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Abstract

Deploying deep learning models in real-world certified systems requires the ability to
provide confidence estimates that accurately reflect their uncertainty. In this paper, we
demonstrate the use of the conformal prediction framework to construct reliable and trust-
worthy predictors for detecting railway signals. Our approach is based on a novel dataset
that includes images taken from the perspective of a train operator and state-of-the-art
object detectors. We test several conformal approaches and introduce a new method based
on conformal risk control. Our findings demonstrate the potential of the conformal predic-
tion framework to evaluate model performance and provide practical guidance for achieving
formally guaranteed uncertainty bounds.

Keywords: Conformal Prediction, Object Detection, Uncertainty Quantification

1. Introduction

The deployment of Machine Learning (ML) technologies in real-world, safety-critical sys-
tems is faced with many challenges; one of them is to provide Uncertainty Quantifica-
tion (UQ) for the output of the ML component. While this quantification can be accessible
for low-complexity models, this is an important challenge for complex tasks such as object
detection or text processing.

In this paper we explore how Conformal Prediction (Vovk et al., 2022, CP) and Con-
formal Risk Control (Angelopoulos et al., 2022, CRC) can contribute to build confident (or
“trustworthy”) predictors for the task of Object Detection (OD) (Zhao et al., 2019).

CP and CRC have the advantage of being distribution-free, non-asymptotic and model-
agnostic frameworks, which allow their deployment to any black-box predictor under mini-
mal hypotheses, including complex ML tasks.

© L. Andéol, T. Fel, F. de Grancey & L. Mossina.
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Figure 1: Example of a pipeline where an Artificial Intelligence (AI) system acts following
ML-based predictions. Source: Alecu et al. (2022).

Furthermore, they are computationally lightweight as they do not require retraining the
model, and so can easily be added to existing ML pipelines1.

In this work, we demonstrate on a purpose-built dataset how the combination of these
frameworks with state-of-the-art object detection models can lead to more accurate and
reliable predictions in real-world applications.

After introducing our use case in Section 1.1, we detail the construction of our railway
signaling dataset in Section 2. Then, in Section 3 we provide an overview of CP, Conformal
Risk Control (CRC) and some related methods. In Section 4 we give the details of our
approach. Afterwards, in Section 5 we set up our experiments and discuss some important
methodological details.

Finally, in Section 5.3 and 6 we discuss the results, conclude on our work and give some
insights, as well as leads for future works.

1.1. Railway Traffic Light Detection

Our use case consists in detecting the signals as they are encountered during the operation of
trains in a railway network, and we refer to this problem as Railway Traffic Light Detection
(RTLD).

While main lines (e.g. high-speed lines) already have in-cabin signaling and can be
automatized (Singh et al., 2021), this is too costly to be applied to the whole network.
Consequently, on secondary lines, drivers can be subject to a larger cognitive load to in-
terpret signals and the environment. Assisting drivers with AI-based signaling recognition
could facilitate the operations. This operational desideratum can be cast as a functional
chain including: locating the traffic light, validating the localization and recognizing the
signal class. In Alecu et al. (2022), who provide an overview of the technical and regulatory
challenges raised by the safety of AI systems in the railway and automotive industries,

we find a study of this problem as depicted in Figure 1. Our application (referred to as
Traffic Light Localization, TLL) would correspond to point (1).

1. This holds true for split (or “inductive”) Conformal Prediction (CP), which is the only form of CP we
use for our applications.
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Conformal Object Detection

1.2. Theoretical guarantees in ML with conformal prediction

Providing UQ for the output of an object detector can be interpreted as providing a set of
points (e.g. pixels) that is likely to contain the (pixels of the) ground-truth box. Concretely,
they can be computed by adding a “safety” margin around the sides of the predicted bound-
ing boxes, according to some statistical property specified by the user. This could be the
average coverage of our procedure, that is, the frequency with which we capture the ground
truth during inference. Letting Xnew be the observed features of a new sample, we want a
set predictor C(Xnew) that contains entirely the ground-truth box Ynew with probability:

P
(
Ynew ∈ C(Xnew)

)
≥ 1− α, (1)

Equation 1 represents the core theoretical guarantee of the conformal prediction frame-
work, which we will employ to analyze the outputs of our object detector. During inference,
a conformal algorithm constructs a prediction set Cα(X) that, on average, covers the ob-
served value of the target Y with a frequency of 1 − α across multiple repetitions of the
procedure.

The challenge is to formulate the problem and build a set predictor C(·) that answers
to an operational need, such as “capturing the entire bounding boxes (1 − α) 100% of the
time” (for CP) or “covering at least (1−α) 100% of the target pixels” (for CRC, Section 4).

2. Building an experimental dataset for object detection

We work on the detection of traffic lights in the French railway network. Since most national
railway networks have a unique mix of signals and traffic lights, one needs to build a dataset
for the specific operational domain.

2.1. Related work

Public datasets for computer vision on railway data are rather scarce. Zendel et al. (2019)
built the first public, railway-specific dataset for semantic scene understanding, which in-
cludes the manual annotation of geometric shapes and pixel-wise labeling. They also provide
an overview of publicly available datasets containing in part railway data. To counter this
scarcity, Gasparini et al. (2020) collected 30k night-time images, captured by a drone flying
over the rails, for the task of detecting autonomously anomalous objects on rails. Another
viable option is to use artificial data, as done for instance by Mauri et al. (2022), who
created a virtual dataset from a simulator based on a video game. For the French network,
Zouaoui et al. (2022) created a segmentation dataset with artificially generated anomalies.
The dataset FRSign of Harb et al. (2020) addresses a similar use case via object detection:
they were able to coordinate the data collection with the national railway operator and
other partners.

