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AN UPPER-BOUND FOR THE HAUSDORFF DIMENSION OF LIMSUP SETS

In this article, we establish an upper-bound theorem for the Hausdor dimension of limsup sets. This theorem together with a theorem of extraction of sub-sequences of balls are used to prove the sharpness of certain lower-bound estimates established via mass transference principles.

©

(k 1 ,...,k d )∈Z d . For x ∈ R d , r > 0, B(x, r) stands for the closed ball of (R d ,|| || ∞ ) of center x and radius r. Given a ball B, |B| is the diameter of B.

For t ≥ 0, δ ∈ R and B := B(x, r), tB stand for B(x, tr), i.e. the ball with same center as B and radius multiplied by t, and the δ-contracted B δ is dened by B δ = B(x, r δ ).

Given a set E ⊂ R d ,

Introduction

Investigating Hausdor dimensions of sets of points approximable at a certain rate by a given sequence of points (x n ) n∈N is a classical topic in Diophantine approximation (see [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF] and [START_REF] Barral | Ubiquity and large intersections properties under digit frequencies constraints[END_REF] among other references), in dynamical systems [START_REF] Hill | The ergodic theory of shrinking targets[END_REF][START_REF] Liao | Diophantine approximation by orbits of expanding Markov maps[END_REF][START_REF] Persson | On shrinking targets for piecewise expanding interval maps[END_REF][START_REF] Fan | A multifractal mass transference principle for Gibbs measures with applications to dynamical diophantine approximation[END_REF] and in multifractal analysis [START_REF] Jaard | Wavelet techniques in multifractal analysis[END_REF][START_REF] Barral | Sums of dirac masses and conditioned ubiquity[END_REF][START_REF] Barral | The multifractal nature of heterogeneous sums of dirac masses[END_REF][START_REF] Persson | A note on random coverings of tori[END_REF]. These studies consist in general, knowing that µ(lim sup n→+∞ B n := B(x n , r n )) = 1 for a certain measure µ and a sequence of radii (r n ) n∈N , in investigating the Hausdor dimension of lim sup n→+∞ U n where U n ⊂ B n . Typically U n is a contracted ball B δ n := B(x n , r δ n ) with same center as B n , but recently, general open sets U n have been considered [START_REF] Koivusalo | Mass transference principle: From balls to arbitrary shapes[END_REF][START_REF] Wang | Mass transference principle from rectangles to rectangles in Diophantine approximation[END_REF][START_REF] Daviaud | An anisotropic inhomogeneous ubiquity theorem[END_REF][START_REF] Eriksson-Bique | A new Hausdor content bound for limsup sets[END_REF]. In such situations, the so-called mass transference principles are designed to provide a lower bound for the Hausdor dimension (or the Hausdor measure) of lim sup n→+∞ U n .

For instance, when µ is the Lebesgue measure and (B n ) n∈N is a sequence of balls of [0, 1] d , Beresnevich and Velani established in [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF] that if µ(lim sup n→+∞ B n ) = 1, then for every δ > 1 and any ball B

H d δ (B ∩ lim sup n→+∞ B δ n ) = +∞,
where H d δ denotes the d δ -dimensional Hausdor measure. This result extends in particular the following result previously established by Jaard ( [START_REF] Jaard | The spectrum of singularities of Riemann's function[END_REF])

dim H (lim sup n→+∞ B δ n ) ≥ d δ .
In order to obtain a general lower-bound when the measure involved is not the Lebesgue measure or an Alfhors regular one but any measure µ ∈ M(R d ) and the sets (U n ) n∈N are not shrunk balls but are only assumed to be open, the µ-essential content of a set (see Denition 3.1) was introduced in [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF].

These works raise the natural question of whether one can obtain an upperbound theorem for dim H lim sup n→+∞ U n which involves geometric quantities that are similar to the essential content. The main theorem of this article, Theorem 3.1, establishes such a result.

The lower-bounds provided by mass transference principles are empirically suited for situations where the balls of the sequence (B n ) n∈N of comparable radii do not intersect too much (for instance it works well for dyadic cubes, rational balls etc...).

In particular Theorem 3.1 below largely relies on taking into account account the possible gain of dimension of lim sup n→+∞ U n due to potential overlaps between the balls (B n ) n∈N at same scale. For a precise statement see Theorem 3.1.

This result together with a technical (but useful) extraction theorem (Theorem 2.2) allows to conclude that the mass transference principles for self-similar measures established in [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF]Theorem 2.11] and in [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF]Theorem 2.13] are optimal in a satisfying sense and that the bound for the mass transference from ball to rectangle in the case of the Lebesgue measure established in [START_REF] Wang | A multifractal detrended uctuation analysis (MDFA) of the Chinese growth enterprise market (GEM)[END_REF]. It also hows that the mass transference principle from ball to rectangle in the case of a quasi-Bernoulli measure on the dyadic grid established in [START_REF] Daviaud | An anisotropic inhomogeneous ubiquity theorem[END_REF] are optimal as well.

Definitions and recalls

Let d ∈ N.

For n ∈ N, the set of dyadic cubes of generation n of R d is denoted D n (R d ) and dened as

D n (R d ) = ¶ d i=1 [ k i 2 n , k i +1 2 n )
The σ-algebra of Borel sets of R d is denoted by B(R d ), L d is the Lebesgue measure on B(R d ) and M(R d ) stands for the set of Borel probability measure over R d .

For µ ∈ M(R d ), supp(µ) := x ∈ R d : ∀r > 0, µ(B(x, r)) > 0 is the topological support of µ.

Given E ∈ B(R d ), dim H (E) and dim P (E) denote respectively the Hausdor and the packing dimension of E. 

H ζ t (E) = inf n∈N ζ(|B n |) : (B n ) n∈N closed balls, |B n | ≤ t and E ⊂ n∈N B n .
The Hausdor measure associated with ζ of a set E is dened by

(2)

H ζ (E) = lim t→0 + H ζ t (E).
For t ∈ (0, +∞), s ≥ 0 and ζ : x → x s , one simply uses the usual notation

H ζ t (E) = H s t (E) and H ζ (E) = H s (E).
In particular, the s-dimensional Hausdor outer measure at scale t ∈ (0, +∞] of the set E is dened by

(3) H s t (E) = inf n∈N |B n | s : (B n ) n∈N closed balls, |B n | ≤ t and E ⊂ n∈N B n .
For s ≥ 0, the outer-measure H s ∞ (obtained for t = +∞) is referred as the s- Then, the lower and upper dimensions of µ are dened by [START_REF] Barral | Ubiquity and large intersections properties under digit frequencies constraints[END_REF] dim H (µ) = infess µ (dim(µ, x)) and dim P (µ) = supess µ (dim(µ, x)).

It is known that (for more details see [START_REF] Falconer | Fractal geometry[END_REF])

dim H (µ) = inf E∈B(R d ): µ(E)>0 dim H (E) and dim P (µ) = inf E∈B(R d ): µ(E)=1 dim P (E).
A measure verifying dim H (µ) = dim P (µ) := α will be called an α-exact dimensional measure. From Denition 2.2, such measures verify, for µ-almost every x ∈ R d , lim r→0 + log µ(B(x,r)) log r = α.

Alfhors-regular measures (so in particular the Lebesgue measure) are for instance exact-dimensional. E. DAVIAUD 2.2. The µ-a.c. covering property and an extraction result. In this section, we recall some denitions stated in [START_REF] Daviaud | Extraxtion of optimal sub-sequences of balls and application to optimlaity estimates of mass transference principles[END_REF] and the extraction theorem mentioned in introduction is stated. 2.2.1. The µ-a.c. covering property. The notion of µ-asymptotically covering sequences of balls was introduced in order to highlight a key covering property used in the proof of the KGB-Lemma [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF]. The denition is the following. Denition 2.3 ([8]). Let µ ∈ M(R d ). The sequence of balls B = (B n ) n∈N of R d is said to be µ-asymptotically covering (in short, µ-a.c) when there exists a constant C > 0 such that for every open set Ω ⊂ R d and g ∈ N, there is an integer

N Ω ∈ N as well as g ≤ n 1 ≤ ... ≤ n N Ω such that: • ∀ 1 ≤ i ≤ N Ω , B n i ⊂ Ω, • ∀ 1 ≤ i ̸ = j ≤ N Ω , B n i ∩ B n j = ∅, • one has (5) µ 1≤i≤N Ω B n i ≥ Cµ(Ω).
The set

{B n i } 1≤i≤N Ω is called a (C, g, µ)-covering of Ω.
The following result justies the introduction of Denition 2.3 when one studies limsup sets of balls.

