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Abstract 

In most cities, transit consists solely of fixed-route transportation, whence the inherent limited 

Quality of Service for travellers in suburban areas and during off-peak periods. On the other hand, 

completely replacing fixed-route (FR) with demand-responsive (DR) transit would imply a huge 

operational cost. It is still unclear how to integrate DR transportation into current transit systems to 

take full advantage of it. We propose a Continuous Approximation model of a transit system that 

gets the best from fixed-route and DR transportation. Our model allows deciding whether to deploy 

a FR or a DR feeder, in each sub-region of an urban conurbation and each time of day, and to 

redesign the line frequencies and the stop spacing of the main trunk service. Since such a transit 

design can adapt to the spatial and temporal variation of the demand, we call it Adaptive Transit. 

Numerical results show that, with respect to conventional transit, Adaptive Transit significantly 

improves user-related cost, by drastically reducing access time to the main trunk service. Such 

benefits are particularly remarkable in the suburbs. Moreover, the generalized cost, including 

agency and user cost, is also reduced. These findings are also confirmed in scenarios with 

automated vehicles. Our model can assist in planning future-generation transit systems, able to 

improve urban mobility by appropriately combining fixed and DR transportation. 

Keywords: Transit Network Design, Continuous Approximation, Demand-Responsive 

Transportation, Microsimulation 
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1. Introduction 

In recent years, urban transportation has witnessed the birth and spread of new demand-responsive 

and ride-hailing services, mostly provided by private companies (e.g., Uber, Lyft, Via), which 

connect community drivers with passengers via mobile applications. In most cities, these “user-

centric” services have penalized the conventional public transit (PT), which has basically not 

evolved in the last decades and still consists in fixed routes and fixed scheduling with some 

exceptions, or pilots or services for a specific targeted population (elders or handicapped). 

However, the detrimental role of ride-hailing and ride-sourcing services (i.e., transport services 

connecting community drivers with passengers via mobile applications) towards PT can be reversed 

by transforming them from PT substitutes to PT complement (Sadowsky and Nelson, 2017). In 

order to pursue this transformation, it is essential to rethink the whole transit network via a multi-

modal approach and an integrated design of the various transportation modes (conventional and 

demand-responsive). 

Conventional PT is inefficient in sparse demand areas, i.e., where few trip requests per km2 occur. 

Indeed, providing a high number of lines with an adequate frequency to ensure an acceptable 

Quality of Service (QoS) to travellers would result in low passenger load factors and thus in an 

excessive agency-related cost. This problem is evident in suburbs and is one of the reasons for 

geographical inequity (Giuffrida et al., 2017; Badeanlou et al., 2022). On the other hand, demand-

responsive transportation is not the solution to all mobility needs, as it is not suitable to serve dense 

demand (Basu et al., 2018), as it would result in tortuous vehicle routes (Araldo, Gao et al., 2019), 

high operational cost and poor QoS. 

Therefore, a combination of fixed-route (FR) and demand-responsive (DR) services may guarantee 

high capacity for dense demand areas and, at the same time, acceptable QoS in sparse demand areas 

(Calabrò et al., 2022). For these reasons, in recent years public authorities have launched pilots to 

experiment with different ways to complement their offer with on-demand services, by subsidizing 

ride-sharing companies (McCoy et al., 2018 and Sörensen et Al, 2021). Moreover, the scientific 

community has done a big effort in modelling the performance of DR transportation. However, 

there is no systematic methodology to guide the design of future-generation transit systems 

integrating FR and DR transportation.  

The contribution of this paper, toward filling this gap, can be summarized as follows: 

• We are the first to propose, to the best of our knowledge, a Continuous Approximation 

model and an optimization procedure to design a transit system combining both FR and DR 
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transportation. We call such a system Adaptive Transit. It consists of mass rapid transit 

(MRT), which is always FR, and a feeder service provided by bus. Depending on the sub-

region of the conurbation and period of the day, the system changes the feeder operation, 

between FR and DR, in order to adapt to the spatial and temporal variation of the demand 

density. The optimization procedure decides the deployment parameters of both MRT and 

feeder (frequencies, stop spacing, etc.). 

• Via extensive numerical evaluation, we compare Adaptive Transit with the conventional 

transit design, where the feeder service is always FR. Our results show that Adaptive Transit 

improves the user QoS, in particular during off-peak hours and in suburban areas, while 

keeping the overall cost (which includes both the agency-related cost and the user-related 

cost) under a reasonable level, even slightly reducing it. 

The main novelty of this work is the joint optimization of both FR and DR transportation, integrated 

in a single system, deciding the overall deployment over space and in different times of day. The 

paper is structured as follows: we discuss the related work in Section 2, present the considered 

design schemes of transit in Section 3, among which the Adaptive Transit. We then present a 

Continuous Approximation model of such schemes and the procedure to compute their optimal 

structure (Section 4). We finally contrast the performance of Adaptive Transit with conventional 

transit schemes in numerical results (Section 5) and conclude the paper (Section 6). Additionally, 

we test the benefits of Adaptive Transit in a small-scale scenario with agent-based simulation 

(Appendix B). For the sake of reproducibility, we release the Matlab code of the CA model and the 

design optimization procedure as opensource.1 

Table A1 reports the acronyms used throughout the paper. 

2. Related work 

During the last decades, transit network design has been studied via several optimization problems, 

based on different objectives (user and/or operator cost minimization, total welfare maximization, 

protection of the environment, etc.), parameters and decision variables (network structure, demand 

patterns, fleet characteristics, headway, route and stop spacing, etc.) and solution methodologies 

(analytical, heuristics or meta-heuristics). An extensive review on Transit Route Network Design 

Problems is provided by Farahani et al. (2013). 

 
1 https://github.com/giovanni-cal/future-transit  

https://github.com/giovanni-cal/future-transit
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Only in the last decade, the concept of Mobility as a Service (MaaS) has emerged, in which 

different modes of transportation are integrated into a single multi-modal offer (Smith et al., 2018; 

Le Pira et al., 2021). We believe that MaaS should not consist in just adding DR services on top of 

the existing FR services. On the contrary, to get the most benefits from a multi-modal transit 

combining the two, it is required to holistically redesign the entire transit and “co-design” FR and 

DR services. Classic transit design methods are not suitable to this new aim, and new approaches 

are needed. 

In this section, we first briefly motivate our choice of a feeder-trunk structure for transit, resorting 

to the literature showing its advantages (Section 2.1). We then introduce the work on Continuous 

Approximation (CA), which is the modelling approach we adopt in this paper, with a particular 

focus on studies combining or comparing FR and DR operation (Section 2.2). We also discuss the 

work combining FR and DR transportation with methods different than CA (Section 2.3). We 

finally state the novelty of our work with respect to the state-of-the-art (Sectieon 2.4). 

2.1 Feeder-trunk transit structure 

The so-called “weak demand areas" (i.e., areas with low residential density and high motorization 

rate) are the most critical for conventional public transit, which is unable to ensure at the same time 

coverage, ridership and cost-efficiency. In these cases, an effective design of fixed-route feeder 

(FRF) or demand-responsive feeder (DRF) bus lines connecting weak demand areas with MRT 

nodes could therefore help to shift passenger’s mode of transportation from individual to collective 

mobility (Calabrò et al., 2020a; 2020b; 2022), thus enhancing the accessibility to urban facilities 

and services. 

The advantages of mass transit corridors in the metropolitan transportation supply have been shown 

by Mohaymany and Gholami (2010) and Gschwender et al. (2016). In particular, Gschwender et al. 

(2016) compared the feeder-trunk scheme against different direct lines structures (where no 

transfers are required) showing that the first structure performs better when the demand is quite low 

and dispersed and the distances to travel are high (results are however sensitive to the penalty value 

assigned to transfers). Mohaymany and Gholami (2010) demonstrated that feeder lines increase the 

use of high-capacity mass transit because the travel demand for a more extended area can be 

satisfied. Lau and Susilawati (2021) obtained similar findings in a simulation-based study 

concerning the impact of automated vehicles with “predefined routes”, acting as a bus feeder line. 
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2.2 Continuous Approximation models in transit-related studies 

Addressing transit network design problems at a strategic level with detailed models is often 

unfeasible when dealing with large-scale instances, as, in addition to their computational burden, 

such models are not robust to stochasticity and uncertainty of input data (Daganzo, 1987).  

To overcome such limitations, Continuous Approximation (CA) models have been proposed. We 

comply with the literature Ansari et al. (2018) and define a CA model as the one where demand and 

supply variables, either as input or as decision variables, are continuous density functions over 

space. Such models are simple but powerful tools for the strategic stage of a transit plan. The key 

idea, as reported by Ansari et al. (2018), is to construct an objective function, including agency- and 

user-centric costs, based on the integration of localized functions of x-y coordinates, which can be 

analytically optimized without huge computational efforts. Results obtained via CA provide general 

insights about the performance of a whole transit system. It must be noted however that CA models 

are approximated and lack realism. For instance, they cannot include details about transit network 

topologies, traveller behaviour and vehicle routing. However, the CA methodology can provide 

useful insights in understanding, at high level, the impact of different design choices on the 

performance of a transportation network. 

2.2.1 Continuous Approximation for Demand-Responsive transportation 

Analytical models for demand-responsive transportation under a many-to-many demand pattern 

were proposed in Daganzo (1978)2 for door-to-door services. CA models considering checkpoints, 

around which the demand can be clustered, were presented in Daganzo (1984) and Quadrifoglio et 

al. (2006).  

Further work focused on DR transportation to serve the First Mile/Last Mile (FMLM), in particular 

comparing the performance of FRF and DRF therein. On this account, Quadrifoglio and Li (2009, 

2010) and Papanikolau and Basbas (2021) estimated the demand density threshold, for a feeder 

transit service, below which DRF operations are more efficient than FRF ones. Edwards and 

Watkins (2013) expanded the comparison to a broader range of street networks, transit schedules 

and passenger demand levels. Recently, Badia and Jenelius (2020, 2021) found via CA that 

electrification and automation will impact the cost structure, so that the situations in which DR will 

be preferable to FR will extend (although FR will still be irreplaceable in very high demand-density 

areas). 

 
2 We include it in this subsection although it is not strictly a CA model 
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Note that, while the work mentioned in this subsection only focused on single FMLM sub-regions, 

we instead aim to devise a design for an entire urban area, consisting of many FMLM sub-regions. 

2.2.2 Continuous Approximation for metropolitan-scale transit 

Daganzo (2010) proposed a CA model of a FR transit network with a “hybrid” structure, which 

combines the advantage of both the grid (double transit routes coverage in the central area) and the 

hub-and-spoke (radial routes branching to the periphery) structures. Transit is described by only 

three decision variables: stop spacing, vehicle headway and ratio between the side of the central 

area (enjoying better coverage) and the side of the city boundary. The author found that the more 

expensive the system’s infrastructure, the more it should tilt toward the hub-and-spoke concept. In 

all cases, increasing the spatial concentration of stops beyond a critical level tends to increase both 

the user and agency-related costs. This result demonstrates how excessive spatial coverage is 

counterproductive. 

This model is reformulated in Badia et al. (2014) and applied to a radial route layout. Among the 

different outcomes, the authors showed that the radial layout is suitable for a centripetal demand 

pattern, in which the central area is the major attractor and generator of trips (like we assume in our 

work). The two studies show that a high-performance bus system (i.e., buses running on transit 

priority corridors) outperforms a rail rapid transit system for a wide range of demand density and 

coverage areas. However, since the former requires quite large streets, it appears unrealistic to 

imagine that such systems can entirely replace underground transit in the big cities’ dense urban 

fabric. 

In Chen et al. (2015), two different city-wide transit structures are compared, showing that the ring-

radial layout is more favourable to transit (in terms of costs) than the grid design. However, the 

demand density is assumed to be spatially uniform over the entire urban area, which is not realistic. 

Note that none of the aforementioned studies in this subsection considers DR transportation. 

Nourbakhsh and Ouyang (2012) proposed a transit network with no fixed routes: individual buses 

sweep back and forth through a tube-shaped predetermined area, where passengers are picked up or 

dropped off. Buses operate in a demand-responsive fashion in the respective “tube”. The optimal 

structure parameters is obtained via a simple constrained nonlinear optimization problem. The 

authors showed that under low-to-moderate passenger demand the system incurs lower cost than 

other conventional counterparts such as the fixed-route transit system and the chartered taxi system. 

The system is however not suited for high demand. We instead observe that in a big conurbation, 
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the demand can be high or low depending on the geographic sub-region and time-of-day considered 

and therefore it is not possible to just rely on DR transportation. For this reason, we instead keep FR 

operation at the core of transit and integrate DR to it. 

The work discussed so far does not combine feeder in FMLM and trunk MRT, which is instead 

crucial for our Adaptive Transit. We discuss in the next section CA approaches for multimodal 

transit, which consider such a combination. 

2.2.3 Continuous Approximation models for multi-modal transit 

CA models have also been applied to multi-modal transit, with FMFL feeder and a trunk (or 

backbone), which corresponds in our design model to MRT. In these works, the feeder is either FR 

or DR. The novelty of our work is that we instead let our optimization decide between the two for 

each distance x from the centre and for each time of day t, based on demand density. 

Aldaihani et al. (2004) divided the study area in a grid, with a FR service along the lines of the grid 

and a DR service within each sub-region, consisting of a taxi service, serving one passenger at a 

time. We also divide the entire area in sub-regions, but we let our optimization choose between FRF 

and DRF therein. Moreover, our DRF is able to serve multiple passengers at a time. Sivakumaran et 

al. (2012) proposed a CA model to show the benefits of coordinating feeder services and MRT 

(trunk), but they only considered FRF. 

Chen and Nie (2017) studied a grid and a radial network with fixed route transit lines integrated 

with DR transportation connecting passengers to the stops of the fixed lines. Optimal design is 

formulated as a mixed integer program. The results show that such a design outperforms the other 

two compared systems, one always using FR and the other always DR, under a wide range of 

scenario configurations. The main limit of Chen and Nie (2017) is that their DR service is designed 

to run over the entire urban area, everywhere with the same characteristics. e.g., with fixed 

headway. Our optimization problem decides instead where and when to deploy FRF or DRF (with 

the decision variable F(x)). Thanks to this optimization setup, we find that it is optimal to deploy 

FRF close to the city centre and DRF far from it, and how far depends on the time of day. Later, 

Luo and Nie (2019) compared six distinctive transit systems using the CA approach, most of them 

already studied in the previously cited works. A key finding is that the demand-responsive feeder 

services tilt the balance of trade-off considerably in the user’s favour, at the transit agency’s 

expense (which is consistent with our results). A recent work by Wu et al. (2020) compares fixed 

bus-based feeders with bike sharing-based feeders. 
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The systems proposed in past studies are far from being adaptive, i.e., they do not make an optimal 

decision between FR and DR modes, in each sub-region and period of day. Instead, such systems 

either use always one or the other. This paper instead shows that it is beneficial to make DR and FR 

co-exist in the same transit layout. 