In our case, we found an alternative sourcing existing videos from the internet. Also,
compared to the work of Harb et al., our new dataset presents increased variability (more
railway lines, environmental and weather conditions, etc.) which could enable more accurate
predictions in real-world scenarios. Finally, we generalize the task from single to multi-
object detection, laying the foundations for future work in instance segmentation.

3
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2.2. Dataset characteristics

The Traffic Light Localization (TLL) should operate whenever a human operator typically
operates. This leads to considering a high-diversity dataset, including various meteorological
situations (rain, snow, etc.), various hours (night, day) and a wide variety of traffic light
situations (fully observable, partially occluded by foliage, etc.). To partially account for
these common issues, we included different light conditions in our data.

Characteristics Quantity

Railway lines 41
Images per line (average) 83.27 ± 41.11
Images in dataset 3414
Dimensions (pixels) 1280 × 720
Bounding boxes per image 1.03 ± 1.26
Bounding boxes (total) 3508

Table 1: Characteristics of our dataset

As source data, we used footage from 41 videos of French railway lines, freely available on
the internet, with the approval of the uploader2. Most of the railway lines are distinct, but a
few share sections especially around large Parisian stations. The average duration of a video
is about 1.5 hours, from which we’ll extract individual frames. The extraction of frames
was conducted as follows: We extract frames from videos by running a pretrained object
detector with a low objectness threshold, and we keep a minimum interval of 5 seconds
between detections so as to avoid different frames featuring the same signals, to prevent
excessive temporal correlation between images. On average, 83 frames were extracted per
video. We then keep only the frames, and manually and individually annotated all visible
railway signals on them. In Table 1 we report the statistics of our dataset.

3. Uncertainty quantification in object detection

For our tests, we restricted our attention to YOLOv5m (Jocher, 2020), originally proposed
by (Redmon et al., 2016), DETR-ResNet50 (Carion et al., 2020) and DiffusionDet (Chen
et al., 2022). YOLOv5m offers a one-stage detection, combining convolutional layers with
regression and classification tasks, and has found widespread adoption. DETR-ResNet50
leverages transformer layers and DiffusionDet formulated OD as a denoising diffusion prob-
lem. These were chosen because they are either standard models, or state-of-the-art ones.
Since CP and CRC are model-agnostic, the choice of OD network does not matter. For
instance, Petrović et al. (2022) build a detector of railway tracks and signals.

Also, the application of CP is not limited to traffic lights (our use case) but can be
extended to any detection needing formal guarantees (Ye et al., 2020). Applying CP to
specialized models could open up future lines of research.

2. We would like to thank the author of the Youtube channel: https://www.youtube.com/@mika67407
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Conformal Object Detection

3.1. Related works

In industrial applications, it is often hard to make reliable hypotheses on the data or the
correct specification of the predictor, which is why we favored a distribution-free, model-
agnostic approach such as conformal prediction. Of course, if one can make meaningful
assumptions on their learning task, then there is a sizeable literature on the topic (Feng
et al., 2021, for a review). Hall et al. (2020) give a probabilistic formulation of OD, where the
probability distributions of the bounding boxes and classes are predicted. Bayesian models
like in Harakeh et al. (2020) and Bayesian approximations (Deepshikha et al., 2021) are
also found in the literature. We point out the distribution-free approach of Li et al. (2022):
they build probably approximately correct prediction sets using a held-out calibration set
to compute a calibrated threshold for the predictor (e.g. for the softmax), following the
principles introduced by Park et al. (2020). They control the coordinates of the boxes but
also the proposal and objectness scores, resulting in more and larger boxes. Their method
relies on the structure of Fast R-CNN (Ren et al., 2017), the underlying OD model: this
has three detection steps with three predictors associated with the proposal, presence and
location of a bounding box. Each component is controlled individually and then combined to
attain the desired guarantee. Their method is an application of the PAC-based calibration of
Park et al. (2020). This is not applicable as is to state-of-the-art one-stage object detectors
such as YOLO (Redmon et al., 2016) or DETR (Carion et al., 2020). This is one of the
reasons why we opt to model our uncertainty quantification problem directly via CP. Also,
CP requires exchangeable data while concentration-based methods such as Park et al. (2020)
and the more general methods of Bates et al. (2021) and Angelopoulos et al. (2021)require
the stronger assumption of data being independently and identically distributed (i.i.d).

3.2. Principles of Conformal Prediction

Conformal Prediction (CP) (Vovk et al., 2022; Angelopoulos and Bates, 2023) is a family of
methods to perform UQ with guarantees under the sole hypothesis of data being independent
and identically distributed (or more generally exchangeable). CP is flexible because we can
either “conformalize”3 a predictor using the training data, for instance via transductive
“full” CP (Vovk et al., 2022) or a K-fold partition scheme (Vovk, 2013; Barber et al., 2021),
or via a dedicated calibration dataset Dcal with a method known as split CP (Papadopoulos
et al., 2002; Lei et al., 2018). This allows using a pretrained predictor f̂ with no need
to access the training data. Throughout the paper, “CP” always refers to Split CP; unless
otherwise specified, we write n = |Dcal| = ncal and (Xn+1, Yn+1) will denote a (random)
test point drawn from the same distribution as Dcal = {(Xi, Yi)}ni−1, (Xi, Yi) ∼ PXY .