Theorem 2.1

([8]). Let µ ∈ M(R d ) and B = (B n ) n∈N be a sequence of balls of R d with lim n→+∞ |B n | = 0. ( 1 
) If B is µ-a.c, then µ(lim sup n→+∞ B n ) = 1.
(2) If there exists v < 1 such that µ lim sup n→+∞ (vB n ) = 1, then B is µ-a.c.

Let us also mention that it is known that item [START_REF] Barral | On multifractal formalism for self-similar measures with overlaps[END_REF] is an equivalence as soon as the measure is doubling (see the proof of the KGB-lemma in [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF]).

2.2.

2. An extraction theorem suited to µ-a.c. sequences of balls. In this sub-section we state an extraction theorem of sub-sequences of balls which preserves the µ-a.c.

property.

Let us start by recalling the following notion, introduced in

[2]. Denition 2.4 ([2]). Let B = (B n =: B(x n , r n )) n∈N be a family of balls in R d . Denote by T k (B) = B n : 2 -k-1 < r n ≤ 2 -k .
The family B is said to be weakly redundant when for all k, there exists an integer J k and T k,1 (B), .., T k,J k (B) a partition of T k (B) such that:

(C 1 ) T k (B) = 1≤j≤J k T k,j (B), (C 2 )
for every 1 ≤ j ≤ J k and every pair of balls

B ̸ = B ′ ∈ T k,j (B), B ∩ B ′ = ∅, (C 3 ) lim k→+∞ log 2 (J k ) k = 0.
We refer to the second subsection of Section 4 for more details about the weak redundancy property. In particular Proposition 4.4 highlights the link between overlapping sequences of balls and weakly redundant sequences.

Our extraction theorem is the following. 

dim H (µ) ≤ lim inf n→+∞ log µ(B ϕ(n) ) log |B ϕ(n) | ≤ lim sup n→+∞ log µ(B ϕ(n) ) log |B ϕ(n) | ≤ dim P (µ). Remark 2.3.
Theorem 2.2 implies in particular that if the sequence of balls (B n ) n∈N veries µ(lim sup n→+∞ vB n ) = 1, for some v < 1, it is possible to extract a µ-a.c sub-sequence verifying items [START_REF] Barral | On multifractal formalism for self-similar measures with overlaps[END_REF] and [START_REF] Barral | Sums of dirac masses and conditioned ubiquity[END_REF].

The left-hand side of [START_REF] Daviaud | An anisotropic inhomogeneous ubiquity theorem[END_REF] actually only requires that the sequence

(B n ) n∈N satises µ(lim sup n→+∞ B n ) = 1 or (B n ) n∈N is µ-a.c.
(and the sequence (B ϕ(n) ) n∈N satises then the same hypothesis).

In the next section, one states the main theorem of this article.

Main statements

3.1. An upper-bound theorem for the dimension of limsup sets.

3.1.1. Statement of the upper-bound theorem. In [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF], the mu-essential content of a set was introduced in order to establish mass transference principles in settings where the ambient measure is not Alfhors-regular. Denition 3.1 ([9]). Let µ ∈ M(R d ), and s ≥ 0. The s-dimensional µ-essential Hausdor content at scale t ∈ (0, +∞] of a set A ⊂ B(R d ) is dened as

(7) H µ,s t (A) = inf {H s t (E) : E ⊂ A, µ(E) = µ(A)} .
Our main theorem is the following. 

U n = p∈N:Bp⊂3Bn and

1 2 ≤ |Bn| |Bp| ≤2 U p . Let 0 ≤ s ≤ d. (1) If there exists µ ∈ M(R d ) such that H s ∞ ( U n ∩ lim sup p→+∞ B p ) ≤ µ(3B n ) for all n ∈ N, then (9) 
dim H (lim sup n→+∞ U n ) ≤ s.

(2) Conversely, if there exists µ ∈ M(R d ) with dim H (µ) ≥ s such that, for all

n ∈ N, H µ,s ∞ ( U n ) ≥ µ(3B n ) and µ(lim sup p→+∞ B p ) = 1 then dim H (lim sup n→+∞ U n ) ≥ s.
(3) Assume furthermore that (B n ) n∈N is weakly redundant. Then items [START_REF] Barral | On multifractal formalism for self-similar measures with overlaps[END_REF] and (2) hold with U n instead of U n , B n instead of 3B n and in item [START_REF] Barral | Sums of dirac masses and conditioned ubiquity[END_REF], the assumption that (B n ) n∈N is µ-a.c. instead of µ(lim sup p→+∞ B p ) = 1.

Item (2) will be obtained as a consequence of the mass transference established in [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF] and stated as Theorem 5.9 in this paper so the new result is the upper-bound provided by item [START_REF] Barral | On multifractal formalism for self-similar measures with overlaps[END_REF].

As mentioned in the introduction, the lower-bounds provided by mass transference principles are usually suited for sequences of sets or balls which, in an appropriate sense (see Denition 2.4), do not overlap too much. When this is not the case, one needs to take into account the gain of dimension due to potential accumulation of many sets U n . In Theorem 3.1, the sets U n are introduced for this purpose.

Note that, in the settings of item (2), since µ(lim sup p→+∞ B p ) = 1, one has

H s ∞ ( U n ∩ lim sup p→+∞ B p ) ≥ H µ,s ∞ ( U n ) ≥ µ(3B n ).
In this regard, item (1) can be seen as a partial counterpart of item (2).

Remark 3.2. The constant 3 in Theorem 3.1 and 2 in ( 8) is meant so that

U n ⊂ 3B n .
These constants have little importance for practical applications. In fact one could replace both of them by any v > 1. Moreover, the constant 3 can be dropped as soon as the measure is doubling.

3.1.2. Application to self-similar settings. For the sake of simplicity, the results below are stated for self-similar measures but completely rely on estimates of the Hausdor essential content ([9, Theorem 2.6]). Since similar estimates holds for weakly conformal measures ( [START_REF] Daviaud | Dimension of weakly conformal iterated function system shrinking targets with overlaps[END_REF]), it is not hard to see that these result also holds for weakly conformal measures (see [START_REF] Feng | Dimension theory of iterated function systems[END_REF] for a denition of a weakly conformal IFS).

Denition 3.2. A self-similar IFS is a family

S = {f i } m i=1 of m ≥ 2 contracting similarities of R d .
Let (p i ) i=1,...,m ∈ (0, 1) m be a positive probability vector, i.e.

p 1 + • • • + p m = 1.
The self-similar measure µ associated with {f i } m i=1 and (p i ) m i=1 is the unique probability measure such that [START_REF] Eriksson-Bique | A new Hausdor content bound for limsup sets[END_REF] 

µ = m i=1 p i µ • f -1 i .
The topological support of µ is the attractor of S, that is the unique non-empty

compact set K ⊂ X such that K = m i=1 f i (K).
The existence and uniqueness of K and µ are standard results [START_REF] Hutchinson | Fractals and self similarity[END_REF]. Recall that due to a result by Feng and Hu [START_REF] Feng | Dimension theory of iterated function systems[END_REF] any self-similar measure is exact dimensional.

