph(m

H
1 )(Li1v1, v2, v3)

+ h−1p′(hDx)Oph(m
H
1 )(v1, v2, v3)− i1h

−1Oph(m
H
1 )(p′(hDx)v1, v2, v3)

where m̃H
1 = i

∂mH1
∂ξ1

∈ S1,0(M
2
0 , 3). In the arguments of each term in the right hand side, we

may replace v1 by Oph((1−χ0)(h
βξ1))v1 for χ0 ∈ C∞

0 (R), equal to one close to zero, with small
enough support, by the support property of mH

1 . We estimate then the L2-norm of (A.3.15)
using the version of (A.2.4) for Oph(m). We obtain

(A.3.16) ∥L+Oph(m
H
1 )(v1, v2, v3)∥L2 ≤ C

(
h−1∥Oph((1− χ0)(h

βξ))v1∥L2 + ∥Li1v1∥L2

)
× ∥v2∥W ρ̃0,∞

h

∥v3∥W ρ̃0,∞
h

if ρ̃0 is taken large enough. Moreover, in the first factor in the right hand side, we may bound

(A.3.17) h−1∥Oph((1− χ0)(h
βξ))v1∥L2 ≤ Ch−1+βs̃0∥v1∥H s̃0

h

≤ C∥v1∥H s̃0
h

if s̃0 is chosen large enough so that s̃0β ≥ 1. Thus the left hand side of (A.3.16) is bounded
from above by the first term in the right hand side of (A.3.11). By symmetry, we thus get that
(A.3.11) for m replaced by mH holds.
Let us prove (A.3.12) for mH . By (A.3.15) to (A.3.17), the contribution of mH

1 to the left hand
side of (A.3.12) is estimated by the first term in the right hand side of this inequality. In the
same way, the contribution of mH

2 is bounded by the second term in the right hand side. For
mH

3 , write instead of (A.3.15)

(A.3.18) L+Oph(m
H
3 )(v1, v2, v3) = Oph(m̃

H
3 )(v1, v2, v3) + Oph(m

H
3 )(v1, v2,Li3v3)

+ h−1p′(hDx)Oph(m
H
3 )(v1, v2, v3)− i3h

−1Oph(m
H
3 )(v1, v2, p

′(hDx)v3).

We use next (A.2.4) with j = 1. The L2-norm of (A.3.18) is bounded from above by

(A.3.19) C∥v1∥L2∥v2∥W ρ̃0,∞
h

(
∥Li3v3∥W ρ̃1,∞

h

+ h−1∥Oph(1− χ(hβξ))v3∥W ρ̃1,∞
h

)
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for some large enough ρ̃1. If ρ̃0 is such that (ρ̃0 − ρ̃1)β > 1, we may bound the last term by
∥v3∥W ρ̃0,∞

h

, using that operators of negative order are bounded on L∞-spaces. This gives an
estimate of (A.3.19) by the last term in the right hand side of (A.3.12).
Finally, let us prove (A.3.13) for mH . The contribution of mH

1 , mH
3 are treated as in the study

of (A.3.11) and (A.3.12) above. For mH
2 , we write (A.3.18) for mH

2 instead of mH
3 with indices

2 and 3 interchanged in the right hand side. This gives an estimate for the mH
2 -contribution to

the left hand side of (A.3.13) by the third term in the right hand side.
• Contribution of mL to (A.3.11)-(A.3.13)
Since mL is supported for |ξ1| + |ξ2| + |ξ3| ≤ Ch−β by construction, mL satisfies estimate
(3.1.2) with β > 0, ν = 1, κ = 1, i.e. belongs to the class S1,β(M0, 3). This allows us to apply
Proposition F.2.1 of [14] that asserts that a Leibniz rule holds, in that sense that if (i1, i2, i3) is
characteristic,

L+Oph(m
L)(v1, v2, v3) = Oph(m

L
1 )(Li1v1, v2, v3)

+Oph(m
L
2 )(v1,Li2v2, v3)

+Oph(m
L
3 )(v1, v2,Li2v3)

+Oph(r)(v1, v2, v3)