2.3 Other approaches to integrated transit and demand-responsive transportation 

Salazar et al. (2020) proposed a network flow model of Integrated Autonomous Mobility on 

Demand (I-AMoD), where a ride sharing service provided via automated vehicles is integrated with 

transit. Ride sharing and transit are modelled together in a multi-layer graph. A static assignment 

problem is solved to calculate how the origin-destination matrix demand distributes onto the arcs of 

such a graph. Their goal is to find optimal pricing, while we aim to optimize the structure of the 

overall transportation system. Narayan et al. (2020), Leffler et al. (2021) and Bürstlein et Al. (2021) 

showed in simulation that DR feeders can improve access to line/schedule-based transit, with 

benefits in terms of quality of service and environmental impact. In simulation, Chouaki et al 

(2023) observed the increase of ridership of transit lines, when they are served by flexible feeders. 

Chen et al (2020), Wen et al. (2018) and Shen et al. (2018) studied a feeder service provided by 

automated vehicles. The first resorted to mixed integer linear problem (MILP) to determine vehicle 

dispatch. The second included nested logit behavioural models and is based on simulation. The 

third, also based on simulation, assumed to keep only high-ridership feeder fixed lines serving the 

considered station and added autonomous vehicles to compensate for the other removed feeder 

lines; it then compared the resulting feeder system with the current one, entirely based on fixed 

lines. All the three papers do not explicitly build origin-to-destination passenger routes, but only 

deal with the part of the trip to/from the transit station. Ma et al. (2019) constructed instead 

multimodal user routes, which can include ride-sharing or walk (in the first and last mile) and fixed 

transit. Kim and Schonfeld (2014) studied via stochastic optimization a scenario with only one fixed 

transportation terminal, to which multiple First Mile/Last Mile (FMLM) sub-regions are connected 

via feeder buses, either fixed or flexible. Mahéo et al. (2019) proposed a system with few terminals 

(20 locations in their case); an unlimited feeder taxi fleet brings passengers to/from such terminals; 

the routes of fixed bus lines and multi-modal (taxi + bus) passenger journeys are calculated via 

integer programming.  

Franco et al. (2020) generated demand for future DR services integrated with fixed transit, based on 

mobile data. Note that none of the studies mentioned in this subsection seeks to find the optimal 

transportation layout for an entire metropolitan area, which is instead our target. An and Lo (2015) 
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solved the transit network design problem under demand uncertainty trough robust optimization for 

rapid transit and dial-a-ride services. However, the authors did not include passenger waiting times 

in the model and assumed that travel costs are proportional to distance (and not to travel time), 

which is unrealistic. 

Pinto et al. (2020) proposed a model based on dynamic programming and simulation-based 

assignment. The decision variables they aim to calculate are two: the headways of bus lines and the 

fleet size S of a taxi-hailing service, in which each vehicle can have at most two riders on-board. 

The main difference of our work with respect to Pinto et al. (2020) is that we are interested in 

studying how the overall transit system can adapt spatially and temporally to the spatio-temporal 

demand variation, choosing in particular between FRF and DRF bus services. Instead, Pinto et al. 

(2020) let a mathematical program calculate a single value of S, without letting the agency decide in 

which regions and at which time of the day such S vehicles should be deployed. This suffers from 

the potential risk to just attract such vehicles in the city centres, where most of the demand is and 

where fixed transit is already efficient. This would play against our goal of employing DRF in low 

demand areas and during off-peak hours. We instead keep the choice of where and when to deploy 

DRF in the hand of the agency. Moreover, our DRF is able to serve many users (more than 2) at the 

same time and can act as a minibus or bus service. 

The optimization problem of Steiner and Irnich (2020) aimed to “shorten” some bus lines, i.e., 

eliminate some stops at the beginning and the end of FR lines and replace them with a DR service. 

We believe that completely removing the FR service from the periphery of an urban area may 

worsen, rather than improving, mobility, overall. First, it would disadvantage suburban travellers 

even further. Second, it would require aggregating the demand close to the centre via a DR service, 

which may cause congestion and would suffer from limited capacity. We instead let the FR service 

to be deployed up to the extreme periphery of the urban area and adopt DR services as feeder, 

instead of as a replacement of FR lines. Finally, the authors did not show how the transit service 

should change configuration over the day to adapt to the time-varying demand pattern.  

Fielbaum (2020) adopted an idealized parametric city model, which is not Continuous 

Approximation, but which has a comparable level of abstraction. His goal was to optimize a mixed 

transit structure, made of major fixed lines and automated feeder vehicles. While the decision 

variables concerning fixed lines are similar to ours, the feeder service is very different: they assume 

that each vehicle is assigned a specific single stop and operates back and forth from that stop to the 

closest fixed line stop. In order to start a trip, such a vehicle waits until its capacity is completely 

filled. This might be highly inefficient in areas where demand density is low, which are the ones 
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that interest us the most. For this reason, we let our optimization model decide between a fixed-

route or demand-responsive bus feeder. On the behavioural aspects, some authors as Anburuvel et 

al. (2022) have studied under which pricing and performance conditions flexible transportation 

would be preferred to fixed transportation in a developing country. 

2.4 Positioning of our work 

To the best of our knowledge, none of the previous work has tackled the problem of designing 

Adaptive Transit, i.e., to decide how to optimally vary spatially and temporally the layout of transit 

over an entire urban area, also deciding in which regions and in which time of day (peak / off-peak) 

FR or DR transportation must be deployed. A “variable” layout of this kind allows transit to better 

adapt to the demand, which is varying over time and space. 

To this aim, we do not need to re-invent a model from scratch, but we build upon the previous work 

discussed in this section, in particular related to Continuous Approximation. We readapt it to our 

Adaptive Transit case as described in Section 4. 

3. Transit Design Schemes 

We focus on the transit system of wide urban and metropolitan areas and we assume it is formed by 

the following two components (as in the work reviewed in our Section 2.1):  

• A Mass Rapid Transit (MRT). 

• Possibly, a feeder service, provided by bus, to serve the First Mile and Last Mile (FMLM). 

3.1 Central and suburban areas 

The MRT network is modelled as a ring-radial structure, as in Badia et al. (2014) and Chen et al. 

(2015), which can be adopted to model several big cities around the world (e.g., Paris, Singapore, 

Moscow). As common in Continuous Approximation modelling, we assume the entire area is 

composed of two parts: 

• A central area only served by MRT with double coverage provided by radial and ring rail 

lines.3 

• A suburban area covered by MRT radial lines (and no ring lines).  

 
3 Note that, in case the central area is served by high frequency buses or bus rapid transit, our model would remain 

valid, with just modifications to the cost coefficients and capacity constraints. We just consider MRT in the central area 

to keep the model simple.  
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Feeder services can be deployed in the suburban area. Note that the sizes of the two areas above 

are not endogenous: they depend on the global decision variable 𝑟 (i.e., the radius of the central 

area - see Section 4.1), which is decided by the optimization procedure (see Section 4.7). 

3.2 Transit schemes 

We discuss three alternative transit schemes, which essentially differ in the way passengers can 

access MRT: 

1. MRT-only scheme, in which the access to MRT stations can only take place by walking. 

2. MRT-FRF scheme, which includes feeder bus lines with fixed routes to increase the 

accessibility of MRT stations in the suburban area. Such stations can be reached either by 

walking or using the fixed-route feeder bus, depending on the distance from the station. 

3. Adaptive Transit scheme, in which the FMLM in the suburban area is still covered by a 

feeder service, but the feeder can switch between two modes, FRF and DRF, choosing 

optimally between one or the other based on the transportation demand density. 

Figure 1 breaks down the components of the travel time of the passengers using transit. A passenger 

needs first to access transit. In case passengers use MRT, they can access it by either walking or 

using a feeder service (which can be a FRF or a DRF, depending on the scheme). A traveller is 

required to wait until a feeder vehicle arrives (waiting time) and spend some time in the vehicle (in-

vehicle travel-time for feeder) to the MRT station, which results in an access time as depicted in 

Figure 1. Symmetrically, to reach the final destination from the egress MRT station, a traveller 

needs to walk or use another feeder service. Note that there is no walking time when the DRF is 

employed, as it assumed to be a door-to-door service.  

 

Figure 1. Components of the access, egress and waiting time for the MRT-only scheme and when FRF or DRF 

services are provided. 
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We clarify that in Adaptive Transit the choice of whether to deploy FRF or DRF is not made on-

the-fly. On the contrary, we assume that, based on historical observation of the demand density, the 

authority would plan, for each area, the time periods when FRF or DRF will be operated. Such a 

plan would be revised only on a seasonal basis. 

We use MRT-only as a baseline scheme. Its poor cost-efficiency shown later in the numerical results 

demonstrates that a feeder bus service in the suburban area is necessary. The MRT-FRF scheme is 

what it is basically currently deployed in most cities. The Adaptive Transit scheme is the design we 

propose for future generation transit. 

4. Continuous Approximation Model 

With the Continuous Approximation (CA) approach, an urban conurbation and a transit network are 

represented with a parametric model, consisting of: 

• A set of decision variables, describing the layout of the transit network, i.e., the spacing 

between transit lines and stops, the value of the headway, etc. 

• A set of input parameters, which are exogenous and describe the scenario, e.g., size of the 

urban conurbation, demand density. 

• A set of constraints, which ensure basic properties, such as the conservation of flows and 

transit vehicle capacity constraints. 

• A cost function, which we want to minimize; it includes a weighted sum of user-centric 

and agency-centric costs. It represents the performance of transit. 

CA models allow understanding the impact of the different decision variables on the performance, 

in an approximated, concise and computationally efficient way. The results obtained via CA models 

should be interpreted as high-level trends, which can guide transit planning considerations. 

Therefore, we resort to CA modeling to understand the benefits of choosing between a FRF and a 

DRF service, in order to better adapt to the demand, over time and geographical areas, a concept 

that we call Adaptive Transit. We are not interested in exact results representative of a single 

specific city. For this reason, CA methodology perfectly fits our needs. Our formulation is mainly 

based on Chen et al. (2015); Daganzo (2010), both of which, however, do not integrate MRT and 

feeder. For this reason, we need to extend their models, as we will pinpoint in the following pages. 

Moreover, to model Adaptive Transit,  it is crucial to let the model choose between FRF and DRF. 
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For this reason, we need to model both (based on Quadrifoglio and Li (2009)) and to add a binary 

decision variable to choose between the two. 

One novelty with respect to the previous work on CA is that we introduce a notion of time-

evolution. We need to do so, as we want to evaluate the capacity of our transit design to adapt to 

change of the intensity of the demand over the day. We therefore introduce a set 𝒯 of time instants 

𝑡 ∈ 𝒯, when the demand and supply of the transit system have given characteristics, and partition 

the entire day into non-overlapping time intervals starting in instants 𝑡 ∈ 𝒯, each of duration Δ𝑡 

during which such characteristics remain constant. With slight abuse of notation, we will denote 

with t a time instant and also the time interval starting at t.4 The notation used in this section is 

summarized in Appendix A (Tables A1-A2). 

4.1 Main decision variables 

We study a circular metropolitan area of radius R (exogenous input parameter). The transit layout, 

depicted in Figure 2, is organized as described in the previous section. It is described by 10 local 

decision variables and 4 global decision variables, determining the transit structure. 

The local decision variables take a value for each value x of distance (in km) from the centre. They 

are: 

• The angle 𝜃𝑟(𝑥), in radiants, between radial MRT lines; based on that, we can also compute 

the corresponding linear spacing 𝑆𝑟(𝑥) = 𝜃𝑟(𝑥) ∙ 𝑥. 

• The spacing 𝑆𝑐(𝑥) between ring MRT lines, defined for 𝑥 < 𝑟, where 𝑟 is the radius of the 

central area. 

• The spacing 𝑠(𝑥)  between the MRT stations (hereinafter called just “stations”) along a 

radial MRT line. 

• The angle 𝜙(𝑥) between stations on a ring MRT line, defined for 𝑥 < 𝑟. 

• The headway 𝐻(𝑥) on ring and radial MRT lines. 

• The headway ℎ(𝑥) of the feeder service (only defined in the suburban area). 

• The variable 𝐹(𝑥) ∈ {FRF,DRF,0} indicating whether at location x a FRF, a DRF or no 

feeder service is deployed, respectively. We introduce the following indicator function 

𝕀𝑗(𝑥), 𝑗 ∈ {𝐹𝑅𝐹, 𝐷𝑅𝐹, 0}, which is 1 for the x where 𝐹(𝑥) = 𝑗. 

• The variable 𝑑𝐹𝑅𝐹(𝑥) (defined for 𝑥 > 𝑟 and 𝐹(𝑥) = FRF) which is the spacing between 

FRF stops. 

 
4  Observe that, to keep the mathematical development treatable, we make the simplifying assumption that the 

aforementioned time intervals are independent of each other, in the sense that there is no propagation of passenger flows 

from one interval to the next. This is also equivalent to assuming that the flow starting in the current time interval and 

terminating in the next is compensated by the flow starting in the previous and terminating in the current. 
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• The variable 𝑑0,𝐷𝑅𝐹(𝑥) (defined for 𝑥 > 𝑟  and 𝐹(𝑥) =  DRF), which is the value 

determining the area close to the MRT station where the feeder service does not pick-up or 

drop-off passengers as we assume passengers would rather walk (see Figure 2). 

• The number of strips 𝑁𝑠(𝑥), an integer variable defined for 𝑥 > 𝑟, in which a FMLM sub-

region is divided. Each strip is served by a feeder service. In the MRT-only scheme, 𝑁𝑠(𝑥) = 

1. 

 

Figure 2. Transit network layout (this takes inspiration from Chen et al. (2015) and Quadrifoglio and Li (2009)). 

The variation of such local variables along x can be seen as an approximation of what one could 

observe in reality. For instance, if radial lines bifurcate with the distance x, we can represent this by 

reducing the angular spacing 𝜃𝑟(𝑥) with x. Accordingly, the headway 𝐻(𝑥) would increase with x 

because less vehicles will travel along each line. Note that, to limit the number of parameters, we 

consider the same headway on ring and radial lines 𝐻(𝑥). This constraint is only active in the 

central area (𝑥 < 𝑟) and not in the suburbs, where no ring lines are present. 

The global decsion variables are:  

• The radius of the central area 𝑟.  
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• The angle 𝜙𝐵  between stations on the outermost ring MRT line, at 𝑥 = 𝑟 (city centre’s 

boundary). 

• The headway 𝐻𝐵  of the MRT line at 𝑥 = 𝑟. Observe that we need global variables for 𝜙𝐵 

and 𝐻𝐵  because the outermost ring MRT line serves more trips than all other ring lines. 

Indeed, the outermost ring MRT line attracts the transfers of the travellers whose origin 

and destination are in the suburban area (see Figure 3b).5 

• The maximum value 𝑄0 of the total radial flow of MRT vehicles, This maximum value 

occurs at 𝑥 = 0. 

Regarding the last decision variable, we define the radial flow 𝑄(𝑥) as the number of MRT vehicles 

crossing an infinitesimal annulus of radius x in both inward and outward direction. 

 𝑄(𝑥) =
2𝜋

𝜃𝑟(𝑥)
∙

1

𝐻(𝑥)
 (1) 

Therefore, the two local decision variables 𝜃𝑟(𝑥) and 𝐻(𝑥) are interdependent. 𝑄0  is defined as 

𝑄0≡ 𝑄(𝑥 = 0). 