For a specified (small) error rate α ∈ (0, 1) and n calibration points, during inference,
the CP procedure will yield a prediction set Cα(Xn+1) that fails to cover the observed Yn+1

with probability at most α:

P
(
Yn+1 /∈ Cα(Xn+1)

)
≤ α. (2)

3. We (loosely) say that we “conformalize” a predictor f̂ whenever we apply either CP or CRC. For CP,
a conformalized model is one that outputs a prediction set (e.g. enlarged bounding box) that does not
contain the target Y at most with frequency α.
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Formally, this guarantee holds true, on average, over many repetitions of the CP pro-
cedure (i.e. sampling of calibration and test points). It is valid for any distribution PXY ,
any sample size and any predictive model f̂ , even if it is misspecified or a black box. The
probability 1−α is referred to as the nominal coverage; the empirical coverage on ntest test
points is 1

ntest

∑ntest
i=1 1{Yi ∈ Cα(Xi)}.

The conformalization of f̂ is determined by a nonconformity score s(X,Y ), mea-
suring how “unusual” the prediction Ŷ = f̂(X) is with respect to observed Y . This is a
generic method: e.g., for regression we can set s(X,Y ) = |f̂(X) − Y |; for quantile regres-
sion (Koenker and Bassett, 1978), we can measure the errors of lower and upper quantile
estimators (q̂β, q̂1−β) with s(X,Y ) = max{q̂β(X)−Y, Y − q̂1−β(X)} of Romano et al. (2019).

Algorithm 1: Split conformal prediction: fit, conformalization and inference steps.

Input: Training data Dtrain = {(Xi, Yi)}ntrain
i=1 ; miscoverage level α ∈ (0, 1);

nonconformity score s(X,Y ).

1. Split (disjointly) training data: Dtrain = Dfit ·∪Dcal

2. Fit (or fine-tune) f̂(·) on Dfit

3. Compute scores on Dcal: R̄ = {s(Xi, Yi)}ncal
i=1

4. Compute conformal quantile: q1−α = d(ncal + 1)(1− α)e-th element of the sorted
sequence R̄

5. Inference: Cα(Xi) =
{
y : s(Xi, y) ≤ q1−α

}
.

In Algorithm 1 we give the steps of Split CP. If one uses a pretrained predictor, then
only Dcal are needed and Steps 1 and 2 are skipped. During conformalization, we compute
the nonconformity scores R̄ on Dcal. For a test point Xn+1, we build the prediction set
Cα(Xn+1) = {y : s(Xn+1, y) ≤ q1−α}. For example, if s(X,Y ) = |Y − f̂(X)|, then we build
the prediction interval as Cα(Xn+1) = [Ŷ − q1−α, Ŷ + q1−α]. In Section 4 we show that, for
our TLL case, CP boils down to adding a margin around the predicted bounding boxes.

3.3. Conformal risk control: a generalization of conformal prediction

Angelopoulos et al. (2022) introduced Conformal Risk Control (CRC) as an extension of
CP. First, they point out that the conformal guarantee in Equation 2 can be rewritten
as E[1{Ynew /∈ Cα(Xn+1)}] ≤ α. The function `

(
Cα(Xn+1), Ynew

)
= 1{Ynew /∈ Cα(Xn+1)}

encapsulates a notion of error, which for CP occurs whenever Ynew is not covered by Cα(X).
In some practical applications, this binary loss can be too strict and building a prediction
set according to another criterion can satisfy (theoretically) a different operational need
(e.g. false negative rate). The CP procedure can be extended to any bounded loss function
`(·), provided that it decreases as the set C(Xn+1) gets larger; the task is generalized as
E
[
`
(
C(Xn+1), Yn+1

)]
≤ α, where C(Xn+1) is not necessarily built by CP. Let f̂(X) be a

pretrained predictor and Cλ(X; f̂) a function parametrized by λ, where larger λ values yield
larger prediction sets. Given a calibration dataset Dcal = (Xi, Yi)

n
i=1, CRC boils down to

computing the losses Li(λ) = `
(
Cλ(Xi), Yi

)
∈ (−∞, B], B < ∞ on Dcal, the empirical risk

6
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R̂n(λ) = 1
n(L1(λ) + · · · + Ln(λ)) and choosing a λ̂ such that the risk on the (n + 1)-th

(unseen) sample is controlled:

E
[
`
(
Cλ̂(Xn+1), Yn+1

)]
≤ α. (3)

For an arbitrary risk level upper bound α ∈ (−∞, B], λ̂ is computed as:

λ̂ := inf
{
λ :

n

n+ 1
R̂n(λ) +

B

n+ 1
≤ α

}
. (4)

Here, Cλ̂ denotes any set predictor that complies with an α risk level, not necessarily a
probability. Throughout the paper, however, we have losses L(λ) ∈ [0, 1] and α ∈ (0, 1).

