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On the Riemann ζ-function and the geometry of operations

Introduction

We can very well imagine worlds, where 1+1 is not necessarily equal to 2, the inhabitants of these magical worlds, can develop their notions of topology, geometry, limit, and convergence necessary for their mathematics. Indeed we are once again betrayed by our intuition, because when we combine 2 units of a given object we see two objects, but some people who live in these worlds, need 8 units to obtain 2 objects, so for them, the number 2 is strange for this sum. In fact, the number 2 is none other than a value that is attributed to this addition. The real numbers system is basic to all of mathematics and hence to all of science, by his role in the definitions of limits, continuity and derivatives. The real numbers are a numbers that whose values can have arbitrarily small variations and then, can be used to measure a continous one-dimensional quantity such that, duration, distance or pressure. The development of real analysis is founded essentially on the operation of addition which is closely linked to the operation of multiplication. In the archimedean ordered field of real number (R, +, •, <), the notions of convergence of sequences and series, neighborhoods, open or closed sets depend on the absolute value or the norm (modulus) which is defined under the operation of addition, indeed, the absolute value is given by,

|.| : R → R + |x| = sup(x, -x) if x = 0 0 if x = 0
where -x denote the opposite of the element x under the operation of addition on the reals numbers and R + is the set of non-negative real numbers [START_REF] Aitken | Ordered fields[END_REF]. Throughout this work, we adopt the following notation :

i E : is the identity transformation of a nonempty set E, Rang(φ) : is the range of the map φ, A -B : is the set of elements in A but not in B.

N is the set of all non-negative integers, Z is the set of all integers, Q is the set of all rational numbers, C is the set of all complex numbers, Re(s) is the real part of the complex s.

Im(s) is the imaginary part of the complex s ln : is the logarithm function.

exp : is the exponential function.

For reader's convenience, we briefly recall some well-known definitions that we will use in the sequel [START_REF] Dehornoy | La théorie des ensembles[END_REF].

Definition 1.1 Let ≤ be a binary relation on a set E, then (E, ≤) is called a partially ordered set (poset), or ≤ is a partial order on E, if the following axioms are satisfied :

∀x ∈ E, x ≤ x. (Reflexivity)
∀x, y ∈ E, x ≤ y and y ≤ x ⇒ x = y.(Antisymmetery) ∀x, y, z ∈ E, x ≤ y and y ≤ z ⇒ x ≤ z. (Transitivity)

Remark 1.1 A total or linear order is a partial order in which any two elements are comparable i.e ∀x, y ∈ E, x ≤ y or y ≤ x,

The least element e 0 of a poset (E, ≤) is an element of E that satisfy, ∀x ∈ E, e 0 ≤ x,

The greatest element e ∞ of a poset (E, ≤) is an element of E that satisfy, ∀x ∈ E, x ≤ e ∞ . Definition 1.2 Let (E, ≤) be a poset, then the corresponding strict partial order < of the partial order ≤ on E is defined by: ∀x, y ∈ E, x < y ⇔ x ≤ y and x = y. Remark 1.2 The corresponding strict partial order < of the partial order ≤ on E satisfies the following properties, for all x, y, z ∈ E, If, x < y then not y < x, If, x < y and y < z then x < z, Not x < x, i.e. no element is related to itself. Definition 1.3 Let (E, ≤) and (E , ≤ ) be two posets, a function f : E → E is an order embedding if f is both order-preserving and order-reflecting, i.e, ∀x, y ∈ E, x ≤ y ⇔ f (x) ≤ f (y).

An order embedding is necessarily injective, indeed, for all x, y in E, f (x) = f (y) ⇔ f (x) ≤ f (y) and f (y) ≤ f (x) ⇔ x ≤ y and y ≤ x ⇔ x = y.

Then, an order isomorphism can be characterized as a surjective order embedding. As a consequence, any order embedding f restricts to an isomorphism between its domain E and its image Rang(f ). Since f is an injective mapping then, ∀x, y ∈ E, x < y ⇔ f (x) < f (y).

Another characterization of order isomorphisms is that they are exactly the monotone bijections that have a monotone inverse. If f is an order isomorphism, then so is its inverse function. If f 1 is an order isomorphism from (E 1 , ≤ 1 ) to (E 2 , ≤ 2 ) and f 2 is an order isomorphism from (E 2 , ≤ 2 ) to (E 3 , ≤ 3 ), then the function composition of f 2 • f 1 is itself an order isomorphism, from (E 1 , ≤ 1 ) to (E 3 , ≤ 3 ). When an additional algebraic structure is imposed on the partially ordered sets (E 1 , ≤ 1 ) and (E 2 , ≤ 2 ), a function from E 1 to E 2 must satisfy additional properties to be regarded as an isomorphism.

Definition 1.4 An order isomorphism f from a poset (E, ≤) to itself is called an order automorphism.

Ordered field

In this section we recall some definitions, and properties about the notion of an ordered field [START_REF] Aitken | Ordered fields[END_REF], [START_REF] Berhuy | Algébre: le grand combat[END_REF], [START_REF] Jacobson | Basic Algebra I[END_REF], [START_REF] Pattrawut | Fundamental properties of ordered fields[END_REF].

Definition 2.1 A group is a set G together with an operation * : G × G → G such that the following conditions hold :

For all g, h ∈ G, the element g * h is uniquely defined element of G, For all f, g, h ∈ G, we have, (f * g) * h = f * (g * h),

There is an identity e 0 ∈ G such that, ∀g ∈ G, e 0 * g = g * e 0 = g, For each g ∈ G, there is an inverse element g -1 ∈ G such that,

g * g -1 = g -1 * g = e 0 .
If, in addition the operation * is commutative i.e ∀x, y ∈ G, x * y = y * x, the group G is called commutative or abelian group. If, in addition the operation ⊥ is commutative, the ring A is called commutative ring.

Definition 2.3 A field F with two binary operations called addition, denoted * , and multiplication, denoted ⊥, is a commutative ring where 1 F = 0 F and all non-zero elements are invertible under multiplication.

Informally an ordered field is a field with an order relation < that satisfies the usual rules of elementary algebra and arithmetic. The formal definition focuses on the subset of positive elements. The order relation < is formally defined in terms of these positive elements. Indeed, Definition 2.4 An ordered field (F, * , ⊥) is a field with a subset P such that, P is closed under addition and multiplication, For any element x ∈ F exactly one of the following occurs:

x = 0 F , x ∈ P, x -1 ∈ P.
Where x -1 is the inverse of x under the operation * .

Remark 2.1 When we say that P is closed under addition and multiplication, we mean that if x, y ∈ P then x * y and x ⊥ y are in P . The second condition, that exactly one of x = 0 F , x ∈ P, x -1 ∈ P holds, is called the Law of trichotomy. Definition 2.5 Let F be an ordered field with a subset P . The elements in P are called the positive elements and P is called a positive cone. Definition 2.6 Let F be an ordered field with a positive cone P . If, x ∈ F is such that x -1 ∈ P then x is said to be negative. Theorem 2.1 (F, * , ⊥) is an ordered field with a positive cone P , if and only if a relation < can be defined on F satisfying, If, x, y, z ∈ F, and x < y, then x * z < y * z, If, x, y, z ∈ F, 0 F < z, and x < y, then x ⊥ z < y ⊥ z, For all x, y ∈ F, exactly one of x = y, x < y, or y < x holds, If x, y, z ∈ F, x < y, and y < z, then x < z. Remark 2.2 Thus, given an ordered field F, one may assume that there exists a relation < defined on F satisfying the conditions listed in the theorem 2.1, indeed, let (F, * , ⊥) be an ordered field with a positive cone P , therefore, we may define the relation < on F by: ∀x, y ∈ F, x < y ⇔ y * x -1 is a positive element.

Then, we write x < y. The relation < satisfies the conditions of the theorem 2.1. Conversely, suppose there is a relation < that satisfies the conditions of the theorem 2.1, then, P = {x | x ∈ F and 0 F < x} is a positive cone of F.

Example 2.1

Both the field R of real numbers and the field Q of rational numbers are ordered fields.

There are fields which are not ordered fields. The field (C, +, •) of complex numbers is one such field. To see this, suppose P is a positive cone for C, since i = 0, either i ∈ P or -i ∈ P . Therefore, if, i ∈ P then, i 2 ∈ P which is the same as -1 ∈ P . This in turn implies -i = -1 • i ∈ P which is a contradiction. If, -i ∈ P then, (-i) 2 ∈ P which is the same as -1 ∈ P , leading to i ∈ P , which is another contradiction.

Another ordered field is Q(x) the set of elements of the form U (x)

V (x) where U (x) and V (x) are polynomials with rational numbers as coefficients, and V (x) is not the zero polynomial. The operations of addition and multiplication are defined in Q(x) as usual. The positive cone P of Q(x) is the subset consisting of all elements of the form U (x) V (x) in which the leading coefficient of the product U (x)V (x) is a positive rational number.

Let (F, * , ⊥, <) be an ordered field. For all x ∈ F we define 1.x = x and 0.x = 0 F . For all m ∈ N, m.x is defined inductively by

m.x = (m -1)x * x. If, -m ∈ Z then, -m.x is defined by -m.x = m.(x -1 ). Let,
The set of natural elements is denote by,

N = {m.1 F | m ∈ N} where m.1 F = 1 F * . . . * 1 F m times , The set of integers elements is denote by, Z = {m.1 F | m ∈ Z},
The set of rational elements is denote by,

Q = {(m.1 F ) ⊥ (n.1 F ) -1 | m ∈ Z and n ∈ N * }
where x -1 is the inverse of x under the operation ⊥.

Since m.1 F = (m.1 F ) ⊥ (1 F ) -1 = (m.1 F ) ⊥ (1.1 F ) -1 , therefore, Z ⊆ Q ⊆ F. Remark 2.3 Since ⊥ is distributive over * , then, ∀n ∈ N, and ∀x ∈ F, (n.1 F ) ⊥ x = n.x
Theorem 2.2 Let (F, * , ⊥, <) be an ordered field and let ϕ : [START_REF] Bombieri | Problems of the millennium: The riemann hypothesisl[END_REF] Since N is order-isomorphic to N , Z is order-isomorphic to Z and Q is order-isomorphic to Q, therefore, on we assume, for any ordered field F that N ⊆ Z ⊆ Q ⊆ F. Consequently, 0 may be used instead of 0 F , 1 may be used instead of 1 F , and m n may be used instead of (m.1 F ) ⊥ (n.1 F ) -1 . The elements of F -Q are called irrational elements of F. Definition 2.7 Let (F, * , ⊥, <) be an ordered field. If x, y ∈ F then x ≤ y means (x < y) or (x = y). We also write y ≥ x in this case.

