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Abstract: In Morocco, extensive use, traditional practices, and climate change have seriously im-
pacted the productivity of aromatic and medicinal plants (AMP). To mitigate these adverse effects,
this study aims at evaluating the potential of the arbuscular mycorrhizal fungi (AMF), namely
Rhizophagus irregularis and Funneliformis mosseae, in improving biomass, essential oils (EOs), and
biomolecule production in Thymus satureioides, T. pallidus, and Lavandula dentata. Compared to non-
inoculated-AMP, AMF induced significant increases in biomass production by 37.1, 52.4, and 43.6%,
and in EOs yield by 21, 74, and 88% in T. satureioides, T. pallidus, and L. dentata, respectively. The EOs
of inoculated-AMP exhibited increased proportions of major compounds such as thymol (23.7%),
carvacrol (23.36%), and borneol (18.7%) in T. satureioides; α-terpinene (32.6%), thymol (28.79%), and
δ-terpinene (8.1%) in T. pallidus; and camphor (58.44%), isoborneol (8.8%), and fenchol (4.1%) in
L. dentata. Moreover, AMF significantly improved the anti-germinative and antifungal activities
of the EOs. Indeed, IC50 values decreased by 1.8, 16.95, and 2.2 times against Blumerai graminis,
Zymoseptoria tritici, and Fusarium culmorum, respectively, compared to non-inoculated-AMP. This
study highlights the performance of the symbiosis between AMF and AMPs in terms of high qual-
ity of EOs production while respecting the environment. The associations F. mosseae-Thymus and
R. irregularis-Lavandula are the most efficient.

Keywords: aromatic and medicinal plants; arbuscular mycorrhizal fungi; Thymus satureioides;
Thymus pallidus; Lavandula dentata; essential oils; biological activities

1. Introduction

Plants with medicinal and/or aromatic properties that are used in pharmacy and/or
perfumery are usually defined as aromatic and medicinal plants (AMP) [1]. Since antiquity,
humans have used AMP as a source of therapeutics to remedy ailments, relieve pain,
heal wounds, and also in the composition of perfumes and culinary preparations. These
uses developed later through civilizations in China, India, and Greece [2]. Backed by
natural assets, including its ecological heterogeneity, climatic variations, fertile soils, and
geographic location, Morocco has a diversified floristic system which includes more than
4200 wild species, including 800 species with aromatic and/or medicinal properties [3,4].
It is estimated that the area of wild AMP in Morocco exceeds 311,862 Ha [5], but only
a hundred species are exploited as dried herbs and as essential oils or other aromatic
extracts [6]. The Moroccan production of AMP herbs and their extracts comes from both
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wild-crafted and farmed species, providing export revenues of about 25 million dollars
for cultivated AMP and 37 million dollars for wild AMP [6]. Morocco is ranked as the
12th exporter worldwide, of which Europe is the leading destination, where AMP are
exported as essential oils and dried material [7]. The analysis of AMP exports between
2002 and 2014 highlighted the dominance of thyme and lavender, with an average volume
of about 1973.49 tons and 109.17 tons, respectively [8]. These plants, belonging to the
Lamiaceae family, possess outstanding biological activities due to their valuable chemical
compositions, including terpenes, even though the essential oil compositions of Lavandula
and thymus species show a similar chemical profile for the same genus with a variation
of proportion, such as thymol and its isomer carvacrol as well as their precursors p-
cymene, γ-terpinene, and borneol in thyme [9–11] and eucalyptol, fenchone, and camphor
in lavender [12,13], in addition to linalool, which is common in both plants [10].

However, the method of exploitation of AMP in Morocco has several weaknesses
upstream and downstream of the sector. Most biomass collected is spontaneous (more
than 80%) rather than the cultivated origin (less than 20%). In addition, most AMP are
collected at the flowering stage, compromising their regenerative ability [14,15]. This type
of harvest, if not wisely managed, can lead to overexploitation, genetic erosion, and finally,
extinction of these resources. The use of chemical fertilizers to improve productivity—
regardless of the negative effect on human health and on environmental ecosystems—no
longer conforms to the requirements of the world market, which is increasingly interested
in bioactive molecules. Many studies have shown that the use of nitrogen-based fertilizers
in high doses leads to a decrease of up to two times in secondary metabolites, such as total
yields of phenols and flavonoids and the equivalents of ursolic acid, carlina oxide, and
chlorogenic acid [16,17]. Thus, sustainable exploitation of AMP must include strategies for
improving productivity, producing sufficient quantity and quality as required, as well as
mastering the cultivation of AMP species well adapted to the environmental conditions
of the region [18]. In this perspective, eco-friendly microorganisms, such as arbuscular
mycorrhizal fungi (AMF), could be one of the keys to improve AMP yield in terms of
biomass and bioactive molecule production. AMF live in symbiosis with the roots of the
majority of plant species [19,20]. They provide vital ecological services, such as improving
soil texture and fertility through the production of glomalin as well as increasing water
and mineral nutrient supply for the host plants [21]. These modifications strengthen host
plants’ tolerance to environmental stresses, activating secondary metabolite biosynthesis
pathways such as essential oil biosynthesis [22,23].

Many studies have shown that AMF increases biomass and essential oil yield in sev-
eral AMP, such as Mentha arvensis L. [24], Mentha piperita L. [25], Origanum vulgare L. [26],
Ocimum basilicum L. [27], Salvia officinalis L., and Thymus vulgaris L. [28,29]. However, little
is known about the influence of AMF inoculation on the accumulation of active phyto-
chemicals in AMP shoots, which are often sought-after products. In particular, no data are
available about the effect of arbuscular mycorrhizal inoculation on the chemical composi-
tion of essential oil in Moroccan endemic Thymus (Thymus satureioides and Thymus pallidus)
and Lavandula (Lavandula dentata). Those species have huge economic value, but they are
unfortunately under threat of extinction [30,31].

Thus, the present paper aimed to evaluate the efficiency of two AMF species
(Rhizophagus irregularis and Funneliformis mosseae) on the yield, composition, and biological
activities of essential oils in three AMP species (T. satureioides, T. pallidus, and L. dentata)
grown under greenhouse conditions, noting the best-performing AMP–AMF associations.