Given S a self-similar IFS and K its attractor, if the sequence (B n ) n∈N satises for every n ∈ N that B n ∩ K ̸ = ∅ and if the measures given in item (1) and (2) are self-similar, thanks to the estimates of the essential Hausdor content given by [9, Theorem 2.6], Theorem 3.1 can be reformulated as follows:

• In item (1), H s ∞ ( U n ∩ lim sup p→+∞ B p ) can be replaced by H s ∞ ( U n ∩ K) or H µ,s ∞ ( U n ) and by H s ∞ ( U n ) when µ is the Lebesgue measure. • In item (2), one can replace H µ,s ∞ ( U n ) by H s ∞ ( U n ∩ K).
In particular the following corollary holds.

Corollary 3.3. Let S be a self-similar IFS, let µ be a self-similar measure and K its attractor. Let (B n ) n∈N be a sequence of balls satisfying that |B n | → 0 and let [START_REF] Daviaud | Extraxtion of optimal sub-sequences of balls and application to optimlaity estimates of mass transference principles[END_REF] and consider 0 ≤ s ≤ d.

(U n ) n∈N be a sequence of open sets such that for every n ∈ N, U n ⊂ B n . Assume that µ(lim sup n→+∞ B n ) = 1. Dene ( U n ) n∈N as in
(1) If for every ε > 0, for every n ∈ N large enough,

H µ,s+ε

∞ ( U n ) ≤ µ(3B n ) ≤ H µ,s-ε ∞ ( U n ), then dim H (lim sup n→+∞ U n ) = s. (2) Assume that (B n ) n∈N is weakly redundant, that (B n ) n∈N is µ-a.c. and
that [START_REF] Falconer | Fractal geometry[END_REF] holds with

U n instead of U n and µ(B n ) instead of µ(3B n ).
Then

dim H lim sup n→+∞ U n = s.
In the case of the Lebesgue measure, Corollary 3.3 can simply be rephrased in the following manner. [START_REF] Daviaud | Extraxtion of optimal sub-sequences of balls and application to optimlaity estimates of mass transference principles[END_REF] and consider 0 ≤ s ≤ d.

Corollary 3.4. Let (B n ) n∈N a sequence of balls of [0, 1] d satisfying |B n | → 0 and (U n ) n∈N a sequence of open sets satisfying for every n ∈ N, U n ⊂ B n . Assume that L d (lim sup n→+∞ B n ) = 1. Dene ( U n ) n∈N as in
(1) If for every ε > 0, for every n ∈ N large enough,

H s+ε ∞ ( U n ) ≤ L d (B n ) ≤ H s-ε ∞ ( U n ), then dim H (lim sup n→+∞ U n ) = s. (2) If (B n ) n∈N is weakly redundant and if (12) holds with U n instead of U n . (12) 
Then dim H (lim sup n→+∞ U n ) = s.

As mentioned above, Corollaries 3.4 and 3.3 should play an important role in situations where the balls (B n ) of comparable radii do overlap consequently. For instance, given S a self-similar IFS and K its attractor, the shrinking targets associated with S have been studied in [START_REF] Daviaud | Dimension of weakly conformal iterated function system shrinking targets with overlaps[END_REF] under the assumption dim H (K) = dim(S), where dim(S) is the similarity dimension of S. It is known that in many situations, dim H (K) = min {d, dim(S)} (see [START_REF] Hochman | On self-similar sets with overlaps and inverse theorems for entropy in R d[END_REF]), which raises the natural question of the dimension of self-similar shrinking targets under the other natural assumption that dim(S) > d and dim H (K) = min {d, dim(S)} = d. In such situation, one expects to have many overlaps. This will be the object of future investigations. Nonetheless, a toy example is provided in Section 5 to show that in many situations, one should be able to estimate the contents involved in Corollaries 3.3 and 3.4.

In the next section, we apply Theorems 2.2 and 3.1 to study the sharpness of the bounds provided by mass transference principles.

3.2. Study of the optimality of mass transference principles for selfsimilar measures. As mentioned above, in this section, one studies the optimality of mass transference principles from ball to ball and from ball to rectangles in self-similar settings in an appropriate sense.Let us mention that, for the sake of simplicity, the results of this section are stated for self-similar IFS but remain valid when the underlying IFS is weakly conformal.

Corollary 3.5. Let µ ∈ M(R d ) be a self-similar measure of support K and B = (B n ) n∈N be a sequence of balls centered in

K satisfying |B n | → 0.
Assume that B is weakly redundant, that µ lim sup n→+∞ B n = 1 and that

lim sup n→+∞ log µ(B n ) log(|B n |) = dim(µ), then for every δ ≥ 1, dim H (lim sup n→+∞ B δ n ) = dim(µ) δ .
In the case of mass transference from ball to rectangles, we obtain the following corollary.

Corollary 3.6. Let µ be a self-similar measure verifying that its support, K, is the closure of its interior. Let

1 ≤ τ 1 ≤ ... ≤ τ d , τ = (τ 1 , ..., τ d ) and let (B n := B(x n , r n )) n∈N be a sequence of balls of R d satisfying r n → 0. Dene R n = Rτ (x n , r n ), where R τ (x n , r n ) = x n + d i=1 [-1 2 r τ i n , 1 2 r τ i n ].
Assume that B is weakly redundant, that µ lim sup n→+∞ B n = 1 and that

lim sup n→+∞ log µ(B n ) log(|B n |) = dim(µ), then dim H (lim sup n→+∞ R n ) = min 1≤i≤d dim(µ)+ 1≤j≤i τ i -τ j τ i
.

By Theorem 2.2, given a self-similar measure satisfying the hypothesis of Corollaries 3.5 or 3.6, any sequence of balls (B n ) n∈N centered on supp(µ) satisfying µ lim sup n→+∞ 1 2 B n = 1 admits a µ-a.c. sub-sequence of balls which veries the hypotheses of the corollaries above so that the Hausdor dimension of the limsup set associated with the corresponding U n 's is provided by given corollaries. This in particular proves that these bounds are sharp.

Remark 3.7.

Corollaries 3.5 and 3.6 are direct consequences of second item of Remark 5.1 and Remark 5.3 in [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF], together with Corollary 3.3 (applied to s = dim(µ) δ and s = min 1≤i≤d dim(µ)+ 1≤j≤i τ i -τ j τ i

).

In the case of the Lebesgue measure, one always has lim n→+∞ log µ(Bn)

log |Bn| = dim(µ) = d. As a consequence, when L d (lim sup n→+∞ B n ) = 1, (U n
) is a sequence of balls or rectangles, the dimension of lim sup n→+∞ U n is given by Corollaries 3.5 and 3.6 as soon as the sequence (B n ) is weakly redundant.

Proof of Theorem 2.2

The concept of conditioned ubiquity was introduced by Barral and Seuret in [START_REF] Barral | Sums of dirac masses and conditioned ubiquity[END_REF]. It consists in imposing that the balls of the sequence (B n ) n∈N verify some specic properties with respect to a measure µ. As observed in many situations, when a sequence of balls satises specic properties with respect to a measure µ, one can sometimes establish upper-bounds for dim H lim sup n→+∞ U n . Following this observation, in the next section we prove Theorem 2.2, which establishes that, under light assumptions on the sequence (B n ) n∈N , up to a µ-a.c. extraction, the sequence (B n ) n∈N can always be assumed to satisfy convenient properties.

In this section, the balls (B n ) n∈N are supposed to be pairwise distinct and such that |B n | → n→+∞ 0.

