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Abstract

This paper proposes a simple algorithm to remove noise and artifact from multi-

channel data. Data are processed trial by trial: for each trial the covariance matrix

of the trial is diagonalized together with that of the full data to reveal the subspace

that is – locally – most eccentric relative to other trials. That subspace is then

projected out from the data of that trial. This algorithm addresses a fundamental

limitation of standard linear analysis methods (e.g. ICA) that assume that brain

and artifact are linearly separable within the data. That assumption fails if there

are more sources, including noise and brain sources, than data channels. The al-

gorithm captitalizes on the fact that, if enough of those sources are temporally

sparse, linear separation may succeed locally in time. The paper explains the ra-

tionale, describes the algorithm, and evaluates the outcome using synthetic and

real brain data.

1 Introduction

Electrophysiological and imaging data are typically contaminated by noise and

artifacts that corrupt or mask more subtle signals from the brain. Artifacts and

noise may come from environmental sources, potentials that arise at the interface

between electrode, electrolyte, and skin, and physiological phenomena such as

muscle or ocular activity. Irrelevant brain sources too may compete with brain

activity of interest.

Fortunately, multichannel data (from multiple electrodes, sensors, pixels or

voxels) can be leveraged to form linear combinations (spatial filters) that atten-

uate the noise and enhance the useful signal. Many techniques are available to

find good sets of coefficients for these filters, some based on sensor geometry

(e.g. gradient or Laplacian), others using data-driven algorithms such as Inde-
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pendent Component Analysis, ICA (Hyvärinen et al., 2009)), Common Spatial

Patterns, CSP, (Koles et al., 1990)), or others (Parra et al., 2005) to find the nec-

essary weights. Unfortunately, whatever the algorithm, the effectiveness of linear

filtering is limited if sources are not linearly separable. In particular, if there are

more sources than data channels, there may exist no set of filter coefficients that

that allows all interfering sources to be suppressed.

Nonetheless, if some of the sources are temporally sparse, the number of

sources active on each trial might be smaller. For example, movement artifacts

might occur on just a few trials, or muscle artifacts might likewise be sporadic. In

that case, trial-specific analysis might be more effective than an analysis common

to all the data. The present method capitalizes on this idea.

While the idea of trial-specific analysis is attractive, it does raise several con-

cerns: conceptual complexity, algorithmic complexity, risk of overfitting because

each trial contains a small amount of data, and risk of bias if the analysis on trials

of one condition differs from that for trials of another condition. These concerns

are partly mitigated by the focus on denoising, as long as noise is not systemati-

cally biased to one condition relative to others.

The method is designed as a preprocessing step prior to data analysis. This

makes it widely applicable, and relatively simple to understand. At each step the

algorithm removes from each trial the particular component that is most dissimilar

from all other trials. Less eccentric dimensions, which span the bulk of the data,

are untouched. Activity that recurs on multiple trials is less likely to be unaffected.

Other methods have been proposed that also leverage the non-stationary corre-

lation structure of the data. These include adaptive beamforming (Sekihara et al.,

2006; Quraan and Cheyne, 2010; Wong et al., 2018), adaptive CSP (Samek et al.,

2012; Vidaurre et al., 2015; Jiang et al., 2020; Yu et al., 2020), sparse time artifact

rejection (STAR) (de Cheveigné, 2016), inpainting (de Cheveigné and Arzounian,
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2018), and others. Relations between approaches are reviewed in the Discussion.

Methods

This section specifies the assumptions and describes the algorithm.

1.1 Assumptions

Data Model. The raw data consist of a matrix X of dimensions T (time) × J

(channels) that groups the time series recorded from J sensors or electrodes. This

matrix is assumed to reflect the activity of I sources (both brain and artifact) via a

mixing matrix M of size I × J :

X = SM, (1)

where S represents the time series of source activations. X is observed, S and M

are unknown. Blind source separation methods (e.g. ICA) produce an unmixing

matrix U that yields a matrix Y of “component” time series:

Y = XU (2)

Ideally, one would like the product MU to be the identity matrix, so that all

sources are recovered, but that goal is unrealistic if the number of sources exceeds

the number of observations (I > J). A more realistic goal is to find a spatial filter

u that cancels the major sources of interference to obtain a signal y reflecting

activity of of interest:

y = Xu. (3)

Given J channels, up to J − 1 sources can be canceled in this way but no more.