2. Materials and Methods
2.1. Plant and Fungal Materials

The cultivation of thyme and lavender was carried out from seeds collected from
wild plants in the region of Asni for T. satureioides (N 31◦13′35, 25456′′, W 7◦57′38, 17152′′)
and T. pallidus (N 31◦15′59, 50368′′, W7◦49′46, 68096′′) and from the region of Had draa
(N 31◦38′59, 93988′′, W9◦36′53, 40132′′) for L. dentata. Seeds were germinated in sterile peat,



Agronomy 2022, 12, 2223 3 of 23

and after one month of cultivation, the thyme and lavender seedlings were transplanted
and inoculated (20 g/kg) in pots containing a mixture of sand (2/3) and sterile peat
(1/3). The mycorrhizal inoculums tested in our study are based on two different AMF
species: R. irregularis (Ri) (C. Walker and A. Schüßler, No. BGCBJ09) and F. mosseae
(Fm) (Gerd. and Trappe, BEG no. 12). They were multiplied in our laboratory as previously
described [19,32–35]. The inoculum consisted of 20 g of soil with mycorrhizal root fragments,
spores, and hyphae of the respective fungus per pot. The same amount of autoclaved
inoculum was added to non-inoculated plants. The inoculum from each AMF possessed
similar infective characteristics (75% of infected roots and approximately 20 spores/g
of inoculum).

2.2. Experimental Setup

The experimental setup consisted of nine treatments, including three mycorrhizal
status (non-inoculated (NI), inoculated with R. irregularis (Ri), inoculated with F. mosseae
(Fm)) and three AMP species (T. satureioides (Ts), T. pallidus (Tp), and L. dentata (Ld)).
The 9 treatments (Ts-NI, Ts-Ri, Ts-Fm, Tp-NI, Tp-Ri, Tp-Fm, Ld-NI, Ld-Ri, Ld-Fm) were
repeated 42 times (a repeat is represented by a pot containing one plant).

2.3. Determination of Arbuscular Mycorrhizal Colonization and Plant Growth

Evaluation of the mycorrhizal colonization intensity (%) of the roots was performed
according to the method of Trouvelot et al. [36], after staining the roots as described by
Philips and Hayman (1970) [37] with some modifications. Roots were harvested, washed
thoroughly with running water, and then thinned with 10% KOH for 30 min at 90 ◦C. Excess
KOH was removed by rinsing with running water. The thinned roots were then immersed
in a solution of trypan blue (0.05%) diluted in Lacto-glycerol (1/3 water, 1/3 glycerol, and
1/3 lactic acid) for 20 min at 90 ◦C. After a final rinse, the roots were cut into 30 fragments
of 1 cm and observed under a light microscope.

Each observed root fragment was assigned a class score between 0 and 5, correspond-
ing to the estimated proportion of cortex colonized by the mycorrhizal symbiot.

Colonization intensity (%) = (95 × n5) + (70 × n4) + (30 × n3) + (5 × n2 + n1)/N

where n5, n4, n3, n2, and n1 are the number of fragments noted as 5, 4, 3, 2, and 1, respectively.

2.4. Determination of Shoot Dry Matter

After four months of cultivation under greenhouse conditions, shoot biomass accumu-
lation expressed as shoot dry matter (SDM) was measured. The plant was dried at 70 ◦C
for 48 h, and the SDM was measured for each treatment and species of AMP.

2.5. Total Chlorophyll, Soluble Sugar, and Protein Content

The determination of total chlorophyll was performed by colorimetry according to
the method of Arnon [38]. Briefly, 50 mg of fresh material was ground in 2 mL of acetone
(80%) in the dark. After centrifugation at 5000 rpm for 10 min, the optical density (OD)
of the recovered supernatant was subsequently determined using a spectrophotometer at
wavelengths 645 nm and 663 nm.

The following formula was used to calculate the chlorophyll content:

Total chlorophyll = 20.2 × DO 645 nm +8.02 × DO 663 nm

The determination of soluble sugars was carried out according to Dubois et al. [39].
Extraction was performed by cold grinding 50 mg of MF in 4 mL of ethanol (80%). After
centrifugation at 5000 rpm for 10 min, we recovered the supernatant, and the pellet was
taken up in 2 mL of 80% ethanol and centrifuged again; this second supernatant was added
to the first.
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In test tubes, 1 mL of a 5% phenol solution and 5 mL of concentrated sulfuric acid
were added to 1 mL of supernatant. After vortexing, the tubes were allowed to cool for
5 min, and then the OD was read at 485 nm. The soluble sugar content was determined by
reference to a standard range established by known glucose concentrations.

2.6. Nitrogen Content

Total nitrogen content was determined by the method of Kjeldahl [40]. In Matras tubes,
0.5 g of dry biomass was added to 1 g of catalyst (5 g of K2SO4, 0.5 g of CuSO4 and 0.25 g
of Se) and 5 mL of concentrated sulfuric acid (H2SO4), which was then digested for 2 h at
400 ◦C. Distillation was performed using boric acid (10 mL) and sodium hydroxide (NaOH)
(20 mL). The total concentration of N was determined by titration of 5 mL of the distillate
with sulfuric acid (0.02 mol/L) using bromocresol green and methyl red as color indicators.

2.7. Phosphorus and Potassium Content

Dry matter (0.5 g) from each sample was incinerated at 600 ◦C for 6 h. The ash was
recovered in 3 mL of 10 N hydrochloric acid. Then, the extracts were filtered and the filtrate
was adjusted to 50 mL with distilled water. The phosphorus (P) content was determined
according to the method of Murphy and Riley [41]. Then, 1 mL of the filtrate was mixed
with 4 mL of distilled water and 5 mL of reagent AB (sodium molybdate (2.5%) and
hydrazine sulfate (0.15%); 2/1 v/v). After incubation in a water bath at 95 ◦C for 10 min,
the absorbance was measured at 825 nm. A standard range was prepared by KH2PO4. The
potassium (K) content was determined by flame spectrophotometry [42]. The standard
range was prepared using solutions of well-defined concentrations of K+. The results are
expressed as mg of phosphorus or potassium/g of dry matter.

2.8. Extraction of Essential Oils

For the extraction of essential oils, the aerial part of thyme and lavender was harvested
and air-dried in the shade at room temperature. The extraction of essential oil was carried
out by hydro-distillation with a Clevenger of 30 g of dried plant material for 5 h. The
obtained essential oils were dried with anhydrous sodium sulfate and then stored at 4 ◦C in
the dark until analysis. The extraction was performed three times (3 × 30 g). The essential
oil yield was calculated as µL/g of DM using the following equation:

Yield of the essential oil = (weight of the extracted essential oil/weight of the dried material) × (1/essential oil density).