Q → F be defined by, for all (m, n) ∈ Z × N * , ϕ( m n ) = (m.1 F ) ⊥ (n.1 F ) -1 . Then ϕ is an order-preserving field isomorphism of Q into F, and ϕ(Z) = Z, ϕ(Q) = Q. Remark 2.
Proposition 2.1 (The mixed transitivity) Let x, y, z ∈ F. If x < y and y ≤ z, then x < z. Likewise, if x ≤ y and y < z then x < z. Theorem 2.3 Let (F, * , ⊥, <) be an ordered field, then, the relation ≤ satisfies the conditions of the theorem 4.1. In addition, ≤ is a total order on F. Definition 2.8 Let (F, * , ⊥, <) be an ordered field. F is said to be archimedean, if, for each x ∈ F, with x > 0 F , there exists n ∈ N such that, n.1 F > x.

Remark 2.5 Essentially, F is archimedean if, N is unbounded in F . Of the previous examples of ordered fields, Q and R are archimedean. Not all ordered fields are archimedean. To see that Q(x) is non-archimedean, observe that n -X < 0 Q(x) , for all n ∈ N. Thus there is no n ∈ N such that X < n. Definition 2.9 (Intervals) Let (F, * , ⊥, <) be an ordered field. For a, b ∈ F, such tha, a < b, we define: Note also that if I, J ∈ B, then either I ∩ J ∈ B or I ∩ J = ∅. Let Ω be the family of all unions of members of B. A union of members of Ω is itself a union of members of B and therefore is a member of Ω. Moreover, if U and V are members of Ω and if x ∈ U ∩ V , then there exist I, J ∈ B such that x ∈ I ⊆ U and x ∈ J ⊆ V . Thus x ∈ I ∩ J ⊆ U ∩ V and it follows that, U ∩ V is a union of members of B. Therefore Ω is closed under the formation of arbitrary unions and finite intersections. The family Ω is called a topology for F and the family B is called a base for the topology Ω. The members of Ω are called open sets of F and set complements of members of Ω are called closed sets of F, [START_REF] Dixmier | Topologie générale[END_REF].

(i) The open interval (a, b) of F by, (a, b) = {x | x ∈ F an, a < x < b} ,
Definition 2.10 The following function is called absolute value and can always be defined on an ordered field.

|.| : (F, * , ⊥, <) → P |x| = sup(x, x -1 ) if x = 0 F 0 F if x = 0 F Proposition 2.
2 Let ( F, * , ⊥, <) be an ordered field. The function |.| defined above is a norm, this means that it satisfies the following properties:

∀x ∈ F, |x| = 0 F ⇔ x = 0 F , ∀x, y ∈ F, |x ⊥ y| = |x| ⊥ |y|, ∀x, y ∈ F, |x * y| ≤ |x| * |y|.
Remark 2.7 Let (F, * , ⊥, <) be an ordered field. We can also equip an ordered field F with a topological structure as follows. For each x ∈ F and g > 0 F , the g-neighborhood of x is given by:

B(x, g) = {y ∈ F | |y * x -1 | < g}.
From which one can define open sets, closed sets, continuity, convergence, and another topological metric notions. In particular, every ordered field is a metric space.

Theorem 2.4 Let x, y, z in F where x ≤ y.

If z ≥ 0 F , then, x ⊥ z ≤ y ⊥ z. If z ≤ 0 F , then, y ⊥ z ≤ x ⊥ z.
Let x , y in F, such that, x ≤ y , then, x * x ≤ y * y Suppose x, y are positive elements, then, if x < y then, y -1 < x -1 .

Theorem 2.5 Suppose x, y in F where y ≥ 0 F . Then, For all c ∈ F, lim(c

|x|
⊥ x n ) = c ⊥ lim x n .
Definition 2.12 A sequence (x n ) n∈N in an ordered field F is said to be Cauchy sequence in F, if for every element g ∈ F where g > 0 F , there exists an

N ∈ N such that n, m ≥ N implies |x n * (x m ) -1 | ≤ g.
Definition 2.13 An ordered field F is said to be cauchy-complete if every cauchy sequence in F converges to an element of F.

Theorem 2.6 Let (F, * , ⊥, <) be an ordered field. The following conditions are equivalent, (i) F is archimedean.

(ii) The sequence (h n ) n∈N converges to 0 F whenever |h| < 1 F .

(iii) The geometric series

1 F * h * h 2 * . . ., converges to (1 F * h -1 ) -1 whenever |h| < 1 F .
where for all n ∈ N * , h n = h ⊥ h ⊥ . . . ⊥ h n times

The geometry of operations

In 1872, non-Euclidean geometries had emerged, but without a way to determine their hierarchy and relationships. Felix Klein proposed that group theory was the most useful way of organizing geometrical knowledge and made much more explicit the idea that each geometrical language had its own, appropriate concepts. With every geometry, Klein associated an underlying group of symmetries. The hierarchy of geometries is thus mathematically represented as a hierarchy of these groups, and hierarchy of their invariants. For example, lengths, angles and areas are preserved with respect to the Euclidean group of symmetries. A concept of parallelism, which is preserved in affine geometry, is not meaningful in projective geometry. Then, by abstracting the underlying groups of symmetries from the geometries, the relationships between them can be re-established at the group level. Since the group of affine geometry is a subgroup of the group of projective geometry, any notion invariant in projective geometry is a priori meaningful in affine geometry, but not the other way round. Thus, in the modern conception, the geometry is defined as the study of spaces provided with group actions preserving structures, and the invariants of these transformations. A group action on a space is a group homomorphism of a given group G into the group of transformations of the space. It is said that the group acts on the space or structure. We thus define a geometric object by the points of the space invariant by a subgroup of G. The group actions is used to analyze symmetries in group theory. Recently, we have introduced a new kind of geometry, namely, the geometry of operations, which is based on the notion of the reverse operation [START_REF] Harrafa | On the geometry of operations[END_REF]. In this geometry we showed that instead of considering two similar structures on two given sets E 1 and E 2 , two fields for example, and trying to find the links that preserve the structure in question, that is an isomorphism, we can simply start from a given structure on a first set E 1 , and transport it by any injective or bijective map θ from E 1 into Rang(θ) ⊆ E 2 , this particular transport ensures that the map θ is an isomorphism, therefore, each univocal θ link between two given sets E 1 and E 2 , is a pure and natural structural channel, which will make it possible to have a panoply of the same structure on the second set E 2 . Indeed, for any operation * defined on a nonempty set E 1 , and for all θ an injective mapping from E 1 into E 2 , there exists a unique operation H θ ( * ) on Rang(θ) that makes θ a homomorphism from (E 1 , * ) to (Rang(θ), H θ ( * )). Hence, if θ is bijective, it follows that, E 1 is isomorphic to E 2 . Therefore, the symmetric group S E of a given nonempty set E acts on the set of all operations on E. Then, we will recall the notion of the reverse operation and some of its properties. Let (E, * ) be a nonempty magma, and θ is an injective mapping from E into a given nonempty set E , then, θ restricts to a bijective mapping between its domain E and its image Rang(θ), the reverse operation of * under θ is the operation H θ ( * ) defined on Rang(θ), by:

∀x, y ∈ Rang(θ), xH θ ( * )y = θ(θ -1 (x) * θ -1 (y))
Theorem 3.1 Let E be a nonempty set, * is a given operation on E, and θ is an injective mapping from E into a given nonempty set E , therefore, there exists a unique operation H θ ( * ) on Rang(θ) that makes θ a homomorphism from (E, * ) to (Rang(θ), H θ ( * )).

Remark 3.1 Since ∀x, y ∈ E, θ(x * y) = θ(x)H θ ( * )θ(y), it follows that, ∀x, y ∈ Rang(θ), θ -1 (xH θ ( * )y) = θ -1 (x) * θ -1 (x), therefore, H θ -1 (H θ ( * )) = * ,
where θ -1 is the inverse of θ from Rang(θ) into E.

Theorem 3.2 Let E be a nonempty set, * , ⊥ are two operations on E, and let θ be an injective mapping from E into E , therefore,

(E, * , ⊥) is a field ⇔ (Rang(θ), H θ ( * ), H θ (⊥)) is a field, If, θ is bijective from E to E , then, (E, * ) is isomorphic to (E , H θ ( * )).
Proposition 3.1 Let θ be an injective mapping from a given magma (E, * ) into a nonempty set E , then, for all n ∈ N * ,

For all x ∈ E, θ(n.x) = θ(x) n , For all y ∈ Rang(θ), θ -1 (y n ) = n.θ -1 (y).
Where for all n ∈ N * , for all y ∈ Rang(θ) and for all x ∈ E,

y n = yH θ ( * ) . . . H θ ( * )y n times and n.x = x * . . . * x n times . Remark 3.2
The properties of the mapping θ and θ -1 in the proposition 3.1 generalize those of the exponential and logarithm functions respectively. Suppose that, E is a nonempty set, + is an operation on E, and let θ be an injective mapping from E into E , therefore, if, (E, +) is a group, it follows that, (Rang(θ), H θ (+)) is also a group, where the inverse of x ∈ E under +, is denoted by, -x. Thus, the inverse y -1 of an element y ∈ Rang(θ) under H θ (+), is given by, y -1 = θ(-θ -1 (y)).

Proposition 3.2 Let θ 1 , θ 2 be two injectives maps from a nonempty set E 1 into a nonempty set E 2 and from E 2 into a nonempty set E 3 respectively, where Rang(θ 1 ) ⊆ E 2 . Therefore, for all * an operation defined on E 1 ,

H θ 2 •θ 1 ( * ) = H θ 2 (H θ 1 ( * )).
Corollary 3.1 For all * an operation on E, and for all

θ 1 , θ 2 in S E the symetric group of E, H θ 2 •θ 1 ( * ) = H θ 2 (H θ 1 ( * )).
Theorem 3.3 Let (E, ≤) be a poset which contains the least element e 0 , and let * be an operation on E, θ is an injective mapping from E into a given nonempty set E . Let ≤ θ be the binary relation on Rang(θ), such that,

∀x, y ∈ Rang(θ), x ≤ θ y ⇔ θ -1 (x) ≤ θ -1 (y)
where θ -1 is the inverse of θ from Rang(θ) into E, therefore, (Rang(θ), ≤ θ ) is a poset, and θ(e 0 ) is the least element of Rang(θ).