(A.3.20)

where mL
j , j = 1, 2, 3 and r are elements of the class S1,β(Mν

0 , 3) for some ν ∈ N. Actually, in
[14], there is also a weight

∏3
j=1 ⟨ξj⟩

−1 in the right hand side of the inequalities (3.1.2) that define
the symbols, but that does not play any role in the proofs. There is also in Proposition F.2.1
of [14] an extra term in the right hand side of (A.3.20), of the form h−1Oph(r

′)(v1, v2, v3) for
some r′. Such a term does not appear here because our symbols are constant coefficients and in
particular do not depend on the y-variable in Proposition F.2.1 of [14]: see the last three lines
in Proposition B.2.1 of [14].
To obtain (A.3.11) for mL, we now just have to use estimate (A.2.4) for each term in the right
hand side of (A.3.20), putting the L2 norm on the factor in Lijvj for the first three terms in the
right hand side.
One obtains (A.3.12) for mL in the same way, except that we treat the Oph(m

L
3 )-term in the

right hand side of (A.3.20) putting the L2 norms on the factor v1 in estimate (A.2.4). Finally,
to get (A.3.13) for mL, we argue in the same way, controlling the L2 norms of the Oph(m

L
2 ) and

Oph(m
L
3 ) terms using (A.2.4) where we put the L2 norm on the v1 term in the right hand side.

This concludes the proof. 2

A.4 Klainerman-Sobolev estimates

We prove in this subsection a Klainerman-Sobolev estimate for the one dimensional Klein-Gordon
equation. This estimate is not new and may be found implicitly on a weaker form in [13, 31] for
instance. We first introduce some notation.
If δ ∈ [0, 1], let us introduce S̃δ(1) the space of smooth functions (x, ξ) → a(x, ξ, h) from R2 to
C, depending also on a parameter h ∈]0, 1], such that for any α, β in N

(A.4.1) |∂αx ∂
β
ξ a(x, ξ, h)| ≤ Cαh

−δ(α+β).

For u ∈ S(R), define the semi-classical Weyl quantization of a acting on u by

(A.4.2) OpWh (a)u =
1

2πh

∫
ei(x−y)

ξ
ha

(x+ y

2
, ξ, h

)
u(y) dydξ.

If b(x, ξ, y, η) is a smooth function, define

(A.4.3) σ(Dx, Dξ, Dy, Dη)b(x, ξ, y, η) = (DξDy −DxDη)b(x, ξ, y, η)
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and recall that if δ ∈ [0, 12 [, if a1, a2 are in S̃δ(1), there is a symbol a1#ha2 in S̃δ(1), such that
for any N

(A.4.4) a1#ha2 −
N∑
k=0

1

k!

( ih
2
σ(Dx, Dξ, Dy, Dη)

)k
(a1(x, ξ)a2(y, η))|x=y,ξ=η

is in h(N+1)(1−2δ)S̃δ(1) and

(A.4.5) OpWh (a1) ◦OpWh (a2) = OpWh (a1#ha2).

In particular, if a1 and a2 have disjoint supports, OpWh (a1) ◦OpWh (a2) may be written for any N
in N as hNOpWh (r) with r in S̃δ(1), since δ < 1

2 .
Recall also that if a ∈ S̃δ(1), OpWh (a) is bounded on Hs

h with uniform estimates

(A.4.6) ∥OpWh (a)u∥Hs
h
≤ C∥u∥Hs

h
.

All the results above may be found for instance in Chapter 7 of the book of Dimassi-Sjöstrand [15].
Our goal is to prove:

Proposition A.4.1 Let ρ0 ∈ N. There is s0 ∈ N such that for any function w, one has the
bound

(A.4.7) ∥w∥W ρ0,∞ ≤ C√
t

((
∥L+w∥L2 + ∥w∥Hs0

) 1
2 ∥w∥

1
2
Hs0 + ∥L+w∥L2

)
,

where L+ = x+ tp′(Dx) with p(ξ) =
√
1 + ξ2.

We define from w a function v by (A.3.4) and using notation (A.3.9) and (A.3.6), we see that
(A.4.7) is equivalent to

(A.4.8) ∥v∥W ρ0,∞
h

≤ C
((

∥L+v∥L2 + ∥v∥Hs0
h

) 1
2 ∥v∥

1
2

H
s0
h

+ ∥L+v∥L2

)
.