2.9. Determination of the Essential Oil Chemical Composition

The essential oil was diluted in acetate ethyl (ratio of 1:200 v/v) and then analyzed
by gas chromatography–electron ionization mass spectrometry (QP 2010 Ultra, Shimadzu,
Marne-la-Vallée, France). The system was operated using helium as a carrier gas at a
constant linear velocity (60 cm/s).

Briefly, 0.2 µL of the resulting already-diluted essential oil was injected in split mode
(split ratio of 1:10 at a temperature of 260 ◦C) into a ZB-5MS capillary column (5% pheny-
lacetlene, 95% dimethylpolysiloxane; 10 m length, 0.10 mm inner diameter, 0.10 µm phase
thickness; Phenomenex, Le Pecq, France). The column temperature was programmed to
increase linearly from 60 ◦C (for 2 min) to 280 ◦C (for 1 min) at a constant rate of 40 ◦C/min.

Mass spectra were recorded with an ionization energy of 70 eV and an interface
temperature of 280 ◦C over a mass range from 35.0 to 350 (m/z). The identification of
essential oil compounds was performed by comparing the Kovats indices obtained from
retention times and after co-injection of n-alkanes with those found in the literature and
The Pherobase: Database of Pheromones and Semiochemicals. The relative percentages of
the constituents of the essential oils were calculated from the area under the peak obtained
from the GC-FID chromatogram.
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2.10. Biological Properties of Essential Oil
2.10.1. Antifungal Activity

The antifungal activity of the different essential oils was tested against two wheat
phytopathogenic fungi by direct contact, namely Fusarium culmorum (in Petri dish and
adapted) [43,44] and Zymoseptoria tritici (in liquid medium), according to the FRAC protocol
(Fungicide Resistance Action Committee) [45].

Briefly, 0.5 cm mycelial discs of F. culmorum were collected from a 7-day-old fungal
colony and placed in the center of a 55 mm petri dish containing sterile potato dextrose
agar (PDA) (40 g/L) as the culture medium. A concentration range of HEs was performed
from 0.0005% to 0.08%, which was then incorporated into the culture medium at 50 ◦C.
Analyses were conducted in triplicates. Samples were incubated for 4 days at 20 ◦C, and
then the growth diameter of the mycelium was measured. The inhibition rate (IR) was
calculated according to the following formula:

IR (%) = (X0 − Xi)/X0 × 100

where X0 = average diameter of the fungal colony in control and Xi = average diameter of
the fungal colony in the treatment.

Aqueous solutions of 1% (v/v) ethanol or HP-β-CD (10 mM) were tested as nega-
tive controls.

Graphical interpolation analysis was used to calculate the semi-maximal inhibitory
concentration (IC50) value.

For the test against Z. tritici, the essential oil tested was incorporated directly into the
wells containing glucose–peptone. Each line of 12 wells representing a product concen-
tration had four control wells for the stained character of the essential oil without fungal
spore and 8 wells that constituted replicates with the fungus.

The fungus suspension was carried out with a 4-day-old inoculum for the Z. tritici
strain. The spore suspension was calibrated by Malassez cell counting to contain
2 × 105 spores/mL according to a FRAC protocol [46]. We added an amount of 60 µL
per well of spores. The microplates were incubated in a culture chamber at 20 ◦C in the
dark, under mechanical agitation (110 rpm) for 6 days.

After the time corresponds to an optimal development time for the fungus, the mi-
croplates were analyzed using a spectrometer. OD values were read at 620 nm without
shaking by the spectrometer and analyzed manually.

For each product concentration, the net OD was calculated according to the follow-
ing formula:

Net OD = average OD with fungus − average OD control without spores

Graphical interpolation analysis was used to calculate the semi-maximal IC50 value.

2.10.2. Anti-Germinative Activity

The anti-germinative activity of essential oil by direct contact against Blumeria graminis
f.sp conidia, the causal agent of wheat powdery mildew, was evaluated in vitro. A range of
concentrations of essential oil (0.01% to 0.05%) of the three studied species was prepared
and introduced in a sterile medium of Agar (15 g/L)–DMSO (1%), cooled at 50 ◦C. The
spores of B. graminis were dispersed on the plates and then observed after 24 to 48 h under
an optical microscope (Nikon Eslipse E600). The spores were counted and divided into two
classes: ungerminated and germinated.

Graphical interpolation analysis was used to calculate the semi-maximal IC50 value.

2.11. Statistical Analysis

Statistical analysis was performed by XLSTAT 2022.1.1 (Adinosoft), and statistical
significance was analyzed using ANOVA supplemented with a Tukey HSD and Fisher
(LSD) test.
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The IC50 was obtained by non-linear regression analyses from three replicates for the
antifungal and phytotoxicity tests. The statistical significance of the results was evaluated
by ANOVA supplemented by a Tukey HSD and Fisher test (LSD).

A statistical principal component analysis (PCA) based on Pearson’s correlation ma-
trix was performed with XLSTAT to identify possible correlations between the biological
activities studied and growth parameters, primary metabolites, essential oil yields, and
other parameters. Another PCA analysis was performed to study the correlation between
the components of each essential oil and the biological activities, taking into account the
compounds that differed between the essential oil of the inoculated plants and those of the
non-inoculated ones.

3. Results
3.1. Mycorrhizal Colonization

Microscopic observations of stained roots revealed the presence of specific arbuscular
mycorrhizal structures, hyphae, arbuscules, and vesicles in all AMF-inoculated thyme
and lavender plants. No AMF structures were observed in the root of the non-inoculated
AMP species.

The intensity of mycorrhizal colonization varied significantly (p < 0.0001) according
to the AMF and AMP species. The highest colonization intensity (77.6%) was exhibited
by R. irregularis associated with L. dentata, followed by T. satureioides inoculated with
R. irregularis and T. pallidus colonized by R. irregularis (72.6 and 70%, respectively) (Figure 1).
The intensity of mycorrhizal colonization exceeded 62.7, 64, and 59.3% in T. satureioides,
T. pallidus, and L. dentata, respectively.
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Figure 1. Intensity of mycorrhizal colonization (%) in roots of Thymus satureioides (Ts), Thymus pallidus
(Tp), and Lavandula dentata (Ld) inoculated with Rhizophagus irregularis (Ri) or Funneliformis mosseae
(Fm) after 4 months of culture under greenhouse conditions. Bars followed by the same letter are not
significantly different according to Tukey’s HSD test (p < 0.05).