Theorem 2.2 is obtained by proving rst that it is always possible to extract µ-a.c weakly redundant sequences of balls. Then one proves in parallel that it is also possible to extract µ-a.c sequences of balls which verify [START_REF] Daviaud | An anisotropic inhomogeneous ubiquity theorem[END_REF]. The two next sub-sections are dedicated to these results. 4.1. Extraction of weakly redundant µ-a.c subsequences. In the rst subsection, we establish the main extraction and the second sub-section, we give more useful and insightful properties of weakly redundant sequences of balls. Then for every open set Ω and every integer g ∈ N, there exists a subsequence

(B (Ω) (n) ) ⊂ {B n } n≥g such that: (1) ∀ n ∈ N, B (Ω) (n) ⊂ Ω, (2) 
∀ 1 ≤ n 1 ̸ = n 2 , B (Ω) (n 1 ) ∩ B (Ω) (n 2 ) = ∅, (3) µ 
Ä n≥1 B (Ω) (n) ä = µ(Ω).
In addition, there exists an integer N Ω such that for the balls (B (Ω) (n) ) n=1,...,N Ω , the conditions (1) and ( 2) are realized, and (3) is replaced by µ

Ä N Ω n=1 B (Ω) (n) ä ≥ 3 4 µ(Ω).
Let g k ∈ N be large enough so that ∀n ≥ g k , |B n | ≤ 2 -k . By Lemma 4.2, applied with the sequence (B n ) n∈N , Ω = R d for any k ∈ N, there exists a sub-sequence

(B (n,k) ) of {B n } N n≥g k satisfying (1) ∀1 ≤ n 1 ̸ = n 2 , B (n 1 ,k) ∩ B (n 2 ,k) = ∅, (2) µ n∈N B (n,k) = 1.
Dene B ψ = (B ψ(n) ) n∈N as the sub-sequence of balls arising from k∈N B (n,k) n∈N .

Since the following inclusion holds [START_REF] Federer | Geometric measure theory, volume Band 153 of Die Grundlehren der mathematischen Wissenschaften[END_REF] k∈N n∈N

B (n,k) ⊂ lim sup n→+∞ B ψ(n) , by item (2) one has µ(lim sup n→+∞ B ψ(n) ) = 1.
Note that, for all k ∈ N, for all B ∈ B (n,k) n∈N , |B| ≤ 2 -k . Following the notation of Denition 2.4, for any k ∈ N, T k (B ψ ) can contain only balls of the sequence of the k rst families B (n,k) n∈N , which are composed of pairwise disjoint balls. This proves that T k (B ψ ) can be sorted in at most k + 1 families of pairwise disjoint balls. In particular, B ψ is weakly redundant.

It remains to show that (B ψ(n) ) n∈N is µ-a.c.

Let Ω be an open set and g ∈ N. One will extract from B ψ a nite number of balls satisfying the condition of Denition 2.3.
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There exists k 0 so large that

     µ x : B(x, 2 -k 0 +1 ) ⊂ Ω ≥ 3µ(Ω) 4 for every k ≥ k 0 , B (n,k) n∈N ⊂ B ψ(n) n≥g µ(lim sup n→+∞ B ψ(n) ∩ Ω) ≥ 3µ(Ω) 4 .
Setting

" E = ß x ∈ lim sup n→+∞ B ψ(n) ∩ Ω : B(x, 2 -k 0 +1 ) ⊂ Ω ™ , it holds that µ( " E) ≥ 1 2 µ(Ω).
Recalling [START_REF] Federer | Geometric measure theory, volume Band 153 of Die Grundlehren der mathematischen Wissenschaften[END_REF], for every x ∈ " E, consider B x , the ball of

B (n,k 0 ) n∈N containing x. Note that, since for B ∈ B (n,k 0 ) n∈N , |B| ≤ 2 -k 0 , one has B x ⊂ B(x, 2 -k 0 +1 ) ⊂ Ω. Set F 1 = ¶ B x : x ∈ " E © .
The set F 1 is composed of pairwise disjoint balls (by item (1) above) of B ψ(n) n≥g included in Ω and such that (

µ

L∈F 1 L ≥ µ( " E) ≥ 1 2 µ(Ω).
The σ-additivity of µ concludes the proof. □ The sequence of rational balls (B( p q , 1 q 2 )) q∈N * ,0≤p≤q,p∧q=1 is weakly redundant [START_REF] Barral | The multifractal nature of heterogeneous sums of dirac masses[END_REF].

The sequence of closed dyadic cubes (D) D∈ n≥0 Dn is weakly redundant. Let (X n ) n∈N be a sequence of i.i.d uniformly distributed random variables on [0, 1]. The sequence of balls (B(X n , 1 n )) n∈N is weakly redundant [START_REF] Barral | The multifractal nature of heterogeneous sums of dirac masses[END_REF]. Let m ≥ 2 be an integer and S = {f 1 , ..., f m } a self-similar IFS on R, K its attractor, 0 < c 1 , ..., c m < 1 the contraction ratios of f 1 , ..., f m , Λ = {1, ..., m} and Λ * = n≥0 Λ n . Given n ∈ N and i = (i 1 , ..., i n ) ∈ Λ N , we set

f i = f i 1 • ... • f in .
Let us recall that the similarity dimension of S, dim(S), is dened as the unique real number solution to the equation Assume that S satises the exponential separation condition, that is, there exists 0 < c < 1 such that for every n ∈ N, every z ∈ K, every

(i 1 , ..., i n ) ̸ = (j 1 , ..., j n ) ∈ Λ n |f i 1 • ... • f in (z) -f j 1 • ... • f jn (z)| ≥ c n .
Then, due to a result of Barral and Feng [1, Theorem 1.3], for every z ∈ K the sequence (B(f i (z), |f i (K)|)) i∈Λ * is weakly redundant if and only if dim(S) ≤ 1.

The following proposition illustrate why the weak redundancy property relates to overlaps between balls of the sequence of about the same radii. Proposition 4.4. Let B = (B n ) n∈N be a sequence of balls of R d . Then the following assertions are equivalent:

(1) The sequence B is weakly redundant.

(2) The sequence B satises

lim n→+∞ log max B∈Tn(B) # {B ′ ∈ T n (B) : B ′ ∩ B ̸ = ∅} n = 0.
Proof. We show rst (1) ⇒ (2).

Fix ε > 0. Since B is assumed to be weakly redundant, there exists n ε ∈ N large enough so that for every n ≥ n ε , log(J n ) n ≤ ε.

Since for every 1 ≤ j ≤ J n the family T n,j is composed by pairwise disjoint balls, by Lemma 5.4, there exists a constant C > 0 depending on the dimension only such that any ball B ∈ T n (B) intersects less than C balls of T n,j (B). In particular, [START_REF] Hill | The ergodic theory of shrinking targets[END_REF] log # {B ′ ∈ T n (B) :

B ′ ∩ B ̸ = ∅} n ≤ log(CJ n ) n ≤ ε + log C n .
Since C does not depend on B, (15) holds for every B provided that n is large enough, letting ε → 0, one gets

lim n→+∞ log max B∈Tn(B) # {B ′ ∈ T n (B) : B ′ ∩ B ̸ = ∅} n = 0.
Let us now prove that (2) ⇒ (1).

Assume that

lim n→+∞ log max B∈Tn(B) # {B ′ ∈ T n (B) : B ′ ∩ B ̸ = ∅} n = 0.
Let n ∈ N and set J n = max

B∈Tn(B) # {B ′ ∈ T n (B) : B ′ ∩ B ̸ = ∅} + 1.
Note that every B ∈ T n (B) intersects less than J n -1 balls of T n (B). Proceeding as in the proof of [8, Lemma 3.2], one can sort the balls of T n (B) in J n families F n,1 , ..., F n, Jn such that each family F i is composed of pairwise disjoint balls. Since

lim n→+∞ log J n n = 0,
the sequence B is weakly redundant. □

The following lemma will be useful in the rest of the article when dealing with weakly redundant sequences of balls.

Lemma 4.5. Let B = (B n ) n∈N be a weakly redundant sequence of balls of R d . Then for every µ ∈ M(R d ) and any ε > 0, one has [START_REF] Hochman | On self-similar sets with overlaps and inverse theorems for entropy in R d[END_REF] n∈N

|B n | ε µ(B n ) < +∞.
Proof. Let n ∈ N and T n (B), J n and T n,1 (B), ..., T n,Jn (B) as in Denition 2.4. One

has n∈N |B n | ε µ(B n ) = n≥0 1≤j≤Jn B∈T n,j (B) |B| ε µ(B) ≤ n≥0 1≤j≤Jn 2 -nε B∈T n,j (B)
µ(B).