Let us notice that one may further reduce to proving that there is some large enough s̃0 such
that the following estimate holds:

(A.4.9) ∥⟨hDx⟩−3v∥L∞ ≤ C
((

∥L+v∥L2 + ∥v∥
H
s̃0
h

) 1
2 ∥v∥

1
2

H
s̃0
h

+ ∥L+v∥H−s̃0
h

)
.

Actually, if (A.4.9) is proved, we may apply it to vk = OpWh (χ(2−kξ))v for some χ ∈ C∞
0 (R∗)

and k ∈ N. We have then

∥vk∥W ρ0,∞
h

≤ C2k(ρ0+3)∥⟨hDx⟩−3vk∥L∞

≤ C2k(ρ0+3)
((

∥L+vk∥L2 + ∥vk∥H s̃0
h

) 1
2 ∥vk∥

1
2

H
s̃0
h

+ ∥L+vk∥H−s̃0
h

)
≤ C2k(ρ0+3+

s̃0
2
− s0

2
)
(
∥L+v∥L2 + ∥v∥Hs0

h

) 1
2 ∥v∥

1
2

H
s0
h

+ C2k(ρ0+3−s̃0)(∥L+v∥L2 + ∥v∥L2).

from which (A.4.8) follows by summation of a Littlewood-Paley decomposition if s0 > s̃0+2(ρ0+
3) and s̃0 > ρ0 + 3.
In the rest of this subsection, we shall prove (A.4.9). Before starting the proof, we make some
reductions.
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Lemma A.4.2 Let γ, χ ∈ C∞
0 (R), equal to one close to zero, with small enough support. Let

M ∈ N. There is β > 0 and a family of smooth functions x→ θh(x), depending on a parameter
h ∈]0, 1], with for any α ∈ N, ∂αx θh(x) = O(h−2βα), θh being supported in [−1 + ch2β, 1 − ch2β]
for some c > 0, such that for any function v

∥⟨hDx⟩−2v −OpWh
(
γ((x+ p′(ξ))⟨ξ⟩2)χ(hβξ)θh(x)⟨ξ⟩−2)v∥L∞

≤ C
(
∥v∥

H
−1+ 1

2β
h

+ ∥L+v∥H−2M+1
h

)
.(A.4.10)

Proof: By semi-classical Sobolev embedding, one has for any ϵ > 0

(A.4.11) ∥⟨hDx⟩−2(v −OpWh (χ(hβξ))v)∥L∞ ≤ Ch−
1
2
+β(s+ 3

2
−ϵ)∥v∥Hs

h

if s > −3
2 + ϵ, so that we have an upper bound by the right hand side of (A.4.10). We shall study

next the L∞ norm of OpWh (a(x, ξ))v if

(A.4.12) a(x, ξ) = χ(hβξ)⟨ξ⟩−2(1− γ)((x+ p′(ξ))⟨ξ⟩2) = a1(x, ξ)(x+ p′(ξ))

where a1 = χ(hβξ)γ1((x+ p′(ξ))⟨ξ⟩2) with γ1(z) =
1−γ(z)

z . Then a and a1 belong to S̃δ(1) with
δ = 2β < 1

2 for small enough β > 0. We use (A.4.5), (A.4.4) to write with some r in S̃δ(1)

OpWh (a)v = OpWh (a1) ◦OpWh (x+ p′(ξ))v + h1−2δOpWh (r)

= hOpWh (a1)L+v + h1−2δOpWh (r).
(A.4.13)

In the right hand side write

(A.4.14) OpWh (a1)L+v = OpWh (a1)OpWh (⟨ξ⟩2M )(⟨hDx⟩−2ML+v)

and use that since M is an integer, we have an exact composition formula (A.4.5)

(A.4.15) OpWh (a1) ◦OpWh (⟨ξ⟩2M ) =
2M∑
k=0

1

k!

(
i
h

2
σ(Dx, Dξ, Dy, Dη)

)k
(a1(x, ξ)⟨η⟩2M )|x=y,ξ=η.