3.2. Shoot Biomass

The biomass production expressed as shoot dry matter (SDM) per plant was sig-
nificantly higher (p < 0.0001) in inoculated AMP (NI-AMP) than in non-inoculated ones
(NI-AMP), with an improvement rate of up to 37.1, 52.42, and 43.6% in T. satureioides,
T. pallidus, and L. dentata respectively. Indeed, the SDM was higher than 2.7, 2.6, and
1.9 g/plant in mycorrhizal plants and lower than 2.2, 2, and 1.3 g/plant in non-inoculated
plants of T. satureioides, T. pallidus, and L. dentata, respectively (Figure 2). F. mosseae induced
the highest biomass production when associated with T. satureioides (3.1 g/plant) and



Agronomy 2022, 12, 2223 7 of 23

T. pallidus (3.4 g/plant), while in L. dentata, SDM did not significantly (p > 0.05) differ
between AMF strains (Figure 2).
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Figure 2. Shoot dry matter (SDM) per plant of Thymus satureioides (Ts), Thymus pallidus (Tp),
and Lavandula dentata (Ld), non-inoculated (NI) or inoculated with Rhizophagus irregularis (Ri) or
Funneliformis mosseae (Fm) after 4 months of culture under greenhouse conditions. Bars followed by
the same letter are not significantly different according to Tukey’s HSD test (p < 0.05).

3.3. Total Chlorophyll, Soluble Sugar, and Protein Content

Total chlorophyll content (TCC) varied significantly (p < 0.0001) according to the
mycorrhizal status and AMP species. Compared to NI-AMP, TCC increased by 38.5, 81.5,
and 51.4% in inoculated T. satureioides, T. pallidus, and L. dentata, respectively (Figure 3).
Indeed, the total chlorophyll content expressed in mg/g of dry matter (DM) was higher
than 2.2, 2.4, and 2 mg/g DM in inoculated plants (I-AMP) and did not exceed 1.6, 1.3, and
1.4 mg/g DM in non-inoculated plants (NI-AMP) of T. satureioides, T. pallidus, and L. dentata,
respectively. No significant difference was observed between the total chlorophyll content
recorded in Tp-Ri and Tp-Fm plants. However, the highest chlorophyll content (3 mg/g
DM) was induced by F. mosseae in T. satureioides and by R. irregularis in L. dentata (Figure 3).
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Figure 3. Chlorophyll content (mg/g DM) in Thymus satureioides (Ts), Thymus pallidus (Tp),
and Lavandula dentata (Ld), non-inoculated (NI) or inoculated with Rhizophagus irregularis (Ri) or
Funneliformis mosseae (Fm) after 4 months of culture under greenhouse conditions Bars followed by
the same letter are not significantly different according to Tukey’s HSD test (p < 0.05).
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The total soluble sugar content significantly increased (p < 0.0001) in I-AMP compared
to their respective NI-AMP, regardless of the AMF strain or AMP species used. It varied
between 62.2 and 185, 108.7 and 141.9, and 156 and 163.9 mg/g DM in mycorrhizal plants
of T. satureioides, T. pallidus, and L. dentata, respectively, and did not exceed 30.7, 48.3,
and 99.8 mg/g DM in their corresponding NI-AMP. The total soluble sugar content was
6 times higher in Ts-Fm, 2.2 times higher in Tp-Ri, and 1.5 times higher in Ld-Ri and Ld-Fm
compared to NI-AMP (Figure 4).
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Figure 4. Soluble sugar content (mg/g DM) in Thymus satureioides (Ts), Thymus pallidus (Tp),
and Lavandula dentata (Ld), non-inoculated (NI) or inoculated with Rhizophagus irregularis (Ri) or
Funneliformis mosseae (Fm) after 4 months of culture under greenhouse conditions. Bars followed by
the same letter are not significantly different according to Tukey’s HSD test (p < 0.05).

The protein content varied significantly (p < 0.0001) depending on the AMF and AMP
species. The total protein content in the three AMP species was more than 1.5 times higher
in I-AMP than in NI-AMP (Figure 5).
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Figure 5. Protein content (mg/g of DW) in Thymus satureioides (Ts), Thymus pallidus (Tp), and
Lavandula dentata (Ld), non-inoculated (NI) or inoculated with Rhizophagus irregularis (Ri) or
Funneliformis mosseae (Fm) after 4 months of culture under greenhouse conditions. Bars followed by
the same letter are not significantly different according to Tukey’s HSD test (p < 0.05).

Protein content was highest in T. satureioides (5 mg/g DM) and T. pallidus (5.2 mg/g
DM) associated with F. mosseae, but did not significantly differ between the two AMF strains
in L. dentata (Figure 5).



Agronomy 2022, 12, 2223 9 of 23

3.4. Nitrogen, Phosphorus, and Potassium Content

Mycorrhizal inoculation significantly (p < 0.0001) increased the nitrogen content in
both AMP species (Figure 6). Indeed, the nitrogen content did not exceed 0.6%, 0.7%,
and 0.5% in NI-AMP of T. satureioides, T. pallidus, and L. dentata, respectively, while it
was higher than 0.9, 1, and 0.9% in their respective I-AMP. The highest nitrogen content
(1.25%) was recorded in T. satureioides associated with F. mosseae (Ts-Fm). However, no
significant difference was observed between Tp-Ri and Tp-Fm, nor between Ld-Ri and
Ld-Fm (Figure 6).
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Figure 6. Nitrogen content (%) in Thymus satureioides (Ts), Thymus pallidus (Tp), and Lavandula dentata
(Ld), non-inoculated (NI) or inoculated with Rhizophagus irregularis (Ri) or Funneliformis mosseae (Fm)
after 4 months of culture under greenhouse conditions. Bars followed by the same letter are not
significantly different according to Tukey’s HSD test (p < 0.05).

Mycorrhizal inoculation significantly (p < 0.0001) increased the phosphorus and potas-
sium content in both AMP species (Figure 7).
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Figure 7. Phosphurus (P) and potassium (K) content (%) in Thymus satureioides (Ts), Thymus pallidus
(Tp), and Lavandula dentata (Ld), non-inoculated (NI) or inoculated with Rhizophagus irregularis (Ri) or
Funneliformis mosseae (Fm) after 4 months of culture under greenhouse conditions. Bars followed by
the same letter are not significantly different according to Tukey’s HSD test (p < 0.05).
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Indeed, the phosphorus content did not exceed 1.7, 3.5, and 1.3 mg/g DM in NI-AMP
of T. satureioides, T. pallidus, and L. dentata, respectively, while it was higher than 2, 4, and
2.8% in their respective I-AMP. Phosphorus content was highest in T. satureioides (6.2 mg/g
DM) and T. pallidus (5.27 mg/g DM) associated with F. mosseae, while it was highest in
L. dentata (5.7 mg/g DM) associated with R. irregularis.