Main results

In this article we generalize the usual law of addition in the system of real numbers and thus we show by taking another choice of the operation of addition, the number 2 is not necessarily a natural element ! in the set of real numbers, it's a cube root can be a rational element and even a natural element !, and the absolute value of a given real number can be negative !. The findings of this article shows the existence of various real and complex analyzes, for instance, the multiplicative real analysis, where the multiplication plays the role of the addition and an appropriate operation will play the role of the multiplication in the system of real numbers. Then, we define open sets, closed sets, continuity, convergence, and another topological metric notions under the absolute value resulting from the multiplication or generally in E a given quiver space [START_REF] Harrafa | Introduction to the theory of quiver spaces[END_REF], on the positive cone of an ordered field (F, * , ⊥, <), under the absolute value resulting from the operation * . Therefore, we give the natural framework to study the infinite products as infinite series, moreover we define the convergence of the sequences of operations in an ordered field. Finally we decipher the algebraic link between the additive and multiplicative structure, thus, we show the algebraic aspect of the Euler's product and the Riemann ζ-function.

Proposition 4.1 Let (F, ≤) be a nonmepty poset equipped with two operations * and ⊥. Let θ be an injective mapping from F to a nonempty set F , then, the following are equivalent,

(i) (F, * , ⊥, <) is an archimedean ordered field. (ii) (Rang(θ), H θ ( * ), H θ (⊥), < θ ) is an archimedean ordered field.
where < θ is the correspending strict order of the partial order ≤ θ defined on Rang(θ), by: ∀x,

y ∈ Rang(θ), x ≤ θ y ⇔ θ -1 (x) ≤ θ -1 (y), where θ -1 is the inverse of θ from Rang(θ) into E. If, in addition θ is surjective, it follows that, (F, * , ⊥, <) is isomorphic to ( F , H θ ( * ), H θ (⊥), < θ ).
This results it's immediate, indeed, let θ be an injective mapping from F to a nonempty set F , then, if, (F, * , ⊥, <) is an archimedean ordered field, according to the theorems 3.1 and 3.3, it follows that, θ is an isomorphism, from the field (F, * , ⊥) into the field (Rang(θ), H θ ( * ), H θ (⊥)), and θ is an order isomorphism from (F, ≤) into (Rang(θ), ≤ θ ), and since θ -1 is also an injective mapping where θ -1 is the inverse of θ defined from Rang(θ) to F, therefore, (F, * , ⊥, <) is an ordered field its equivalent to (Rang(θ), H θ ( * ), H θ (⊥), < θ ) is an ordered field. Thus, if, θ is surjective, then, the ordered fields are isomorphic.

Remark 4.1 Notice that, if, θ is an injective mapping from the ordered field (F, * , ⊥, <), into a nonempty set F , then, if, (P, ≤, * ) is the positive cone of F, therefore, (θ(P ), ≤ θ , H θ ( * )) is the positive cone of the ordred field

(Rang(θ), H θ ( * ), H θ (⊥), < θ ).
In the sequal, we will denote the serie of general term s n under an associative operation O p by:

Op n≥0 s n
And for all n in N, the n th partial sum under the associative operation O p by:

Op,n i=0 s i
Notice that, (•) n≥0 s n under the operation of multiplication is equal to the usual product n≥0 s n . If, (F, * , ⊥) is a field and h in F, then, h 0 = 1 F , and for all n in N * , h n denote h ⊥ h ⊥ . . . ⊥ h n times . therefore, with this notation we can writes for all n in N * ,

h n = ⊥,n i=1 h
Now, we turn to our main topic. Let (R, +, •, <) be the cauchy-complete archimedean ordered field of real numbers. Let p be a natural number and let ϕ p be the order automorphism of (R, ≤) defined by:

∀x ∈ R, ϕ p (x) = x 2p+1 .
The inverse ϕ -1 p of the map ϕ p is defined by:

∀x ∈ R, ϕ -1 p (x) = x 1 2p+1
.

Since (R, +, •, <) is an archimedean orderd field, according to the proposition 4.1 and to the remak 4.1, it follows that, (R,

H ϕp (+), H ϕp (•), < ϕp ) , (R, H ϕ -1 p (+), H ϕ -1 p (•), < ϕ -1 p
) are archimedean ordered fields, with the positive cone ϕ p (R + ) = ϕ -1 p (R + ) = R + , and < ϕp =< ϕ -1 p =<. To simplify, we will denote the archimedean ordered field (R, H ϕp (+), H ϕp (•), <) by R ϕp . Therefore, we have for all p in N,

∀x, y ∈ R, xH ϕp (+)y = ϕ p (ϕ -1 p (x) + ϕ -1 p (y)) = (x 1 2p+1 + y 1 2p+1 ) 2p+1 , ∀x, y ∈ R, xH ϕ -1 p (+)y = ϕ -1 p (ϕ p (x) + ϕ p (y)) = (x 2p+1 + y 2p+1 ) 1 2p+1 , ∀x, y ∈ R, xH ϕp (•)y = ϕ p (ϕ -1 p (x) • ϕ -1 p (y)) = x • y, ∀x, y ∈ R, xH ϕ -1 p (•)y = ϕ -1 p (ϕ p (x) • ϕ p (y)) = x • y, It follows that, for all p in N, H ϕp (•) = H ϕ -1 p (•) = •,
meaning that, the operation of multiplication is invariant under both ϕ p and ϕ -1 p . Therefore, we have the following : For p = 0, meaning that, ϕ p = ϕ -1 p = i R , then,

H ϕ 0 (+) = H ϕ -1 0 (+) = +
, and for all p ≥ 1, both the operations H ϕp (+) and H ϕ -1 p (+) are different from +.

Since (R, +) is a commutative group, then, according to the theorem 3.2, it follows that, for all p in N,

0 Rϕ p = 0 R ϕ -1 p = ϕ p (0) = ϕ -1 p (0) = 0,
is the identity element of both H ϕp (+) and H ϕ -1 p (+). For all p in N,

1 Rϕ p = 1 R ϕ -1 p = ϕ p (1) = ϕ -1 p (1) = 1
For all x ∈ R, and for all p ∈ N,

xH ϕp (+)x = 2 2p+1 • x and xH ϕ -1 p (+)x = 2 1 2p+1 • x
According to the remark 3.2, it follows that, for all p in N, and for all x in R, x -1 the inverse under both the operations H ϕp (+) and H ϕ -1 p (+), is given by,

ϕ p (-ϕ -1 p (x)) = ϕ -1 p (-ϕ p (x)) = -
x which is also the inverse of x under the operation +, therefore, the absolute value defined by the operation H ϕp (+) on the archimedean ordered field R ϕp , is given by:

|.| ϕp : R ϕp → R + |x| ϕp = sup(x, -x) if x = 0 0 if x = 0
which is the same usual absolute value defined by the operation of addition on R = R i R , idem for the operation H ϕ -1 p (+), then, for all p in N,

|.| = |.| ϕp = |.| ϕ -1 p Since for all p in N, H ϕp (•) = H ϕ -1 p (•) =
•, according to the theorem 3.2, it follows that, both the operations H ϕp (+), and H ϕ -1 p (+) have the following properties namely, the distributivity with the operation of multiplication, commutativity, associativity, therefore, we can say that the operations H ϕp (+) and H ϕ -1 p (+) generalize the usual law of addition on the set of real numbers.

Let p ∈ N, the H ϕp (+)-powers of x are the elements given recursively by,

x 1 ϕp = x and x n+1 ϕp = x n ϕp H ϕp (+)
x, for all positive integers n with x 0 ϕp = 1 Hϕ p (+) . Since both the operations of addition and multiplication are commutative operations on the integers, a familiar induction yields, for all positive integers n, m and for all x ∈ R, Therefore, the O p -powers of a given element x in a nonempty magma (E, O p ), quantifies its non-idempotence. By a familiar induction, the H ϕp (+)-powers and H ϕ -1 p (+)-powers of an element x in R, are given by:

x n+m ϕp = x n ϕp H ϕp (+)x m ϕp = x m ϕp H ϕp (+)
∀ n ∈ N, x n ϕp = n 2p+1 • x, and x n ϕ -1 p = n 1 2p+1 • x,
which means that, for all p in N, and for all x in R, we have,

∀n ∈ N * , x = x n ϕp n 2p+1 = x n ϕ -1 p n 1 2p+1
, then, the set of natural elements of R ϕp is given by:

N ϕp = {m.1 Rϕ p |m ∈ N}, where m.1 Rϕ p = 1 m ϕp = m 2p+1 • 1 = m 2p+1 , therefore, N ϕp = {m 2p+1 | m ∈ N}. It follows that, for all p ∈ N, 1H ϕp (+)1 = 1 Rϕ p H ϕp (+)1 Rϕ p = 2 Rϕ p = 2 2p+1 ,
then, for p = 0, N ϕ 0 = N, and for all p ≥ 1, the number 2 is not a naturel element in the ordered field of real numbers R ϕp . With this finding we can assert without any contradiction that in the archimedean ordered field of real numbers, 1" + "1, it's not necessarily equal to two !, indeed it's just a choice of the operation of addition. Therefore, we can assert that, one " + " one, is even more important than its value in the system of reals numbers, we can thus say that the links between mathematical objects are more fundamental than the objects themselves.

Remark 4.2

The set of natural elements of R ϕ -1 p is given by:

N ϕ -1 p = {m 1 2p+1 | m ∈ N}.
Then, for all natural element p, N ⊆ N ϕ -1 p , indeed, for all n in N, we have, 1 n 2p+1 ϕp = n, and

1H ϕ -1 p (+)1 = 1 R ϕ -1 p H ϕ -1 p (+)1 R ϕ -1 p = 2 R ϕ -1 p = 2 1 2p+1 ,
then, the number 2 is also a natural element in the ordered field R ϕ -1 p , for all p ∈ N. Observe that, for p = 1, 3 √ 2 ∈ N ϕ -1 1 , then, we have enriched the usual set of natural numbers.