3.3.1. CRC covers the conformal prediction case

If we consider a miscoverage loss Lcoverage
i (λ) = 1

{
Yi 6∈ Ĉλ(Xi)

}
= 1

{
s(Xi, Yi) > λ

}
,

Angelopoulos et al. (2022) shows that CRC finds the same prediction set as CP, for a given
α. We can write the CRC prediction set as:

C
λ̂
(Xn+1) = {y : s(Xn+1, y) ≤ λ̂}, (5)

where λ̂ is the same as the conformal quantile q1−α of Line 5 of Algorithm 1 for Split CP.
The CRC guarantee is less tight than the one proved by Lei et al. (2018) for Split CP, the
latter being 1 − α ≤ P(Y ∈ Cα(X)) ≤ 1 − α + 1

n+1 while the former is 1 − α ≤ P(Y ∈
Cλ̂(X)) ≤ 1− α+ 2B

n+1 .

4. Building Conformal Predictors for Object Detection

In our experiments, we test Conformal Prediction (CP) and Conformal Risk Control (CRC)
in OD. For the first part, we follow the box-wise CP methods of de Grancey et al. (2022)
and Andéol et al. (2023). To the best of our knowledge, these are the only straightforward
applications of CP to object detection. In addition to their methods, we also test the new,
better-performing, max-additive and max-multiplicative scores (see Section 4.1.1). For the
second part of our experiments, we compare the image-wise CP method of de Grancey et al.
(2022), to our approach which relies on the Conformal Risk Control (CRC) of Angelopoulos
et al. (2022), who extend CP to a more general class of errors: while CP provides a guarantee
on a binary error “the truth is contained vs not contained in the prediction set”, CRC admits
more generic guarantees of the type “(1−α) 100% of the pixels will be covered by the CRC
output” (see Section 4.2).

We define objects we work with as follows: the output of the OD predictor is a variable-
sized (potentially empty) set of bounding boxes f̂(Xn+1) = Ŷn+1 = {Ŷ k

n+1}k=1,...,ni
. How-

ever, unlike previous work of de Grancey et al. (2022) which considers conjunctions of
half-spaces, we will note our bounding boxes in the common OD standard, as a set of four
coordinates {x̂kmin, ŷ

k
min, x̂

k
max, ŷ

k
max} to ensure wider understanding among the OD commu-

nity. However, this notation is imprecise, and therefore we also adopt an implicit definition
of bounding boxes as the set of pixels that belong to them, which is closely related to seg-
mentation and necessary for the proper definition of some of our proposed methods. Each
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box Ŷ k
i is therefore the set of pixels

Ŷ k
i =

{
(x, y) ∈ R2 :

x ∈ [ x̂kmin , x̂
k
max ]

y ∈ [ ŷkmin , ŷ
k
max ]

}
.

In all cases, ground truth boxes are defined equivalently. Based on these definitions, we can
introduce two different approaches to guaranteeing OD predictions, box-wise or image-wise
guarantees.

4.1. Box-wise Conformalization

Additive margin Multiplicative margin

Prediction

Conformalized
Conformalized

+δ
×δH

H

W

Figure 2: Effect of margin systems used.
An additive margin is a number of pixels to
add, while a multiplicative margin is a propor-
tion of the width/height to add. The additive
one may lead to comparatively a smaller ef-
fect on foreground boxes and larger on back-
ground (smaller traffic signals) boxes, and the
opposite applies for multiplicative margins.

The most intuitive approach to conformal-
ize object detector predictions is to work
box-wise, that is to to consider our Yi as
individual boxes, and compute residuals,
as well as obtain guarantees in expecta-
tion, for individual boxes. However, this
approach presents a challenge in defining
the nonconformity score because the model
only provides a set of predicted boxes. To
address this, a pairing between predicted
and ground truth boxes is necessary, which
is commonly done using the Hungarian
matching algorithm in the object detection
literature. Since the nonconformity scores,
and consequently the conformal guarantee,
depend on this pairing, we consider it to
be an integral part of the conformalization
procedure. This operation is typically per-
formed using a specific criterion.

considering a threshold on the IoU (In-
tersection over Union) score of boxes: a pre-
diction may be considered matched if it has
a sufficient score. The spectrum of predic-
tions the guarantee applies to, as well as
the size of margins depends strongly on this
threshold. It is most important to note that this guarantee will therefore apply exclusively
to true positives.

We further define multiple nonconformity scores, per coordinate, or a unique one per
box, be it additive or multiplicative. We follow de Grancey et al. (2022) and the generic
Split CP presented in Algorithm 1 with the addition of the previously mentioned matching
rule.
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4.1.1. Nonconformity scores for object detection

Let k = 1, . . . , nbox index every ground-truth box in Dcal that was detected by f̂ , disregard-
ing their source image. Let Y k = (xkmin, y

k
min, x

k
max, y

k
max) be the coordinates of the k-th box

and Ŷ k = (x̂kmin, ŷ
k
min, x̂

k
max, ŷ

k
max) its prediction.

The nonconformity score, which we refer to as additive, is defined as:

Rk =
(
x̂kmin − x

k
min, ŷ

k
min − y

k
min, x

k
max − x̂kmax, y

k
max − ŷkmax

)
(additive score). (6)

Also hinted by de Grancey et al. (2022), a multiplicative score can be defined:

Rk =
( x̂kmin − x

k
min

ŵk
,
ŷkmin − y

k
min

ĥk
,
xkmax − x̂kmax

ŵk
,
ykmax − ŷkmax

ĥk

)
(multiplicative score), (7)

where the prediction errors are scaled by the predicted width ŵk and height ĥk.

Since they aim to capture a bounding box, which is represented by four coordinates,
this yields a multidimensional response. This case is similar to multiple hypothesis testing,
and to guarantee the coverage of the whole box, that is, the four coordinates at the same
time, it is necessary to apply a statistical adjustment to the risk level α; and they opt
for a Bonferroni correction where, for each coordinate, the prediction set is built with a
miscoverage rate of α

4 (see Eq. 12 & 13).