Since for every n ∈ N and every 1 ≤ j ≤ J n , the family T n,j (B) is composed of pairwise disjoint balls, one has

B∈T n,j (B) µ(B) ≤ 1.
This, recalling that For any sequence of balls (B n ) n∈N satisfying µ(lim sup n→+∞ vB n ) = 1 for some 0 < v < 1, there exists an µ-a.c sub-sequence

log 2 Jn n → 0, implies that n∈N |B n | ε µ(B n ) ≤ n≥0 2 -nε J n < +∞.
(B ϕ(n) ) n∈N verifying dim H (µ) ≤ lim inf n→+∞ log µ(B ϕ(n) ) log |B ϕ(n) | ≤ lim sup n→+∞ log µ(B ϕ(n) ) log |B ϕ(n) | ≤ dim P (µ).
Remark 4.7. For the left part of (4.6), the proof actually only uses the fact that

µ(lim sup n→+∞ B n ) = 1.
Let us introduce some useful sets to prove Lemma 4.9 and Lemma 4.10, which are key in order to prove (4.6).

Denition 4.1. Let 0 ≤ α ≤ γ be real numbers, µ ∈ M(R d ), and ε, ρ > 0 two positive real numbers. Then dene ( 17)

E [α,γ],ρ,ε µ = ¶ x ∈ R d : dim(µ, x) ∈ [α, γ] and ∀r ≤ ρ, µ(B(x, r)) ≤ r dim(µ,x)-ε © , ( 18 
)
F [α,β],ρ,ε µ = ¶ x ∈ R d : dim(µ, x) ∈ [α, β] and ∀r < ρ, µ(B(x, r)) ≥ r dim(µ,x)+ε ©
.

the following inequalities:

µ(B nx ) ≥ µ(v ′ B nx ) ≥ µ(B(x, (v ′ -v)r nx ) ≥ ((v ′ -v)r nx ) γ+ 3ε 2 ≥ r γ+2ε nx . Set B γ,2ε = {B n : µ(B n ) ≥ r γ+2ε n }. One just showed that lim sup n→+∞ vB n ∩ F [α,γ], ε 2 ⊂ lim sup B∈B γ,2ε v ′ B.
This proves that µ(lim sup B∈B γ,2ε v ′ B) = 1.

Since ε > 0 was arbitrary, the results also holds with ε 2 , which proves Lemma 4.10.

□

We are now ready to prove Proposition 4.6.

Proof. Set α = dim H (µ) and β = dim P (µ).

Let us x (ε n ) n∈N ∈ (R * + ) N verifying lim n→+∞ ε n = 0.
The strategy of the proof consists in constructing recursively coverings of the cube R d by using Lemma 4.9 and Lemma 4.10 and a diagonal argument (on the choice of ε) at each step.

More precisely, at step 1, one will build a sequence of nite families of balls

(F 1,i ) i∈N verifying: (1) for all i, j ≥ 1, ∀L ∈ F 1,i , ∀L ′ ∈ F 1,j such that L ̸ = L ′ , one has L ∩ L ′ = ∅, (2) for all i ≥ 1, F 1,i is a nite sub-family of {B n } n≥1 , ( 3 
) for all i ≥ 1, for all L ∈ F 1,i , |L| β+ε i ≤ µ(L) ≤ |L| α-ε i , (4) one has (25) 
µ

Ñ i∈N L∈F 1,i L é = 1.
At step 2, a family of balls (F 2,i ) i∈N will be constructed such that items 1, 2, 3 and 4 holds with ε = ε i+1 .

Write F 2 = i≥1 F 2,i .

The other steps are achieved following the same scheme.

The construction is detailed below:

Step 1:

Let Ω 1,1 = R d .
Sub-step 1.1:

By Lemma 4.9 and Lemma 4.10 applied to ε = ε 1 , there exists a µ-a.c subsequence (B ψ 1,1 (n) ) n∈N , satisfying, for every n ∈ N,

|B ψ 1,1 (n) | β+ε 1 ≤ µ(B ψ 1,1 (n) ) ≤ |B ψ 1,1 (n) | α-ε 1 .
By Lemma 4.2 applied to Ω 1,1 , the sequence (B ψ 1,1 (n) ) n∈N and g = 1, there exists an integer N 1,1 as well as some balls L

1,1,1 , ..., L 1,1,N 1,1 ∈ {B n } n≥1 verifying: for all 1 ≤ i < j ≤ N 1,1 , L 1,1,i ∩ L 1,1,j = ∅, for all 1 ≤ i ≤ N 1,1 , |L 1,1,i | β+ε 1 ≤ µ(L 1,1,i ) ≤ |L 1,1,i | α-ε 1 , µ( 1≤i≤N 1,1 L 1,1,i ) ≥ 1 2 . Set F 1,1 = {L 1,1,i } 1≤i≤N 1,1 . Sub-step 1.2: Let Ω 1,2 = Ω 1,1 \ L∈F 1,1 L.
By Lemma 4.9 and Lemma 4.10 with ε = ε 2 , there exists a µ-a.c sub-sequence

(B ψ 1,2 (n) ) n∈N satisfying |B ψ 1,2 (n) | β+ε 2 ≤ µ(B ψ 1,2 (n) ) ≤ |B ψ 1,2 (n) | α-ε 2 . One applies Lemma 4.2 to the open set Ω 1,2 , the sub-sequence (B ψ 1,2 (n) ) n∈N and g = 1. There exists N 1,2 ∈ N such that L 1,2,1 , ..., L 1,2,N 1,2 veries: for all 1 ≤ i < j ≤ N 1,2 , L 1,2,i ∩ L 1,2,j = ∅, for all 1 ≤ i ≤ N 1,2 , |L 1,2,i | β+ε 2 ≤ µ(L 1,2,i ) ≤ |L 1,2,i | α-ε 2 , µ( 1≤i≤N 1,2 L 1,2,i ) ≥ 1 2 µ(Ω 1,2 ). The family F 1,2 is dened as F 1,2 = {L 1,2,i } 1≤i≤N 1,2 .
Proceeding iteratively as in Sub-steps 1.1 and 1.2, for any i ∈ N, at Sub-step 1.i a nite family of balls F 1,i is constructed so that the items 1, 2, 3 and 4 holds with ε i (instead of ε 1 ).

Recall that, to justify the last item, this recursive scheme allows to cover R d , up to a set of µ-measure 0 (the argument is similar to the one developed at the end of the proof of Lemma 4.2 in [START_REF] Daviaud | Extraxtion of optimal sub-sequences of balls and application to optimlaity estimates of mass transference principles[END_REF]).

Set F 1 = i≥1 F 1,i .
Let us notice that the construction of the family F 2 does not rely on the existence of the family F 1 , so that the families F k can actually be built independently, following the same scheme, as described below.

Step k:

As in step 1, one constructs a family of balls (F k,i ) i≥1 verifying items 1, 2, 3 and

4 with ε = ε k+i-1 . Set F = k≥1 F k with F k = i≥1 F k,i .
Denote by (B ϕ(n) ) n∈N the sub-sequence of balls that constitutes the family F. By construction, for all i ∈ N, denoting

N k,i = #F k,i , for every n ∈ N there are at most N ≥ 1≤i,k≤n N k,i balls of B ϕ(k) k∈N belonging to 1≤i,k≤n F i,k . As a consequence, for ‹ N large enough and every n ′ ≥ ‹ N , one has |B ϕ(n ′ ) | β+εn ≤ µ(B ϕ(n ′ ) ) ≤ |B ϕ(n ′ ) | α-εn . It follows that α -ε n ≤ lim inf n ′ →+∞ log µ(B ϕ(n ′ ) ) log |B ϕ(n ′ ) | ≤ lim sup n ′ →+∞ log µ(B ϕ(n ′ ) ) log |B ϕ(n ′ ) | ≤ β + ε n . Letting n → +∞ shows that dim H (µ) ≤ lim inf n ′ →+∞ log µ(B ϕ(n ′ ) ) log |B ϕ(n ′ ) | ≤ lim sup n ′ →+∞ log µ(B ϕ(n ′ ) ) log |B ϕ(n ′ ) | ≤ dim P (µ).
It only remains to prove that (B ϕ(n) ) n∈N is µ-a.c.