This is a fundamental limit: a spatial filter cannot reject more interfering sources

than the number J of channels, minus one. This is true whatever the method used

to find the filter (ICA, CSP, decoding, etc.).
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Temporal sparsity. Fortunately, many sources are temporally. Based on this

assumption, we can hope to cancel more interfering sources than channels by

applying different spatial filters to different time intervals. For definiteness and

simplicity of exposition (and because the situation arises commonly), data are

assumed to have been re-organized by trials in the form of an array Xn of matrices

of size Tn (time) × J (channels) × N (trials). Temporal sparsity of a source, in

this case, means that it is active during one or a few trials and quiescent in all

others.

If trial n contains at most J − 1 interfering sources, those sources can be

removed by applying the appropriate trial-specific filter un. For N trials to a total

of N(J − 1) interfering sources might be handled in that way. That ideal unlikely

to be attained (or needed) in practice: a realistic and worthy goal is to zap just

a few more than the J − 1 interfering sources allowed by standard methods, and

thus improve the quality of analysis or decoding.

1.2 Algorithm

The algorithm operates by repeatedly applying the Joint Diagonalization (JD) al-

gorithm (Fukunaga, 1972; de Cheveigné and Parra, 2014), also known as as DSS

(Denoising Source Separation Särelä and Valpola, 2005) or CSP (Common Spatial

Patterns Koles et al., 1990), to maximize the ratio of power of each trial relative to

the rest of the data. This is obtained by jointly diagonalizing the covariance matrix

C of the entire data, and the covariance matrix Cn of the trial. Specifically:

1. For trial n = 1 . . . N :

(a) Calculate the covariance matrix Cn of that trial.

(b) Calculate the covariance matrix C of the entire data.
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(c) Solve the generalized eigenvalue problem for Cn and C, record the

largest eigenvalue.

2. If the largest eigenvalue over trials is less than a threshold Θ, terminate,

else:

(a) Select the corresponding trial n and calculate the transform matrix Un

that jointly diagonalizes Cn and C.

(b) Calculate its pseudo inverse UT
n , delete the first column of Un and the

first row of UT
n , and form their product to obtain the denoising matrix

Dn.

(c) Apply Dn to Xn to denoise trial n.

This sequence is repeated M times. Parameters are Θ and M .

Joint diagonalization (step 2 a) produces a matrix Un that transforms the data

such that the first component has the highest possible ratio of power within trial

n relative to other trials. Deleting the first column of Un effectively cancels that

component, and back projection results in data that are identical to the original

apart from the deleted component. The denoising matrix Dn subsumes projection,

deletion, and back-projection. The other J − 1 components are not affected, nor

are the other trials, although they might be affected on a different iteration.

Many experiments use trials to repeatedly sample brain activity of interest.

Such activity, that recurs on most trials, is unlikely to be removed. This assump-

tion is reasonable for typical stimulus-evoked or stimulus-induced activity from

spatially stable sources, but it might not hold for activity that is sporadic or spa-

tially diverse (e.g. epileptic activity). The algorithm might not be appropriate for

such data.

The computation cost is dominated by eigenvalue decomposition (O(J)), which

is repeated MN times unless the algorithm terminates early. Optionally, the cost

6



can be reduced by by applying the same matrix Dn to a group of trials for which

the trial-to-total power ratio of the first column of XUn is above some threshold

Θ2 < Θ. The algorithm then has a third parameter Θ2.

For the algorithm to be effective, five conditions must be met: (a) artifacts

must have a spatial signature distinct from sources of interest, (b) they must be

temporally sparse, (c) their number must not exceed J on any trial, (d) sources of

interest must be recurrent, and (e) their spatial signature must be stable. If those

conditions are not all met, the algorithm may not be effective.