The potassium content was higher than 10.5, 8.8, and 10 mg/g DM in I-AMP, while
it did not exceed 9, 3.5, and 8.2 mg/g DM in NI-AMP of T. satureioides, T. pallidus, and
L. dentata, respectively. The highest potassium content (12.4 mg/g DM) was recorded in
T. pallidus associated with R. irregularis (Tp-Ri). However, no significant difference was
observed between Ts-Ri and Ts-Fm, nor between Ld-Ri and Ld-Fm (Figure 7).

3.5. Essential Oil Yields

The essential oil yield was significantly (p < 0.0001) increased by AMF inoculation
in the three AMP species (Figure 8). Essential oil production was higher than 8.5, 5, and
3.3 µL/g dry matter (DM) in I-AMP, while it did not exceed 7.16, 3.8, and 2.5 µL/g DM in
NI-AMP of T. satureioides, T. pallidus, and L. dentata, respectively.
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Figure 8. Essential oil yield distilled from Thymus satureioides (Ts), Thymus pallidus (Tp), and
Lavandula dentata (Ld), non-inoculated (NI) or inoculated with Rhizophagus irregularis (Ri) or
Funneliformis mosseae (Fm) after 4 months of culture under greenhouse conditions. Bars followed by
the same letter are not significantly different according to Tukey’s HSD test (p < 0.05).

The essential oil production varied significantly between the AMF species in T. pallidus
and L. dentata; F. mosseae induced higher essential oil yield (6.6 µL/g DM) than R. irregularis
(5 µL/g DM) in T. pallidus. Meanwhile, in lavander, R. irregularis produced the highest
(4.7 µL/g DM) essential oil yield (Figure 8). In T. satureioides, essential oil yield was
increased by 10% in mycorrhizal plants compared to non-inoculated ones, but did not
significantly differ between Ts-Ri and Ts-Fm.

3.6. Essential Oil Chemical Composition

The analysis of the essential oil composition revealed that mycorrhizal inoculation did
not affect the nature of the essential oil compounds, but it affected the abundance of some
major compounds such as oxygenated monoterpenes in T. satureoiodes and L. dentata. This
mycorrhizal effect varied depending on AMF species.

More than 21 compounds were identified in the essential oil of T. satureioides. The
abundance of oxygenated monoterpenes was more important in inoculated plants than
in non-inoculated ones. It varied between 58.32% in Ts-Ri and 86.65% in Ts-Fm, while it
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did not exceed 57.96% in non-inoculated plants of T. satureioides (Table 1). The abundance
of hydrocarbon monoterpenes such as tricyclene, α-pinene, camphene, β-pinene, and
γ-terpinene decreased from 2.1, 2.06, 0.65, 0.47, and 4.18% in non-inoculated plants to
1.19, 0.06, 0.46, 0.28, and 2.04% in mycorrhizal ones, respectively. These reductions were
compensated by the abundance of other compounds such as carvacrol methyl ether, thymol,
and carvacrol, which increased from 11.28, 16.55, and 18.5% in non-inoculated plants to
15.44, 23.77, and 23.36% in I-AMP, respectively. Indeed, this increase of borneol was more
pronounced, and it was three times higher in inoculated T. satureioides (16.73% in Ts-Ri and
18.68% in Ts-Fm) compared to the non-inoculated one (5.93%) (Table 1).

Table 1. Chemical composition of essential oil (in %) in inoculated and non-inoculated T. satureioides
after 4 months of culture under greenhouse conditions. RT—retention time; IK—Retention indices
calculated relative to n-alkanes (C-8 to C-40) using capillary column ZB-5MS; IK*—Retention indices
found in the literature and The Pherobase [47]: Database of Pheromones and Semiochemicals; Ts-
NI—Thymus satureioides, non-inoculated; Ts-Ri: Thymus satureioides inoculated with R. irregularis;
Ts-Fm—Thymus satureioides inoculated with F. mosseae.

Name RT IK IK* Ts-NI Ts-Ri Ts-Fm

Tricyclene 1.26 919 919 2.1 1.19 -
α-pinene 1.34 937 933 2.06 1.27 0.06

Camphene 1.49 967 952 0.65 0.46 -
β-Pinene 1.54 979 981 0.47 0.28 -

α-terpinene 1.74 1018 1018 8.47 8.37 3.11
δ-Terpinene 1.93 1053 1059 4.18 3.4 2.04

cis-sabinene hydrate 2.01 1066 1069 0.14 0.07 0.07
Linalool 2.17 1097 1098 1.67 1.62 1.84
Borneol 2.61 1173 1165 5.93 16.73 18.68

Terpinen-4-ol 2.65 1181 1179 0.97 1.1 1.09
Cis dihydrocarvone 2.74 1196 1198 2.71 2.29 2.23

Carvacrol methylether 2.98 1239 1244 11.28 13.47 15.44
Bornyl acetate 3.23 1284 1285 0.21 0.24 0.17

Thymol 3.27 1292 1290 16.55 16.75 23.77
Carvacrol 3.33 1301 1299 18.5 6.05 23.36
α-Copaene 3.73 1377 1376 0.13 0.18 0.17

β- Caryophyllene 3.97 1424 1428 2.26 2.57 2.99
α- Humulene 4.15 1458 1460 0.34 0.41 0.54
δ-Muurolene 4.44 1515 0.15 0.17 0.21
δ-Cadinene 4.46 1519 0.34 0.42 0.51

Caryophyllene oxide 4.77 1585 1573 0.25 0.28 0.43
Tau-Cadinol 5.05 1644 1640 0.34 0.36 0.46

Oxygenated monoterpene 57.96 58.32 86.65
Hydrocarbon monoterpene 17.93 14.97 5.21
Oxygenated sesquiterpene 0.59 0.64 0.89

Hydrocarbon sesquiterpene 3.22 3.75 4.42

For the essential oil of T. pallidus, 16 compounds were identified, showing a greater
abundance of hydrocarbon monoterpenes in inoculated plants than in non-inoculated
plants. It varied from 34.6% in Tp-Ri to 42.9% in Tp-Fm, while it did not exceed 25.8%
in non-inoculated T. pallidus. Compared to Tp-NI, mycorrhizal inoculation induced (1) a
decrease in some compounds, such as thymol, which decreased by 18.84% in Tp-Ri and
22.48% in Tp-Fm, and borneol, which decreased by 6.33% in Tp-Ri and 62.53% in Tp-Fm,
and (2) increased abundances of some compounds (α-terpinene, caryophyllene oxide,
camphene, and verbenene), which were two times higher in the essential oil of I-AMP with
respect to in non-inoculated plants (Table 2).
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Table 2. Chemical composition of essential oil (in %) in inoculated and non-inoculated T. pallidus
after 4 months of culture. RT—retention time; IK—Retention indices calculated relative to n-alkanes
(C-8 to C-40) using capillary column ZB-5MS; IK*—Retention indices found in the literature and
The Pherobase [47]: Database of Pheromones and Semiochemicals; Tp-NI—Thymus pallidus, non-
inoculated; Tp-Ri—Thymus pallidus inoculated with R. irregularis; Tp-Fm—Thymus pallidus inoculated
with F. mosseae.