For all p in N, (Z ϕ -1 p , H ϕ -1 p (+), •) is a commutative ring, where

Z ⊆ Z ϕ -1 p = {m 1 2p+1 | m ∈ Z}
The archimedean ordered field of the rational elements of

R ϕ -1 p , (Q ϕ -1 p , H ϕ -1 p (+), •, <) is given by, Q ϕ -1 p = {( m n ) 1 2p+1 | m ∈ Z and n ∈ N * }, with Q ⊆ Q ϕ -1 p
Let p ∈ N * , and let φ p be the function such that,

φ p : R + → R + x → φ p (x) = x 2p
The inverse of φ p is given by: φ

-1 p (x) = x 1 2p
, for all x ∈ R + . Then, for p = 1, we have for all x, y ∈ R + ,

xH φ -1 1 (+)y = φ -1 1 (φ 2 (x) + φ 2 (y)) = (x 2 + y 2 ) 1 2 ,
If, we extends this operation on R, then, the modulus of a given complex number s in C, can be seen as, |s| = Re(s)H φ -1 1 (+)Im(s). Moreover, let n in N * , to get the p-Minkowski's norm of a given vector (x 1 , x 2 , . . . , x n ) in the vector space R n , it suffices to sum the absolute value of its coordinates under the operation

H ϕ -1 k (+), when p = 2k + 1 with k ∈ N or under H φ -1 k (+), when p = 2k with k ∈ N * , for example, if, p = 2k + 1 with k ∈ N, then, for all x 1 , x 2 , . . . x n in R, H ϕ -1 k (+),n i=1 |x i | = ( i=n i=1 |x i | 2k+1 ) 1 2k+1 = ( i=n i=1 |x i | p ) 1 p
The binomial formula or the binomial identity in (R, +, •), extends any nonnegative integer power of x + y into a sum of the form,

(x + y) n = k=n k=0 n k • x k • y n-k ,
where n k is the binomial coefficient that gives the number of different combinations of k elements that can be chosen from an n-element. Let p be a natural number. Since (R

ϕ -1 p , H ϕ -1 p (+), •) is a commutative ring, with for all n in N * , x n ϕ -1 p = n 1 2p+1 • x,
and for all p in N, the map ν defined from

N into N ϕ -1 p , such that, n → ν(n) = n 1 2p+1 is bijective, then, the binomial formula in R ϕ -1
p , is given by, for all x, y in R ϕ -1 p , and for all n in N,

(xH ϕ -1 p (+)y) n = H ϕ -1 p (+),n k=0 1 ( n k ) ϕ -1 p • x k • y n-k = H ϕ -1 p (+),n k=0 { n k } 1 2p+1 • x k • y n-k = n k=0 n k • x k(2p+1) • y (n-k)(2p+1) 1 2p+1
The Fermat's equation [START_REF] Andrew | Modular elliptic curves and fermat's last theorem[END_REF], for odd exponents, that is, x 2p+1 + y 2p+1 = z 2p+1 , where x, y and z are in R ϕ -1 p , can be easily expressed in terms of the operation H ϕ -1 p (+) by : xH ϕ -1 p (+)y = z, by the binomial formula in R ϕ -1 p , we obtain, for all p in N,

z 2p+1 = (xH ϕ -1 p (+)y) 2p+1 = 2p+1 k=0 2p + 1 k • x k(2p+1) • y (2p+1-k)(2p+1) 1 2p+1
Therefore,

(z 2p+1 ) 2p+1 = k=2p+1 k=0 2p + 1 k • x k(2p+1) • y (2p+1-k)(2p+1) ,
on the other hand, since z 2p+1 = (x 2p+1 + y 2p+1 ), then, by the binomial formula in (R, +, •), we find the same result,

(z 2p+1 ) 2p+1 = k=2p+1 k=0 2p + 1 k • x k(2p+1) • y (2p+1-k)(2p+1)
4.1 Sequences and series in R ϕ p

The Riemann ζ-function is the function of complex variable s, defined in the half-plane Re(s) > 1, by the absolutely convergent series:

ζ(s) = n≥1 1 n s ,
and in the whole complex plane C by analytic continuation. As shown by Riemann, ζ(s) extends to C as a meromorphic function with only a simple pole at s = 1, with residue 1, and satisfies the functional equation

π -s 2 Γ( s 2 )ζ(s) = π -(1-s) 2 Γ( 1 -s 2 )ζ(1 -s),
where Γ is one commonly function used to extend the factorial function to complex numbers [START_REF] Bombieri | Problems of the millennium: The riemann hypothesisl[END_REF], [START_REF] Edwards | Riemann's Zeta Function[END_REF]. Therefore, since ∀p ∈ N and for all n in N * , x n ϕp = n 2p+1 • x, then, for all p in N * and for all x in R * , it follows that,

ζ(2p + 1) = n≥1 1 x n ϕp • x,
it follows that, for x = ζ(2p + 1) we obtain the following,

∀p ∈ N * , n≥1 1 ζ n ϕp (2p + 1) = 1
For instance, if, p = 1, then, for all x, y in R, xH ϕ 1 (+)y = (x 3 + y 3 ) 1 3 , therefore, The Apéry constant which is the value of the Riemann ζ-function at number 3, satisfies,

n≥1 1 ζ n ϕ 1 (3) = 1
We can define the analog of the Riemann ζ-function in R ϕp , for all p ∈ N * , indeed, for all q in N * (which is not neccesarily a natural element in R ϕp ),

ζ ϕp (q) = Hϕ p (+) n≥1 (n q .1 Rϕ p ) -1
Since H ϕp (•) = •, then, the value of the Riemann ζ-function in R ϕp at the number 1 is well-defined, indeed, for all p in N * ,

ζ ϕp (1) = Hϕ p (+) n≥1 (n 1 .1 Rϕ p ) -1 = Hϕ p (+) n≥1 1 n 1 .1 Rϕ p = Hϕ p (+) n≥1 1 n.1 = Hϕ p (+) n≥1 1 n 2p+1 = ζ 1 2p+1 (4p 2 + 4p + 1).
Proposition 4.2 Let p in N and h ∈ R, such that, |h| < 1, then, the geometric serie,

Hϕ p (+) n≥1
h n , converges to :

1 (1 -h 2p+1 ) 1 2p+1
For p = 0, we find the classic case.

Proof 1 Since R ϕp is an archimedean ordred field with 1 Rϕ p = 1 and |h| ϕp = |h| < 1, therefore, according to the theorem 2.4, it follows that, the geometric serie Hϕ p (+) n≥1 h n , converges to:

(1H ϕp (+)(h) -1 ) -1 = 1 1H ϕp (+)(h) -1 = 1 1H ϕp (+)(-h) = 1 (1 -h 2p+1 ) 1 2p+1
For the case where p = 0, which means that, H ϕp (+) = + we find the usual geometric serie and its limit. h n ,, converges to :

1 (1 -h 1 2p+1 ) 2p+1
Now, we define the notion of convergence of operations in an ordered field. Definition 4.2 Let (F, * , ⊥, <) be an ordered field. Let (O n ) n∈N be a sequence of operations defined on F, then, (O n ) n∈N is said to be convergent to an operation O in F under the operation * , if and only if, for all x, y in F and for all ε > 0 F , there exists n 0 ∈ N, such that, Proof 2 Let (F, * , ⊥, <) be an ordered field, and let θ be a bijective map from F into a nonempty set F , according to the proposition 4.1, it follows that, (F, * , ⊥, <) be an ordered field is equivalent to (F , H θ ( * ), H θ (⊥), < θ ), is an ordered field. Let ( * n ) n∈N be a sequence of operations on F such that, ( * n ) n∈N converges to an operation O under the operation * . Let ε > 0 F , then, θ -1 (ε ) > 0 F therefore, for all x , y in F , there exists n 0 ∈ N, such that, n ≥ n 0 implies:

n ≥ n 0 ⇒ |(x O n y) * (x O y) -1 | ≤ ε,
θ -1 (ε ) -1 ≤ (θ -1 (x ) O n θ -1 (y )) * (θ -1 (x ) O θ -1 (y )) -1 ≤ θ -1 (ε ),
since θ is an order isomorphism from (F, ≤) into (F , ≤ θ ) therefore,

ε -1 ≤ θ {θ(θ -1 (x ))H θ (O n )θ(θ -1 (y ))}H θ ( * ){θ(θ -1 (x ))H θ (O)θ(θ -1 (y ))} -1 ≤ θ ε ,
it follows that, for all x , y in F , and for all ε > 0 F , there exists n 0 ∈ N, such that,

n ≥ n 0 ⇒ ε -1 ≤ θ (x H θ (O n )y )H θ ( * )(x H θ (O)y ) -1 ≤ θ ε .
Therefore, the sequence of operations (H θ ( * n )) n∈N , converges to the operation H θ (O) under H θ ( * ) in the ordred field (F , H θ ( * ), H θ (⊥), < θ ). In the similar way, with θ -1 the inverse θ, we prove the other implication.

The multiplicative real analysis

Let p in N * and let exp p be the order automorphism from (R, ≤) to (R * + , ≤) defined by:

∀ x ∈ R, exp p (x) = exp(p • x) = e p•x ,
where e is the base of the logarithm function. The inverse ln p of exp p is the map defined by:

∀ x ∈ R * + , ln p (x) = ln(x) p .
Since (R, +, •, <) is an archimedean orderd field, then, for all p in N * , R exp p , is also an archimedean ordered field, with the positive cone ([1, ∞), H exp p (+), ≤ exp p ), and < exp p =<. Let p in N * , therefore, For all x, y in R * + , xH exp p (+)y = exp p (ln p (x) + ln p (y)) = x • y, then,

H exp p (+) = • For all x, y in R * + , xH exp p (•)y = exp p (ln p (x) • ln p (y)) = exp( ln(x) • ln(y) p )
In the sequal, the operation H exp p (•) will plays the role of the multiplication.

1 Rexp p = exp p (1) = e p , is the identity element of the operation H exp p (•),

A familiar induction yields, for all n ∈ N * and for all x 1 , x 2 , . . . x n in R * + -{1},

Hexp p (•),n i=1 x i = exp( n i=1 ln(x i ) p n-1
), For all x in R * + -{1}, the inverse x -1 of x under the operation H exp p (•), is given by, exp p ( 1 ln p (x) ) = exp( p 2 ln(x) )

0 Rexp p = 1, then, for all x ∈ R exp p , we have, 1H exp p (•)x = 1.

Let n in N * . For all x in R * + , the H exp p (•)-powers of x are given by:

x n exp p = exp( ln n (x) p n-1 ).
Notice that, for all p in N * , and for all x in R * + , the sequence (x n exp p ) n∈N * represent the geometric sequence with common ratio x in R exp p .

Let p = 1, then, exp p = exp, it follows that, in R exp , the property of being an archimedean ordered field is expressed as: for all x in R * + , with x > 1, there exists n in N, such that, n > ln(x). In addition we have the following :

The set of natural elements is given by: N exp = {m. The absolute value under the operation of multiplication on the ordered field R exp is given by,

|.| exp : R exp → [1, ∞) |x| exp = sup(x, 1 x ) if x = 1 1 if x = 1 Which means, |.| exp : R exp → [1, ∞) |x| exp = 1 x if x ∈ (0, 1] x if x ∈ [1, ∞)
In the archimedean ordered field R exp , the equation x 2 exp = 2 has the following solutions: x 1 = exp( √ ln 2) and x 2 = exp(-√ ln 2).

For each x ∈ R * + and ε > 1, the ε-neighborhood of x is given by:

B exp (x, ) = {y ∈ R * + | | y x | exp < ε} = {y ∈ R * + | x ε < y < x•ε} = ( x ε , x•ε)
therefore, the shape of the ε-neighborhood in R exp p , is of course different from the shape of the usual α-neighborhood in (R, +, •, <), that is, (x -α, x + α), where α > 0.