4.2 Assumptions and constraints 

Along each radial MRT line, in the inward direction, we assume a train can depart from any 𝑥 ≤ 𝑅, 

but always terminate in the centre (𝑥 =  0). In the outward direction, a train always departs from 

the centre and can terminate at any 𝑥 ≤ 𝑅. This translates to the following constraint: 

 𝐻(𝑥1) ≤ 𝐻(𝑥2),     ∀ 𝑥1, 𝑥2 | 𝑥1 < 𝑥2 < 𝑅 (2) 

Also, we prevent the radial flow 𝑄(𝑥) from increasing outward (it would mean that there were 

vehicles not passing through the city centre, contradicting our assumption) with the following 

constraint:  

 𝑄(𝑥1) ≥ 𝑄(𝑥2),     ∀ 𝑥1, 𝑥2 | 𝑥1 < 𝑥2 < 𝑅 (3) 

The following vehicle capacity constraint must also be respected: 

 𝑂𝑗(𝑥) < 𝐶𝑝𝑎𝑥,𝑗,     ∀𝑥 (4) 

 
5 We can make a parallel with the variation of the electromagnetic field at the boundary between dissimilar media: in 

this case, we also need a mathematical development at the boundary different than at the other locations, since a 

discontinuity occurs there (Ellingson, 2021). The outermost MRT ring line acts as boundary between the city centre and 

the suburbs and a discontinuity, in broader terms, occur in this line, in the sense that it is used by much more passengers 

than the others ring lines, as it attracts all transfers of passengers whose origins and destinations are in the suburbs. 
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where 𝑂𝑗(𝑥) is the average vehicle occupancy at x and 𝐶𝑗  is the vehicle capacity of mode 𝑗 ∈

 {MRT, FRF, DRF} as computed in Equations (A.4)-(A.8) (Appendix A). 

4.3 Demand pattern and travel behaviour 

Metropolitan areas are characterized by a transition from a central zone to sprawled suburban areas. 

The former is characterized by dense urban fabric, high population density and presence of 

numerous “trip attractors” (job places, commercial activities, amenities, etc.). The latter, instead, are 

often shaped by low residential density and sparse transportation demand. We assume that the 

transit demand density is both temporally and spatially variable and follows the Clark’s law (Clark, 

1951), i.e., an exponential decline from the centre to the suburbs. We point out that the choice of a 

monocentric demand model is made to limit the number of parameters of the CA model. Other 

urban settings, e.g., polycentric and dispersed (Fielbaum et al., 2016), can be modelled to make the 

model more realistic, but would make our model more complex, which is outside the scope of this 

paper.  The results may vary under different settings/assumptions, however our adoption of the 

Clark’s law can be more applicable to  general scenarios compared to previous (where the demand 

density is assumed constant (Daganzo, 2010) or with linear decrease (Badia, 2014)). Denoting with 

𝑥 the distance (in km) from the city centre, the demand density (measured in trips per hour per km2) 

is given by: 

 𝜌(𝑥, 𝑡) = 𝜌0(𝑡) ∙ 𝑒
−𝛾𝑥   (5) 

where 𝜌0(𝑡) (pax/km2 h) is the density of users in the centre and 𝛾 (km-1) is the slope (also called 

density gradient) with which that value decreases as we move away. By changing 𝜌0(𝑡) over the 

time of the day, we can capture the temporal variation of the transportation demand. In our work we 

consider that 𝜌0(𝑡) varies in a stepwise function, i.e., it remains constant within each time period ∈

𝒯 . When we omit t, to simplify notation, it means we are focusing on a single time instant. 

With such a model, the city centre, where economic activities are more concentrated, emerges as an 

attractor and generator of trips from/to the periphery (see Equation A.1). A passenger first accesses 

the closest transit station (either by walking or via a feeder bus), rides via MRT to the station closest 

to her destination and finally reaches (either by walking or via a feeder) her destination. Note that, 

within the MRT, a passenger could transfer from a radial to a ring line and vice versa. The sequence 

of such transfers obeys classic assumptions in literature (e.g., Badia et al., 2014; Chen et al., 2015) 

and is calculated to minimize the travelled distance via MRT. Transfers are developed in Appendix 

A.3 and summarized in Figure 3. 
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Figure 3. User’s route choice from the origin MRT station to the destination MRT station. 

In Figure 3a only those trips that do not require transfers between different MRT lines are 

represented. If we consider a pair, such as O2-D2 or O3-D3, they are both characterized by a small 

angle between O and D (Θ1 ≤ 𝜃𝑟,𝑚𝑖𝑛 = min
𝑥∈[0,𝑅]

𝜃𝑟(𝑥)), passenger will just use one radial line only. If 

the angle is small and, additionally, O and D are at a similar distance x from the centre (like O1-

D1), such a trip can be made without using MRT (see Appendix A.3). In Figure 3b we represent 

trips with angle Θ2 ∈]𝜃𝑟,𝑚𝑖𝑛 , 2 radiants] between O and D. In this case, it is easy to see that, in 

order to minimize the travel distance, a user will travel via both radial and ring lines. Also, when 

both O and D lie in the periphery (𝑥 > 𝑟, e.g., O3 and D3 in Figure 3b), we have the only case that 

requires using the outermost ring line and implies two transfers. Finally, in Figure 3c the cases 

where the O-D pair has an angle Θ3 > 2 radians are shown: a user will travel by a radial line 

towards the city centre, where she will transfer to another radial line to reach her destination. 

4.4 Feeder services 

The suburban area is divided in FMLM sub-regions, each determined by the spacing 𝑆𝑟(𝑥) =

𝜃𝑟(𝑥) ∙ 𝑥 between the radial lines and the station spacing 𝑠(𝑥) along them, as in Figure 4. In case of 

MRT-only scheme, passengers can only walk inside each FMLM sub-region. In the other two 

schemes, instead, each FMLM sub-region is associated to a MRT station, and is further divided in a 

number 𝑁𝑠(𝑥) of strips served by a feeder bus service to/from that MRT station. Each FMLM sub-

region, forming a ring sector, can be approximated into a rectangle with the following dimensions: 

 length 𝑙(𝑥) =
𝜃𝑟(𝑥)

2
∙ 𝑥;   width 𝑠(𝑥);   strip width 𝑤(𝑥) = 𝑠(𝑥)/𝑁𝑠(𝑥)  (6) 
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Figure 4. FRF and DRF layouts. 

Note that the size of an FMLM sub-region depends on the MRT structure (the more the MRT lines 

and/or the smaller the station spacing, the smaller the FMLM sub-regions) and determines the total 

user demand to accommodate. 

Fixed-Route Feeder (FRF). The FRF is modelled as a straight route with spacing 𝑑(𝑥) between 

stops and vehicles moving back and forth between the MRT station and the furthest stop, as in 

Quadrifoglio and Li (2009), so that the length of a complete cycle is given by: 

 𝐶𝐿𝐹𝑅𝐹(𝑥) = 2 (𝑙(𝑥) + Δ𝑙(𝑥) −
1

2
𝑑(𝑥))  (7) 

where Δ𝑙(𝑥) is the average extra vertical distance (see Figure 4) which the FRF has to travel due to 

the different position of the strips with respect to the MRT station they serve, that we approximate 

to 𝑠(𝑥)/4 if 𝑁𝑠(𝑥) > 1, and 0, otherwise. 

We assume that travellers walk on a Cartesian grid, and thus all walking distances are Manhattan 

distances, which yields an average walking distance to reach the nearest bus stop equal to: 

 𝑑𝐹𝑅𝐹
𝑤𝑎𝑙𝑘(𝑥) = 𝑠(𝑥)/4 + 𝑑(𝑥)/4  (8) 

If the origin or the destination of a user is in a location close enough to the MRT station (less than 

threshold 𝑑0,𝐹𝑅𝐹 = 𝑑(𝑥)/2), she will prefer to directly walk to / from the MRT station. We call 

such locations “walking area”, represented in grey in Figure 4. The fraction of locations in the 

walking areas is 𝑝𝑤𝑎𝑙𝑘,𝐹𝑅𝐹(𝑥) = 𝑑0,𝐹𝑅𝐹/𝑙(𝑥). And the time needed to complete a cycle can be 

calculated as follows: 

 𝐶𝐹𝑅𝐹(𝑥) =
𝐶𝐿𝐹𝑅𝐹(𝑥)

𝑣𝐹𝑅𝐹
+ 𝜏𝑠 (

2𝑙(𝑥)

𝑑(𝑥)
− 1) + 𝜏𝑝 ∙ 𝑛(𝑥) + 𝜏𝑇   (9) 
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where 𝑣𝐹𝑅𝐹  is the cruising speed of the bus, 𝜏𝑇 is the terminal dwell time, 𝜏𝑠 is the time lost per stop 

and 𝜏𝑝 is the time lost per passenger due to boarding/alighting operations. This time 𝜏𝑝 is multiplied 

by the average number of passengers per vehicle: 

 𝑛(𝑥) = 2 𝜌(𝑥) ∙ 𝑤(𝑥) ∙  𝑙(𝑥) ∙ ℎ(𝑥) ∙ (1 − 𝑝𝑤𝑎𝑙𝑘,𝐹𝑅𝐹(𝑥))  (10) 

being 𝜌(𝑥) the demand density originating in any point at distance 𝑥 (in trips/km2h). We multiply 

by 2 to account for the passengers arriving at that point, under a symmetric demand assumption 

(arrivals and departures are the same at any point). 

Demand-Responsive Feeder (DRF). The DRF model obeys the following assumptions.  The DRF 

provides a door-to-door service, travelling along x and y direction grid, so passengers do not have to 

walk to any physical bus stop.  Each request is processed in real-time via an insertion algorithm that 

aims at minimizing the in-vehicle travel time experienced by the passengers with a “no-rejection” 

policy, i.e., the DRF serves all assigned requests. If more passengers are assigned to a DRF vehicle 

(meaning more pick-ups/drop-offs), the vehicle needs to travel longer, due to longer detours on its 

service route (Oh et al. 2020b). Travellers close enough to the MRT station, i.e., at Manhattan 

distance less than 𝑑0,𝐷𝑅𝐹(𝑥)  from the station (grey triangular area in Figure 4), directly walk to the 

station. Their fraction is given by the ratio between the surface of the walking area and the surface 

of the FMLM sub-region: 

 𝑝𝑤𝑎𝑙𝑘,𝐷𝑅𝐹(𝑥) = 𝑑0,𝐷𝑅𝐹
2 (𝑥)/(𝑙(𝑥) ∙ 𝑠(𝑥)) (11) 

The computation of the cycle length (𝐶𝐿𝐷𝑅𝐹) and the cycle time (𝐶𝐷𝑅𝐹) is based on the work of 

Quadrifoglio et al. (2006) and Quadrifoglio and Li (2009). The cycle length is estimated based on 

the expected number of passengers per vehicle 𝑛(𝑥) , which is computed as in Equation 10, 

substituting 𝑝𝑤𝑎𝑙𝑘,𝐹𝑅𝐹(𝑥) with 𝑝𝑤𝑎𝑙𝑘,𝐷𝑅𝐹(𝑥). The cycle length is the sum of a horizontal component 

(the expected distance travelled from left to the right and vice-versa) and a vertical component (the 

expected deviations along the vertical direction to serve the passengers). The former is derived from 

Equation 9 of Quadrifoglio and Li (2009) and is equal to 2 ∙ 𝑙(𝑥) ∙ 𝑛(𝑥)/(𝑛(𝑥) + 1) assuming a 

uniform demand density within the FMLM sub-region. The latter is equal to 𝑛(𝑥) ∙ 𝑤(𝑥)/3 +

𝑤(𝑥)/2 derives from Equations 3 and 4 of Quadrifoglio et al. (2006) (accounting for the fact that 

the vertical displacement occurs within a strip of width 𝑤(𝑥) = 𝑠(𝑥)/𝑁𝑠(𝑥)). The cycle length is 

thus: 

 𝐶𝐿𝐷𝑅𝐹(𝑥) = 2 𝑙(𝑥)
𝑛(𝑥)

𝑛(𝑥)+1
+ 𝑛(𝑥) ∙

𝑤(𝑥)

3
+

𝑤(𝑥)

2
 (12) 
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The time needed to complete a cycle can be calculated as follows: 

 𝐶𝐷𝑅𝐹(𝑥) =
𝐶𝐿𝐷𝑅𝐹(𝑥)

𝑣𝐷𝑅𝐹
+ (𝜏𝑠 + 𝜏𝑝) ∙ 𝑛(𝑥) + 𝜏𝑇  (13) 

The cycle time is the sum of the time travelling at cruise speed, the time lost per stop (assuming a 

single passenger served per stop) and the terminal dwell time. 

4.5 Cost components 

The main objective of the present work is to find the optimal transit structure able to integrate fixed 

and demand-responsive transportation. With this aim, we formulate a generalized cost function to 

be minimized as Badia et al. (2014) and Chen et al. (2015), which combines the disutility for users 

due to the travel time in its different components (Figure 1) and the costs incurred by the transit 

agency to provide the service (and the related externalities). 

As regards the transit users, as usually done in CA work, we do not consider transit fares. This is a 

reasonable assumption when most users use monthly passes and since we do not consider a mode 

choice model in our work. 

The quantities involved in the generalized cost are summarized in Table 1 and Table 2. They are all 

converted to monetary metrics via specific coefficients. They are all density functions over the 

distance from the centre. They are divided in two categories: (i) user-related costs represent the time 

spent and the discomfort suffered by passengers during their trip, both in the FMLM segments and 

in the MRT segment; (ii) agency-related costs, including capital and operational costs for operating 

feeder services in the FMLM and the MRT. The detailed computation of all cost components is in 

Appendices A.2–A.5. 

Agency’s and user’s metrics are converted into cost density functions by means of a set of cost 

coefficients, in order to compute the total (per unit of time) as a linear combination of those metrics. 

We denote with 𝜇𝐿,𝑀𝑅𝑇  or 𝜇𝐿,𝐹𝑀𝐿𝑀  (€/km-h), 𝜇𝑉,𝑀𝑅𝑇 or 𝜇𝑉,𝐹𝑀𝐿𝑀  (€/veh-km) and 𝜇𝑀,𝑀𝑅𝑇  or 𝜇𝑀,𝐹𝑀𝐿𝑀  

(€/veh-h) the cost coefficients related to the agency metrics, for MRT and FMLM, respectively. The 

subscripts, have the same meaning of  Table 1. Regarding the MRT, as in Flyvbjerg et al. (2013), 

we also consider costs specifically related to the stations through a coefficient 𝜇𝑆𝑇  (€/station-h). 

Similarly, cost coefficients 𝜇𝐴; 𝜇𝑊; 𝜇𝑇 are all equal to the Value of Time (VoT) (€/h) associated to 

walking, waiting and travelling on-board. For simplicity, we give them all the same unit, 

independent on whether they refer to travelling in a feeder or in the MRT. The cost components are 

detailed in Table 1 and Table 2, and discussed in next sections. 
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4.6 Optimization problem 

To express the cost objective in a concise way, we use i to indicate the type of cost component, i ∈ 

{L, ST, V, M, A, W, T} (see Table 1), emphasizing that FRF and DRF are mutually exclusive feeder 

services. As in Chen et al. (2015), we distinguish: 

• Local densities 𝑌𝑖(𝑥), referred to the MRT, and 𝑦𝑖(𝑥), referred to the FMLM (either FRF 

or DRF), which vary with the distance from the centre x. 

• Global components 𝐹𝑖 which are instead only related to the outermost MRT ring line, i.e., 

at 𝑥 = 𝑟. 