1.3 Evaluation datasets

The algorithm is evaluated using synthetic data, real electroencephalogram (EEG)

data, and hybrid data (synthetic target embedded in real EEG noise). The advan-

tage of using a synthetic target is that the performance of the algorithm can be

accurately quantified. The busy reader might want to skip this section and come

back for details as needed.

Synthetic dataset A A data matrix X of size T = 1000 samples × J = 30 chan-

nels × N = 50 trials is obtained as the sum of one target (a pulse-shaped sinu-

soid) mixed with 50 transient Gaussian noise sources, each active during one trial

and quiescent during all others. The target is mixed into the data via a 1 × 30

mixing matrix with random coefficients, and the interference via 50 × 30 mixing

matrix with random coefficients, such that the signal-to-noise ratio (in power) is

SNR=0.001. Since there are more sources than channels (one target, 50 interfer-

ence) the sources are not linearly separable within the data.

Synthetic dataset B. A data matrix X of size T = 1000 samples × J = 30

channels × N = 50 trials is obtained by mixing one target source (a pulse-shaped
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sinusoid) with 20 stationary Gaussian noise sources. The target is mixed into the

data via a 1× 30 mixing matrix with random coefficients, and the interference via

50 × 30 mixing matrix with random coefficients. Since there are more channels

than sources, the sources are linearly separable.

Synthetic dataset C. Dataset C is the same as dataset B, with the addition of 50

transient sources as in Dataset A, resulting in I = 71 sources (one target, 20 sta-

tionary noise, 50 transient noise). Since there are now more sources than channels,

the sources are again not separable within these data.

Hybrid dataset D. This data set uses a synthetic target mixed into a background

of real EEG. A data matrix X of size T = 2100 samples× J = 30 channels×N =

50 trials was obtained by adding the target (a pulse-shaped sinusoid) to one chan-

nel of a 30-channel sample of real EEG. The EEG data were taken from a pilot

recording for an unrelated study, and cut into “trials”. The EEG background is

is assumed to include both stationary and transient sources, thus challenging both

LSP and standard linear analysis. Since the source is known, however, perfor-

mance can be quantified accurately.

EEG dataset E. Data were taken from a publicly available dataset (https://

zenodo.org/record/3618205) described in a published study (Fuglsang

et al., 2020). In brief, 44 subjects listened to 180 repetitions of a 1 kHz tone of

duration 100 ms (the study involved other stimuli and tasks not considered here).

EEG were recorded at 512 Hz sampling rate on 66 channels (64 scalp and 2 peri-

ocular) using a BioSemi Active II system. After mean removal, detrending, and

50 Hz artifact removal (de Cheveigné, 2019), peri-stimulus epochs were excised

and organized as a matrix of size T = 132 samples × J = 66 channels × N = 180

trials. Each channel of each trial was again detrended and its mean removed.
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EEG dataset F. Data were taken from a pilot recording for a study involving

both auditory and visual stimulation, the same as for Dataset D. Subjects listened

to a train of concurrent audio and visual stimuli, consisting of 50 ms tones (au-

dio) or dots (visual). At randomly-spaced instants, the train transitioned from a

disorderly state (frequencies and positions chosen at random) to an orderly state

(a proportion of tone frequencies and/or dot ordinates increasing regularly). Sub-

jects were asked to detect those events. Brain responses were recorded at 512 Hz

sampling rate from 64 scalp electrodes, and the data were organized by trials

(time-locked to the stimulus transition) as a 3D matrix of size T = 871 samples ×

J = 64 channels × N = 672 trials. The JD algorithm was applied to suppress eye

blink correlates, using the instantaneous power at electrodes closest to the eyes as

a mask, as described in de Cheveigné and Parra (2014), and the mean and linear

trend of each trial and channel were removed using a robust detrending algorithm.

1.4 Evaluation methods and metrics

LSP is intended as a preprocessor to improve the outcome of other analysis meth-

ods, and its effectiveness may be judged as an increment in success rate of those

methods. This section briefly describes those analysis methods. The busy reader

might want to skip this section and come back for details as needed.

Trial Average. If the target signal repeats on each trial, but background activity

does not, averaging improves the SNR by a factor of N , the number of repeats.