Nom RT IK IK* Tp-NI Tp-RI Tp-Fm

Tricyclene 1.26 919 919 0.09 1.46 0.58
Camphene 1.34 936 952 0.04 1.44 0.88
Verbenene 1.49 967 967 0.02 0.37 0.18

(+)-4-Carene 1.71 1010 1011 0.01 0.49 0.62
α-terpinene 1.76 1020 1018 18.63 22.3 32.6
δ-Terpinene 1.93 1053 1059 7.05 8.6 8.12

Linalool 2.18 1097 1098 6.35 5.15 7.39
Borneol 2.61 1172 1165 16.09 15.07 6.03

Terpinen-4-ol 2.65 1180 1178 0.79 0.98 0.87
Isobornyl acetate 3.24 1285 1285 0.1 0.08 0.02

Thymol 3.29 1294 1290 37.14 30.14 28.79
Carvacrol 3.32 1300 1298 6.88 7.74 4.86

Caryophyllene 3.97 1423 1418 2.57 2.16 3.64
Humulene 4.15 1458 1460 0.18 0.16 0.09

Caryophyllene oxide 4.78 1584 1581 0.78 0.5 0.8
α-cadinol 5.05 1643 1652 0.02 0.09 -

Oxygenated monoterpene 67.35 59.16 47.96
Hydrocarbon monoterpene 25.84 34.66 42.98
Oxygenated sesquitrepene 0.78 0.59 0,8

Hydrocarbon sesquiterpene 2.75 2.32 3.73

More than 24 compounds were identified in the essential oil of L. dentata, revealing an
increased abundance of oxygenated monoterpenes in mycorrhizal plants (exceeding 63% in
Ld-Ri and 75.29% in Ld-Fm) compared to non-inoculated plants (58.23%). Compounds were
slightly modified when comparing inoculated and non-inoculated plants, and between
Ld-Ri and Ld-Fm (Table 3). The main compound in the essential oil of Ld-NI and Ld-Ri was
isoborneol, and camphor in Ld-Fm. Moreover, increased abundances of phenol, camphor,
and isobornyl were noticed in I-AMP, accompanied by a decrease in minor compounds
such as Magdalene.

3.7. Biological Activities of Essential Oil
3.7.1. Anti-Germinative Activity

The anti-germinative activity of the essential oil against B. graminis varied significantly
(p < 0.0001) according to the mycorrhizal status and the AMP species (Figure 9). Indeed, the
IC50 was lower than 8.2, 17.1, and 17.3 µg/mL of essential oil in inoculated plants, while it
exceeded 13, 26, and 27 µg/mL of essential oil in non-inoculated plants of T. satureioides,
T. pallidus, and L. dentata, respectively. However, the essential oil’s anti-germinative activity
did not significantly vary among AMF strains, regardless of AMP species.
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Table 3. Chemical composition of essential oil (in %) in inoculated and non-inoculated L. dentata after
4 months of culture. RT—retention time; IK—Retention indices measured relative to n-alkanes (C-8
to C-40) using capillary column ZB-5MS; IK*—Retention indices found in the literature and The Pher-
obase [47]: Database of Pheromones and Semiochemicals; Ld-NI—Lavandula dentata, non-inoculated;
Ld-Ri—Lavandula dentata inoculated with Rhizophagus irregularis; Ld-Fm—Lavandula dentata inocu-
lated with F. mosseae.

Name RT IK IK* Ld-NI Ld-Ri Ld-Fm

Tricyclene 1.26 918 919 - 1.25 0.88

α- pinene 1.34 936 937 - 1.04 1.46

Camphene 1.49 966 953 0.54 2.89 1.89

D-limonene 1.77 1022 1031 - 1.61 0.69

Eucalyptol 1.79 1025 1033 - - 0.79

L-fenchone 2.1 1083 1062 1.78 3.19 1.19

Linalool 2.18 1097 1098 - - 0.68

Fenchol 2.31 1121 1123 17.84 19.5 4.14

α-campholenal 2.34 1125 1127 - 0.85 -

(1r)-(+)-nopiune 2.43 1141 1142 1.36 1.17 -

Camphor 2.47 1148 1143 6.89 8.19 58.44

Pinocarvone 2.55 1162 1162 0.8 0.91 0.72

Isoborneol 2.64 1177 1177 25.12 27.04 8.87

Terpinene-4-ol 2.7 1189 1179 0.51 - -

Myrtenal 2.74 1195 1195 2.61 2.7 1.8

Carveol 2.92 1228 1229 2.21 3.06 0.64

Cuminaldehyde 3.01 1244 1239 0.89 - -

Bornyl acetat 3.24 1284 1285 0.43 0.51 0.28

Germacrene D 4.32 1490 1499 4.11 6.76 3.65

Geranyl-, α-terpinene 4.71 1570 - - - 0.83

Caryophyllene oxide 4.78 1586 1581 3.61 4.3 1.92

Valencen 5.01 1634 - 0.42 0.3 -

β-eudesmol 5.12 1657 1654 7.98 10.37 6.05

Cadalene 5.19 1673 1674 0.62 0.39 -

Oxygenated monoterpene 58.23 63.42 75.29

Hydrocarbon monoterpene 3.11 10.46 8.04

Oxygenated sesquiterpene 14.04 17.48 11.41

Hydrocarbon sesquiterpene 5.15 7.45 3.65
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Figure 9. Anti-germinative activity of the essential oil of Thymus satureioides (Ts), Thymus pallidus
(Tp), and Lavandula dentata (Ld), non-inoculated (NI) or inoculated with Rhizophagus irregularis (Ri) or
Funneliformis mosseae (Fm) after 4 months of culture under greenhouse conditions Bars followed by
the same letter are not significantly different according to Tukey’s HSD test (p < 0.05).