Table 1. Overview of agency-related and user-related local densities. 

  FMLM  MRT 

User-related 

costs 

𝑦𝐴(𝑥) 
Cost due to walking to/from 

the feeder bus stop 
𝑌𝐴(𝑥) 

Cost due to walking to/from 

the MRT station 

𝑦𝑊(𝑥) 
Cost due to the time to wait 

for the feeder service 
𝑌𝑊(𝑥) 

Cost due to the time to wait 

for the MRT 

𝑦𝑇(𝑥) 

Cost due to the time spent 

into feeder vehicles, 

including boarding, riding, 
dwell, and alighting time.  

𝑌𝑇(𝑥) 

Cost due to the time spent 

into MRT, including 

boarding, riding, dwell, and 
alighting time 

Agency capital 

costs 

𝑦𝐿(𝑥) 
Cost for the infrastructure in 

FMLM, i.e., construction 

and maintenance 
𝑌𝐿(𝑥) 

Cost for the infrastructure of 

the MRT, i.e., construction 

and maintenance 

𝑦𝑀(𝑥) 
Cost due to the feeder fleet, 
i.e., vehicles and crew cost 

𝑌𝑀(𝑥) 
Cost due to the MRT fleet, 
i.e., vehicles and crew cost. 

   𝑌𝑆𝑇(𝑥) 
Cost due to the MRT station 

density. 

Agency 

operation costs 
𝑦𝑉(𝑥) 

Cost due to vehicle-distance 

travelled by feeder vehicles. 
𝑌𝑉(𝑥) 

Cost due to vehicle-distance 

travelled by MRT 

Table 2. Overview of agency-related and user-related global components 

  MRT 

User-related costs 

𝐹𝐴 
Transfer cost, due to users’ changing MRT lines at the outermost ring line 

(Figure 3b) 

𝐹𝑊 Cost due to the time to wait for the MRT at the outermost ring line 

𝐹𝑇  Cost due to the time spent into MRT along the outermost ring line 

Agency capital costs 𝐹𝑀 Cost due to MRT fleet and crew cost on the outermost ring line 

Agency operation costs 𝐹𝑉 Cost due to the vehicle-distance travelled on the outermost ring line 

We now formulate the optimization problem that we aim to minimize. We separate the decision 

variables in two sets: 

• Global decision variables: 𝐺 = {𝑟; 𝑄0;  𝜙𝐵;  𝐻𝐵}, 

• Local decision variables (functions of 𝑥): 𝐷(𝑥) =

{𝜃𝑟(𝑥); 𝑆𝑐(𝑥);  𝑠(𝑥);  𝜙(𝑥);  𝐻(𝑥);  ℎ(𝑥); 𝑑𝑗(𝑥); 𝑁𝑠(𝑥);  𝐹(𝑥)}. 
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As in Chen et al. (2015), we constrain the station spacing on the outermost MRT ring line to be the 

same as the value of the corresponding local variable at 𝑥 = 𝑟: 

 𝜙𝐵 = 𝜙(𝑟) (14)  

For any values of sets 𝐺 and functional 𝐷 = {𝐷(𝑥)}𝑥∈[0,𝑅] (denoting all values 𝐷(𝑥)| 𝑥 ∈ [0, 𝑅]) at 

any time interval 𝑡 ∈ 𝒯, we denote the hourly cost of component 𝑍𝑖 as: 

𝑍𝑖(𝐷, 𝐺, 𝑡) = 𝜇𝑖,𝑀𝑅𝑇 ∙ (𝐹𝑖(𝑟, 𝜙𝐵 , 𝐻𝐵 , 𝐷, 𝑡) + ∫ 𝑌𝑖(𝐷, 𝑟, 𝑡, 𝑥)
𝑅

0
𝑑𝑥) + 𝜇𝑖,𝐹𝑀𝐿𝑀 ∙ ∫ 𝑦𝑖(𝐷, 𝑟, 𝑡, 𝑥)

𝑅

0
𝑑𝑥 (15) 

Note that all cost components 𝑦𝑖(𝑥) and 𝑌𝑖(𝑥) depend not only on 𝑥 but also on the demand density 

𝜌0(𝑥), as it will be clarified in Appendix A, where such cost components are calculated. 

As regards agency-related costs, they are composed of capital costs, which are not dependent on the 

time of day, and operation costs, which instead vary with 𝑡. The total cost is: 

𝑍(𝐷, 𝐺, 𝑡) =  𝑍𝑢𝑠𝑒𝑟(𝐷, 𝐺, 𝑡) + 𝑍𝑐𝑎𝑝(𝐷, 𝐺) + 𝑍𝑜𝑝(𝐷, 𝐺, 𝑡) = ∑ 𝑍𝑖(𝐷, 𝐺, 𝑡)𝑖∈{𝐴,𝑊,𝑇} +

∑ 𝑍𝑖(𝐷, 𝐺)𝑖∈{𝐿,𝑀} + ∑ 𝑍𝑖(𝐷, 𝐺, 𝑡)𝑖∈{𝑉}   (16) 

For each of the three schemes defined in Section 3 (MRT-Only, MRT-FRF, Adaptive Transit), we 

first dimension the system in the peak hours. To do so, let 𝑡𝑝𝑒𝑎𝑘  be the time interval in which the 

demand density is the highest, i.e., 𝑡𝑝𝑒𝑎𝑘 = arg maxt 𝜌0(𝑡). We want to find the optimal set of 

global decision variables 𝐺𝑝𝑒𝑎𝑘  and local decision variables 𝐷 
𝑝𝑒𝑎𝑘  (for every value of x, i.e., 

𝐷𝑝𝑒𝑎𝑘 = {𝐷𝑝𝑒𝑎𝑘(𝑥)}𝑥∈[0,𝑅]) by solving the following optimization problem:  

 {𝐺𝑝𝑒𝑎𝑘 , 𝐷 
𝑝𝑒𝑎𝑘} = arg min𝐺,𝐷 {

𝑍(𝐷, 𝐺, 𝑡𝑝𝑒𝑎𝑘)

subject to Equations 2;3;4
} (17) 

This optimization allows us to determine optimal fleet size and transit infrastructure. Note that, once 

fleet size and transit infrastructure are fixed to satisfy the mobility needs in peak hours, they do not 

change over the day, and the corresponding cost must be supported by the agency, even if there are 

periods of the day in which they are not fully used. We thus fix the capital cost as: 

  𝑍𝑐𝑎𝑝 = ∑ 𝑍𝑖(𝐷 
𝑝𝑒𝑎𝑘 , 𝐺𝑝𝑒𝑎𝑘)𝑖∈{𝐿,𝑀}  (18) 

We then optimize the system in each time slot independently, only minimizing the operational cost: 
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 𝐺∗(𝑡), 𝐷∗(𝑡|𝑄0, 𝑟) = arg min𝐺,𝐷 {

𝑍𝑜𝑝(𝐷, 𝐺, 𝑡) + 𝑍𝑢𝑠𝑒𝑟(𝐷, 𝐺, 𝑡)

subject to Equations 2;3;4;20(a-g)
with max flow 𝑄0 and central radius 𝑟

}  (19) 

where we introduced the following constraints, valid when 𝑡 ≠ 𝑡𝑝𝑒𝑎𝑘: 

a. 𝑟 = 𝑟𝑝𝑒𝑎𝑘  

b. 𝜃𝑟(𝑥) = 𝜃𝑟
𝑝𝑒𝑎𝑘(𝑥)     ∀𝑥 

c. 𝑆𝑐(𝑥) = 𝑆𝑐
𝑝𝑒𝑎𝑘(𝑥)     ∀𝑥 < 𝑟 

d. 𝑠(𝑥) = 𝑠𝑝𝑒𝑎𝑘(𝑥)     ∀𝑥     (MRT-only or MRT-FRF scheme) 

e. 𝑠(𝑥) = 𝑠𝑝𝑒𝑎𝑘(𝑥)     ∀𝑥 < 𝑟,    𝑠(𝑥) ≥ 𝑠𝑝𝑒𝑎𝑘(𝑥)    ∀𝑥 > 𝑟   (Adaptive scheme) 

f. 𝑑𝑗(𝑥) = 𝑑𝑗
𝑝𝑒𝑎𝑘(𝑥)     ∀𝑥 > 𝑟, 𝑗 ∈ {𝐹𝑅𝐹, 𝐷𝑅𝐹}     (MRT-FRF scheme) 

g. 𝑑𝑗(𝑥) ≥ 𝑑𝑗
𝑝𝑒𝑎𝑘(𝑥)     ∀𝑥 > 𝑟, 𝑗 ∈ {𝐹𝑅𝐹, 𝐷𝑅𝐹}   (Adaptive scheme) (20) 

Note that Equations 20(a-f) represent the fact that the infrastructure remains, all over the day, the 

same as the one decided via Equation 17. The total cost, over the entire day, is: 

 𝑍24ℎ = ∑ Δ𝑡 ∙ (𝑍𝑐𝑎𝑝 + 𝑍𝑜𝑝(𝐷
∗(𝑡), 𝐺∗(𝑡), 𝑡) + 𝑍𝑢𝑠𝑒𝑟(𝐷

∗(𝑡), 𝐺∗(𝑡), 𝑡))𝑡∈𝒯  (21) 

The optimization procedure is done separately for MRT-only, MRT-FRF and Adaptive Transit 

schemes.  

4.7 Optimization procedure 

We now describe the optimization procedure executed for each time instant. The optimization of 

Equation 17 and Equation 19 is non-convex, so we resort to bi-level optimization to solve it. Let us 

fix any time instant t. The lower level subproblem consists, given any value of global variables r, 

Q0, to solve the following local optimization problem, for all 𝑥 ∈ [0,𝑅]. 

𝐷∗(𝑥, 𝑡|𝑄0, 𝑟) = arg min𝐷(𝑥) {
∑𝑖  𝜇𝑖 ∙ (𝑌𝑖(𝐷(𝑥), 𝑟, 𝑡, 𝑥) + 𝑦𝑖(𝐷(𝑥), 𝑟, 𝑡, 𝑥))

 subject to Equations 2;3;4;20(a-g)
}  (22) 

We use an interior-point algorithm to solve the problem above. The higher level subproblem (global 

optimization) is to determine the set of global variables 𝐺(𝑡) that minimizes the total cost 𝑍, which 

is the sum of global and local costs (Equation 15). The following iterative procedure is 

implemented: 
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1. Initialize 𝑟  (to a sufficiently small value, e.g., 3 Km,6 and repeat the overall optimization 

procedure (described in step 3) by increasing 𝑟 until the total cost found is higher than the 

average value from the previous 3 iterations.7 When this occurs, set 𝑟∗ equal to the value of the 

third to last iteration. 

2. For any value of 𝑟, initialize 𝑄0  (e.g., 𝑄0 = 100 vehicles/h) and, similarly to the previous 

point, increase 𝑄0, until the total cost found is higher than the average value from the previous 

3 iterations. When this occurs, set 𝑄0 = 𝑄0
∗  the value of the third to last iteration. 

3. For any pair of (𝑟, 𝑄0), run the lower-level optimization procedure, composed by the following 

steps: 

a. Run the local optimization (Equation 22) in order to find 𝐷∗(𝑥, 𝑡|𝑄0, 𝑟) for all 𝑥 ∈ [0,𝑅] 

(we discretize this interval with a step Δ𝑥 = 0.5 Km). 

b. Find 𝐻𝐵
∗ = argminHB{∑𝑖  𝜇𝑖,𝑀𝑅𝑇 ∙ 𝐹𝑖(𝑟, 𝜙𝐵 , 𝐻𝐵 , 𝐷

∗, 𝑡)   subject to Equation 4} . This 

problem is simple to solve for a solver since it has only one decision variable.8 

c. Compute the total cost as in Equation 16. 

Observe that we first run the optimization procedure explained above in the peak hours. We then 

repeat the optimization procedure for all the other time instants, with the additional constraints of 

Equation 20(a-g), which are needed to keep infrastructure length and fleet size fixed to the peak 

hour values. 

5. Numerical results 

We now compare the performance of the three transit schemes (Section 3) in a scenario 

representing a large urban conurbation, during peak and off-peak hours. Note that we also present 

the benefits of Adaptive Transit in a separate small-scale simulation scenario (Appendix B). 

5.1 Scenario parameters 

The complete list of the parameters describing our scenario is reported in Table 3. We consider a 

circular area of radius 𝑅 =  25 km, which corresponds to the size of large metropolitan areas, e.g., 

the Greater Paris region. The value of the demand density 𝜌0(𝑡) is estimated from the travel 

 
6 Observe that at first we run the entire optimization procedure for 𝑡 = 𝑡𝑝𝑒𝑎𝑘 . During this optimization, we explore 

different values of 𝑟, by trying different initialization values. Then, for all the other 𝑡 ≠ 𝑡𝑝𝑒𝑎𝑘, we instead always fix 

𝑟 = 𝑟𝑝𝑒𝑎𝑘. 
7 We consider the previous three iterations instead of just the last one to make our optimization procedure more robust. 
8 Note that 𝜙𝐵 = 𝜙(𝑥 = 𝑟) (Equation 14). 
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demand data of the regional Household Travel Survey “EGT 2010”. 9  We approximately fit 

Equation 5 on residential density data on Paris region,10 which results in an average demand density 

𝜌̅0 = 640 trips/(km2 h) (this is the sum of trips departing from and arriving at each km2) and a slope 

of 𝛾 = 0.12 km-1. The shape of the transit demand as a function of the distance from the city centre 

is represented in Figure 5a. 

Table 3. Parameters of the base scenario 

Parameter Value Reference 

𝑅  25 km - 

𝜌0(𝑡
𝑝𝑒𝑎𝑘)  1600 trips/(km2h) - 

𝜌0(𝑡
𝑜𝑝)  480 trips/(km2h) - 

𝜌0(𝑡
𝑙𝑝)  256 trips/(km2h) - 

𝛾  0.12 km-1 - 

𝑣𝑤  4.5 km/h Google Maps 

𝑣𝑀𝑅𝑇  60 km/h Daganzo (2010) 

𝑣𝐹𝑅𝐹 , 𝑣𝐷𝑅𝐹  25 km/h Daganzo (2010) 

𝐶𝑀𝑅𝑇  1200 - 

𝐶𝐹𝑅𝐹 , 𝐶𝐷𝑅𝐹  80 - 

𝜏𝑠,𝑀𝑅𝑇  45 s Daganzo (2010) 

𝜏𝑠,𝐹𝑅𝐹 , 𝜏𝑠,𝐷𝑅𝐹  30 s Daganzo (2010) 

𝜏𝑝  2 s - 

𝜇𝐴, 𝜇𝑊, 𝜇𝑇   15, 22.5, 30 €/h Meunier and Quinet (2015) 

Δ𝐴  2 min - 

𝜇𝐿,𝑀𝑅𝑇   
600 €/km h (𝑥 < 𝑟); 300 

€/km h (𝑥 > 𝑟) 
Flyvbjerg et al. (2013) 

𝜇𝑆𝑇,𝑀𝑅𝑇   
300 €/(station h) (for 𝑥 < 𝑟) 
100 €/(station h) (for 𝑥 > 𝑟) 

Flyvbjerg et al. (2013) 

𝜇𝐿;𝐹𝑅𝐹 , 𝜇𝐿,𝐷𝑅𝐹  10 €/(km h) CERTU (2011) 

𝜇𝑉,𝑀𝑅𝑇  6 €/(veh km) Daganzo (2010) 

𝜇𝑉,𝐹𝑅𝐹 , 𝜇𝑉,𝐷𝑅𝐹  0.5 €/(veh km) Cats and Glück (2019) 

𝜇𝑀,𝑀𝑅𝑇   120 €/(veh h) Daganzo (2010) 

𝜇𝑀;𝐹𝑅𝐹 , 𝜇𝑀,𝐷𝑅𝐹  50 €/(veh h) Cats and Glück (2019) 

 

 
9 The travel demand of Greater Paris consists of 8.3 million PT trips, on average per working day. Since a complete 

trip needs on average one transfer, we obtain a daily demand of 4.15 million trips made by PT per day. Considering 18 

hours of PT operation, we obtain an average demand of 230∙103 trips/h. 
10 https://www.insee.fr/fr/statistiques 
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Figure 5. (a) Demand density and cumulative transit demand as functions of the distance from the city centre; (b) 

Transit demand fluctuation during the day.  