Let (x n ) n∈N be a sequence in the ordered field R exp , therefore, (x n ) n∈N converges in R exp , if and only if, there exists l in R * + such that,

∀ε > 1, there exists n 0 ∈ N, such that, n ≥ n 0 ⇒ | x n l | exp ≤ ε, Which means, ∀ε > 1, there exists n 0 ∈ N, such that, n ≥ n 0 ⇒ l ε ≤ x n ≤ l • ε,
A sequence (x n ) n∈N in the ordered field R exp , converges to 0, if and only if, for all B > 1, there exists n 0 ∈ N, such that, n ≥ n 0 ⇒ x n ≤ 1 B , indeed, the number 0 plays the role of -∞ in R exp , Let (x n ) n∈N be a sequence in the ordered field R exp , therefore, (x n ) n∈N is called a cauchy sequence, if and only if, for all ε > 1, there exists n 0 in N, such that for all p, q in N,

p, q ≥ n 0 ⇒ x q ε ≤ x p ≤ x q • ε,
The induced topology on R * + by the usual topology on R, is not equivalent to the topology induced by the absolute valute under the operation of multiplication on R * + , indeed, they do not define the same open sets. For instance, let x n = 1 n , for all n ∈ N * , then, |x n | = 1 n , and

|x n | exp = sup( 1 n , n) = n.
On the other hand, we have, for all x ∈ R * + ,

0 < |x| = x ≤ sup(x, 1 x ) = |x| exp Let p in N * and h ∈ R * + , such that, 1 e p < h < e p , then, the infinite product e p • h exp p • h 2 exp p • h 3 exp p . . ., converges to e p 2 
p-ln(h) under the absolute value resulting from the operation of multiplication. Indeed, since R exp p is an archimedean ordered field, for all p in N * , with 1 Rϕ p = e p and for all h in R * + , |h| exp p < e p ⇔ 1 e p < h < e p , then, according to the theorem 2.4, it follows that, the geometric serie in R ϕp , (•) n≥0 h n , that is, the infinite product, n≥0 h n exp p converges to:

(e p • (h exp ) -1 ) -1 = (e p • (h) -1 ) -1 = exp( p 2 ln( e p h ) ) = e p 2
p-ln(h) .

Then, according to the proposition 2.3, it follows that, the infinite product n≥1 h n exp p converges to e p ln(h) p-ln(h) under the absolute value resulting from the operation of multiplication. Observe that, we can prove the previous result by: the continuity of the exponential function and the convergence of the geometric serie n≥0 ( ln(h) p ) n , in the ordered field (R, +, •, <). Definition 5.1 We call the real analysis in the cauchy complete archimedean ordred field R exp , the multiplicative real analysis.

Remark 5.1 Let p in N * and h ∈ R * + , such that, 1 e p < h < e p , and x n = h n exp p , for all n ∈ N * . Since R exp p is an archimedean ordred field for all p in N * , with 1 Rϕ p = e p and for all h in R * + , |h| exp p < e p ⇔ 1 e p < h < e p , then, according to the theorem 2.4, the sequence (x n ) n∈N converges to the identity element e p under the operation of multiplication, which means, for all ε > 1, there exists n 0 in N, such that, n ≥ n 0 implies,

|x n -e p | exp p ≤ ε ⇒ e p ε ≤ x n ≤ e p • ε ⇒ e p ε ≤ exp( ln n (h) p n-1 ) ≤ e p • ε ⇒ p -ln(ε) ≤ ln n (h) p n-1 ≤ p + ln(ε) ⇒ 1 -ln(ε 1 p ) ≤ ln n (h) p n ≤ 1 + ln(ε 1 p ) ⇒ |( ln(h) p ) n -1| ≤ ln(ε 1 p ).
Then, if, p = 1, and 1 e < h < e, therefore, for all ε > 1, there exists an n 0 in N, such that,

∀n ≥ n 0 ⇒ | ln n (h) -1| ≤ ln(ε)
The order isomorphism ln p from (R * + , +, •, ≤) (it's not an ordered field) into (R, ≤), satisfies for all p in N * , ∀x, y ∈ R, xH lnp (+)y = ln p (exp p (x) + exp p (y)) = ln(e px +e py ) p , For all x, y in R,

xH lnp (•)y = ln p (exp p (x) • exp p (y)) =
ln(e px • e py ) p = ln(e px+py ) p = x + y Therefore, for all p in N * , H lnp (•) = + For all x ∈ R and for all n ∈ N * , the H ln (+)-powers of x are given by:

x n ln = x + ln(n)
If, p = 1, then, for all x, y in R, xH ln (+)y = ln(e x + e y ) = x + y + ln(e -x + e -y ) = (x + y) + (-x)H ln (+)(-y)

Let n in N * and p = 2k with k ∈ N * , then, for all x 1 , x 2 , . . . x n in R, ln(

H φ -1 k (+),n i=1 e x i ) = ln(( i=n i=1 e px i ) 1 p ) = ln( n i=1 e px i ) p = ln( n i=1 exp(px i )) p = H lnp (+),n i=1 x i .
In other words, we have, for all x, y in R,

xH ln • φ -1 k (+)y = xH ln (H φ -1 k (+))y = ln(exp(x)H φ -1 k (+) exp(y)) = ln(e px + e py ) p = xH lnp (+)y. Therefore, H ln • φ -1 k (+) = H lnp (+), then, H exp p • ln • φ -1 k (+) = +,
therefore, the operation of addition is invariant by the order embedding exp p • ln • φ -1 k .

The topology of a quiver space on the positive cone of an ordered field

For motivations related to particle physics namely, the phenomenon of quantum entanglement [START_REF] Connes | Noncommutative Geometry[END_REF], [START_REF] Gisin | L'Impensable Hasard : Non-localité, téléportation et autres merveilles quantiques[END_REF], we have recently introduced the notion of the quiver space as a generalization of metric space [START_REF] Fréchet | Sur quelques points du calcul fonctionnel[END_REF], [START_REF] Alvin | On semi-metric spaces[END_REF]. Let E be a nonempty set. The mapping d defined from E × E into the set of all nonnegative real numbers R + , is called a metric on E, if, the following axioms are satisfied, Then, the ordered pair (E, d) is the so called a metric space.

Definition 5.2 [START_REF] Harrafa | Introduction to the theory of quiver spaces[END_REF] Let E be a nonempty set and (G, ≤, * ) be a nonempty poset magma which contains the least element e 0 . Let F be a mapping from E × E into G such that, (x, y) → F(x, y) = f x,y , then (E, F) is called a quiver space on (G, ≤, * ), if the following tree axioms are satisfied :

∀ x, y ∈ E, f x,y = e 0 , if and only if, x = y, ∀ x, y ∈ E, f x,y = f y,x , ∀ x, y, z ∈ E, f x,y ≤ f x,z * f z,y . Now, let δ be a function defined from R × R in [1, ∞), such that, ∀x, y ∈ R, δ(x, y) = exp(|x -y|) Therefore, For all x, y in R, δ(x, y) = 1 ⇔ exp(|x-y|) = 1 ⇔ |x-y| = 0 ⇔ x = y, For all x, y in R, δ(x, y) = exp(|x -y|) = exp(|y -x|) = δ(y, x),
For all x, y and z in R,

δ(x, y) = exp(|x -y|) ≤ exp(|x -z| + |z -y|) ≤ exp(|x -z|) • exp(|z -y|) ≤ δ(x, z) • δ(z, y).
Then, R is a quiver space on the positive cone ([1, ∞), ≤, •) of the cauchycomplete archimedean ordred field R exp . Therefore, we can define on R, open sets, closed sets, continuity, convergence under the operation of multiplication. For instance, let x 0 in R, since 1 Rexp = e, then, the 1 Rexp -neighborhood of x 0 or the so called open unit ball centered at x 0 , is given by:

B exp (x 0 , 1 Rexp ) = x ∈ R | 1 e < δ(x 0 , x) < e ,
and if A ⊆ R, n in N * and r n = n+1 n > 1, therefore, the set A rn of all points in R that are at distance less than r n from A, which is the so called r n -neighbourhoods of A, is given by: A rn = p∈A B exp (p, r n ), where

B exp (p, r n ) = x ∈ R | n n + 1 < δ(p, x) < n + 1 n .
Generaly, let E be a quiver space on the positive cone (G, ≤, * ) of an ordered field (F, * , ⊥, <), therefore, we can define on E, open sets, closed sets, continuity, convergence under the operation * . [START_REF] Connes | Noncommutative Geometry[END_REF] The algebraic link between the additive and multiplicative structure

Let (C, +, •) be the field of complex numbers and let f be the homography function defined from C * into C, by:

s → f (s) = 1 - 1 s f is a bijective map from C * into C -{1}
, with the inverse f -1 which is also a homography function defined from C -{1} into C * by:

s → f -1 (s) = 1 1 -s
Let I be the inverse function defined by: I(s) = 1 s , for all s in C * . I is also a homography function. Since, f is bijective, then, for all two complex numbers s 1 , s 2 in C -{1},

s 1 H f (•)s 2 = f (f -1 (s 1 ) • f -1 (s 2 )) = f ( 1 1 -s 1 • 1 1 -s 2 ) = (s 1 + s 2 ) -(s 1 • s 2 )
Then, the output of the operation H f (•), is the difference between the addition and the multiplication of two complex numbers in C -{1}. Since (C * , •) is an abelien group, therefore, (C -{1}, H f (•)) is also an abelien group, such that, 29

0 C f = f (1) = 0, is the identity element of the operation H f (•),
For all s in C -{1}, s -1 the inverse of s under H f (•), is given by,

s -1 = f ( 1 f -1 (s) ) = f (1 -s) = s s -1
If, in addition, s = 0, it follows that,

s -1 = 1 1 -1 s = 1 f (s) = (-s) • f -1 (s) Notice that, f -1 • I = I • f . For all s in C * -{1}, ( 1 s ) 
-1 = 1 1 -s = f -1 (s)
Let s 1 and s 2 in C * -{1},

1 s 1 H f (•) 1 s 2 = (s 1 + s 2 ) -1 s 1 • s 2
Therefore, for all s 1 , s 2 in C * -{1},