It is well-known (Bland and Altman, 1995) that the Bonferroni correction can be
overly conservative. To counter this, we propose and test the max-additive and max-
multiplicative nonconformity scores, which are defined respectively as:

Rmax
k = max

{
x̂kmin − xkmin, ŷ

k
min − ykmin, x

k
max − x̂kmax, y

k
max − ŷkmax

}
(max-additive), (8)

Rmax
k = max

{ x̂kmin − xkmin

ŵk
,
ŷkmin − ykmin

ĥk
,
xkmax − x̂kmax

ŵk
,
ykmax − ŷkmax

ĥk

}
(max-multip.). (9)

Both approaches are explained and compared on Figure 3. In general, it is not possible
to determine a priori whether the additive or multiplicative score should be used. For
instance, de Grancey et al. (2022) have operational reasons to prefer the additive margin:
they are detecting pedestrians from the point of view of vehicles; when objects are close
to the camera, they have larger bounding boxes and multiplicative conformalization would
yield margins that are too large to be operationally useful.

4.1.2. Computing the conformal quantile

After the nonconformity scores, the next quantity to compute is the conformal quantile.
For the case of additive and multiplicative scores with Bonferroni correction, we do:

qc1−α
4

= d(nbox + 1)(1− α

4
)e-th element of the sorted R̄c,∀c ∈ {xmin, ymin, xmax, ymax}. (10)

For the case of max-additive and max-multiplicative scores, the quantile is given by:

q1−α = d(nbox + 1)(1− α)e-th element of the sorted R̄max (11)
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(X1, Y1)(X1, Y1)(X1, Y1)

Y1^

1-!
"

qxmin

qxmax

qymin

qymax

Δxmin

Δxmax

Δymin

Δymax

Bonferroni
correction

q

1-𝛼
max{Δxmin, Δxmax, Δymin, Δymax}max-

alternative
Δxmin

Δymin

Figure 3: Comparison of the previous Bonferroni approach vs our max-
nonconformity score. As explained in Section 4.1.1, we propose an alternative to the
previously used Bonferroni correction which is overly conservative - as illustrated on the
left, where four quantiles at the level α

4 need to be estimated – one per coordinate of the
bounding box. The alternative - illustrated on the right - consists in calculating the quantile
at the level α of the distribution of coordinate-wise maximum residuals.

4.1.3. Computing the prediction set

During inference, for a new observation Xn+1, the coordinates of the additive and the
multiplicative split conformal prediction boxes are given by:

Ĉα(Xn+1) =
{
x̂min − qxmin

1−α
4
, ŷmin − qymin

1−α
4
, x̂max + qxmax

1−α
4
, ŷmax + qymax

1−α
4

}
, (additive)

(12)

Ĉα(Xn+1) =
{
x̂min − ŵ · qxmin

1−α
4
, ŷmin − ĥ · qymin

1−α
4
,

x̂max + ŵ · qxmax

1−α
4
, ŷmax + ĥ · qymax

1−α
4

}
. (multiplicative)

(13)

For the max-error conformalized versions, we get respectively:

Ĉα(Xn+1) =
{
x̂min − q1−α, ŷmin − q1−α,

x̂max + q1−α, ŷmax + q1−α

}
. (max-additive) (14)

Ĉα(Xn+1) =
{
x̂min − ŵ · q1−α, ŷmin − ĥ · q1−α,

x̂max + ŵ · q1−α, ŷmax + ĥ · q1−α

}
. (max-multiplicative box) (15)

4.2. Image-wise Conformalization and Conformal Risk Control

Image-wise conformalization, as opposed to box-wise, considers our ground truth Yi to be
defined as a set of bounding boxes. We therefore measure a nonconformity score at the
image level and do not need a pairing algorithm. However, here we focus on avoiding false
negatives, and do not consider the false positive rate in any of the following methods, and
it does not affect the process of conformal prediction or risk control.
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We compare here two families of approaches. The first is inherited from de Grancey et al.
(2022) and is rooted in a signed asymmetric Hausdorff distance. This method is therefore
referred to as ”Hausdorff” our experiments. The nonconformity score for this method is
defined as the smallest margin such that, for a given image, a proportion 1 − β of ground
truth boxes is entirely covered by prediction boxes (even if it takes two prediction boxes
that each cover half of a ground truth box). The parameter β is set to 0.25 (arbitrarily) in
the original work and we use the same value in our experiments.

This method presents a discontinuity which is common in CP. Either the predictions
cover over 75% of ground truth boxes, or they don’t. Thanks to CRC, this discontinuity
has been removed and we can directly control the risk itself as the proportion of ground
truth boxes that isn’t covered. We also further explore an evolution of this approach that
instead considers as risk the average area of ground truth boxes that isn’t covered, which
therefore increases the penalty of misdetecting large ground truth boxes, while reducing it
for smaller ones. In order to formulate those losses, let us define some notations.

4.2.1. Losses for Conformal Risk Control

For all calibration samples (Xi, Yi)i=1,...,ncal
, let Yi ∈ {∅,R1×4,R2×4, . . . } be the set of

ground-truth bounding boxes included in Xi, which could be empty.