For the sake of simplicity, we divided the day into time intervals Δ𝑡 = 1 hour, and assume that 

𝜌0(𝑡) only takes three values during the day: a peak value 𝜌0(𝑡
𝑝𝑒𝑎𝑘) = 2.5 ∙ 𝜌̅0 = 1600 trips/km2h; 

an off-peak value 𝜌0(𝑡
𝑜𝑝) = 0.75 ∙ 𝜌̅0 = 480 trips/km2h; and a low-peak value 𝜌0(𝑡

𝑙𝑝) = 0.4 ∙ 𝜌̅0 = 

256 trips/km2h. Using this scheme, which is represented in Figure 5b, we obtain a ratio between 

𝜌0(𝑡
𝑜𝑝) and 𝜌0(𝑡

𝑝𝑒𝑎𝑘) of 3/10, as suggested by Jara-Díaz et al. (2017). 

Referring to Table 3 we assume the cost coefficients of the FRF and the DRF are equal: this is 

because we assume that the switching between the two feeder services, in the Adaptive Transit 

scheme, occurs maintaining the same vehicles. Also, we set the cost coefficient 𝜇𝐿,𝑀𝑅𝑇  in the 

suburban area is half of the one in the central area, since MRT lines do not require extensive 

tunnelling (which greatly impacts the costs) outside the city centre. For the same reason, the cost 

coefficient 𝜇𝑆𝑇,𝑀𝑅𝑇 in the central area is 3 times larger than outside (see Flyvbjerg et al., 2013).  

Finally, to obtain the capital cost coefficients of Table 3, we use a straight-line amortization 

assuming 20 years (of 365 days) of useful life for MRT, 12 years for FRF and DRF buses,11 

considering 18 operating hours per day. 

5.2 Performance of adaptive design scheme 

We now compare the overall cost 𝑍24ℎ  obtained with the three transit schemes, the difference in 

their optimal structure and the impact on user QoS, to show the superiority of our proposed 

Adaptive Transit over conventional transit design. The results are obtained, for each transit scheme, 

by applying the optimization procedure (Section 4.7) on the respective CA model. Such procedure 

 
11 New York Metropolitan Transportation Authority: https://new.mta.info/document/11976 
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searches for the optimal structure, i.e., the set of values of the decision variables that minimize the 

total cost (Equation 21). 

We implemented our procedure in MATLAB and release the code as open source. 12  It is 

computationally efficient, as it takes about 10-20 minutes in an ordinary laptop for optimizing each 

transit scheme. As a comparison, observe that one single agent-based simulation in Narayan et al. 

(2020), took 45h on a super-computer. Obviously, we expect that the accuracy of their results is 

much stronger than ours. However, such huge computation times are not suitable to analyse high-

level managerial insights and when a fast way to experiment with different system parameters is 

needed. 

Figure 6 (left) shows the most relevant differences between the performances of conventional 

transit and the Adaptive Transit scheme. Let us partition the time periods into disjoint sets 𝒯 =

𝒯𝑝𝑒𝑎𝑘 ∪ 𝒯𝑜𝑝 ∪ 𝒯𝑙𝑝 . We represent the capital cost 𝑍𝑐𝑎𝑝 = (𝑍𝐿 + 𝑍𝑀) (defined in Equation 18), the 

operational cost 𝑍𝑜𝑝 = 𝑍𝑉 and the user-related cost components 𝑍𝑢𝑠𝑒𝑟 = 𝑍𝐴 + 𝑍𝑊 + 𝑍𝑇. We recall 

that the total cost 𝑍24ℎ  over the entire day is computed via Equation 21. It is clear that Adaptive 

Transit greatly reduces user-related cost in all periods of day. Particularly, more reduction is 

observed outside the peak hours, where classic fixed transportation shows more evidently its 

limitations. The reduction in user-related cost is mostly achieved thanks to a remarkable reduction 

of access (walking) time 𝑍𝐴 . Indeed, where and when the demand density is low (suburbs, off-

peak), MRT-only scheme provides only few stops, to prevent the operational cost to explode, thus 

requiring users to walk long distances. A similar (although less pronounced) problem occurs in Off- 

and Low-peak with MRT-FRF scheme. Instead, Adaptive Transit does not bring such an issue, as 

when and where FRF becomes too disadvantageous for users, it deploys DRF, which picks up and 

drops off users at their locations. Observe that this improvement for users (-21.8% and -8.7% with 

respect to the MRT-only and the MRT-FRF schemes, respectively) requires higher agency-related 

costs (+ 1.1% with respect to the MRT-FRF scheme), both capital cost (fleet 𝑍𝑀and infrastructure 

𝑍𝐿) and operational (vehicle-km cost 𝑍𝑉), since the agency needs to deploy more feeder vehicles. 

However, such an increase of agency-related cost may be acceptable, as the overall cost of Adaptive 

transit outperforms the other schemes: Figure 6 shows that Adaptive transit reduces the overall total 

cost (-19.7% and -3.6% with respect to the MRT-only and the MRT-FRF scheme, respectively), in 

particular during the off-peak hours (7.2% of improvement compared to the MRT-FRF scheme). 

 
12 https://github.com/giovanni-cal/future-transit 

https://github.com/giovanni-cal/future-transit
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Figure 6. Cost of MRT-Only, MRT-FRF and Adaptive scheme across the day (for result interpretation; 𝑍𝐿 , 𝑍𝑀 , 𝑍𝑉 

are the costs due to infrastructure, fleet (and crew), and operation, respectively; 𝑍𝐴, 𝑍𝑊, 𝑍𝑇 are the costs due to 

walking, waiting and in-vehicle travel time, respectively). 

5.3 Spatial distribution of cost 

In Figure 7, we divide the study area in 3 different zones: the first zone for x ≤ 6 km, the second 

zone for 6 km < x ≤ 15 km, and the third for x > 15 km. Such zones have comparable size to Paris 

city, Petite Couronne and Grande Couronne, respectively. With this figure we aim at evaluating 

how the user-related cost (in terms of travel time) distributes among the three zones in the different 

design schemes. We represent in each zone the average time (in minutes) suffered by the users of 

the transit system to access the MRT station. 

We observe that the time needed to access the MRT explodes far the from city centre, in particular 

during off-peak hours, in the MRT-only and MRT-FRF scheme. In the first case, the discomfort for 

passengers far from the centre is exacerbated by high waiting times. 

Adaptive Transit, instead, compensates the increase in waiting time by guaranteeing a fast 

connection to MRT stations far from the centre, i.e., x > 15 km (-9.4%, -32.1%, and -34.1% of 

access time with respect to the MRT-FRF scheme during peak, off-peak and low-peak hours, 

respectively). Therefore, it prevents access to MRT from degrading in suburban areas. Our adaptive 

design alleviates the cost suffered from users in the suburbs much more than conventional designs, 

by shifting the agency-related costs toward the outskirt (see the next subsection). Observe instead 

that conventional design suffers from a bias, favouring the city centre, in cost distribution: the 
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agency invests more in the city centre, so that user-related cost is minimized there, at the 

detrimental of suburban population. In order words, conventional designs inherently suffer from 

high inequality. Such an inequality (Badeanlou et al., 2022) is alleviated with Adaptive Transit, 

which improves user-cost in the suburbs, without excessively degrading performance in the centre. 

 

 

 
Figure 7. Components of the total access time to MRT stations in 3 zones of the study area.  

This time is made up by five components, i.e., the walking time 𝐴𝑓𝑒𝑒𝑑𝑒𝑟 to access/egress the feeder stop (if any), the 

waiting time 𝑊𝑓𝑒𝑒𝑑𝑒𝑟 for the feeder service (if any), the in-vehicle travel time 𝑇𝑓𝑒𝑒𝑑𝑒𝑟 on the feeder (if any), the walking 

time 𝐴𝑀𝑅𝑇 to access/egress the MRT station and the waiting time 𝑊𝑀𝑅𝑇  at the MRT station. 
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5.4 Spatial adaptivity of Adaptive Transit 

Figure 8 shows the optimal structure of the three transit schemes with reference to the peak and the 

off-peak hours, explaining the results previously discussed. Observe that the three schemes slightly 

differ in the central area (𝑥 < 𝑟), since in any case only MRT is deployed there. 

We observe that the optimal value of 𝑟 for the MRT-only scheme (Figure 8a-b) is considerably 

higher than the schemes adopting feeder services in the FMLM. In fact, the outermost MRT ring 

line should have a 9 km radius vs. a 5.5 km radius of both MRT-FRF (Figure 8c-d) and Adaptive 

Transit (Figure 8e-f). This ensures a wider double-coverage (ring and radial lines) area for MRT-

only, but it results, as already shown, in higher infrastructure-related cost. 

The difference between the three schemes is more pronounced in the suburban area. In Figure 8c 

one can see that deploying FRF services allows the transit agency to save on infrastructure cost (by 

increasing the spacing 𝑆𝑟(𝑥) between radial MRT lines) and also to halve the headway 𝐻(𝑥) of the 

MRT with respect to the MRT-only scheme. Moreover, the distance between MRT stations is higher 

in MRT-FRF than in MRT-only, because users can exploit the feeder service instead of walking. As 

one can note from Figure 8d, during off-peak hours MRT headway 𝐻(𝑥) is almost twice higher 

than during peak hours (Figure 8c), while feeder headway ℎ(𝑥) is reduced. Such an improvement in 

the frequency of the feeder service compensates the higher waiting time for the MRT during off-

peak and low-peak periods. 

Finally, Figure 8e and Figure 8f show the decision variables derived through the optimization 

process for peak and off-peak hours for the Adaptive Transit scheme. During peak hours, Adaptive 

Transit deploys FRF in the close suburbs, where the demand is sufficiently high, and relegates DRF 

only to the further periphery (𝑥 > 21 𝑘𝑚), where the feeder service sub-regions are slightly smaller 

compared to 𝑥 < 21 𝑘𝑚 (see the values of 𝑆𝑟(𝑥) and 𝑠(𝑥) in Figure 8(e)). Moreover, the DRF 

requires a lower headway ℎ(𝑥) to better accommodate the demand.  

Note that lower values of feeder headway ℎ(𝑥) do not imply a higher fleet size, since the number of 

operating vehicles depends also on the cycle length 𝐶𝐿𝐷𝑅𝐹(𝑥) (based on the number of requests to 

serve) and the size of the FMLM sub-regions.  
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Figure 8. Optimal decision variables for the transit schemes: MRT-only during (a) peak and (b) off-peak hours; 
MRT-FRF during (c) peak and (d) off-peak hours; Adaptive during (e) peak and (f) off-peak hours (for result 

interpretation; 𝑆𝑟(𝑥) = spacing between radial MRT lines; 𝑆𝑐(𝑥) = spacing between ring MRT lines; 𝑠(𝑥) = spacing 

between MRT stations along a radial line; 𝑠𝑐(𝑥) = spacing between MRT stations on a ring line; 𝐻(𝑥) = headway on 

MRT lines; ℎ(𝑥) = headway of the feeder services).  

(a) 

(c) 

(b) 

(d) 

(e) (f) 

Off-peak hours Peak hours 
M

R
T

-O
n

ly
 

M
R

T
-F

R
F

 
A

d
a
p
ti

ve
 



32 

 

Observe that, in all the schemes, MRT offer is richer where the demand density is high, i.e., the 

headway 𝐻(𝑥) and the radial line spacing 𝑆𝑟(𝑥) are smaller in the suburbs closer to the centre than 

in the furthest suburbs. This is also what we observe in real cities.  We also observe that the further 

we go from the centre, the more stop spacing 𝑠(𝑥) decreases. This trend is more evident in the peak 

hours, due to the fact that stop spacing strongly affects the commercial speed of MRT and, 

consequently, the total travel time of passengers. Since the demand density is higher close to the 

city centre, it is more convenient to have a faster service (with less stops) in those areas. 

It is important to remark how the structure of our adaptive structure changes over the time and 

space. It is worth highlighting how, for 𝑥 > 𝑟, due to the low demand density, Adaptive Transit 

deploys DRF outside the peak. Moreover, the spacing between MRT stations increases going from 

peak to off- and low-peak hours. We pinpoint that such variation should not be interpreted as an 

unreal modification of the infrastructure, but as an operational strategy consisting of “skipping” 

some stops in certain periods of the day, i.e., introducing an “express” service, serving only a subset 

of all the possible MRT stations, in order to offer faster connections. This shows that Adaptive 

Transit is able to vary the deployment of feeder services spatially, to adapt to the geographic 

demand gradient, and temporally, to adapt to the time-evolution of the demand. 

5.5 Effects of varying urban area size and value of time 

We now evaluate the overall cost under difference exogenous scenario parameters. In particular, we 

study the impact of the radius R of the city and the VoT for passengers (see Table 4 and Figure 9). 

Not surprisingly, the cost per passenger rises when the study area widens and if the VoT increases. 

It is instead more interesting to evaluate the “gain” in cost that we can achieve via Adaptive Transit, 

with respect to the MRT-FRF scheme: 

 𝐺𝑎𝑖𝑛 =
𝑍MRT-FRF
24ℎ  − 𝑍Adaptive

24ℎ

𝑍MRT-FRF
24ℎ  (23) 

where 𝑍MRT-FRF
24ℎ  and 𝑍Adaptive

24ℎ  are the respective optimal costs computed as in Equation 21. 

From Figure 9a, we notice that the gain of Adaptive Transit is consistent in all the scenarios. To 

better interpret the result, we also represent agency-related (Figure 9b) and user-related cost (Figure 

9c) separately. With low VoT (10 €/h) or small R (10 km) Adaptive Transit brings a modest 

increase of agency-related costs (~2%), but a significant reduction of user-related costs (from 6% to 

8%), which brings to a significant improvement of total cost. When considering higher values of 

VoT and R (VoT = 20 €/h and R > 30 km), instead, the optimal configuration of the Adaptive 

Transit leads to an increase of agency-related costs (~30%), which is larger than the decrease in 
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user-related costs (~12%). One reason is that Adaptive Transit, as already claimed, prevents access 

to MRT from degrading in suburban areas, by offering a demand-responsive feeder service with 

relatively high frequency. This may be inefficient when the areas to be served are too big (big R). 