1 s 1 H f (•) 1 s 2 = 0 ⇔ s 1 + s 2 = 1.
If, in addition,

s 1 H f (•)s 2 = 0, then, s 1 = 1 2 + i √ 3 2 and s 2 = 1 2 -i √ 3 2 . For all two complex numbers s 1 , s 2 in C * , s 1 H f -1 (•)s 2 = f -1 (f (s 1 ) • f (s 2 )) = f -1 ((1 - 1 s 1 ) • (1 - 1 s 2 )) = s 1 • s 2 (s 1 + s 2 ) -1 Therefore, for all s 1 , s 2 in C * , s 1 H f (•)s 2 = 0 ⇔ s 1 H f -1 (•)s 2 = s 1 • s 2 s 1 • s 2 -1 , then, s 1 H f -1 (•)s 2 , is the inverse of s 1 • s 2 under the operation H f (•). Remark 6.1
Observe that, we can extend the operation H f (•) between all complex number where 1 is an absorbing element without inverse, indeed, for all s in C,

sH f (•)1 = 1H f (•)s = (1 + s) -(1 • s) = 1
For all complex number s in C -{1}, there exits a unique element s -1 in C -{1}, such that, s + s -1 = s • s -1 which means that, their sum coincides with their multiplication, indeed,

sH f (•)s -1 = 0 ⇔ s + s -1 = s • s -1 .
Therefore, if, s in R-{1}, the steps needed to calculate s • s -1 , is equal to the steps needed to calculate s + s -1 , then, from a computational point of view for these pairs of numbers the logarithm function is of no interest. Notice that, for all s in C -{1},

s -1 = s s -1 = |s| 2 -Re(s) (Re(s) -1) 2 + Im 2 (s) -i • Im(s) (Re(s) -1) 2 + I 2 m(s) Let s 1 , s 2 in C -{1}, such that, s 1 H f (•)s 2 = 0. Therefore, Re(s 1 )H f (•)Re(s 2 ) = Im(s 1 ) • Im(s 2 ) = Im(s 1 ) • Im(s 2 ), Re(s 1 ) + Re(s 2 ) = Re(s 1 )H f (•)Im(s 2 ) + Re(s 2 )H f (•)Im(s 1 )
where s is the complex conjugate of the complex number s. If, in addition, s 1 = r 1 e iθ 1 and s 2 = r 2 e iθ 2 in C * -{1}, where r 1 , r 2 ∈ R * + , and

θ 1 , θ 2 in ] -π, π], therefore, cos(θ 1 -θ 2 ) = (r 1 r 2 ) 2 -(r 2 1 + r 2 2 ) 2r 1 r 2 Since for all s 1 , s 2 in C * -{1}, 1 s 1 H f (•) 1 s 2 = s 1 +s 2 s 1 •s 2 -1 s 1 •s 2 , it follows that, for all s in C * -{1}, 1 s H f (•) 1 s -1 = (s + s -1 ) -1 s • s -1 = 1 - 1 s • s -1 = f (s • s -1 ) = f (s)H f (•)f (s -1 ) = (1 - 1 s )H f (•)(1 - 1 s -1 ).
For all s 1 , s 2 in C -{1}, such that, f -1 (s 1 ) + f -1 (s 2 ) = 0,

s 1 H f (+)s 2 = f (f -1 (s 1 ) + f -1 (s 2 )) = f ( 1 1 -s 1 + 1 1 -s 2 ) = f ( 2 -(s 1 + s 2 ) (1 -s 1 )(1 -s 2 ) ) = 1 -(s 1 • s 2 ) 2 -(s 1 + s 2 )
Then, for all

x 1 , x 2 in R -{1}, x 1 H f (+)x 2 = 1-(x 1 •x 2 ) 2-(x 1 +x 2 )
. Now, if, instead of the function f , we consider g the homography function defined from C * into C, by

s → g(s) = 1 + 1 s
We have, g is also a bijection from C * into C -{1}, with the inverse g -1 defined by:

s → g -1 (s) = 1 s -1 Therefore, for all two complex numbers s 1 , s 2 in C -{1}, s 1 H g (•)s 2 = g(g -1 (s 1 ) • g -1 (s 2 )) = g( 1 s 1 -1 • 1 s 2 -1 ) = (s 1 • s 2 ) -(s 1 + s 2 ) + 2 = 2 -s 1 H f (•)s 2
It follows that, for all two complex numbers s 1 , s 2 in C -{1},

s 1 H g (•)s 2 + s 1 H f (•)s 2 = 2 Since (C * , •) is a commutative group, therefore, (C -{1}, H g (•)
) is also a commutative group, such that, 0 Cg = g(1) = 2, is the identity element of the operation H g (•), and for all s in C -{1}, s -1 the inverse of s under H g (•), is given by,

s -1 = g( 1 g -1 (s) ) = g(s -1) = s s -1 ,
which is also the inverse of s under the operation H f (•). If, in addition, s = 0, it follows that,

s -1 = 1 1 -1 s = -(g -1 • I)(s) = s • g -1 (s) For all s in C * -{1}, (-s) -1 = -s -s -1 = 1 g(s)
Example 6.1 Let (C, +, •) be the field of complex numbers and let ρ be the mapping defined from C into C, by:

s → ρ(s) = 1 -s The map ρ is bijective, indeed, ρ 2 = i C , then, ρ -1 = ρ. Since (C, +, •) is a field, then, according to the theorem 3.2, it follows that, (C, H ρ (+), H ρ (•)), is also a field, such that, For all s 1 , s 2 ∈ C, s 1 H ρ (+)s 2 = (s 1 + s 2 ) -1, For all s 1 , s 2 ∈ C * , 1 s 1 H ρ (+) 1 s 2 = s 1 +s 2 s 1 •s 2 -1, For all s 1 , s 2 ∈ C, s 1 H ρ (•)s 2 = (s 1 + s 2 ) -(s 1 • s 2 ), 0 Cρ = ρ(0) = 1, is the identity element of the operation H ρ (+), 1 Cρ = ρ(1) = 0, is the identity element of the operation H ρ (•),
The inverse of s in C under H ρ (+), is given by: 2 -s, The inverse of s in C -{1} under H ρ (•), is given by: s s-1 , If, instead of the field of complex numbers (C, +, •), we consider the restriction ρ of ρ on (R, +, •, <), then, since ρ is a non-increasing, it follows that, (R, H ρ(+), H ρ(•), < opp ), is a cauchy-complete archimedean ordered field, with the positive cone (∞, 1], and it's absolute value is defined by :

|.| ρ : R ρ → (∞, 1] |x| ρ = sup ≤ opp (x, 2 -x) if x ∈ R -{1} 1 if x = 1 That is, |.| ρ : R ρ → (∞, 1] |x| ρ = x if x ∈ (∞, 1] 2 -x if x ∈ [1, ∞)
Therefore, for all x in R ρ, |x| ρ ≤ |x|. Remark 6.2 Notice that, in the archimedean ordered field R ρ, the absolute value of the elements x in (∞, 0) ∪ (2, ∞), is negative !

The Euler product

The whole of analytic number theory rests on one formula due to Leonhard Euler, appears for the first times in Euler's book Intoductio in Analysin Infinitorum, published in 1748. This formula is the celebrated Euler product which is very interesting mathematical object. In some sense, the Euler product act as dictionaries between two worlds, the multiplicative and additive worlds of numbers. The Euler product is both number theoretic and analytic. Number theoretic because it's a product over prime numbers and analytic because it's analytic function, indeed, for all complex variable s with Re(s) > 1,

ζ(s) = n≥1 1 n s = pn∈P 1 1 -1 p s n ,
where P is the set of all prime numbers [START_REF] Euler | Variae observationes circa series infinitas[END_REF]. Thus, according to the previous section, it follows that, the value of the Riemann ζ-function at a given complex number s, is none other than, the infinite product of the inverses of complex numbers p s n under the operation H f (•), where Re(s) > 1.

Lemma 6.1 Let f be the homography function f defined from C * into C -{1} by: s → f (s) = 1 -1 s , and let n in N * , then, for all complex numbers s 1 , s 2 . . . s n in C -{1},

H f (•),n i=1 s i = 1 - n i=1 (1 -s i ),
Proof 3 Let f be the homography function f defined from C * into C -{1} by: s → f (s) = 1 -1 s . By induction, for n = 1, s 1 = 1 -(1 -s 1 ), and for n = 2,

s 1 H f (•)s 1 = s 1 + s 2 -s 1 • s 2 = 1 -(1 -s 1 ) • (1 -s 2 )
Suppose that, for all n ≥ 1, and for all complex numbers s 1 , s 2 . . . s n in C -{1},

H f (•),n i=1 s i = 1 - n i=1 (1 -s i ) Let s 1 , s 2 . . . s n+1 in C -{1}, since H f (•) is an associative operation, then, H f (•),n+1 i=1 
s i = ( H f (•),n i=1 s i )H f (•)s n+1 = (1 - n i=1 (1 -s i ))H f (•)s n+1 = 1 - n i=1 (1 -s i ) + s n+1 -s n+1 • (1 - n i=1 (1 -s i )) = 1 - n+1 i=1 (1 -s i ).
Therefore, for all n in N * and for all complex numbers s 1 , s 2 . . . s n in C-{1},

H f (•),n i=1 s i = 1 - n i=1 (1 -s i ) Remark 6.3 Let f be the homography function f defined from C * into C -{1} by: s → f (s) = 1 -1 s .
According to the lemma 6.1, it follows that, For all n in N * and for all complex numbers s 1 , s 2 . . . s n in C * , n i=1

s i = 1 - H f (•),n i=1 (1 -s i )
For all n in N * and for all complex numbers s 1 , s 2 . . . s n in C * ,

H f (•),n i=1 1 s i = 1- n i=1 (1- 1 s i ) = 1- n i=1 s i -1 s i = 1- 1 n i=1 s -1 i = f ( n i=1 s -1 i ),
where s -1 i is the inverse of s i , under the operation H f (•).