The box-wise recall loss is defined as the proportion of boxes that is not entirely
covered by prediction boxes. It is formulated as:

LOD−boxi (λ) = `
(
Ĉλ(Xi), Yi

)
=

{
0 if Yi = ∅
1− 1

ni

∑
k 1Y ki ⊆

⋃
j Ŷ

j
i

otherwise.
(16)

This formulation of the loss implies that multiple prediction boxes can be used to cover
a single object and be considered correct. There is no discrimination between a single
prediction box covering the whole ground truth box, and hundreds of pixels-sized boxes
covering the ground truth too. On the other hand, the pixel-wise recall is designed to
tolerate partly covered ground truth, and is smoother than the box-wise recall. It requires
further definition as follows.

Let A(Y k
i ) be the area (in terms of pixels) covered by the box Y k

i . Moreover, let

Y k
i ∩

⋃
j Ŷ

j
i denote the area of the intersection of the ground truth box with all predicted

boxes. The pixel-wise recall loss is then defined as the average proportion of the area of
ground truth boxes that isn’t covered by predicted boxes. It is formulated as:

LOD−pixeli (λ) = `
(
Ĉλ(Xi), Yi

)
=


0 if Yi = ∅

1− 1
ni

∑
k

A
(
Y ki ∩

j⋃
Ŷ ji

)
A
(
Y ki

) otherwise.
(17)

This loss, as the previous ones, tolerates multiple boxes used to cover a single ground
truth, even partly in this case. Moreover, this loss is expected to be impacted more by larger
ground truth boxes, as models tend to very rarely predict boxes that are too small for small
ground truths. It also can be seen as a further relaxation (smoothing) of the previous loss.
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4.2.2. Computation of Prediction Sets

With these elements, we can apply Conformalized Risk Control to a pre-trained OD predic-
tor f̂ , provided that we have access to some calibration data. The details are in Algorithm 2.

Algorithm 2: (image-wise) conformally risk-controlled OD: conformalization

1. Split (disjointly) training data: Dtrain = Dfit ·∪Dcal

2. Fit (or fine-tune) the predictor f̂ on Dfit

3. Compute the losses LODi on Dcal

4. Estimate λ̂ as in Equation 4

During inference, we build the prediction set identically (although with λ replacing
quantiles) as in the box-wise method, for all three conformal methods:

Ĉ
λ̂
(Xn+1) =

{
x̂min − λ̂, ŷmin − λ̂, x̂max + λ̂, ŷmax + λ̂

}
. (CRC additive) (18)

Ĉ
λ̂
(Xn+1) =

{
x̂min−ŵ·λ̂, ŷmin−ĥ·λ̂, x̂max+ŵ·λ̂, ŷmax+ĥ·λ̂

}
. (CRC multiplicative) (19)

5. Experiments

This section elaborates on the experiments performed on our created dataset. Initially,
we describe the experimental setup, including the models utilized, fine-tuning process, and
conformal parameters. Subsequently, we analyze the experimental outcomes based on two
primary metrics: Stretch and Empirical coverage.

5.1. Setup of experiments

We consider 2 settings for our experiments. One with two data splits for the three selected
pretrained OD models, and another with an additional split for fine-tuning these pretrained
models. We then apply run the conformal procedure on the calibration set, and evaluate
results based on metrics.

In the literature (Sesia and Candès, 2020) we found that between 10% to 50% of Dtrain

are set aside for Dcal (no pretrained f̂). For our experiments with pretrained predictors,
we split the 3414 data points into 1914 for calibration and 1500 for testing. This resulted
in a total of 1974 bounding boxes in Dtest. For the other set of experiments on fine-tuned
predictors, we set aside 1414 points to Dfit, 1000 to Dcal and 1000 to Dtest, for a total
of 1022 bounding boxes in Dtest. Throughout the tests, we set α = 0.1, the objectness
threshold of the predictor to 0.3 and the IoU threshold to 0.3.

5.1.1. Fine-tuning the detectors

As mentioned above, for the second batch of experiments we set aside a partition of data
Dfit to fine-tune YOLOv5m and DETR-ResNet50. We also attempted fine-tuning of the
DiffusionDet model but were eventually unsuccessful.
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(a) max-additive (b) max-multiplicative

(c) additive (d) multiplicative

Figure 4: Box-wise conformalization on an image with traffic signals at different
scales. Bounding boxes as predicted by the DiffusionDet predictor in yellow, conformalized
boxes in purple and ground truth in blue. Cropped for readability.

The fine-tuning on the YOLOv5m model was done with its standard learning procedure,
on all layers, for 100 epochs with a learning rate of 0.001. For the DETR-ResNet50 model,
only 3 epochs of fine-tuning were conducted, optimizing only the 10 top layers of the back-
bone. The Adam optimizer was used with learning rate 3 × 10−5 and weight decay 10−6.
A small amount of data augmentation was added, with brightness, contrast and saturation
jittering at level 0.1.

5.1.2. Performance of baseline predictors

Model Average Precision

Pretrained YOLOv5m 0.23
DETR-ResNet50 0.29
DiffusionDet 0.45

Finetuned YOLOv5m 0.36
DETR-ResNet50 0.42

Table 2: Comparing models via Average Precision for an IoU threshold ≥ 0.3.

We report in Table 2 the performance in terms of average precision of the multiple models
that we chose to use in our experiments, both in their pretrained and finetuned version,
as a reference for the evaluation of the different models in terms of conformal prediction
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performance. We recall that the average precision metric is computed as the area under
of recall-precision curve, for recall and precision values computed at different objectness
thresholds, i.e. minimum confidence of the model in that its own predicted boxes contain
indeed an object.