3.7.2. Antifungal Activities

The antifungal activity of the essential oil against Z. tritici varied significantly accord-
ing to the AMF and AMP species (Figure 10). The IC50 lower than 4.1 µg/mL, 4.7 µg/mL,
and 1 mg/mL of essential oil in the inoculated plants of T. satureioides, T. pallidus, and
L. dentata, respectively. In comparison, it was higher than 6 µg/mL, 11 µg/mL, and
3 mg/mL of essential oil in their respective non-inoculated plants. There was no sig-
nificant difference in the antifungal activity of the essential oil against Z. tritici between
the two AMF species in T. pallidus, whereas R. irregularis induced the highest antifungal
activity against Z. tritici when associated with T. satureioides or with L. dentata.
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Figure 10. Antifungal activity IC50 of essential oil of Thymus satureioides (Ts), Thymus pallidus (Tp),
and Lavandula dentata (Ld), non-inoculated (NI) or inoculated with Rhizophagus irregularis (Ri) or
Funneliformis mosseae (Fm) after 4 months of culture under greenhouse conditions Bars followed by
the same letter are not significantly different according to Tukey’s HSD test (p < 0.05).
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Concerning the antifungal activity against Fusarium culmorum, the IC50 was lower
than 146.8, 217.9, and 363.8 µg/mL of essential oil in inoculated plants but higher than 174,
327, and 494 µg/mL of essential oil in non-inoculated plants of T. satureioides T. pallidus
and L. dentata, respectively (Figure 11). However, the antifungal activity of the essential oil
against F. culmorum did not significantly differ between Ld-Ri and Ld-Fm. At the same time,
the lowest IC50 was recorded in T. satureioides associated with R. irregularis (103.76 µg/mL
of essential oil) and T. pallidus associated with F. mosseae (146.8 µg/mL of essential oil).
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Figure 11. Antifungal activity IC50 of essential oil of Thymus satureioides (Ts), Thymus pallidus (Tp),
and Lavandula dentata (Ld), inoculated with Rhizophagus irregularis (Ri) or Funneliformis mosseae (Fm)
after 4 months of culture under greenhouse conditions. Bars followed by the same letter are not
significantly different according to Tukey’s HSD test (p < 0.05).

4. Discussion

The present study aimed at investigating the potential role of two AMF species
(R. irregularis, and F. mosseae) in improving biomass and essential oil production in three
AMP with important economic value which are unfortunately under threat of extinction
(T. satureioides, T. pallidus, and L. dentata).

Our results show the occurrence of functional mycorrhiza in these AMP species
regardless of the AMF used. Indeed, mycorrhizal intensities exceeded 59% in both inoc-
ulated lavender and thyme plants. Moreover, the present study confirms that AMP exist
within plant species with mycorrhizal dependency. The beneficial effect of AMF on AMP
growth has been reported in several other aromatic plant species, such as Salvia officinalis L.,
Acacia gummifera, and Ocimum basilicum L. [27,48,49], as exhibited by increases in biomass
production (1.5 times higher) and nitrogen, phosphorus, and potassium content (1.1 to
2 times higher) in AMF-inoculated AMP compared to their respective non-inoculated
plants. The high biomass production of mycorrhizal plants was positively correlated to
the high acquisition of nitrogen, phosphorus, and potassium (Figures 6 and 7). These
results are in agreement with previous reports on Coriandrum sativum L. inoculated with
R. irregularis, which showed increased shoot concentration of nitrogen (44%), phosphorus
(254%), and potassium (27%) [50]. It has been shown that the extra-matricial mycelium
of AMF ramifies and grows into the surrounding soil, developing an extensive three-
dimensional network of mycelia exploring the surrounding soil for mineral nutrients [51].
The length of the external hyphae growing in soil associated with mycorrhizal roots reaches
an average of up to 10–14 m/cm root [21], increasing the root absorbing surface by 100 or
even 1000 times [20,52–54]. This mycelial network can bridge over the zone of nutrient
depletion around the roots to absorb low-mobility ions from the bulk soil.

Moreover, our study revealed a clear contribution of AMF in increasing the total
chlorophyll, soluble sugars, and protein content by up to 2 times in inoculated thyme and
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lavender plants compared to non-inoculated ones, in accordance with the research carried
out by Yadav et al., which also showed an increase in those parameters in mycorrhizal
Gloriosa superba L. [55]. Thus, a clear positive correlation (Figure 12) was noticed between
the mycorrhizal colonization and the accumulation of chlorophyll, soluble sugar, and pro-
teins. According to Alipour et al. [56], the increased leaf chlorophyll content in mycorrhizal
plants is related to increased nutrient (N, P, K.) acquisition. Moreover, a positive linear
correlation between leaf N concentration and leaf chlorophyll content was reported [57,58],
thereby improving the photosynthetic potential of mycorrhizal plants [59]. Indeed, in-
creasing the concentration of photosynthetic pigments (chlorophyll) by AMF improves
the photosynthetic potential of their host plants, consequently improving their soluble
sugar content [59,60]. The increased accumulation of chlorophyll, soluble sugars, and
proteins in the mycorrhizal plant of thymes and lavender is another argument for their high
photosynthetic potential [61,62], highlighting the relation between the synthesis pathway
of these different metabolites and secondary metabolites (such as terpeniode) which are
primary constituents of essential oils [63–65]. Indeed, in the current work, we showed
that AMF inoculation also improved essential oil yield, which was 1.2, 1.7, and 1.9 times
higher in T. satureioides (associated with R. irregularis), T. pallidus (associated with F. mosseae),
and L. dentata (associated with R. irregularis), respectively, than in their respective non-
inoculated plants. These findings are in line with several previous studies on inoculated
AMP of Atractylodes lancea, Artemisia umbelliformis, and Ocimum basilicum L. [27,65]. Mycor-
rhizal AMP performance in terms of essential oil yield may be related to their nutritional
and/or non-nutritional status, such as their level of endogen phytohormones. Nutritional
factors (sugar, proteins, N, P, etc.) are crucial in developing and multiplying glandular
trichomes, essential oil channels, and secretion channels [66]. Indeed, the enhanced nutrient
status of mycorrhizal plants enhanced the biosynthesis mechanisms of terpenoid precur-
sors, including the mevalonate pathway (acetyl-CoA, ATP, and NADPH) as well as the
methyl erythritol phosphate pathway (glyceraldehyde phosphate and pyruvate) [67]. Our
result (Figure 12) shows a positive correlation between the primary and secondary metabo-
lites (such as terpenes). Moreover, all precursors mentioned above result from primary
metabolism [68]. In addition, AMF can change the phytohormone (jasmonic acid, gibberel-
lic acid, 6-benzyl amino purine) concentrations, thereby increasing the number and size of
glandular trichomes and enhancing the sesquiterpenoid biosynthetic mechanism [69]. The
relationship between the increase in glandular trichome density, the increase in terpenoid
concentration, and the yield of essential oil has been reported in many aromatic plants
(e.g., Mentha x Piperita, Phaseolus lunatus, and Lavandula angustifolia) [70–72], confirming
the observed positive correlation (Figure 12) between the colonization intensity and the
essential oil yield.