Using the trial mean x̄(t) as an approximation of the “true” target, the noise can be

approximated as x(t)−x̄(t) where x̄(t) is the trial average replicated over all trials.

The SNR of the raw data can then be estimated as SNR0 = Var x̄(t)/Var(x(t)−

x̄(t)). The SNR of the average over trials is then estimated as SNR= NSNR0.
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Linear Component Analysis. The multichannel nature of EEG or MEG can be

leveraged to form linear combinations of channels with better SNR. The appro-

priate coefficients can be found using data-driven component analysis algorithms.

Here, the JD algorithm is used with a bias designed to maximize repeatable power,

i.e. the ratio of power of the trial mean over that of the raw data. This algorithm

(denoted as JDr) produces J components, the first of which has the highest SNR

as defined above. That component can then be averaged over trials, yielding a bet-

ter SNR than averaging any of the raw channels (de Cheveigné and Simon, 2008;

de Cheveigné and Parra, 2014).

The JDr solution is obtained by jointly diagonalizing the covariance matri-

ces of the raw data and of the trial-averaged data. It is also possible to jointly

diagonalize the covariance matrices of two different time intervals or conditions

(denoted as JDt), in which case the method is identical to the well-known Com-

mon Spatial Patterns (CSP) method (Koles et al., 1990). Finally, it is also possible

to jointly diagonalize the covariance matrices of raw and filtered data (for example

high-pass) to reveal components with particular spectral characteristics (denoted

as JDs). All three variants of the algorithm are employed here.

Quadratic Component Analysis (QCA). QCA addresses the situation where

a target is repeatable in power (induced response). It aims to find a spatial filter

that maximizes the SNR of such a target. For that purpose, all cross-products

xj(t)xj′(t) of channels are formed, two-by two, and JDr is applied to the re-

sulting matrix of cross-products (de Cheveigné, 2012). The rationale is the fol-

lowing: suppose that s(t) is a weak source mixed with others and that it can

only be recovered as y(t) = uX where u is a spatial filter the coefficients of

which are unknown. The instantaneous power of the recovered component can

be expanded as the quadratic form y2(t) = (uX)2 =
∑

jj′ ajj′qjj′(t), where
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qjj′(t) = xj(t)xj′(t) is the instantaneous product between columns j and j′ of X,

and ajj′ = ujuj′ . JDr can then be applied to the matrix of distinct cross-products,

of size T × J(J − 1)×N , yielding a matrix Z of “quadratic components” (QC).

The first column z1(t) of Z is the most reproducible QC.

While the most reproducible QC might be of interest, one usually wants to find

a spatial filter to extract the neural source(s) behind it. Unfortunately, whereas ev-

ery squared component y(t)2 is the sum of crossproducts of channel waveforms,

the converse is not true. However, thanks to the spectral theorem, it is possi-

ble to express a quadratic component zk(t) as a weighted sum of squared linear

components yk1(t)2, yk2(t)2, . . . etc. Collectively, these linear components can be

understood as spanning a subspace of the data that contains reproducible power

(de Cheveigné, 2012).

The number of QCs increases rapidly (J(J − 1)) with the number J of data

channels. To limit computational cost, and reduce overfitting, dimensionality of

the data can be reduced to J ′ < J , for example by applying PCA and truncating

the series of PCs before applying QCA. It is also useful to temporally the cross-

product time series xj(t)xj′(t) to attenuate irrelevant fine structure, and downsam-

ple to reduce memory cost.

Metrics. For synthetic data, where the source s(t) is known, performance can

be quantified by the metric d2 = ‖s(t)/‖s(t)‖ − y(t)/‖y(t)‖‖2, where y(t) is

the outcome of analysis. Its value ranges from 0 (perfect retrieval) to 2 (source

and estimate uncorrelated). For real data, the source is unknown, but it can be

approximated based the outcome of data analysis (e.g. the trial average of the best

JDr component for an evoked response).
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1 2 3
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target source

1 2 3
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transient interference sources 1 to 3 (of 50)

t1 t2 t3

1 2 3

trial

target + transient interference

1 2 3

trial

after LSP

(a)

(b)

(c)

(d)

Figure 1: . LSP applied to synthetic data. The target source (a) is mixed with 50

interference sources (b, 3 sources shown) yielding a mixture dominated by interfer-

ence (c, one channel shown) with SNR = 10−3 in power. Applying LSP recovers the

target. Each plot shows a concatenation of the first 3 trials (of 50).