Let Ω be an open set and g ∈ N. We nd a nite family of balls {L} i∈I ⊂ B ϕ(n) n≥g satisfying the conditions of Denition 2.3.

Note that, by [START_REF] Wang | A multifractal detrended uctuation analysis (MDFA) of the Chinese growth enterprise market (GEM)[END_REF], setting E = k≥1 L∈F k L, one has µ (E) = 1. Let x ∈ Ω∩ E and r x > 0 small enough so that B(x, r x ) ⊂ Ω and consider k x ≥ ϕ(g) ≥ g large enough so that, for all n ≥ k x , |B n | ≤ 2r x . Recall that F kx ⊂ {B n } n≥kx . Finally, let us x k large enough so that µ( "

E) ≥ µ(Ω) 2 ,
where " Assume that (B n ) n∈N is weakly redundant and that there exists µ ∈ M(R d ) as well as a Borel set A ⊂ R d such that

E = {x ∈ E : k x ≤ k}. For x ∈ " E, let L x ∈ F k be the ball that contains x (the balls of F k being pairwise disjoint, L x is well dened) and {L i } i≥1 = ¶ L x : x ∈ " E © . One has for all 1 ≤ i < j, L i ∩ L j = ∅, for all i ∈ N, L i ∈ B ϕ(n) n≥g and L i ⊂ Ω, µ( i≥1 L i ) ≥ µ( " E) ≥ µ(Ω) 2 . By σ-additivity, there exists N ∈ N such that µ( 1≤i≤N L i ) ≥ µ(Ω)
lim sup n→+∞ U n ⊂ A and ∀n ∈ N, H s ∞ (U n ∩ A) ≤ µ(B n ). Then dim H (lim sup n→+∞ U n ) ≤ s. Proof. For any n ∈ N, let (A k,n ) k∈N be a sequence of open balls such that, |A k,n | ≤ |U n |, U n ∩ A ⊂ k≥0 A k,n and (26) k≥0 |A k,n | s ≤ 2H s ∞ (U n ∩ A) ≤ 2µ(B n ). Note that, since U n ∩ A ⊂ k≥0 A k,n , one has lim sup n→+∞ U n ⊂ lim sup k,n→+∞ A k,n .
Moreover, since (B n ) n∈N is weakly redundant (see Lemma 4.5), 

k,n≥0 |A k,n | s+ε ≤ n≥0 |B n | ε k≥0 |A k,n | s ≤ 2 n≥0 |B n | ε µ(B n ) < +∞.
for every 1 ≤ i ≤ C d,ε , for every B ̸ = B ′ ∈ F i B ∩ B ′ = ∅,
for every B ∈ B there exists

L ∈ 1≤i≤C d,ε F i such that B ⊂ (1 + ε)L.
In particular, one has

B∈B B ⊂ 1≤i≤C d,ε L∈F i (1 + ε)L.
Proof. Let us recall rst the following lemma. Lemma 5.4 ([8]). For any 0 < v ≤ 1 there exists a constant γ v,d > 0 depending only on v and the dimension d only, satisfying the following: if a family of balls B = (B n ) n∈N and a ball B are such that

• ∀ n ≥ 1, |B n | ≥ 1 2 |B|, • ∀ n 1 ̸ = n 2 ≥ 1, vB n 1 ∩ vB n 2 = ∅, then B intersects at most γ v,d balls of B.
Let ε 0 > 0 be small enough so that F C(d,ε) will be constructed recursively by adding balls at each step to one of these families. For now we set for every

(1 + ε 0 ) 2 ≤ 1 + ε. We set C d,ε = (γ d, ε 0 2 + 1) × (⌊ -log ε 0 log(1+ε 0 ) ⌋ + 2). The families F 1 , ...,
1 ≤ i ≤ C d,ε , F i = ∅.
For every k ≥ 0, dene

B k = ß B : sup L∈B |L| (1 + ε 0 ) k+1 ≤ |B| < sup L∈B |L| (1 + ε 0 ) k ™ .
Let G k a maximal family of balls of B k satisfying that, for every

L ̸ = L ′ ∈ G 0 , ε 0 2 L ∩ ε 0 2 L ′ = ∅.
By maximality, for every L ′′ ∈ B k there exists L ∈ G k which satises satises

ε 0 2 L ′′ ∩ ε 0 2 L ̸ = ∅.
This implies that L ′′ ⊂ (1 + ε)L.

We describe now how we sort the balls in the dierent families.

Note that if a ball L ∈ G k intersects a ball L ′ ∈ G k ′ with k ′ ≤ k -⌊ -log ε 0 log(1+ε 0 ) ⌋ -1, then the radius of L ′ is so much larger than the radius of L that L ⊂ (1 + ε)L ′ .

In the cases where balls of G k intersects balls of G k ′ for k -⌊ -log ε 0 log(1+ε 0 ) ⌋ ≤ k ′ ≤ k, let us explain how to proceed for the rst steps. We recall the following lemma established in [START_REF] Daviaud | Extraxtion of optimal sub-sequences of balls and application to optimlaity estimates of mass transference principles[END_REF].

Lemma 5.5. Let 0 < v < 1 and B = (B n ) n∈N be a countable family of balls such that lim n→+∞ |B n | = 0, and for every

n ̸ = n ′ ∈ N, vB n ∩ vB ′ n = ∅.
There exists γ d,v + 1 (γ d,v being the constant appearing in Lemma 5.4 below) sub-families of B, (F i ) 1≤i≤γ d,v +1 , such that:

• B = 1≤i≤γ d,v +1 F i , • ∀ 1 ≤ i ≤ γ d,v + 1, ∀L ∩ L ′ ∈ F i , one has L ∩ L ′ = ∅.
By Lemma 5.5, for each k ≥ 0, it is possible to sort the balls of G k in at most γ d, ε 0 2 + 1 families of pairwise disjoint balls. In particular we can sort the balls of 0≤k≤⌊

-log ε 0 log(1+ε 0 ) ⌋+1 G k in F 1 , ..., F C d,ε . Consider L ∈ G ⌊ -log ε 0 log(1+ε 0 ) ⌋+2 . If there exists L ′ ∈ G 0 such that L ′ ∩ L ̸ = ∅, since |L| ≤ ε(1 + ε) sup L∈B |L|, one has L ⊂ (1 + ε)L ′ .
Otherwise, L intersects only balls of 1≤k≤⌊ -log ε 0 log(1+ε 0 ) ⌋+1 G k . For each 1 ≤ k ≤ ⌊ -log ε log(1+ε 0 ) ⌋+1, the set of balls of G k which intersect L satises the hypotheses Lemma 5.4 with B = L so that L can not intersect more than γ d, ε 0 2 such balls. In particular,

L does not intersect more than γ d, ε 0 2 × (⌊ -log ε 0 log(1+ε 0 ) ⌋ + 1) balls of 1≤k≤⌊ -log ε 0 log(1+ε 0 ) ⌋+1 G k . Since C d,ε > γ d, ε 0 2 × (⌊ -log ε 0 log(1+ε 0 ) ⌋ + 1
), there must exist 1 ≤ i ≤ C d,ε such that L does not intersect any ball of F i . We add L to the family F i .

The rest of the proof readily follows from using this argument recursively on the balls of G k and on k. □ Remark 5.6. It is worth mentioning that the 5r-lemma holds in any metric space while Lemma 5.3 uses the fact that R d is direction-limited [START_REF] Federer | Geometric measure theory, volume Band 153 of Die Grundlehren der mathematischen Wissenschaften[END_REF] (and in particular, this lemma does not hold in any metric space).