Moreover, when VoT is very high, Adaptive Transit is inefficient in terms of agency-cost, in order 

to accommodate well users to minimize overall cost. 

Table 4. Cost gains (on daily basis) of the Adaptive scheme with respect to the MRT-FRF scheme for different 

combinations of city radius (R) and Value of Time (A). 

 
Total cost gain 

(%) 

Agency-related cost gain 

(%) 

User-related cost gain 

(%) 

R (km) 

VoT (€/h) 
10 15 20 10 15 20 10 15 20 

10 4.5 4.7 4.2 -2.0 -1.4 -1.8 7.0 6.8 6.1 

15 4.8 3.1 3.7 -1.7 -10.7 -6.5 7.2 7.4 6.6 

20 5.0 3.3 3.2 -1.8 -11.9 -13.3 7.5 8.0 7.6 

25 5.0 3.6 2.8 -1.9 -12.9 -24.1 7.7 8.7 10.1 

30 5.1 2.7 2.6 -2.1 -19.5 -29.3 7.9 9.8 11.6 

35 5.0 2.4 2.3 -2.2 -22.0 -31.6 7.9 10.4 12.1 

40 5.0 1.6 1.5 -2.5 -24.2 -32.6 8.0 10.2 11.8 

 

Figure 9. Cost gain (on daily basis) of the Adaptive scheme with respect to the MRT-FRF scheme for different 

combinations of city radius (R) and Value of Time (A), considering: (a) the total cost; (b) the agency-related costs; (c) 

the user-related costs (for result interpretation, the colours represent the different value ranges of the cost gain). 

Overall, these results confirm that Adaptive Transit is always more cost-effective than MRT-FRF in 

the different scenarios considered. The additional agency-cost are largely compensated by the 

reduction of user-cost. 
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5.6 Automated vehicles scenario 

In this section, we explore a future scenario where the transit services (both MRT and feeder) are 

provided via automated vehicles, which are expected to decrease operating cost. With respect to the 

non-automated scenario, we consider a reduced cruising speed (𝑣𝐹𝑅𝐹 , 𝑣𝐷𝑅𝐹 ) of 18 km/h for the 

feeder buses (see Tirachini and Antoniou (2020) in Section 5.1) and a dwell time per passenger 

(𝜏𝑝) of 3 s. We assume that the agency can save 50% of crew salaries, and not 100% since back-

office personnel and new safety devices in vehicles will be needed (Tirachini and Antoniou, 2020). 

Therefore, we set 𝜇𝑀,𝑀𝑅𝑇 = 100 €/veh h and 𝜇𝑀,𝐹𝑅𝐹  = 𝜇𝑀,𝐷𝑅𝐹  = 30 €/veh h (instead of the values in 

Table 3). While this section is a first attempt to evaluate the benefits of Adaptive Transit with 

automated vehicles, future work should analyse in more detail other important variables (e.g., 

willingness of passengers to use them) and operation conditions (e.g., road infrastructure, 

commercial speed, etc.), as well as the ratio between the drivers’ salary and the vehicle cost (see 

Tirachini and Antoniou (2020) – Tables 1 and 2). 

Figure 10 shows that Adaptive Transit tilts the balance towards the reduction of user-related cost, 

more noticeably with automation than without (walking cost 𝑍𝐴 reduced by 35% with respect to the 

MRT-FRF scheme, against the 27% reduction in the non-automated case). This is expected, since 

the operational cost reduction brought by automation allows the agency to deploy a more user-

centric service. This however results in increased capital cost to acquire more vehicles for that 

service (capital cost 𝑍𝑐𝑎𝑝 increases by 32% with respect to the MRT-FRF scheme in the automated 

case, against the 13% in the non-automated case). 

Comparing Figure 10 (automated case) with Figure 9 (non-automated case) we see that during peak 

hours DRF is deployed at shorter distance from the city centre and the headway of the feeder 

service is smaller. No remarkable differences appear during the off-peak. 

   

Figure 10. Results for the automated case: Total daily cost (left) and optimal decision variables for the Adaptive 

Transit scheme in the peak (centre) and off-peak (right). 
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6. Conclusion and future research 

We have presented the concept of Adaptive Transit, which combines fixed-route and demand-

responsive transportation and alternates between the two services in order to adapt to the spatial and 

temporal variation of the demand density. We provided a theoretical high-level model of Adaptive 

Transit based on Continuous Approximation, where the demand density and the decision variables 

defining the transit network are continuous functions across the space and vary over time. 

Numerical results on such a model show that Adaptive Transit tilts the balance of the overall costs 

in favour of user-centric components, while keeping the agency-related cost at a reasonable level, 

such that the total cost (the sum of the two) is improved. In particular, with respect to conventional 

transit (MRT-FRF scheme), Adaptive Transit: 

• Improves the user-related cost (-8.7%) but requires higher agency-related costs (+1.1%). 

The overall total cost is reduced (-3.6%). The cost savings are more pronounced during the 

off-peak (-7.2%) - see Section 5.2. These trends emerge even more clearly assuming 

automated vehicles (see Section 5.6). 

• Provides particular benefits to the far suburbs, reducing access time to MRT stations  

(-32.1% during the off-peak) – see Section 5.3. 

• Is particularly advantageous when the size of the study area and the users’ VoT are 

relatively small (total cost reduction between 4% and 5%) – see Section 5.5. 

An additional advantage, not considered in this work, may be the induced or latent demand due to 

the modal shift from car to transit, which would take place thanks to the improved service for 

passengers. 

To summarize, the novelty of this work is that it provides managerial insights on how to holistically 

optimize the design of a future transit system, able to combine fixed schedule and demand-

responsive operations in a single multi-modal service. In future work, we will systematically verify 

the impact of electrification and automation, which deeply modify the agency-related cost 

components. Also, we will extend the model considering more complex urban settings, such as a 

polycentric one. We believe the concept of Adaptive Transit can guide planning agencies in the 

deployment of more efficient next-generation transit systems. 
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Appendix A. Derivation of the cost components and constraints of the model 

The derivation of the cost components and constraints of the Continuous Approximation (CA) 

model is presented as follows. The abbreviations used throughout the paper are listed in Table A1. 

Table A2 lists the parameters and variables used in the model. 

Table A1. Acronyms used in this article 

CA Continuous Approximation 

DR Demand Responsive 

DRF Demand Responsive Feeder 

FMLM First Mile and Last Mile 

FR Fixed-Route 

FRF Fixed-Route Feeder 

MRT Mass Rapid Transit 

PT Public  Transit 

PVT Private Vehicle Trips 

QoS Quality of Service 

VKT Vehicle-Kilometres Travelled 

Table A2. Notation of the CA model’s variables and parameters 

Independent variables 

𝑥 ∈ [0, 𝑅] Radial distance from the centre (𝑥 = 0) of the urban area 

𝑡 ∈ 𝒯 Time of day. 

Input parameters 

𝑅 Radius of the metropolitan area 

𝜌0(𝑡) Demand density in the city centre during the time slot t 

𝜌(𝑥) Demand density at distance 𝑥 from the city centre (pax/km2 h) (Equation 5) 

𝛾 Slope of the Clark’s law (demand density distribution - Equation 5) 

𝑣𝑀𝑅𝑇 , 𝑣𝐹𝑅𝐹 , 𝑣𝐷𝑅𝐹 , 𝑣𝑤 Cruise speed of MRT, FRF, DRF; walking speed 

𝐶𝑀𝑅𝑇 , 𝐶𝐹𝑅𝐹 , 𝐶𝐷𝑅𝐹 Vehicle capacity 

𝜏𝑠,𝑀𝑅𝑇 , 𝜏𝑠,𝐹𝑅𝐹 , 𝜏𝑠,𝐷𝑅𝐹 Dwell time at MRT stations, FRF and DRF stops 

𝜏𝑝 Extra dwell time per passenger 

𝜇𝐴, 𝜇𝑊, 𝜇𝑇  VoT of the access, walking and in-vehicle travel time 

𝛿𝑡𝑟 Time penalty due to transfers 

𝜇𝐿,𝑀𝑅𝑇 , 𝜇𝐿;𝐹𝑅𝐹 , 𝜇𝐿,𝐷𝑅𝐹 Cost coefficients related to the infrastructure length 

𝜇𝑉,𝑀𝑅𝑇 , 𝜇𝑉;𝐹𝑅𝐹 , 𝜇𝑉,𝐷𝑅𝐹  Cost coefficients for the distance travelled by the vehicles 

𝜇𝑀,𝑀𝑅𝑇 , 𝜇𝑀;𝐹𝑅𝐹 , 𝜇𝑀,𝐷𝑅𝐹 Cost coefficients related to the fleet size 

𝑁(𝑥) Number of passengers in the infinitesimal annulus of radius x, 𝑁(𝑥) = 2𝜌(𝑥) ∙ (2𝜋𝑥) 

Local decision variables at location x 

θr(𝑥), 𝑆𝑟(𝑥) Angular and linear spacing between radial MRT lines 
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𝑆𝑐(𝑥) Spacing between ring MRT lines 

𝑠(𝑥) Spacing between stations along a radial MRT line 

𝜙(𝑥), sc(x) Angular and linear spacing between stations on a ring MRT line 

𝐻(𝑥) Headway on ring and radial MRT lines 

ℎ(𝑥) Headway of the feeder service in the suburban area 

𝑑𝑗(𝑥) 
Spacing between FRF stops if j = FRF, twice the maximum walking distance from 

the station if j = DRF 

ℱ(𝑥) Type of FMLM service, ℱ(x) ∈ {FRF, DRF, 0} 

𝑁𝑠(𝑥) Number of FMLM strips. 

Derived variables at location x 

𝕀𝑗(𝑥) Indicator function, it is 1 if ℱ(𝑥) = 𝑗, 0 otherwise 

𝐷(𝑥),𝐷 

Local decision functions  

𝐷(𝑥) = {θr(𝑥), 𝑆𝑐(𝑥), 𝑠(𝑥), 𝜙(𝑥), 𝐻(𝑥), ℎ(𝑥), 𝑑𝑗(𝑥), ℱ(𝑥)} 

𝐷 = {𝐷(𝑥)}𝑥∈[0,𝑅] 

𝑙(𝑥) Length of the FMLM rectangle (Equation 6) 

𝑤(𝑥) Width of one strip within the FMLM rectangle (Equation 6) 

𝐶𝐿𝑗(𝑥) Cycle length of the FMLM feeder of type j ∈ {FRF, DRF} 

𝐶𝑗(𝑥) Cycle time of the FMLM feeder of type j ∈ {FRF, DRF} 

Global decision variables 

𝑟 Radius of the central (double-coverage) area 

𝑄0 Maximum value of total radial flow of MRT vehicles, 𝑄0 = 𝑄(x=0) 

𝐻𝐵 Headway at the outermost ring line 𝐻𝐵 = 𝐻(𝑥 = 𝑟) 

𝐺 Global decision variables 𝐺 = (𝑟; 𝑄0; 𝐻𝐵) 

Output parameters 

𝑦𝐿,𝑗(𝑥), 𝑦𝑉,𝑗(𝑥), 𝑦𝑀,𝑗(𝑥) 
Agency local cost at distance x from the centre: infrastructure, vehicle-km and fleet 

costs, j ∈ {MRT, FRF, DRF} 

𝑦𝐴,𝑗(𝑥), 𝑦𝑊,𝑗(𝑥), 𝑦𝑇,𝑗(𝑥) 
Travel time components suffered by users at distance x from the city centre: walking, 

waiting and in-vehicle travel time, j ∈ {MRT, FRF, DRF} 

𝐹𝐿 , 𝐹𝑉 , 𝐹𝐴, 𝐹𝑊, 𝐹𝑇  Global cost components for agency and users. 

𝐷𝑒𝑚𝑜(𝑥),𝐷𝑒𝑚𝑑(𝑥), 𝐷𝑒𝑚 (𝑥) 
Number of trips originated (or destined) within rings of radii (𝑥, 𝑥 + 𝑑𝑥). We assume 

𝐷𝑒𝑚𝑜(𝑥) =  𝐷𝑒𝑚𝑑(𝑥) = 𝐷𝑒𝑚(𝑥)  

𝑃𝑜(𝑥), 𝑃𝑑(𝑥), 𝑃(𝑥) 
Probability for a trip to have origin (or destination) lying within rings of radii (𝑥, 𝑥 +

𝑑𝑥). We assume 𝑃𝑜(𝑥) =  𝑃𝑑(𝑥) = 𝑃(𝑥) (Equation A.1) 

𝐷𝐸𝑀 Total number of trips per hour in the study area (see Equation A.1). 

𝑣𝑐𝑟(𝑥), 𝑣𝑐𝑐(𝑥) Commercial speed on radial lines and ring lines at x (see Equation A.2). 

𝑄(𝑥) Radial flow of MRT vehicles (trains per hour) 

𝑂𝑗(𝑥) Average vehicle occupancy, 𝑗 ∈  {𝑀𝑅𝑇, 𝐷𝑅𝐹, 𝐹𝑅𝐹} 

𝑍(D,G,t) Total cost at time t (see Equation 16) 

𝑍24ℎ Total cost, over the entire day (see Equation 21)212121 
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The derivation procedure (in Appendices A1-A3) of the cost components for the MRT is based on 

Chen et al. (2015). We repeat the formulas, for clarity, but the reader who is familiar with the 

calculus in Chen et al. (2015) can skip them. The novel computation we need to model Adaptive 

Transit is concentrated in Appendices A4-A6. Also observe that, differently from Chen et al. 

(2015), we consider the same headway on ring and radial lines 𝐻𝑟(𝑥) = 𝐻𝑐(𝑥) = 𝐻(𝑥) and treat 

the spacing between radial 𝑠(𝑥) and ring 𝜙(𝑥) MRT stations as local decision variables, while in 

Chen et al. (2015) they do not change with x. Also, in this study we consider a symmetric demand 

pattern, so that 𝐷𝑒𝑚𝑜(𝑥) = 𝐷𝑒𝑚𝑑(𝑥) = 𝐷𝑒𝑚(𝑥) = 2𝜋𝑥 ∙ 𝜌(𝑥), and we obtain:  

 𝑃(𝑥) =
𝐷𝑒𝑚(𝑥)

𝐷𝐸𝑀
=

𝐷𝑒𝑚(𝑥)

∫ 𝐷𝑒𝑚(𝑦)𝑑𝑦
𝑅
0

  (A.1) 

As explained in Section 4.5, agency’s and user’s metrics are converted into cost density functions 

by means of a set of cost coefficients, in order to compute the total cost (per unit of time) as a linear 

combination of those metrics. We denote with 𝜇𝐿,𝑀𝑅𝑇  or 𝜇𝐿,𝐹𝑀𝐿𝑀  (€/km-h), 𝜇𝑉,𝑀𝑅𝑇  or 𝜇𝑉,𝐹𝑀𝐿𝑀  

(€/veh-km) and 𝜇𝑀,𝑀𝑅𝑇  or 𝜇𝑀,𝐹𝑀𝐿𝑀  (€/veh-h) the cost coefficients related to the agency metrics, for 

MRT and FMLM, respectively. Regarding the MRT, we also consider costs specifically related to 

the stations through a coefficient 𝜇𝑆𝑇  (€/station). 