2 Results

2.1 Synthetic and hybrid data

LSP effectively removes transient sources. Dataset A consists of a repetitive

target (Fig. 1 a) on the background of transient noise sources, each active during

one trial and quiescent during others (Fig. 1 b). The mix is heavily dominated

by noise (Fig. 1 c) that the LSP algorithm largely removes (Fig. 1 d). A standard

linear analysis methods would have failed because the sources are not linearly

separable.
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target source
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s1 s2 s3
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1 2 3

trial

after JD
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Figure 2: . Linear analysis of linearly separable synthetic data. The target source

(a) is mixed with 20 stationary interference sources (b, 3 sources shown) yielding a

mixture dominated by interference (c, one channel shown). Applying JDr recovers

the target (d). The overall SNR is 10−3 in power.

Linear analysis applied to linearly-separable data. Dataset B consists of a

repetitive target (Fig. 2 a) on the background of 20 stationary Gaussian noise

sources (three of which are shown in Fig. 2 b). The 30-channel mix is noisy

(Fig. 2 c), but the SNR can be improved by applying JDr then averaging over tri-

als (Fig. 2 d). Linear analysis (JDr) is successful because the sources are linearly

separable. This example is not intended to illustrate LSP, but rather to provide

backdrop for the next simulation.

LSP helps isolate a synthetic target from a synthetic background. Dataset C

consists of a repetitive target (Fig. 2 a) on the background of 20 stationary Gaus-

sian interference sources (Fig. 2 b) and 50 transient interference sources (Fig. 1 b).
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trial

after LSP then JD
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Figure 3: . Combination of LSP and JDr applied to synthetic data. The target source

(Fig. 2a) is mixed with 20 stationary interference sources (Fig. 2a) and 50 transient

sources (Fig. 2b), yielding a non-separable mixture dominated by interference (a).

Applying LSP alone improves the SNR slightly (b), as does JDr alone (c). Applying

both yields a larger benefit (d). Sustained and transient interference sources have

the same power, and the overall SNR is 5 × 10−3.

The 30-channel mix is noisy (Fig. 3 a). Applying JDr alone is ineffective because

the data are not separable (Fig. 3 c, compare with Fig.2 d). LSP alone is also in-

effective because it only removes the transient sources, not the stationary sources

(Fig. 3 b). However applying first LSP then JDr is effective (Fig. 3 d). LSP boosts

the effectiveness of linear analysis method by pruning transient sources, so that

the remaining sources are separable.

The average over trials of the same data is plotted in Fig. 4 (a). The blue line

indicates the trial average, and the gray band shows ±2 standard deviations of a

bootstrap resampling of this mean. Preceding the trial average by JDr only (Fig. 4
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LSP then TA
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time (s)

LSP then JD then TA

0 1 0

time (s)

(a) (b)

(c) (d)

Figure 4: . Same as Fig. 3, averaged over trials. The width of the gray band, which

represents ±2 SD of the mean over trials, quantifies reliability (narrower is better).

b) reduces the variability slightly, as does preceding it by LSP only (Fig. 4 c),

but preceding it by both offers a greater improvement (Fig. 4 d). JDr by itself is

ineffective because the data are not linearly separable, LSP by itself is ineffective

because it cannot deal with stationary noise sources.

LSP helps suppress a real EEG background. Dataset D consists of a repetitive

synthetic target (Fig. 2 a) on the background of real EEG (Methods). EEG differs

from Gaussian noise by its complex serial and cross-channel correlation structure.

At this SNR (0.025) the mixture is strongly contaminated by noise (Fig. 5 a, b).

JDr (c) by itself or LSP by itself (d) are both relatively ineffective, but applying

them in succession is more successful (e).