Regarding the chemical composition of essential oil, no significant difference was
detected between mycorrhizal and non-mycorrhizal plants. However, the abundance of
the major compounds significantly varied according to AMF and AMP species. The abun-
dance of oxygenated monoterpenes was higher in T. satureioides and L. dentata essential oils.
However, in T. pallidus essential oil, there are hydrocarbon monoterpenes and oxygenate
sesquiterpenes with a higher percentage. Concomitantly, hydrocarbon monoterpenes
decreased in the essential oil of T. satureioides and L. dentata, while oxygenated monoter-
penes decreased in the essential oil of T. pallidus. These results support the fact that the
AMP studied are AMF dependent [73–76]. Indeed, the essential oil of T. satureioides inocu-
lated with F. mosseae is characterized by a higher abundance of carvacrol, linalool, thymol,
β-caryophyllene, carvacrol methyl ether, terpinene-,4-ol, and borneol compared to the
plant inoculated with R. irregularis (Figure 13A). However, in T. pallidus, association with
F. mosseae exhibited a higher abundance of caryophyllene, α-terpinene, and (+)-4-carene,
in addition to other compounds such as γ-terpinene, camphene, verbenene, and terpinen-
4-ol compared to T. pallidus associated with R. irregularis (Figure 13B). On the other hand,
L. dentata inoculated with R. irregularis synthesized more tricyclene, D-limonene, germa-
crene D, L-fenchone, β eudesmol, bornyl acetate, and carveol. In contrast, the essential
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oil of lavender plants inoculated with F. mosseae was characterized principally by the high
abundance of camphor (Figure 13C).
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Figure 13. Correlation circles from the principal component statistical analyses (PCA) on antifun-
gal activity and different chemical compounds in the essential oils of Thymus satureioides (Ts) (A),
Thymus pallidus (Tp) (B), and Lavandula dentata (Ld) (C), non-inoculated (NI) or inoculated with
Rhizophagus irregularis, (Ri) or Funneliformis mosseae.

The abundance of the mentioned compounds was negatively correlated to the IC50
value of the antifungal activity, regardless of AMP species. Consequently, if these compo-
nents are present in greater abundance in the essential oil, this will positively affect the
activity of the essential oil. Indeed, the essential oil of mycorrhizal AMP showed higher
antifungal activity against three wheat pathogenic fungi (B. graminis, F. culmorum, and
Z. tritici) compared to the essential oil of non-inoculated AMP. Mycorrhizal plants’ essential
oil efficiency is mainly due to their higher monoterpene content [77–79]. This is confirmed
by the negative correlation (Figure 12) between the abundance of monoterpenes and the
IC50 values. The contribution of AMF symbiosis to the host plant’s performance in terms
of essential oil effectiveness against phytopathogenic fungi results from a combination of
physiological and metabolic effects [80]. It appears to be due to improved nutrient uptake
and photosynthetic compound accumulation, leading to differences in nutritional status
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between mycorrhizal and non-mycorrhizal plants. However, additional mechanisms have
been proposed, including alteration of the structure and functions of the fungal cell mem-
brane and the disturbance of DNA, RNA, and protein synthesis, in addition to the alteration
of mitochondrial function and ATP production. The essential oil can alter ergosterol biosyn-
thesis, which increases membrane fluidity and, consequently, ionic permeability, causing
cellular death [80]. They can inhibit the β-glucan and chitin synthesis, alter the integrity
of the fungal cell walls, disturb homeostasis, and lead to cell death [81–83]. The essential
oils can compromise membrane functions such as nutrient transport, enzyme activity, and
electron transport [84–86]. Then, they can affect mitochondrial ATPase, reducing ATP
production and decreasing pH [87]; inhibit fungal cell wall formation, cell division and
disturb RNA, DNA, and protein synthesis [80]. Oliveira Lima et al. [88] demonstrated the
inhibition of conidia germination of Trichophyton rubrum by linalool, a monoterpene; this
anti-germinative effect was related to the inhibition of germ tube formation, which is the
first step of germination. According to Yamaoka et al. [89], this tube appears during the first
two hours of the germinating process, proving that the inhibitory action of the essential oil
occurs during the first two hours following inoculation.

5. Conclusions

Our results demonstrate that AMF could be used in the sustainable production of
AMP that are endemic and/or endangered. Indeed, T. satureioides, T. pallidus, and L. dentata
inoculated with R. irregularis and F. mosseae displayed higher biomass production than
non-inoculated plants. This increase in plant biomass can be explained by an improvement
in nutrient uptake (such as N, P, and K) caused by the AMF. The mycorrhizal AMP also
contained higher levels of leaf chlorophyll, soluble sugars, and protein, indicating improved
photosynthesis activity.

Moreover, the mycorrhizal AMP showed an increase in essential oil yield of more than
21%. While there were no differences in the chemical profile of EOs of the different AMP
species studied, we detected an improvement in the abundance of oxygenated monoter-
penes such as thymol (23.7%), carvacrol (23.3%), and borneol (18.7%) in T. satureioides;
α-terpinene (32.6%), thymol (28.8%), and δ-terpinene (8.1%) in T. pallidus; and camphor
(58.4%), isoborneol (8.8%), and fenchol (4.1%) in L. dentata. In addition, the biological
activities were also positively affected by inoculation with AMF, regardless of the phy-
topathogenic fungi tested (B. graminis, F. culmorum, or Z. tritici). This improvement was
correlated with an increase in the main compounds and their synergic effect.

Taken all together, our findings highlight the performance of F. mosseae in association
with Thymus, while R. irregularis performs well in association with Lavandula.

Overall, AMF inoculation could constitute an alternative eco-technological approach
to reduce chemical fertilizer application in the production of T. satureioides, T. pallidus, and
L. dentata and alleviate the threat factors faced by endemic AMP.
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