 A.1 Derivation of operational outputs and constraints for the MRT 

MRT radial-line and ring-line commercial speed. Along the radial MRT line, the time needed to 

travel 1 unit of distance is 1/𝑣𝑀𝑅𝑇  plus the time spent at each station 𝜏𝑠,𝑀𝑅𝑇  for acceleration, 

deceleration, and boarding/alighting, multiplied by the number 
1

𝑠(𝑥)
 of stations in the unit of 

distance. Similar reasoning can be applied to MRT ring lines. The resulting speed on ring and radial 

lines is, respectively: 

𝑣𝑐𝑐(𝑥) = 1/ (
1

𝑣𝑀𝑅𝑇
+

𝜏𝑠,𝑀𝑅𝑇

𝑠(𝑥)
);   𝑣𝑐𝑟(𝑥) = 1/ (

1

𝑣𝑀𝑅𝑇
+

𝜏𝑠,𝑀𝑅𝑇

𝜙(𝑥)∙𝑥
) (A.2) 

Commercial speed on the boundary ring. As before, but considering the angle 𝜙𝐵 between stations 

on the outermost ring line, the speed on the boundary line (𝑥 = 𝑟) is as follows: 

𝑣𝑐𝐵 = 1/(
1

𝑣𝑀𝑅𝑇
+

𝜏𝑠,𝑀𝑅𝑇

𝜙𝐵∙𝑟
) .  (A.3) 

Vehicle capacity constraint. The expected maximum number of passengers on board a MRT vehicle 

is constrained to be less than the vehicle’s passenger-carrying capacity, i.e., 𝑂𝑀𝑅𝑇(𝑥) ≤ 𝐶𝑝𝑎𝑥,𝑀𝑅𝑇 . 

To better understand the derivation of the following formulas, the reader can refer to the scheme of 

Figure A1. Based on Section 4.3, passengers using ring lines are approximately those whose angle 

between origin and destination is less than 2 radians. The percentage of such passengers is 2 ∙
2 rad

2𝜋
= 2/𝜋. Therefore, for ring lines, the total number of passengers onboard all MRT vehicles on a 

ring line at x is: 𝑃𝑜(𝑥)∫ 𝑃𝑑(𝑦)𝑑𝑦
𝑅

𝑥
∙
2

𝜋
+ 𝑃𝑑(𝑥)∫ 𝑃𝑜(𝑦)𝑑𝑦

𝑅

𝑥
∙
2

𝜋
= 2(𝑃(𝑥)∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑥
) ∙

2

𝜋
 . Since the 

travelled angular distance along a ring line is comprised between 0 and 2 radians, the average 
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travelled distance is 1 radian, i.e., x km of linear travelled distance. Therefore, the ratio of the 

average trip length over the length of the ring line is: 𝑥/(2𝜋𝑥) = 1/(2𝜋). The flow of MRT 

vehicles through that ring in each direction is: 1/(𝑆𝑐(𝑥)𝐻(𝑥)) , which means 2/(𝑆𝑐(𝑥)𝐻(𝑥)) 

considering both directions. Hence (see Appendix 15 of Chen et al. (2015)): 

𝑂𝑀𝑅𝑇,𝑐(𝑥) = 2 (𝐷𝑒𝑚(𝑥)∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑥
) ∙

2

𝜋
∙
𝑆𝑐(𝑥)𝐻(𝑥)

2

1

2𝜋
= (𝐷𝑒𝑚(𝑥)∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑥
) ∙

2

𝜋
∙
𝑆𝑐(𝑥)𝐻(𝑥)

2𝜋
,  

if 𝑥 < 𝑟.  (A.4) 

Observe that for 𝑥 > 𝑟 there are no ring MRT lines. 

As for radial lines, note that the users travelling along radial MRT lines crossing ring at 𝑥 < 𝑟 are: 

• The users departing from 𝑦 > 𝑥 and arriving at 𝑦 < 𝑥 and whose angle between origin and 

destination is less than 2 radians. The percentage of such users is ∫ 𝑃𝑜(𝑦)𝑑𝑦
𝑅

𝑥
∫ 𝑃𝑑(𝑦)𝑑𝑦
𝑥

0
∙

2

𝜋
. 

• The users departing from 𝑦 < 𝑥 and arriving at 𝑦 > 𝑥 and whose angle between origin and 

destination is less than 2 radians. The percentage of such users is ∫ 𝑃𝑑(𝑦)𝑑𝑦
𝑅

𝑥
∫ 𝑃𝑜(𝑦)𝑑𝑦
𝑥

0
∙

2

𝜋
. 

• The users departing from 𝑦 > 𝑥 and whose angle between origin and destination is more 

than 2 radians (independent of the ring where the destination is). 

• The users arriving to 𝑦 > 𝑥 and whose angle between origin and destination is more than 2 

radians (independent of the ring where the origin is). 

Therefore, we obtain (see Appendix A15 of Chen et al. (2015)): 

𝑂𝑀𝑅𝑇,𝑟(𝑥)  

=  𝐷𝐸𝑀 ∙ (∫ 𝑃𝑜(𝑦)𝑑𝑦
𝑅

𝑥
∫ 𝑃𝑑(𝑦)𝑑𝑦
𝑥

0
∙
2

𝜋
+ ∫ 𝑃𝑜(𝑦)𝑑𝑦

𝑅

𝑥
∙ (1 −

2

𝜋
) + ∫ 𝑃𝑑(𝑦)𝑑𝑦

𝑅

𝑥
∫ 𝑃𝑜(𝑦)𝑑𝑦
𝑥

0
∙
2

𝜋
+

∫ 𝑃𝑑(𝑦)𝑑𝑦
𝑅

𝑥
∙ (1 −

2

𝜋
)) ∙

𝜃𝑟(𝑥)𝐻(𝑥)

2
∙
1

2𝜋
  

= 𝐷𝐸𝑀 ∙ (∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑥
∫ 𝑃(𝑦)𝑑𝑦
𝑥

0
∙
2

𝜋
+ ∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑥
∙ (1 −

2

𝜋
)) ∙

𝜃𝑟(𝑥)𝐻(𝑥)

2𝜋
,   if 𝑥 < 𝑟. (A.5) 

Instead, users travelling along radial MRT lines crossing ring at 𝑥 > 𝑟 are only those departing or 

arriving at distance 𝑦 > 𝑥: 

𝑂𝑀𝑅𝑇,𝑟(𝑥) =  𝐷𝐸𝑀 ∙ (∫ 𝑃𝑜(𝑦)𝑑𝑦
𝑅

𝑥
+ ∫ 𝑃𝑑(𝑦)𝑑𝑦

𝑅

𝑥
) ∙

𝑆𝑐(𝑥)𝐻(𝑥)

2
∙
1

2𝜋
= 𝐷𝐸𝑀 ∙ (∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑥
) ∙

𝑆𝑐(𝑥)𝐻(𝑥)

2𝜋

  if 𝑥 > 𝑟. (A.6) 

Vehicle capacity constraint on the boundary ring. Similarly, the vehicle’s passenger-carrying 

capacity constraint for the boundary MRT line is: 𝑂𝐵 ≤ 𝐶𝑝𝑎𝑥,𝑀𝑅𝑇 . Hence: 

𝑂𝐵 =  𝐷𝐸𝑀 ∙ (∫ 𝑃(𝑦)𝑑𝑦 ∙ ∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑥

𝑅

𝑥
) ∙

2

𝜋
∙
𝐻𝐵/2

2𝜋
. (A.7) 
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A.2 Derivation of the agency-related cost components for the MRT 

The cost components related to the transit agency depend on: 

• Infrastructure length L (km), i.e., the construction and maintenance costs. For the MRT we 

also include an additional unit cost component related to stations. 

• Total distance V (veh km/h) travelled by the vehicles per unit of time, i.e., the operational 

costs. 

• Size M (veh) of the vehicle fleet, i.e., the capital cost for vehicle ownership and crew costs. 

Local cost for the length of MRT lines. Consider the area between two rings of radii 𝑥 and 𝑥 + 𝑑𝑥, 

which is equal to 2𝜋𝑥 ∙ 𝑑𝑥. The length of the MRT radial lines within the ring pair is 2𝜋/𝜃𝑟(𝑥)  ∙

𝑑𝑥. The length of the ring lines is instead 2𝜋𝑥/𝑆𝑐(𝑥) ∙ 𝑑𝑥 (recall that they only exist in 𝑥 ≤ 𝑟). The 

local cost is given by the length of the MRT lines in the area divided by the area width 𝑑𝑥; that is: 

𝑌𝐿(𝑥) =
2𝜋

𝜃𝑟(𝑥)
+

2𝜋𝑥

𝑆𝑐(𝑥)
 if 𝑥 < 𝑟; 𝑌𝐿(𝑥) =

2𝜋

𝜃𝑟(𝑥)
, if 𝑥 > 𝑟. 

Local cost for the vehicle-distance travelled per hour. It is obtained by multiplying the local cost for 

the length of ring-lines and radial-lines with their corresponding transit flows, i.e., 1/𝐻(𝑥) , 

multiplied by 2 due to the bi-directional travel flows on each line; that is: 

𝑌𝑉(𝑥) =
4𝜋

𝜃𝑟(𝑥)𝐻(𝑥)
+

4𝜋𝑥

𝑆𝑐(𝑥)𝐻(𝑥)
 if 𝑥 < 𝑟; 𝑌𝑉(𝑥) =

4𝜋

𝜃𝑟(𝑥)𝐻(𝑥)
, if 𝑥 > 𝑟. 

Global cost for the vehicle-distance travelled per hour. Global costs refer only to the outermost 

(boundary) ring line, hence: 

𝐹𝑉 =
4𝜋𝑟

HB
. 

Local cost for the fleet size. It is given by the ratio between the vehicle-distance travelled per hour 

and the commercial speed, that is (see Appendix A3 of Chen et al. (2015): 

𝑌𝑀(𝑥) =
4𝜋

𝜃𝑟(𝑥)𝐻(𝑥)𝑣𝑐𝑟(𝑥)
+

4𝜋𝑥

𝑆𝑐(𝑥)𝐻(𝑥)𝑣𝑐𝑐(𝑥)
 if 𝑥 < 𝑟; 𝑌𝑀(𝑥) =

4𝜋

𝜃𝑟(𝑥)𝐻(𝑥)𝑣𝑐𝑟(𝑥)
, if 𝑥 > 𝑟. 

Global cost for the fleet size. As before: 

𝐹𝑀 =
4𝜋𝑟

HB𝑣𝑐𝐵
. 

Note that 𝑌𝑀(𝑥) and 𝐹𝑀 are calculated considering the decision variable values of the peak hours. 

We do so, as the agency must dimension its fleet to peak hours. 

A.3 Derivation of the user-related cost components for the MRT 

The cost components related to the users of the transit system depend on: 

• Walking time A to reach the bus stop or the MRT station or the destination. 
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• Waiting time W at the bus stop or the MRT station. 

• In-vehicle travel time T including boarding, riding, dwell and alighting time. 

• Transfers: since any possible transfer between different transit lines is an additional 

disutility, we treat it as a penalty of the extra walking time Δ𝐴. 

To derive the user-related cost components, we consider nine different cases of trip changes, as 

depicted in Figure A1. Observe that these cases depend on where origin and destination are 

(suburbs or centre) and the angle Θ between origin and destination.  

Global cost for the transfers between MRT lines.  

This computation is based on the one of Chen et al. (2015), appendix A.14. 

We assume the convention in the literature (e.g., Badia et al., 2014) and we assume that during their 

trips travellers aim to minimize the distance. In order to do so, they: 

• Transfer once when either the origin or the destination is in the centre (cases (b),(c),(e),(f)) 

and when both origin and destination are in the periphery and the angle between them is 

𝛩 ≥ 2 rad (case (a)). 

• Transfer twice when origin and destination both lie in the periphery and the angle between 

them Θ < 2 rad (case (d)) 

• Do not transfer, when the closest line to both origin and destination is the same, which 

happens when Θ1 ≤ 𝜃𝑟,𝑚𝑖𝑛 = min
𝑥∈[0,𝑅]

𝜃𝑟(𝑥) or when the closest ring line between origin and 

destination is the same, which happens when |𝑥 − 𝑦| < 𝑆𝑐(𝑥)/2 , where x and y are the 

rings where the origin and the destination lie, respectively. The cases without transfer are 

(g)-(i).  

Observe that the probability for any trip to have no transfers is Pr(no transfers) =
𝜃𝑟,𝑚𝑖𝑛

2𝜋
. The 

probability to have both origin and destination in the periphery is ∫ 𝑃0(𝑦) ∙ 𝑑𝑦 ∙
𝑅

𝑟
∫ 𝑃𝑑(𝑦) ∙ 𝑑𝑦
𝑅

𝑟
   and 

the probability for the angle between them to be 𝜃 < 2 rad is  
2

𝜋
. Therefore, the probability for any 

trip to have two transfers is Pr(2 transfers) = (
2

𝜋
−

𝜃𝑟,𝑚𝑖𝑛

2𝜋
) ∙ ∫ 𝑃0(𝑦) ∙ 𝑑𝑦 ∙

𝑅

𝑟
∫ 𝑃𝑑(𝑦) ∙ 𝑑𝑦
𝑅

𝑟
. 

Therefore, by simple calculation13, the average expected number of transfers can be approximated 

by: 

𝐹𝐴 = 1+ ∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑟
∙ ∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑟
∙ (

2

𝜋
−

𝜃𝑟,𝑚𝑖𝑛

𝜋
). 

Local cost for the passenger average walk time to/from MRT. 

This computation is based on the one of Chen et al. (2015), appendix A.8. 

 
13 Our calculation is similar to Appendix A.14 of Chen et al. (2015), except that we also allow travellers to have no 

transfers (see Figure 3a and the related comment). 
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Cases (a) and (g): 𝑌𝐴(𝑥) = 2 ∙ 𝐷𝑒𝑚(𝑥)∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑟
∙ (

𝜃𝑟(𝑥)𝑥

4
+

𝑠

4
) /𝑣𝑤 ∙ (1 −

2

𝜋
), if 𝑥 > 𝑟. 

Cases (b) and (h): 𝑌𝐴(𝑥) = {
2 ∙ 𝐷𝑒𝑚(𝑥)∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑟
∙ (

𝜃𝑟(𝑥)𝑥

4
+

𝑠

4
) /𝑣𝑤 ∙ (1 −

2

𝜋
) , if 𝑥 < 𝑟 

2 ∙ 𝐷𝑒𝑚(𝑥)∫ 𝑃(𝑦)𝑑𝑦
𝑟

0
∙ (

𝜃𝑟(𝑥)𝑥

4
+

𝑠

4
) /𝑣𝑤 ∙ (1 −

2

𝜋
) , if 𝑥 > 𝑟.

 

Cases (c) and (i): 𝑌𝐴(𝑥) = 2 ∙ 𝐷𝑒𝑚(𝑥)∫ 𝑃(𝑦)𝑑𝑦
𝑟

0
∙ (

𝜃𝑟(𝑥)𝑥

4
+

𝑠

4
) /𝑣𝑤 ∙ (1 −

2

𝜋
) , if 𝑥 < 𝑟. 

Case (d): 𝑌𝐴(𝑥) = 2 ∙ 𝐷𝑒𝑚(𝑥)∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑟
∙ (

𝜃𝑟(𝑥)𝑥

4
+

𝑠

4
) /𝑣𝑤 ∙

2

𝜋
, if 𝑥 > 𝑟. 