Since |ξ| = O(h−β) on the support of a1, we get that (A.4.15) is of the form h−2MδOpWh (a2) with
some a2 ∈ S̃δ(1). Applying again the semi-classical Sobolev inequality, we deduce from (A.4.14),
(A.4.15)

∥OpWh (a1)L+v∥L∞ ≤ Ch−
1
2
−2Mδ∥L+v∥

H−2M+1
2+ϵ .

Plugging this in (A.4.13), we get

(A.4.16) ∥OpWh (a)v∥L∞ ≤ Ch
1
2
−2Mδ∥L+v∥

H−2M+1
2+ϵ + Ch

1
2
−2δ∥OpWh (r)v∥

H
1
2+ϵ .

If δ = 2β is small enough relatively to 1/M , this implies that (A.4.16) is bounded by the right
hand side of (A.4.10). Taking into account (A.4.11), we thus see that it remains to consider

(A.4.17) OpWh
(
χ(hβξ)γ((x+ p′(ξ))⟨ξ⟩2)(1− θh)(x)⟨ξ⟩−2)v.

We shall be done if we prove that, if Supp γ has been taken small enough, we may choose θh
such that it is equal to one on the support of χ(hβξ)γ((x+ p′(ξ))⟨ξ⟩2) so that (A.4.17) vanishes
identically. This follows from the fact that, if Supp γ is small enough and γ((x+ p′(ξ))⟨ξ⟩2) ̸= 0,
then when ξ → +∞ (resp. ξ → −∞), x+1 (resp. x− 1) stays in an interval [c1/ξ2, c2/ξ2] (resp.
[−c2/ξ2,−c1/ξ2]) for some 0 < c1 < c2. If in addition, |ξ| = O(h−β), this implies that x belongs
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to the interval [−1 + ch2β, 1 − ch2β] for some c > 0, which allows to construct the wanted θh.
This concludes the proof. 2

Proof of Proposition A.4.1: We set with the notation of Lemma A.4.2

(A.4.18) ṽ = OpWh (γ((x+ p′(ξ))⟨ξ⟩2)θh(x)χ(hβξ)⟨ξ⟩−3)v

so that, by that lemma, inequality (A.4.9) that implies Proposition A.4.1, will follow if we prove

(A.4.19) ∥ṽ∥L∞ ≤ C(∥v∥
H
s̃0
h

+ ∥L+v∥L2)
1
2 ∥v∥

1
2

H
s̃0
h

.

Take θ̃h ∈ C∞
0 (] − 1, 1[), equal to one on the support of θh, satisfying ∂αx θ̃h = O(h−δα) (with

δ = 2β) for any α. Since the symbol of the operator defining ṽ in (A.4.18) is in S̃δ(1), it follows
from (A.4.5) and the remark following it, that (1 − θ̃h)ṽ = hNOpWh (r)v for some symbol r in
S̃δ(1) and any N . Then, using again semi-classical Sobolev estimate and (A.4.6), we see that
∥(1 − θ̃h)ṽ∥L∞ is estimated by the right hand side of (A.4.19). We are thus left with studying
θ̃hṽ. If φ(x) =

√
1− x2 for x ∈]− 1, 1[, write

∥θ̃hṽ∥L∞ = ∥e−i
φ
h θ̃hṽ∥L∞ ≤ Ch−

1
2 ∥hDx(e

−iφ
h θ̃hṽ)∥

1
2

L2∥e−i
φ
h θ̃hṽ∥

1
2

L2

≤ Ch−
1
2
(
∥θ̃h(x)(hDx − dφ(x))ṽ∥

1
2

L2 + ∥(hDxθ̃h)ṽ∥
1
2

L2

)
∥ṽ∥

1
2

L2 .
(A.4.20)

Note that (hDxθ̃h)ṽ = −ih1−δ θ̃1h(x)ṽ for a function θ̃1h satisfying again ∂αx θ̃
1
h = O(h−δα), whose

support does not intersect the support of the symbol defining ṽ in (A.4.18). Using again (A.4.5),
we conclude that ∥(hDxθ̃h)ṽ∥L2 ≤ cNh

N∥v∥L2 , so that to show that (A.4.20) is bounded by the
right hand side of (A.4.19), it is enough to prove that

(A.4.21) h−
1
2 ∥θ̃h(x)(hDx − dφ(x))ṽ∥

1
2

L2∥ṽ∥
1
2

L2 ≤ C(∥v∥
H
s̃0
h

+ ∥L+v∥L2)
1
2 ∥v∥

1
2

H
s̃0
h

.