We now establish the general case of item [START_REF] Barral | On multifractal formalism for self-similar measures with overlaps[END_REF] U m,p .

Proposition 5.10. There exists C > 0 such that for every n ∈ N and for every

0 ≤ k ≤ 2 n -1, (29) 
C -1 L d (B n,k ) ≤ H min{ d ηδ ,d} ∞ ( U n,k ) ≤ CL d (B n,k )
Before proving this proposition, let us show that Proposition 5.10 together with We now establish Proposition 5.10.

Proof. Note rst that if 0 ≤ δ < 

H s ∞ ( U n,k ) ≤ κ2 -kηd ≤ CL d (B n,k ).
We now show that the left-hand side of (29) holds. Proof. Note that there exists a universal constant C > 0 such that C 0 .

C -1 ≤ #F(B n,k ) |B n,k | d(1-
Taking s = d ηδ , one gets

H s ∞ ( U n,k ) ≥ 2 -kdη C 0 ≥ CL d (B n,k ),
which concludes the proof of Proposition 5.10.

□

2. 1 .

 1 Hausdor dimension of sets and measures. Denition 2.1. Let ζ : R + → R + be an increasing mapping verifying ζ(0) = 0.The Hausdor measure at scale t ∈ (0, +∞) associated with ζ of a set E is dened by[START_REF] Barral | On multifractal formalism for self-similar measures with overlaps[END_REF] 
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 11 Proof of the main result. The main result of this section is the following. Proposition 4.1. Let µ ∈ M(R d ) and (B n ) n∈N be a µ-a.c sequence of balls. There exists a subsequence (B ψ(n) ) n∈N of (B n ) n∈N which is weakly redundant and µ-a.c. Proof. Let us recall the following lemma.

Lemma 4 . 2 (

 42 [START_REF] Daviaud | Extraxtion of optimal sub-sequences of balls and application to optimlaity estimates of mass transference principles[END_REF]). Let µ ∈ M(R d ) and B = (B n := B(x n , r n )) n∈N be a µ-a.c sequence of balls of R d with lim n→+∞ r n = 0.

□ 4 . 2 .

 42 Extraction of sub-sequences of balls with conditioned measure. Let µ ∈ M(R d ) and (B n ) n∈N be a µ-a.c sequence of balls. This part aims to understand what condition can be assumed about the measure of the ball of the sequence (B n ) n∈N in general under the µ-a.c condition. More precisely, item (2) of Theorem 2.2 is proved. Proposition 4.6. Let µ ∈ M(R d ).
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 111 , which proves that (B ϕ(n) ) n∈N satises Denition 2.3 with C = and is indeed µ-a.c. □ Proposition 4.1 and Proposition 4.6 together prove Theorem 2.2. 5. Proof of Theorem 3.Proof of item (1) of Theorem 3.1. The proof of Theorem 3.1 will be achieved by proving that the result stands for weakly redundant sequences of balls and that the general case can indeed be deduced from this particular case (see Lemma 5.7 below). 5.1.1. Proof in the weakly redundant case. Let (B n ) n∈N be a sequence of balls of R d satisfying |B n | → 0 and (U n ) n∈N a sequence of open sets such that for every n ∈ N, U n ⊂ B n . Let us start by the following proposition. Proposition 5.1. Let 0 ≤ s ≤ d.

Corollary 3 .

 3 4 allow to compute dim H lim sup n∈N,0≤k≤2 -n -1 U n,k = min ¶ d, d ηδ © . Remark rst that L d (lim sup n∈N,0≤k≤2 n -1 B n,k ) = 1.Moreover by Proposition 5.10, for s = min ¶ d, d ηδ © , for every ε > 0 and n ∈ N large enough,H s+ε ∞ ( U n,k ) ≤ L d (B n,k ) ≤ H s-ε ∞ ( U n,k ). By application of Corollary 3.4 with (B n ) = (B n,k ) and (U n ) = (U n,k = B δ n,k ),

SetF 2 ≤ 2 ™ 2 ≤

 222 (B n,k ) = ß m, p ∈ N : B m,p ⊂ 3B n,k and 1 |B n,k | |B m,p | ≤ and consider the measure µ ∈ M(R d ) dened by (31) µ(•) = m,p∈N:Bm,p⊂3B n,k and 1 |B n,k | |Bm,p| ≤2 L d (Um,p∩•) L d (Um,p) #F(B n,k ) . Lemma 5.11. There exists a constant C 0 > 0 such that, for any ball A of [0, 1] d and any 0 ≤ s ≤ d, one has (32) µ(A) ≤ C 0 |A| s 2 -kη(d(1-1 η )+sδ) .

□ 1 C 0 2 1 η

 121 Recall that µ( U n,k ) = 1. Recalling 5.11, this implies thatH s ∞ ( U n,k ) ≥ kη(d(1-1 η )+sδ) = 2 -kη(d(1-)+sδ)

  Theorem 2.2. Let µ ∈ M(R d ) Let (B n ) n∈N be a sequence of balls of R d .(1) If (B n ) n∈N is µ-a.c, then there exists a µ-a.c sub-sequence (B ϕ(n) ) n∈N which is weakly redundant. (2) If there exists v < 1 such that µ(lim sup n→+∞ vB n ) = 1, then there exists a µ-a.c sub-sequence (B ϕ(n) ) n∈N verifying

	(6)

  Theorem 3.1. Let (B n ) n∈N a sequence of balls of R d such that |B n | → 0 and (U n ) n∈N a sequence of open sets satisfying for every n ∈ N, U n ⊂ B n . For n ∈ N, set

  ε tend to 0 yields the desired conclusion. □ Remark 5.2. By taking A = lim sup p→+∞ B p , one recovers Theorem 3.1 where U n is replaced by U n and 3B n is replaced by B n . 5.1.2. Proof in the general case. Let us rst state a modied version of the celebrated 5r-lemma which allows to drop the constant 5 to (1 + ε). For every ε > 0, there exists a constant depending on d and ε, C d,ε , such that for every family of balls B such that sup B∈B |B| < +∞, there exists some families of balls F 1 , ..., F C d,ε ⊂ B satisfying:

	One concludes that
	dim H (lim sup
	Lemma 5.3 ((1 + ε)r-lemma).

n→+∞ U n ) ≤ dim H (lim sup n→+∞ A k,n ) ≤ s + ε.

Letting

  .3. A toy example: detecting sequences of too large balls . Let (B n ) n∈N be a sequence of balls satisfying |B n | → 0 and δ ≥ 1. As mentioned earlier in the paper in the situation where µ(lim sup n→+∞ B n ) = 1 for µ ∈ M(R d ) a measure carrying enough self-similarity (say the Lebesgue measure on [0, 1] d for instance), the usual bound for dim H (lim sup n→+∞ B δ n ) might not be relevant when the balls (B n ) n∈N overlaps too much to begin with.In this section, we show on a toy example how Theorem 3.1 allows to obtain better bounds in such cases.For k ∈ N, let us denote by D k the set of dyadic cubes of [0, 1] d of generation k and by S k the set of dyadic numbers of generation k. We x 0 < η < 1 and we consider the sequence (B k,n ) n∈N,0≤k≤2 n -1 dened as

	(27)	B n,k = B(	k 2 n ,	1 2 ηn ).
	Let us x δ ≥ 1 and set			
		U n,k = B δ n,k .
	It easily proved that			
		dim H lim sup n∈N,0≤k≤2 n -1	U n,k = min	ß d,	ηδ d	™
	Set				
	(28)	U n,k =			
		m,p∈N:Bm,p⊂3B n,k and 1 2 ≤	|B n,k | |Bm,p| ≤2

of Theorem 3.1. Applying Lemma 5.3 to each family T k (B) and ε = 1 4 , for k ∈ N, one gets the following result. Lemma 5.7. There exists C > 0 and a sub-sequence B ϕ = (B ϕ(n) ) n∈N satisfying the following property: 5but this is done by splitting between the cases 1 ≤ δ ≤ 1 η and δ ≥ 1 η . We prove here that one recovers the right bound by applying only Corollary 3.4.