Since the target is known, it is easy to quantify the mismatch between the

original and recovered target. Figure 5 (f, left)) shows the error (d2) as a function

of SNR for the unprocessed and processed data. LSP by itself offers little benefit,

but JDr by itself is beneficial across most of the range of SNR. Preceding it with

LSP offers an additional increment of performance, particularly at small SNR.

The benefit is less marked than with a synthetic background, presumably be-
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Figure 5: . Combination of LSP and JDr applied to hybrid data. A repetitive

synthetic target (Fig. 2a) is mixed with EEG at an unfavorable SNR (0.025). The

noisiness of the trial average is reflected by the width of the gray band in b. Applying

JDr reduces variability (c), as does applying LSP (d), but the greatest improvement

is obtained by applying both (e). This benefit holds over a wide range of SNR (f)
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cause a proportion of noise sources are not “sparse” in the sense required by the

algorithm (active on only one or a few trials). Nonetheless, a benefit is found over

a wide range of SNRs, particularly at unfavorable SNR.

2.2 Real EEG data

The question that remains is whether LSP can demonstrate benefit to extract ac-

tivity of interest from real brain data. Anticipating, the answer is nuanced.

LSP offers little benefit in an evoked-response paradigm. Dataset E consists

of EEG recorded in response to 180 repetitions of a 1 kHz tone of duration 100 ms

from 4 subjects. The data, recorded from 64 scalp and 4 peri-ocular electrodes,

were preprocessed to remove 50 Hz noise, slow drift, and ocular artifact, and

organized by trials in a 3D matrix (Methods). The data were variously processed

with JDr to enhance repeatable activity, by LSP, and by a cascade of LSP and JDr.

Figure 6 shows that LSP provides no benefit in this case.

raw

0 0.1 0.2

time (s)

LSP

0 0.1 0.2

time (s)

JD

0 0.1 0.2

time (s)

LSP+JD

0 0.1 0.2

time (s)
jd

lsp+jd
0

0.5

1

d
2

Figure 6: . Real EEG, evoked auditory response. LSP offers no benefit for this task.

This lack of benefit is sobering. It could mean either that temporally-sparse

artifacts are not prominent in these data (they do not impact the dimensions that
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carry the auditory response or the ability of JDr to enhance these dimensions) or

that the auditory response itself is somewhat sparse and is thus attenuated by LSP.

LSP helps reveal a gamma-band auditory evoked response. This example

also uses dataset E. The data of one subject (subject 2) were differentiated twice

and submitted to a LSP (threshold = 5, iterations = 30) followed by JDr to find the

maximally repeatable linear combination of channels.

Figure 7 (a) shows a raster plot of the time course of this component over the

first 100 trials. On almost every trial, the stimulus onset triggers a burst of pulse-

like events with a latency of approximately 18 ms that fades after about 20-30 ms

until a less reliable cluster roughly contemporary with the offset of the 100 ms

tone.

The initial pulse of each burst appears to be tightly locked to the stimulus on-

set, with a jitter on the order of one sample (∼2 ms), reflected by a prominent

pulse in the trial average (Fig. 7b, blue). Subsequent pulses are less well aligned,

as reflected by the wide gray band in the trial average. Visually, the pulses seem

regularly spaced, but spectral analysis yields a rather wide peak at around 150 Hz

(not shown), suggesting that the inter-pulse interval is rather variable. Interest-

ingly, the second, fainter burst seems to start before the tone offset, at least on

some trials. A few isolated pulses occur before the stimulus, but rarely after it.

Integrating this response twice (to reverse the effect of differentiation) reveals that

these sharp pulses ride on a slower oscillatory response (Fig. 7 d).

This component is maximally correlated with a pair of right parietal electrodes

(P8, P10, Fig. 7c). It is tempting to attribute it to a gamma band response from pri-

mary auditory cortex, given the short latency, which would be remarkable because

such responses have mainly been observed from invasive recordings (Edwards et

al., 2005), rather than EEG. However, an alternative account is that it reflects myo-
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Figure 7: . Real EEG, evoked auditory gamma response. (a) Raster plot of second

derivative of first JDr component for each trial. (b) Average over trials (blue) and

two standard deviations of a bootstrap resampling of the mean. (c) Topography of

the corresponding component. (d) Average of the same component twice integrated.

genic activity from the post-auricular reflex (PAR), the fastest exteroceptive reflex

with a disynaptic or trisynaptic pathway (Hackley, 2015).