We notice that the pretrained DiffusionDet predictor outperforms all others, including
fine-tuned ones, and as the conformal procedure is post-hoc and therefore based on the
model’s outputs, the obtained quantiles or margins should vary, potentially significantly
between models.

5.2. Evaluation metrics

To assess and contrast the various conformalization techniques, we employ two types of
metrics in our experiments. The first metric we introduce is called ’stretch’, which computes
the average ratio of the areas of the conformalized boxes to the area of their corresponding
raw prediction boxes. It can be expressed more formally as:

Stretch =
n∑
i=1

ni∑
j=1

√√√√A(C(Xi)j
)

A
(
f̂(Xi)j

) . (20)

This metric is reported respectively for box-wise and image-wise conformalization in Table 3
and Table 5. Moreover, this metric is expected to be biased towards the multiplicative
method, as it measure itself a multiplicative coefficient of growth rather than an additive
one.

The second metric we use is the empirical coverage, or empirical risk. We compute the
empirical coverage for CP methods and empirical risk for CRC. These metrics are only
useful to measure how close the test performance of the conformalized sets is to the desired
one, and higher(or lower) does not imply better. In fact, a coverage significantly higher than
the desired level implies conformalized boxes larger than what would have been needed for
that application. The coverage is defined as :∑

i

1Yi∈Cλ̂(Xi), (21)

while the risk is characterized by: ∑
i

`
(
Cλ̂(Xi), Yi

)
, (22)

for any loss defined in section 4.2.

5.3. Results

5.3.1. Box-wise results

We report in Table 3 and 4 respectively the stretch values and coverage of the multiple
models and nonconformity scores we have experimented with.

In Table 3, it appears that, model-wise, the YOLOv5m outperforms other methods
(both pretrained and finetuned) as it leads to the smallest stretch in average. It is crucial
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(a) Hausdorff addit. (b) Hausdorff multip.

(c) Box Recall addit. (d) Box Recall multip.

(e) Pixel Recall addit. (f) Pixel Recall multip.

Figure 5: Image-wise conformalization on an image with several traffic signals
(including true and false positives, and false negatives. Bounding boxes as predicted
by the DiffusionDet predictor in yellow, conformalized boxes in purple and ground truth in
blue. Cropped for readability.

to bear in mind that the box-wise conformalization method is exclusively applied to the
true positives, which are the groud truth boxes that match with a prediction – based on the
IoU metric. Therefore, a model that generates fewer prediction may achieve a lower stretch
value, provided that the predictions it generates are precise.

It is in fact the case as the YOLOv5m model, especially in its finetuned version outputs
very few bounding boxes (of the right class) as compared to the DiffusionDet one.

In Table 4 model-wise we observe that the YOLOv5m has overall the most calibrated
coverage (close to the desired level α = 0.1). However, we note that generally the additive
and multiplicative margins computed coordinate-wise seem to largely overcover, which is
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Model max-additive max-multiplicative additive multiplicative

Pretrained YOLOv5m 1.35 1.45 1.45 1.56
DETR-ResNet50 1.81 1.68 1.96 1.74
DiffusionDet 1.53 1.53 1.88 1.69

Finetuned YOLOv5m 1.33 1.35 1.34 1.36
DETR-ResNet50 1.61 1.70 1.69 1.70

Table 3: Box-wise. Average stretch for multiple models and conformalization approaches.

most likely due to the inner conservativeness of the Bonferroni correction. It appears that
the DiffusionDet model with the max-additive or max-multiplicative nonconformity scores
leads to the most calibrated prediction sets, close to the finetuned YOLOv5m.

In Figure 4 we can appreciate row-wise the effect of the distance (and therefore the
size) of detection on the conformalized boxes under the multiple nonconformity scores.
The closest sign (a),(c) is affected negatively, while the more distant one (b),(d) is affected
positively (note that for (b), it is affected positively in terms of width but slightly negatively
in terms of height, due to the height being larger than the width and being a factor in the
scaling). Column-wise it appears clearly that the max approach has smaller margins than
the Bonferroni approach, although it is noticeable that a bias from the model seems to
appear, as there is a need for a larger correction in the top and right directions.

Model max-additive max-multiplicative additive multiplicative

Pretrained YOLOv5m 0.93 0.94 0.95 0.96
DETR-ResNet50 0.99 0.98 1.00 0.99
DiffusionDet 0.92 0.92 0.96 0.96

Finetuned YOLOv5m 0.94 0.92 0.95 0.93
DETR-ResNet50 0.95 0.94 0.96 0.95

Table 4: Box-wise. Average coverage for multiple models and conformalization approaches.

5.3.2. Image-wise results

We report in Table 5 and 6 respectively the stretch values, and the coverage/risk values
for the different models, correction types (additive or multiplicative) and guarantee type
(conformal, pixel recall or box recall). In Table 6 it is important to note that the coverage
is reported for the Hausdorff CP method, while the risk is reported for the CRC methods.
As the CP is a generalization of CP, coverage can be considered a (non-smooth) loss, and
in that case the risk would be 1 - coverage, as denoted in parenthesis in the table. We recall
that better values are the ones close to the desired coverage or risk (resp. 0.9 and 0.1), and
significantly better values than desired imply margins larger than necessary. Compared to
the box-wise approach, the methods presented here produce well-calibrated prediction sets.