For all s in C -{1}, and for all n in N * , the H f (•)-powers of s are given by:

s n f = 1 -(1 -s) n Let s be a complex number in C -{1}, for all q in N * , s q f = 0 ⇔ (1 -s) q = 1 ⇔ 1 -s k = e 2kπi q , k = 0, 1, . . . , q -1 ⇔ s k = 1 -e 2kπi q , k = 0, 1, . . . , q -1
Then, for all q in N * and for all k = 0, 1, . . . , q -1, (s k ) q f = 0, it follows that, for all k = 0, 1, . . . , q -1,

s -1 k = s -1 k s -1 k -1 = 1 -e -2kπi q = 2 sin( kπ q )e i( 1 2 -k q )π = (s k ) q-1 f Proposition 6.1
For n in N * , and for all x in R * ,

H f (•),n i=1 1 i x = 1 - n i=1 (e x ln i -1) (n!) x
Proof 4 Let n in N * , and x in R * , according to the previous remark, it follows that,

H f (•),n i=1 1 i x = 1 - 1 n i=1 (i x ) -1 = 1 - 1 n i=1 i x i x -1 = 1 - n i=1 (i x -1) n i=1 i x = 1 - n i=1 (e x ln i -1) (n!) x .
Theorem 6.1 Let f be the homography function f defined from C * into C -{1} by: s → f (s) = 1 -1 s and let s be a complex number such that, Re(s) > 1, therefore,

H f (•) pn∈P 1 1 -p s n = 1 -ζ(s)
Proof 5 Let f be the homography function f defined from C * into C -{1} by: s → f (s) = 1 -1 s , according to the remark 6.3, it follows that, for all

s 1 , s 2 . . . s n in C * -{1}, n i=1 s i s i -1 = 1 - H f (•),n i=1 (1 - s i s i -1 ) = 1 - H f (•),n i=1 1 1 -s i
Thus, for all complex number s such that, Re(s) > 1,

ζ(s) = pn∈P 1 1 -1 p s n = pn∈P p s n p s n -1 = 1 - H f (•) pn∈P 1 1 -p s n .
Then, for all complex number such that, Re(s) > 1,

H f (•) pn∈P 1 1 -p s n = 1 -ζ(s).
Remark 6.4 Since H f (•) is a commutative operation, and for all s in C * -{1},

( 1 s ) -1 = 1 1 -s = f -1 (s),
it follows that, for all n in N * , and for all s 1 , s 2 . . . s n in C * -{1},

H f (•),n i=1 1 1 -s i = H f (•),n i=1 f -1 (s i ) = H f (•),n i=1 ( 1 s i ) -1 = ( H f (•),n i=1 1 s i ) -1 = H f (•),n i=1 
1 s i H f (•),n i=1 1 s i -1 .
Corollary 6.1 Let f be the homography function f defined from C * into C -{1} by: s → f (s) = 1 -1 s , and let n in N * , therefore, for all x 1 , x 2 . . . x n in R,

n i=1 x i = ln(1 - H f (•),n i=1 (1 -e x i )).
Proof 6 Let f be the homography function f defined from C * into C -{1} by: s → f (s) = 1 -1 s . Let n in N * and let x 1 , x 2 . . . x n in R, according to the remark 6.3, we have for all n ∈ N * and for all complex numbers s 1 , s

2 . . . s n in C * , n i=1 s i = 1 - H f (•),n i=1 (1 -s i )
Therefore, let s i = e x i for all i ∈ {1, 2, . . . n}, it follows that, n i=1

x i = ln(e n i=1 x i ) = ln( n i=1 e x i ) = ln(1 - H f (•),n i=1 (1 -e x i )).
Therefore, for all n in N * , and for all x 1 , x 2 . . . x n in R * , we have both the following equations, n i=1

x i = ln(1 - H f (•),n i=1 (1 -e x i )) and n i=1 x i = 1 - H f (•),n i=1 (1 -x i ) Corollary 6.2 Let x in R. for all n in N * , and for all x > 1, ζ(x) = n≥1 1 n x = ln(1 - H f (•) n≥1 {1 -e e -x•ln(n) }) = 1 - H f (•) pn∈P 1 1 -e x•ln pn For example, if x = 2, then, ζ(2) = π 2
6 , it follows that,

H f (•) n≥1 {1 -e e -x•ln(n) } = H f (•) pn∈P 1 1 -e x•ln pn = 1 -e π 2 6
Remark 6.5 For all n in N * , and for all complex numbers s 1 , s 2 . . . s n in C -{1},

H f (•),n i=1 s i = 1 -σ (s 1 ,s 2 ,...,sn) (1)
where σ (s 1 ,s 2 ,...,sn) (X) = n i=1 (X -s i ), is the polynomial of degree n and of roots s 1 , s 2 . . . s n . Example 6.2 Let R ρ, be the cauchy-complete archimedean ordered field considered in the example 6.2. Let x ∈ R ρ, such that, |x| ρ < opp 1 R ρ , which means,

|x| ρ < opp 1 R ρ ⇔ |x| ρ < opp 0 ⇔ |x| ρ > 0 ⇔ x ∈]0, 2[
Therefore, the geometric serie,

H ρ(+) n≥0 x n ρ converges under the absolute value |.| ρ, to, (0H ρ(+)(x) -1 ) -1 = (0H ρ(+)(2-x)) -1 = (0+2-x-1) -1 = 1 -x 1 -x -1 = 1- 1 x
where for all n in N * , x n ρ = 1 -(1 -x) n . For instance, if, x = 1 2 , then, the geometric serie, 

H ρ(+) n≥0 (1 -1 2 n ) converges to -1.

Convergence of an infinite product

c i = lim n→∞ c m • c m+1 • . . . c n
converges to a nonzero complex value, say l * . In this case, we define

∞ n=0 c n = c 0 • c 1 . . . c m • l *
This definition is of course independent of the m chosen such that the c n 's are nonzero for all n ≥ m. The infinite product n≥0 c n diverges if it doesn't converge, that is, either there are infinitely many zero c n 's or the limit diverges or the limit converges to zero. In this latter case, we say that the infinite product diverges to zero.

For example, the Harmonic product

∞ n=2 (1 -1 n ) diverges to zero, indeed, n k=2 (1 - 1 k ) = 1 n → 0 On the other hand, the product ∞ n=2 (1 -1 n 2 ) converges, indeed, n k=2 (1 - 1 k 2 ) = n + 1 2n → 1 2 = 0
Proposition 6.2 [START_REF] Matheron | Analyse complexe[END_REF] If an infinite product converges, then its factors tend to one. Also, a convergent infinite product has the value 0 if and only if it has a zero factor.

Because the factors of a convergent infinite product always tend to one, we henceforth write c n as 1 + a n , so the infinite product takes the form n≥0 (1 + a n ), then this infinite product converges implies that a n → 0.

Theorem 6.2 [START_REF] Matheron | Analyse complexe[END_REF] An infinite product n≥0 (1 + a n ), with non-negative terms a n converges if and only if the series n≥0 a n converges.

For example, as a consequence of this theorem, the product n≥1 (1 + 1 n q ) converges for q > 1 and diverges for q ≤ 1.

Theorem 6.3 [10] If, a n ∈ C, a n = -1 for all n ∈ N, and n≥0 |a n | is convergent, therefore, n≥0 (1 + a n ) is convergent.
Theorem 6.4 [START_REF] Matheron | Analyse complexe[END_REF] A necessary and sufficient condition for the product to converge is that the series n≥0 ln(1 + a n ).

Proposition 6.3 Let f be the homography function f defined from C * into C -{1} by: s → f (s) = 1 -1 s , therefore H f (•) Pn∈P 1 p n = 1.
Proof 7 Let f be the homography function f defined from C * into C -{1} by: s → f (s) = 1 -1 s . The serie of the inverse of prime numbers diverge, which means that, Pn∈P 1 pn = +∞, therefore, the infinite product, Pn∈P (1 -1 pn ) = 0. Since for all n in N * , and for all complex numbers s 1 , s 2 . . . s n in C -{1},

H f (•),n i=1 s i = 1 -n i=1 (1 -s i ), if, s i = 1 p i
, where p i is the i th prime number, we obtain,

H f (•) Pn∈P 1 pn = 1.
Remark 6.6 The function µ defined on N * by:

µ(n) =      1 if n = 1 (-1) k if n = p 1 p 2 . . . p k is a product k distinct prime numbers 0 else.
is the so called the Möbius function. We have, the following result: for all complex number s in C, such that, Re(s) > 1,

1 ζ(s) = pn∈P (1 - 1 p s n ) = n≥1 µ(n) n s
Proposition 6.4 Let f be the homography function f defined from C * into C -{1} by: s → f (s) = 1 -1 s , Therefore, for all complex number s, such that, Re(s) > 1,

H f (•) pn∈P 1 p s n = 1 - 1 ζ(s) = (f • ζ)(s),
Proof 8 Let f be the homography function f defined from C * into C -{1} by: s → f (s) = 1 -1 s , n in N * , and let s in C, such that, Re(s) > 1. Therefore, according to the remark 6.3, and the remark 6.6, it follows that,

1 ζ(s) = 1 pn∈P (p s n ) -1 = pn∈P (1 - 1 p s n ) = 1 - H f (•) pn∈P 1 p s n
Therefore, for all complex number s in C, such that, Re(s) > 1,

H f (•) pn∈P 1 p s n = 1 - n≥1 µ(n) n s = 1 - 1 ζ(s) = (f • ζ)(s),
Observe that, if, s = 1, then, ζ(s) → ∞, therefore, we find the result of the proposition 6.2.

Definition 6.2

The Dirichlet eta function is defined for all complex number s such that, Re(s) > 0, by: η(s) = n≥1 (-1) n-1 n s Proposition 6.5 For all complex number s such that, Re(s) > 0,

η(s) = (1 -2 1-s )ζ(s) Remark 6.7
The equation in the proposition 6.4, allows to extend the Riemann zeta function to all complex numbers such that, Re(s) > 0. Then, according to the theorem 6.1, it follows that, for all s in C -{1}, such that, Re(s) > 0,

ζ(s) = 0 implies H f (•) pn∈P 1 1 -p s n = H f (•) pn∈P f -1 (p s n ) = 1
Proposition 6.6 Let f be the homography function f defined from C * into C -{1} by: s → f (s) = 1 -1 s , and let n in N * , then, for all complex numbers s 1 , s 2 . . . s n in C -{1},

H f (•),n i=1 s i s i -1 = 1 - 1 σ s 1 ,s 2 ,...,sn (1) 
Proof 9 By induction, for n = 1, s 1 s 1 -1 = 1 -1 1-s 1 . Suppose that the property holds form n in N * . Let s 1 , s 2 . . . s n+1 in C -{1}, for all n in N * , σ s 1 ,s 2 ,...,sn (1) = 0, therefore,

H f (•),n+1 i=1 s i s i -1 = ( s 1 s 1 -1 )H f (•) H f (•),n+1 i=2 
s i s i -1 = ( s 1 s 1 -1 )H f (•) H f (•),n i=1 s i+1 s i+1 -1 = ( s 1 s 1 -1 )H f (•)(1 - 1 σ s 2 ,...,s n+1 (1) ) = s 1 s 1 -1 + (1 - 1 σ s 2 ,...,s n+1 (1)
) -s 1 s 1 -1

• (1 -1 σ s 2 ,...,s n+1 (1) )

= 1 -1 σ s 1 ,s 2 ,...,s n+1 (1)

Then, for all n in N * , and for all complex numbers s 1 , s 2 . . . s n in C -{1},

H f (•),n i=1 s i s i -1 = 1 - 1 σ s 1 ,s 2 ,...,sn (1) 
Remark 6.8 Let (s n ) n∈N be a sequence of complex numbers in C -{1}, such that, the modulus of the product n i=1 (1 -s i ) diverges to ∞, therefore,

H f (•) n≥1 s n s n -1 = 1
Example 6.3 (Fundamental) In this example, the operation H f (•), will plays the role of the operation of addition. Let θ be the order isomorphism defined from (R, ≤) into ((∞, 1), ≤), by:

∀x ∈ R, θ(x) = (σ • exp)(x) = 1 -e -x
where σ is the restriction of the complex homography f on R * + , such that,:

∀x ∈ R * + , x → σ(x) = 1 - 1 
x Then, R θ = ((∞, 1), H θ (+), H θ (•), ≤) is a cauchy-complete archimdean ordered field with the positive cone [0, 1). According to the proposition 3.2, it follows that, H θ (+) = H σ (H exp (+)) = H σ (•), which is the restriction of the operation H f (•) on (∞, 1), such that, θ(1) = 1 -1 e , is the identity element of the operation H θ (•), For all x, y in (∞, 1),

xH θ (•)y = f (f -1 (x)H exp (•)f -1 (y)) = f ( 1 1 -x H exp (•) 1 1 -y )
= f (e ln(1-x)•ln(1-y) ) = 1 -e -ln(1-x)•ln (1-y) .