Regardless the interpretation, the conclusion is that LSP enables this weak re-

sponse to be isolated. The response is observed with high temporal resolution on

a trial-by-trial basis (Fig. 7 a), in contrast to most reports of gamma-band activ-

ity that rely on spectrographic representations (e.g. Sinai et al., 2009). Spectral

analysis entails loss of temporal resolution (de Cheveigné and Nelken, 2019), so

spectrogram representations are temporally imprecise.
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LSP helps reveal a stimulus-induced response. The previous examples tar-

geted a stimulus-evoked response, time-locked to each trial. In contrast, this

example targets a stimulus-induced response for which the envelope (or instan-

taneous power) is time-locked, but not the waveform. Induced responses are not

amenable to trial-averaging, and cannot be enhanced by JDr.

Instead, a different technique is used. In QCA, all cross-products between

channels are formed, and JDr is then applied to find the most repeatable quadratic

form (linear combination of cross-products), from which a spatial filter can be de-

rived to enhance the source of induced activity. Since quadratic quantities (squares

and cross-products) are very sensitive to high-amplitude outlier values, this anal-

ysis is rather brittle and hard to apply to real data. LSP can help by removing

trial-specific artifacts.

This example uses Dataset F, that consists of 64-channel EEG responses recorded

in response to concurrent trains of auditory and visual stimuli (Methods). Subjects

detected a change in stimulus characteristics and responded by a button press. Af-

ter detrending, high-pass filtering, rereferencing to the mean, the data were re-

duced to 30 dimensions using the SCA algorithm (de Cheveigné, 2021). The LSP

algorithm was then applied with parameters M=10 (number of passes) and Θ=10

(threshold) to remove transient noise sources.

The QCA algorithm was then applied to the data. All distinct cross-products

of channels were formed into a matrix of size T=871 × J(J − 1)= 870 × N=672

which was then smoothed by a square window of size 26 samples (approximate

period of the 20 ms stimulus) and downsampled by a factor of 26. The mean

was removed from each trial, and the JDr algorithm was applied to this matrix of

cross-products to maximize repeatability. The two most repeatable components

(QCs) are shown in Fig.8 (a, left), and the main linear components underlying

these QCs are in Fig.8 (a, right), plotted in terms of power relative to stimulus
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onset. These include a number of components for which power decreases (dotted

lines), a response classically known as “event related desynchronization” (ERD),

in addition to two components for which power instead increases (full lines), a

response known as “ event-related synchronization” (ERS),

quadratic components
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Figure 8: . Real EEG, induced response. (a) Left: trial-average (blue) and 2SD of

the bootstrap resampling (gray) of the first QC. The trial-average of the second QC

is shown as a dotted line. Right: time course of selected linear components corre-

sponding to the selected QCs. The two full lines represent components for which

power increased after stimulus onset (ERS), the dotted lines components for which

it decreased (ERD). (b) Topographies of the two ERS components after rotation to

maximize spectral dissimilarity. HF: high frequency, LF low frequency. (c) Time

course of the LF and HF components for three selected trials.

The 2-dimensional subspace containing these components can be rotated using

the spectral version of JD (JDs, Methods) to maximize their spectral dissimilarity.
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The resulting two components, labeled HF and LF, have topographies shown in

(b) and time-courses shown in (c) for three selected trials. Interestingly, the HF

component (blue) consists of spikes that are “sandwiched” between two events of

opposite polarity in the LF component (red).

It is tempting to interpret these responses as a stimulus-induced. However, a

standard evoked-response analysis time-locked to the button press suggests that

both components are instead response-related (not shown). The LF component

appears to be a subtle artifact of the BioSemi response box that contaminates the

EEG channels, which explains the opposite polarities of the first and second pulse

(corresponding button press and button release). The HF component is likely

muscular, possibly mediated by a collateral of the motor efferent that effectuates

the button press, which would explain why it is sandwiched between LF pulses.