In both tables, we can notice that the two first lines are missing. This is due to the
fact that there is no such value of λ that solves eq. 4. In practice, this is due to a lack
of predicted boxes (at the predefined objectness/confidence threshold). Even by increasing
the size of predicted boxes infinitely, if there is no predictions for traffic lights by our model
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on an image, then for all λ, the loss associated with this image will be 1. Therefore for the
first two methods, is not possible to build a prediction set such that the guarantee at level
α = 0.1 holds.

Hausdorff Box Recall Px Recall

Model addit. multip. addit. multip. addit. multip.

Pretrained YOLOv5m — — — — — —
DETR-ResNet50 — — — — — —
DiffusionDet 9.83 9.69 3.22 2.49 1.56 1.57

Finetuned YOLOv5m 25.96 22.75 13.06 13.92 12.25 13.22
DETR-ResNet50 7.74 10.00 3.36 2.75 2.16 2.05

Table 5: Image-wise. Average stretch for multiple models and conformalization ap-
proaches. Missing values means an unattainable risk level, for our predictor and calibration
data.

In Table 5, we notice that the YOLOv5m that was best-performing in the box-wise
experiments, is the worst performing here. This result is more aligned with expectations
according to object detection performances presented in Table 2, and confirms that the
performance of YOLOv5m in the previous task was due to the small number and accuracy
of its predictions. Moreover, we observe that as the risk, or desired guarantee, is relaxed,
the margins on the boxes decrease significantly. Therefore, while the obtained guarantees
on the predicted boxes are slightly less strong with the box recall risk than the Hausdorff
CP, the conformalized boxes are significantly smaller, and even more so with the pixel recall
risk.

On Figure 5, appears more clearly than on the table the stretch of the different con-
formalization approaches. The Hausdorff approach leads to unusable bounding boxes in
practice, while the others, in particular (e) lead to very reasonably sized bounding boxes,
while holding a guarantee valid on images on average.

Hausdorff Box Recall Px Recall

Model addit. multip. addit. multip. addit. multip.

Pretrained YOLOv5m — — — — — —
DETR-ResNet50 — — — — — —
DiffusionDet (1-) 0.90 (1-) 0.91 0.10 0.09 0.09 0.09

Finetuned YOLOv5m (1-) 0.90 (1-) 0.90 0.10 0.10 0.10 0.10
DETR-ResNet50 (1-) 0.87 (1-) 0.87 0.12 0.12 0.12 0.12

Table 6: Image-wise. Average coverage and risk for multiple models and conformalization
approaches. CRC 0.09: proportion of pixels missed by CRC-conformalized boxes.

5.4. Analysis

A conformalized predictor can only reflect the quality (e.g. accuracy) of its underlying base
predictor f̂ . If the latter misses many ground truth boxes, guaranteeing (1−α) 100% correct
predictions of a few boxes will still be a small number in the box-wise sense. Furthermore,
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in the image-wise sense, it will be impossible to reach the desired risk level with an un-
derperforming model. That is, conformalization is not a substitute for careful training or
fine-tuning of a detection architecture, but a complementary tool to increase trustworthi-
ness in the predictive models. For example, we can quantify how wrong our predictions are,
on average, based on the size of the conformal quantile q1−α: multiple predictors can be
compared directly against our operational need (coverage, pixel recall, etc.). The interest
of capturing the whole box can be operational: our ML pipeline could rely on a conserva-
tive estimation of the ground truth to carry out a control operation (e.g. running a ML
subcomponent on the detection area).

Concerning the image-wise approach, we noticed very large variations between the dif-
ferent approaches, especially between the Hausdorff and the two others. This is due to a
”threshold” effect: margins may be small at a certain level α, but at a slightly lower level
α− ε, one more ground truth box has to be included in order to satisfy the guarantee, and
in the case the closest box non-covered box is distant, such as the leftmost on Figure 5, the
margin can dramatically explode. This effect is increased on the Hausdorff approach, as
75% of boxes need to be covered on 90% on images, while the box-wise approach requires
90% of boxes to be covered in expectation, and therefore can largely fail on difficult images,
and compensate on others.

6. Conclusion

Given the insights from this investigation, we intend to develop an enhanced iteration of the
dataset, which will serve as a dedicated and high-quality benchmark for evaluating confor-
mal prediction in the domain of object detection, catering to both the scientific community
and the transport industry.

It is noteworthy that conformal prediction operates under the assumption of exchange-
able data. However, for the deployment of trustworthy AI components in the long run,
the problem setting and underlying assumptions will need to be adapted to account for
the dynamics of data streams to ensure reliable uncertainty quantification guarantees. This
process will present theoretical and practical challenges concerning the construction and
validation of datasets.

Our analysis revealed that the current success criterion for prediction relied on the
complete coverage of the ground truth boxes which may be overly restrictive. In practice,
it may be adequate for a system to ensure coverage of a substantial portion of the ground
truth. This direction deserves more interest from the industrial community, in order to
reach much lower risk levels α for viable real-world applications.

Nevertheless, it is improbable that conformal prediction alone can achieve sufficiently
low-risk levels. It will be imperative to study larger datasets employing cutting-edge models
in tandem with custom-designed conformal methods, and collaborate with domain experts
to chart a more definitive course towards certified object detection.

Lastly, it is worth noting that several concentration-based approaches have been devel-
oped and should be compared in depth to conformal ones.
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