  Assume now that δ ≥ 1 η and let us rst establish the upper-bound.We x 0 ≤ s ≤ d ηδ and we consider the two coverings of U n,kC 1 = {3B n,k } and C 2 =m,p∈N:Bm,p⊂3B n,k and 1 counting argument shows that there exists κ > 0 such that for i = 1, 2,|A| s ≤ κ • 2 -kη max{s,d(1-1 η )+sδ} .

									{U m,p } .
									2 ≤	|B n,k | |Bm,p| ≤2
	(30)	H s ∞ ( U n,k ) ≤ min i∈{1,2}	A∈C i
	Note that		s ≤ d(1 -	1 η	) + sδ ⇔ s ≥ d	1 η -1 δ -1
	and d(1 -1 η ) + sδ ≤ d ⇔ s ≤ d ηδ .	
	Since δ ≥ 1 η , one has d ηδ ≥ d	1 η -1 δ-1 , so that
			max	ß s, d(1 -	1 η	) + sδ	™	= d(1 -	1 η	) + sδ.
	By taking s = d ηδ	, one gets				

1 η , min ¶ d ηδ , d © = d and B n,k ⊂ U n,k ⊂ 3B n,k so that C -1 L d (B n,k ) ≤ H d ∞ (B n,k ) ≤ H d ∞ ( U n,k ) ≤ H d ∞ (3B n,k ) ≤ CL d (B n,k ).

A

  1 η ) ≤ C. A be a ball with |A| ≤ |B n,k |. Fix t ≥ 1 such that |A| = |B n,k | t . if 1 ≤ t ≤ 1 η : there exists a universal constant C 1 such that A intersects less than C 1 × |A| d |B n,k | 1 η ≤ t ≤ δ: the ball A intersects at most C 2 balls of F(B n,k ) (where C 2 is a constant that depends on η and d). In particular, µ(A) ≤ C 2 C |B n,k | d η |B n,k | d = C 2 C |B n,k | d η |B n,k | d |A| s |A| s . |B n,k | t ≥ |B n,k | δ , one has 1 |A| s ≤ 1 |B n,k | sδ . ≤ CC 2 |B n,k | d( 1 η -1)-sδ |A| s . If t > δ : the ball A intersects at most one of the ball of F(B n,k ), so that µ(A) ≤ C |B n,k | ≤ C|B n,k | d( 1 η -1)-sδ × |A| s .By (33), (34) and (35), there exists a universal constant C 0 > 0 such that, for any ball A with |A| ≤ |B n,k |,µ(A) ≤ C 0 2 kη(d(1-1 η )+sδ) |A| s ,

	This gives						
	(34) (35)	µ(A) d η |B n,k | d × |A| d |B n,k |	d δ	= C	Å |A| |B n,k | δ	ã d-s	× |B n,k | d( 1 η -1)-sδ × |A| s
	(36)						
			d η	balls of F(B n,k ). This gives
	µ(A) ≤ CC 1 ×	|A| d |B n,k |	η d	×	|B n,k |

Let

d η |B n,k | d = CC 1 Å |A| |B n,k | ã d-s |B n,k | -s × |A| s (33) ≤ CC 1 |B n,k | -s × |A| s . if Since |A| =

which was the statement.

and 1 n ,ε µ . [START_REF] Jaard | Wavelet techniques in multifractal analysis[END_REF] The following statements are easily deduced from Denition 2.2. Proposition 4.8. For every µ ∈ M(R d ), ρ > 0, every 0 ≤ α ≤ γ and ε > 0,

and

Furthermore, for α 1 = dim H (µ) and γ 1 = supess µ (dim(µ, x)), one has [START_REF] Liao | Diophantine approximation by orbits of expanding Markov maps[END_REF] µ

Similarly, for α 2 = infess µ (dim(µ, x)) and γ 2 = dim P (µ), one has

Proof. For any x ∈ R d , for any ε > 0, there exists r x > 0 such that, ∀r ≤ r x ,

and

recalling Denition 2.2, it holds that, following the notation of Proposition 4.8,

□

Before showing Proposition 4.6, let us start by the two following Lemmas 4.9 and 4.10. The rst one will be used to prove the left part of the inequality [START_REF] Daviaud | An anisotropic inhomogeneous ubiquity theorem[END_REF] while the second one will be useful to prove the right part.

Lemma 4.9. Let µ ∈ M(R d ) and B = (B n := B(x n , r n )) n∈N be a µ-a.c sequence of balls of R d with lim n→+∞ r n = 0.

For any ε > 0, there exists a µ-a.c subsequence

Proof. Set α = dim H (µ) and γ = suppess µ (dim(µ, x)).

Let Ω be an open set and ε > 0. By [START_REF] Liao | Diophantine approximation by orbits of expanding Markov maps[END_REF], µ(E

Recall [START_REF] Jaard | Wavelet techniques in multifractal analysis[END_REF] and that the sets E [α,γ],ρ,ε µ are non-increasing in ρ. In particular there exists ρ Ω > 0 such that the set

Let g ∈ N. Applying Lemma 4.2 to Ω, the sequence (B n ) and the measure m, there exists N Ω as well as g ≤ n 1 ≤ ... ≤ n N Ω verifying:

(1) for every

2 . We may assume that µ(B n i ) > 0 for every i, otherwise B n i does not play any role.

Item [START_REF] Barral | The multifractal nature of heterogeneous sums of dirac masses[END_REF] together with [START_REF] Persson | On shrinking targets for piecewise expanding interval maps[END_REF] implies that

Furthermore, for every

and by [START_REF] Hutchinson | Fractals and self similarity[END_REF] , item [START_REF] Barral | Sums of dirac masses and conditioned ubiquity[END_REF], and [START_REF] Koivusalo | Mass transference principle: From balls to arbitrary shapes[END_REF], it holds that

Writing B ′ = {B n : µ(B n ) ≤ r α-ε n }, the argument above shows that only balls of B ′ have been used to cover Ω . This is satised for every open set Ω, so that B ′ is a sub-sequence of B satisfying the condition of Denition 2.3, which concludes the proof of Lemma 4.9.

For all ε > 0, there exists a sub-sequence

Remark 4.11. The sequence (B ϕ(n) ) n∈N found in Lemma 4.10 is in particular µ-a.c by Theorem 2.1. Proof. Let α = infess µ (dim(µ, x)) and γ = dim P (µ). Let ε > 0 and v < v ′ < 1.

By [START_REF] Persson | A note on random coverings of tori[END_REF] and Theorem 2.1, µ(lim

, there exists r x > 0 small enough so that (24)

Since x ∈ lim sup n→+∞ vB n , for all n ∈ N, there exists

and

(2) for every n ∈ N and k ∈ N such that B ϕ(n) ∈ T k (B), one has

Remark 5.8.

(1) By item (1) of the proposition above, if there exists a measure µ ∈ M(R d ) such that µ(lim sup n→+∞ B n ) = 1, then one also has that

and, by Theorem 2.1, (3B ϕ(n) ) n∈N is µ-a.c.

(2) By item [START_REF] Barral | Sums of dirac masses and conditioned ubiquity[END_REF] and Lemma 5.4, the sequence (3B ϕ(n) ) n∈N is weakly redundant.

(3) By item (1), for every p ∈ N, there exists

Recalling [START_REF] Daviaud | Extraxtion of optimal sub-sequences of balls and application to optimlaity estimates of mass transference principles[END_REF], this implies that U p ⊂ U ϕ(n) . In particular,

We are now ready to nish the proof of Theorem 3.1.

Let (B ϕ(n) ) a sequence given by Lemma 5.7 and 0 ≤ s ≤ d.