Thus, this “stimulus-induced” response is probably merely a combination of re-

sponse artifacts.

Regardless the interpretation, the point is again that LSP allowed this weak

response to be extracted and plotted with high temporal resolution on a trial-by-

trial basis (Fig. 8 c).

3 Discussion

LSP addresses the situation where there are more sources of artifact than channels

in the data. In that situation, no linear analysis method can fully recover the

sources. Simulations with synthetic data show that the principle is sound and

the method effective. Evaluation with real EEG data give more nuanced results:

in some situations LSP provides no obvious benefit, in others it is effective in

enabling linear analysis (JD) to extract weak sources.

LSP is thus mainly useful as a specialized tool, rather than a module in a
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standardized pipeline. It may be precious in specific situations to discover weak

sources that other methods cannot reveal. For example, the LF source in the last

example represented about 1% of the power of the best electrode (Fig. 8 b, right),

so it would be impossible to discover it without these analysis methods, and cer-

tainly not plot it on a trial-by-trial basis (Fig. 8 c).

Vector space interpretation. A data matrix X of size T (time) × J (channels)

× N (trials) consists of TJN values, i.e. it can be represented as a point within

a space of dimension TJN . However, linear analysis methods (ICA, JD, etc.)

are constrained to form linear combinations of only J channels, i.e. they oper-

ate within the smaller J-dimensional subspace spanned by the channel signals.

Sources (brain or artifact) are known only from their projection on this subspace.

If there are more sources than channels (I > J), the mixing matrix M is

not invertible and one cannot find an unmixing matrix U to recover the sources.

The best one can hope for is to cancel the strongest interfering sources. At most

J − 1 sources can be cancelled in this way. If sources are more numerous, which

is likely given the complexity of brain activity and the many sources of artifact

(e.g. myogenic activity or contact noise at each electrode), they cannot all be

suppressed.

However, if a different matrix Un is applied on each trial, a larger number of

interfering sources might be suppressed, as many as N(J − 1) in principle. LSP

capitalizes on this flexibility.

Other approaches. A common procedure is to discard artifact-contaminated

trials. This might be effective, but it is unnecessary if those trials could be cleaned

rather than deleted, and impractical if too many trials are involved.

Several methods address the case where temporally-sparse artifacts affect sin-

gle channels, or groups of channels. For example the STAR algorithm (de Cheveigné,

23



2016) reconstructs the waveform of one channel based on the waveforms of the

other channels, via a linear model learned from the data. It requires the data to

be artifact-free for enough of its duration so that its correlation structure can be

estimated, a requirement that is softened in a more recent version (de Cheveigné

and Arzounian, 2018). Those algorithms reconstruct missing values based on the

correlation structure estimated from the data, but it is also possible to use the

sensor geometry to interpolate from neighbours. In every case, the assumption is

that the artifact affects a single channel (or small number of channels). In contrast,

LSP allows the temporally-local artifact to impact a subspace spanned by multiple

channels.

Another approach is to design the data analysis stage to be adaptive. Ex-

amples are the adaptive CSP approach of (Jiang et al., 2020), or the stationary

CSP approach of (Samek et al., 2012). The latter resembles LSP in that it seeks

to distinguish a subspace stationary across trials from dimensions active on spe-

cific trials. It is worth noting a parallel with non-linear dimensionality reduction

methods (Burges, 2009) that seek to find, and flatten, a low-dimensional manifold

within the data.

Conclusion

This paper described a simple algorithm for removing non-stationary noise sources

in the situation where there are more sources than channels in the data. The al-

gorithm addresses a fundamental limitation of standard linear analysis methods

(e.g. ICA) that assume that brain and artifact are linearly separable within the

data. It proceeds by projecting out from each trial any component that is eccentric

(in terms of correlation structure) with respect to the rest of the data. Tested on

synthetic and real data, the algorithm proved effective, although its benefit is task
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dependent. For some tasks it provides no benefit, for other it reveals weak sources

that are otherwise invisible.
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