By a familiar induction we obtain, for all n in N * and for all x in (∞, 1), the H θ (•)-powers of x are given by:

x n θ = 1 -e (-1) n-1 ln n (1-x) For all x in (∞, 1) -{0}, the inverse x -1 of x under the operation H θ (•), is given by,

θ( 1 θ -1 (x) ) = θ( 1 -ln(1 -x) ) = 1 -e 1 ln(1-x)
For all x in [-1, 1 2 ], the inverse of x under H σ (•) which is equal to x x-1 , belongs also to [-1, 1 2 ]. The absolute value under the operation H θ (+) on R θ is given by, |.| θ : (∞, 1) → [0, 1)

|x| θ = x x-1 if x ∈ (∞, 0] x if x ∈ [0, 1)
Therefore, for all x ∈ (∞, 1), |x| θ ≤ |x|.

Let (x n ) n∈N be a sequence in the ordered field R θ , therefore, (x n ) n∈N converges in R θ , if and only if, there exists l in R θ , such that,

∀ε > 0 = 0 R θ , there exists n 0 ∈ N, such that, n ≥ n 0 ⇒ |x n H θ (+) l l -1 | θ ≤ ε,
which means that, for all ε > 0, there exists n 0 ∈ N, such that,

n ≥ n 0 ⇒ ε ε -1 ≤ l -x n l -1 ≤ ε,
then, for all ε > 0, there exists n 0 ∈ N, such that,

n ≥ n 0 ⇒ l -ε 1 -ε ≤ x n ≤ l(1 + ε) -ε,
Let x in R θ , such that, |x| θ < 1 R θ = 1 -1 e , therefore, the geometric serie, Hσ(•) n≥0 x n θ converges under the absolute value |.| θ , to:

((1 - 1 e )H σ (•)(x θ ) -1 ) -1 = ((1 - 1 e )H σ (•) x x -1 ) -1 = (1 - 1 e + x x -1 -(1 - 1 e ) • x x -1 ) -1 = (1 + 1 e • (x -1) ) -1 = 1 -exp( 1 ln(1 -(1 + 1 e•(x-1) )) ) = 1 -exp( -1 1 + ln(1 -x)
).

Example 6.4 Let ω be the order isomorphism defined from (R, ≤) into (R * + , ≤ opp ), by: ∀x ∈ R, ω(x) = (ln

• σ • exp)(x) = ln(1 + e -x )
where σ is the restriction of the complex homography g on R * + defined previously, such that,: By a familiar induction we obtain, for all n in N * and for all x in R * + , the H ω (+)-powers of x are given by:

x n ω = ln(1 + (e x -1) n ) = n • x + ln(e -n•x + (1 -e -x ) n ).

The inverse x -1 of x ∈ R ω under H ω (+), is given by: ω(-ω -1 (x)) = x -ln(e x -1)

Then, for all x in (1, ∞), (ln x) -1 = ln(x) -ln(x -1) = ln( = (ln • σ)(e -ln(e x -1)•ln(e y -1) ) = ln(1 + e ln(e x -1)•ln(e y -1) ).

By a familiar induction we obtain, for all n in N * and for all x in R * + , the H ω (•)-powers of x are given by: xn ω = ln(1 + e ln n (e x -1) ).

Conjecture

We will finish this paper with the following observation: it seems that the operation O p defined by: for all n, m ∈ N * -{1}, n O p m = n • m -(n + m), generates an infinity of prime numbers !
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Definition 2 . 2 A

 22 ring is a set A equipped with two binary operations * and ⊥ satisfying the following three sets of axioms, called the ring axioms:(A, * ) is a commutative group with the identity element 0 A , For all a, b, c in A, (a ⊥ b) ⊥ c = a ⊥ (b ⊥ c),There is an element 1A in A such that a ⊥ 1 A = a and 1 A ⊥ a = a for all a in A, For all a, b, c in A, a ⊥ (b * c) = (a ⊥ b) * (a ⊥ c) (left distributivity),For all a, b, c in A, (b * c) ⊥ a = (b ⊥ a) * (c ⊥ a)(right distributivity).

(Remark 2 . 6

 26 ii) The closed interval [a, b] of F by, (a, b) = {x | x ∈ F and a ≤ x ≤ b} , The half-closed intervales, [a, b) = {x | x ∈ F and a ≤ x < b} and (a, b] = {x | x ∈ F and a < x ≤ b} . (iii) If, a > b then these intervals are defined to be the empty set. It is common also to define infinite intervals. For example, (x, ∞) is defined as {z ∈ F | z > x}. The interval (a, b) such that a < b is nonempty. In other words, for all a, b ∈ F with a < b there exists c ∈ F with a < c < b. Then we can always find new elements between two given elements. Let (F, * , ⊥, <) be an ordered field. Let B = {(a, b) | a < b in F}. For any x ∈ F, there exists a, b ∈ F such that a < x < b, therefore,

Corollary 4 . 1

 41 Let p in N and h ∈ R, such that, |h| < 1, then, the geometric serie,

Remark 4 . 3

 43 and we writes lim F O n ( * ) = O. If, there is no ambiguity we will only say that a sequence converges without mentioning the operation * . For instance, let (R, +, •, <) be the ordered field of real numbers, let p in N, and O p is the operation on R defined by: ∀x, y ∈ R,xO p y = |x|H ϕp (+)|y|, therefore, lim R O p = M ax,where M ax is the operation with the output the maximum of |x| and |y|. We can always consider a given operation O defined on a field F ⊆ R as a function λ of two variables, therefore we can represent it on a three-dimensional graph, indeed, for all x, y in F ⊆ R, z = xOy = λ(x, y).

Theorem 4 . 1

 41 Let (F, * , ⊥, <) be an ordered field. Let ( * n ) n∈N be a sequence of operations defined on F. Therefore for all bijective map θ from F into a nonempty set F , the following are equivalents : (i) The sequence of operations ( * n ) n∈N converges to an operation O on F under the operation * , (ii) The sequence of operations (H θ ( * n )) n∈N , converges to the operation H θ (O) under H θ ( * ) in the ordered field (F , H θ ( * ), H θ (⊥), < θ ).

  e |m ∈ N}, where m.e = e • . . . • e m times = e m , therefore, N exp = {e m | m ∈ N}.

  ∀x, y ∈ E, d(x, y) = 0, if and only if x = y, (the separation) ∀x, y ∈ E, d(x, y) = d(y, x), (the symmetry) ∀x, y, z ∈ E, d(x, y) ≤ d(x, z) + d(z, y). (the triangle inequality)

1 x

 1 ∀x ∈ R * + , x → σ(x) = 1 + Then, R ω = (R * + , H ω (+), H ω (•), ≤ opp ) isa cauchy-complete archimdean ordered field with the positive cone (0, ln 2]. According to the proposition 3.2, it follows that, H ω (+) = H ln • σ(H exp (+)) = H ln • σ(•) = H ln (H σ(•)). Therefore, 0 Rω = ω(0) = ln 2, is the identity element of the operation H ω (+), 1 Rω = ω(1) = ln(1+e -1 ), is the identity element of the operation H ω (•), For all x, y in R * + , xH ω (+)y = xH ln (H σ(•))y = ln(e x H σ(•)e y ) = ln(2 -e x H σ (•)e y ) = ln(2 -(e x + e y -e x+y )) = ln(2 + e x+y -e x -e y ) = (x + y) + ln(1 + 2e -(x+y) -e -x -e -y ).

x x- 1 )

 1 The absolute value under the operation H ω (+) on (R ω , ≤ opp ) is given by, |.| ω : R ω → (0, ln 2]|x| ω = x if x ∈ (0, ln 2] x -ln(e x -1) if x ∈ [ln 2, ∞) For all x, y in R * + , xH ω (•)y = xH ln (H σ(H exp (•))y = ln(e x H σ(H exp (•))e y ) = (ln • σ)(σ -1 (e x )H exp (•)σ -1 (e y )) = (ln • σ)( 1 e x -1 H exp (•) 1 e y -1)

  Suppose x, y in F where y ≥ 0 F . Then, |x| ≤ y if and only if y -1 ≤ x ≤ y, |x| ≤ y if and only if x ≥ y or x ≤ y -1 , |x| = y if and only if x = y or x = y -1 .Definition 2.11 A sequence (x n ) n∈N in an ordered field F is said to be convergent to an element x of F under the operation * , if for every element g ∈ F where g > 0 F , there exists anN ∈ N such that n ≥ N implies |x n * x -1 | ≤ g. Then,x is said to be the limit of the sequence (x n ) n∈N and one writes lim x n ( * ) = x. If, there is no ambiguity we will only say that a sequence converges without mentioning the operation * . Let (x n ) n∈N and (y n ) n∈N be sequences with values in an ordered field (F, * , ⊥, <). If, (x n ) n∈N and (y n ) n∈N converge then the sequences (x n * y n ) n∈N , (x n ⊥ y n ) n∈N and (c ⊥ x n ) n∈N for a given c ∈ F converges and lim(x n * y n ) = lim x n * lim y n . lim(x n ⊥ y n ) = lim x n ⊥ lim y n .

	< y if and only if y -1 < x < y,
	|x| > y if and only if x > y or x < y -1 ,
	Corollary 2.1 Proposition 2.3

  Definition 4.1[START_REF] Jacobson | Basic Algebra I[END_REF] Let E be a nonempty set and O p is an operation on E. An element x in E, is said to be idempotent, if, xO p x = x, and the operation O p is called idempotent if, every element in E is idempotent.

	x n ϕp and x mn ϕp = (x n ϕp ) m = (x m ϕp ) n ,

  Definition 6.1 Given a sequence of complex numbers (c n ) n∈N . The infinite product n≥0 c n is said to converge if there exists an m ∈ N such that the c n 's are nonzero for all n ≥ m and the limit of partial products n i=m c i

		n
	lim n→∞	i=m