Notice that in (A.4.21), hβ θ̃h(x)dφ(x) is an element of S̃δ(1) and that

(A.4.22) θ̃h(x)hDx = OpWh (θ̃hξ) + i
h

2
θ̃′h(x).

Again, the last contribution in (A.4.22) will bring a trivial term to estimate in (A.4.21), so that
we are reduced to the study of

(A.4.23) h−
1
2 ∥OpWh (θ̃h(x)(ξ − dφ(x)))ṽ∥

1
2

L2∥ṽ∥
1
2

L2 .

If we express ṽ from (A.4.18) and use (A.4.5), (A.4.4) at order N = 1, we obtain

(A.4.24) OpWh (θ̃h(x)(ξ − dφ(x)))ṽ = OpWh (a0(x, ξ) + ha1(x, ξ) + h2(1−2δ)−βr)v,

where r ∈ S̃δ(1) is the remainder in (A.4.4) (the extra power h−β coming from the fact that
θ̃hdφ is not in S̃δ(1), but only in h−βS̃δ(1)), and where a0, a1 are the first two terms in expansion
(A.4.4) and are given explicitly by

a0 = θh(x)(ξ − dφ(x))γ((x+ p′(ξ))⟨ξ⟩2)χ(hβξ)⟨ξ⟩−3

a1 = − i

2
{(ξ − dφ(x)), θh(x)γ((x+ p′(ξ))⟨ξ⟩2)χ(hβξ)⟨ξ⟩−3}.

(A.4.25)

If δ, β are small enough, the r term in (A.4.24) brings to (A.4.23) a contribution bounded by the
right hand side of (A.4.21). We thus have to study a0, a1. We use Lemma 1.8 of [13] to rewrite
a0, a1. According to (1.28), (1.29) with κ = 2 in that reference, we may write

(A.4.26) a0(x, ξ) = (x+ p′(ξ))b0(x, ξ)
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where b0 is supported for |ξ| ≤ h−β , 1 − x2 ≥ c⟨ξ⟩−2 and satisfies estimates of the form
|∂αx ∂α

′
ξ b0(x, ξ)| ≤ C⟨ξ⟩2α−α

′
. Actually, as already seen in the proof of Lemma A.4.2, θh ≡ 1

on the support of γ((x+ p′(ξ))⟨ξ⟩2)χ(hβξ), so that this factor θh may be omitted in the defini-
tion (A.4.25) of a0. It follows then that b0 is in S̃δ(1) with δ = 2β.
We may thus apply (A.4.5), (A.4.4) to write

OpWh (a0)v = OpWh (b0(x, ξ)(x+ p′(ξ))v

= OpWh (b0)OpWh (x+ p′(ξ))v − h

2i
OpWh

(∂b0
∂ξ

− p′′(ξ)
∂b0
∂x

)
v + h2−4δOpWh (r)v

(A.4.27)

for some r in S̃δ(1). In the above expression, ∂b0
∂ξ − p′′(ξ)∂b0∂x is in S̃δ(1) since p′′(ξ) = O(⟨ξ⟩−3).

Applying (A.4.6) to the three terms in the right hand side of (A.4.27), we get that for β > 0
small enough

∥OpWh (a0)v∥L2 ≤ C(∥OpWh (x+ p′(ξ))v∥L2 + h∥v∥L2)

≤ Ch(∥L+v∥L2 + ∥v∥L2).
(A.4.28)

Consider next a1 given by (A.4.25) (where θh(x) may be removed). As on the support of a1,
∂αx (dφ(x)) = O(⟨ξ⟩1+2α), it follows that a1 is in S̃δ(1), so that the second term in the right hand
side of (A.4.24) satisfies

(A.4.29) h∥OpWh (a1)v∥L2 ≤ Ch∥v∥L2 .

Plugging (A.4.24), (A.4.28) and (A.4.29) inside (A.4.23), we get that this expression is bounded
from above by the right hand side of (A.4.21). This concludes the proof. 2
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