Cases (e): 𝑌𝐴(𝑥) = {
2 ∙ 𝐷𝑒𝑚(𝑥)∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑟
∙ (

𝜙(𝑥)𝑥

4
+

𝑆𝑐

4
) /𝑣𝑤 ∙

2

𝜋
, if 𝑥 < 𝑟 

2 ∙ 𝐷𝑒𝑚(𝑥)∫ 𝑃(𝑦)𝑑𝑦
𝑟

0
∙ (

𝜃𝑟(𝑥)𝑥

4
+

𝑠

4
) /𝑣𝑤 ∙

2

𝜋
, if 𝑥 > 𝑟.

 

Case (f): 𝑌𝐴(𝑥) = 2 ∙ 𝐷𝑒𝑚(𝑥)∫ 𝑃(𝑦)𝑑𝑦
𝑟

𝑥
∙ (

𝜙(𝑥)𝑥

4
+

𝑆𝑐

4
) /𝑣𝑤 ∙

2

𝜋
+ 2 ∙ 𝐷𝑒𝑚(𝑥) ∫ 𝑃(𝑦)𝑑𝑦

𝑥

0
∙

(
𝜃𝑟(𝑥)𝑥

4
+

𝑠

4
) /𝑣𝑤 ∙

2

𝜋
 , if 𝑥 < 𝑟. 

If we sum up these components (Cases (a)-(i)) we obtain: 

𝑌𝐴(𝑥) =

{
 
 

 
 2 ∙ 𝐷𝑒𝑚(𝑥) ∙ [∫ 𝑃(𝑦)𝑑𝑦

𝑥

0

∙ (
𝜃𝑟(𝑥)𝑥

4
+
𝑠

4
) /𝑣𝑤 +∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑥

∙ (
𝜙(𝑥)𝑥

4
+
𝑆𝑐
4
) /𝑣𝑤] , if 𝑥 < 𝑟 

2 ∙ 𝐷𝑒𝑚(𝑥) ∙ (
𝜃𝑟(𝑥)𝑥

4
+
𝑠

4
)/𝑣𝑤 ,                                                                                             if 𝑥 > 𝑟.
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Figure A1. Different cases of trips for the derivation of user-related cost components. 

Local cost for the passenger average waiting time.  

This computation is based on the one of Chen et al. (2015), appendix A.6. 

Case (a): 𝑌𝑊(𝑥) = 2 ∙ 𝐷𝑒𝑚(𝑥)∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑟
∙
𝐻(𝑥)

2
∙ (1 −

2

𝜋
), if 𝑥 > 𝑟. 

Case (b): 𝑌𝑊(𝑥) = {
2 ∙ 𝐷𝑒𝑚(𝑥)∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑟
∙
𝐻(𝑥)

2
∙ (1 −

2

𝜋
) , if 𝑥 < 𝑟 

2 ∙ 𝐷𝑒𝑚(𝑥)∫ 𝑃(𝑦)𝑑𝑦
𝑟

0
∙
𝐻(𝑥)

2
∙ (1 −

2

𝜋
) , if 𝑥 > 𝑟.

 

Case (c): 𝑌𝑊(𝑥) = 2 ∙ 𝐷𝑒𝑚(𝑥)∫ 𝑃(𝑦)𝑑𝑦
𝑟

0
∙
𝐻(𝑥)

2
∙ (1 −

2

𝜋
), if 𝑥 < 𝑟. 

Case (d): 𝑌𝑊(𝑥) = 2 ∙ 𝐷𝑒𝑚(𝑥)∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑟
∙
𝐻(𝑥)

2
∙
2

𝜋
, if 𝑥 > 𝑟. 
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Case (e): 𝑌𝑊(𝑥) = {
2 ∙ 𝐷𝑒𝑚(𝑥)∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑟
∙
𝐻(𝑥)

2
∙
2

𝜋
, if 𝑥 < 𝑟 

2 ∙ 𝐷𝑒𝑚(𝑥)∫ 𝑃(𝑦)𝑑𝑦
𝑟

0
∙
𝐻(𝑥)

2
∙
2

𝜋
, if 𝑥 > 𝑟.

 

Case (f): 𝑌𝑊(𝑥) = 2 ∙ 𝐷𝑒𝑚(𝑥)∫ 𝑃(𝑦)𝑑𝑦
𝑟

0
∙
𝐻(𝑥)

2
∙
2

𝜋
, if 𝑥 < 𝑟. 

The following cases account for those trips which do not require transfers between MRT lines. 

Therefore, they should be subtracted from the total value of 𝑌𝑊(𝑥). 

Cases (g), (h) and (i): 𝑌𝑊(𝑥) = {
2 ∙ 𝐷𝑒𝑚(𝑥)∫ 𝑃(𝑦)𝑑𝑦

𝑥

0
∙
𝐻(𝑥)

2
∙
𝜃𝑟(𝑥)

𝜋
, if 𝑥 < 𝑟 

2 ∙ 𝐷𝑒𝑚(𝑥)∫ 𝑃(𝑦)𝑑𝑦
𝑥+𝑠/2

𝑥−𝑠/2
∙
𝐻(𝑥)

2
∙
𝜃𝑟(𝑥)

𝜋
, if 𝑥 > 𝑟.

 

If we sum up Cases (a-g) and subtract Cases (g-i) we obtain: 

𝑌𝑊(𝑥) = {
2 ∙ 𝐷𝑒𝑚(𝑥) ∙ [1 − (∫ 𝑃(𝑦)𝑑𝑦

𝑥

0
) ∙

𝜃𝑟(𝑥)

𝜋
] ∙

𝐻(𝑥)

2
,                                if 𝑥 < 𝑟 

2 ∙ 𝐷𝑒𝑚(𝑥) ∙ [1 − (∫ 𝑃(𝑦)𝑑𝑦
𝑥

0
+ ∫ 𝑃(𝑦)𝑑𝑦

𝑥+𝑠/2

𝑥−𝑠/2
) ∙

𝜃𝑟(𝑥)

𝜋
] ∙

𝐻(𝑥)

2
, if 𝑥 > 𝑟.

. 

Global cost for the passenger average waiting time.  

This computation is based on the one of Chen et al. (2015), appendix A.7. 

We only consider the cost that occurs at the outermost ring line, for case (d), excluding the limited 

portion of trips which do not involve any transfer: 

𝐹𝑊 = 𝐷𝐸𝑀 ∙ ∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑟
∙ ∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑟
∙
𝐻𝐵

2
∙ (

2

𝜋
−

𝜃𝑟,𝑚𝑖𝑛

𝜋
). 

Local cost for the passenger average in-vehicle travel time.  

This computation is based on the one of Chen et al. (2015), appendix A.12. 

We consider the annulus (𝑥, 𝑥 + 𝑑𝑥). We obtain the in-vehicle travel time on each annulus 

weighted by the proportion of users who travel along it and who cross it. Then, the in-vehicle travel 

time on that annulus by its width 𝑑𝑥.  

Cases (a), (b) and (c): 𝑌𝑇(𝑥) = 𝐷𝐸𝑀 ∙ 2∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑥
∙

1

𝑣𝑐𝑟(𝑥)
∙ (1 −

2

𝜋
), ∀𝑥 

Case (d): 𝑌𝑇(𝑥) = 𝐷𝐸𝑀 ∙ 2∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑥
∙

1

𝑣𝑐𝑟(𝑥)
∙
2

𝜋
, if 𝑥 > 𝑟. 

Cases (e) and (f): 𝑌𝑇(𝑥) = 𝐷𝐸𝑀 ∙ 2∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑥
∙ ∫ 𝑃(𝑦)𝑑𝑦

𝑥

0
∙

1

𝑣𝑐𝑟(𝑥)
∙
2

𝜋
+ 2 ∙ 𝐷𝑒𝑚(𝑥) ∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑥
∙

𝑥

𝑣𝑐𝑐(𝑥)
∙
2

𝜋
, if 𝑥 < 𝑟 

The following cases account for those trips which do not require transfers between MRT lines. 

Therefore, they should be subtracted from the total value of 𝑦𝑇,𝑀𝑅𝑇(𝑥). 
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Case (g): 𝑌𝑇(𝑥) = 𝐷𝐸𝑀 ∙ 2∫ 𝑃(𝑦)𝑑𝑦
𝑥+

𝑠

2

𝑥+
𝑠

2

∙ ∫ 𝑃(𝑦)𝑑𝑦
𝑥+

𝑠

2

𝑥+
𝑠

2

∙
1

𝑣𝑐𝑟(𝑥)
∙
𝜃𝑟(𝑥)

𝜋
, if 𝑥 > 𝑟. 

Case (h): 𝑌𝑇(𝑥) = 𝐷𝐸𝑀 ∙ 2∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑥
∙ ∫ 𝑃(𝑦)𝑑𝑦

𝑥

0
∙

1

𝑣𝑐𝑟(𝑥)
∙
𝜃𝑟(𝑥)

𝜋
, if 𝑥 > 𝑟. 

If we sum up Cases (a-g) and subtract Cases (g-h) we obtain the local cost 𝑌𝑇(𝑥). 

Global cost for the passenger average in-vehicle travel time.  

This computation is based on the one of Chen et al. (2015), appendix A.13. 

We consider the in-vehicle travel time along the boundary ring line: 

𝐹𝑇 = 𝐷𝐸𝑀 ∙ ∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑟
∙ ∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑟
∙
𝑟

𝑣𝑐𝐵
∙ (

2

𝜋
−

𝜃𝑟,𝑚𝑖𝑛

𝜋
). 

A.4 Derivation of the agency-related cost components for the FMLM 

We now compute the agency-related cost for FMLM. Recall that it is defined only for 𝑥 > 𝑟. The 

number of lines crossing the ring at x is 2𝜋/𝜃𝑟(𝑥). At any x, each line is adjacent to two FLML 

areas (see Figure 2). Therefore, the number of FLML sub-regions along the ring at x is 𝑠𝑎(𝑥) =

2𝜋/(𝜃𝑟(𝑥)/2). Each FMLM sub-region is divided in 𝑁𝑠(𝑥) strips and has a width of 𝑠(𝑥). We 

assume that the infrastructure cost at distance 𝑥  does not depend on whether FRF or DFR is 

deployed there. Therefore, considering the length of the two-way FRF bus infrastructure 

(𝐶𝐿𝐹𝑅𝐹(𝑥)/2, as in Equation 7): 

 𝑦𝐿(𝑥) = 𝑁𝑠(𝑥) ∙
𝐶𝐿𝐹𝑅𝐹(𝑥) 2⁄

𝑠(𝑥)
∙ 𝑠𝑎(𝑥) 

We need to do a distinction for 𝑦𝑉(𝑥) and 𝑦𝑀(𝑥), in which the cycle length 𝐶𝐿𝑗(𝑥) and the cycle 

time 𝐶𝑗(𝑥) appear, which are different for FRF and DRF (see Equations 7;9;12;13). The vehicle-

distance travelled per hour is obtained by multiplying the cycle length, per unit of distance, 

𝐶𝐿𝑗(𝑥)/𝑠(𝑥) by their corresponding vehicle frequency 1/ℎ(𝑥): 

 𝑦𝑉(𝑥) = ∑ 𝑁𝑠(𝑥) ∙
𝐶𝐿𝑗(𝑥)

𝑠(𝑥)∙ℎ(𝑥)
∙ 𝑠𝑎(𝑥) ∙ 𝕀𝐹𝑅𝐹(𝑥)𝑗={𝐹𝑅𝐹,𝐷𝑅𝐹}  

The cost of fleet size is derived from the number of vehicles 𝐶𝑗/(𝑠(𝑥) ∙ ℎ(𝑥)) needed to ensure the 

feeder service:  

 𝑦𝑀(𝑥) = ∑ 𝑁𝑠(𝑥) ∙
𝐶𝑗(𝑥)

𝑠(𝑥)∙ℎ(𝑥)
∙ 𝑠𝑎(𝑥)𝑗={𝐹𝑅𝐹,𝐷𝑅𝐹}   

In the equations above, sa(x) multiplies on the left the cost (per distance unit) related to a single 

service sub-region. 
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A.5 Derivation of the user-related cost components for the FMLM 

Let us denote with the walking speed with 𝑣𝑤 and the number of passengers in the infinitesimal 

annulus of radius x with: 

 𝑁(𝑥) =  2 𝜌(𝑥) ∙ (2𝜋𝑥)  

Note that a percentage 𝑝𝑤𝑎𝑙𝑘(𝑥) = 𝑝{𝑤𝑎𝑙𝑘,𝐹𝑅𝐹}(𝑥) ∙ 𝕀𝐹𝑅𝐹(𝑥) + 𝑝{𝑤𝑎𝑙𝑘,𝐷𝑅𝐹}(𝑥) ∙ 𝕀𝐷𝑅𝐹(𝑥)  (see 

equations 8;11) of passengers does not use the feeder service as they reside in the walking area (so 

they prefer to walk directly to MRT). Then, the total time components suffered by users at x in the 

FMLM are expressed as follows. FRF passengers walk to the closest stop (feeder stop or directly 

MRT station). According to Equation 8, the average walk distance is 𝑠(𝑥)/4 +  𝑑(𝑥)/4. DRF 

passengers are picked-up and dropped-off in-place, without walking. Only the users within the 

walking area (the grey triangle in Figure 4), i.e., a fraction 𝑝𝑤𝑎𝑙𝑘,𝐷𝑅𝐹(𝑥), walk to/from the MRT 

station an average distance of (2/3) 𝑑0,𝐷𝑅𝐹(𝑥). This value is derived computing the mean of the 

horizontal and vertical distance from the MRT station, weighted by the demand density. Therefore, 

in the x where a feeder is deployed, the local cost for walking to access the feeder (or directly MRT) 

is: 

 𝑦𝐴,𝑗(𝑥) = {
𝑁(𝑥) ∙

𝑠(𝑥)+𝑑(𝑥)

4 𝑣𝑤
                         𝑎𝑛𝑑   if 𝑗 = FRF

𝑁(𝑥) ∙ 𝑝𝑤𝑎𝑙𝑘,𝐷𝑅𝐹(𝑥) ∙
2/3 𝑑0,𝐷𝑅𝐹(𝑥)

4 𝑣𝑤
    if 𝑗 = DRF 

        

The average waiting time for the feeder service and the in-vehicle travel time inside the feeder bus 

are as follows. Note that they are not experienced by passengers directly walking to the MRT 

station, whence the term (1 − 𝑝𝑤𝑎𝑙𝑘,𝑗(𝑥)). Assuming that the average waiting time for both feeder 

services is given by the half of the headway ℎ(𝑥), the local cost for the feeder waiting time is: 

 𝑦𝑊,𝑗(𝑥) = 𝑁(𝑥) ∙ (1 − 𝑝𝑤𝑎𝑙𝑘,𝑗(𝑥)) ∙
ℎ(𝑥)

2
     if  𝑗 ∈ {𝐹𝑅𝐹, 𝐷𝑅𝐹}   

The average in-vehicle travel time for the FRF case is given by 𝐶𝐹𝑅𝐹/4 + (Δ𝑙(𝑥) + 𝑑(𝑥)/2)/𝑣𝐹𝑅𝐹. 

We recall that Δ𝑙(𝑥) is the average extra vertical distance (see Figure 4) which the FRF has to travel 

due to the different position of the strips with respect to the MRT station they serve, that we 

approximate to 𝑠(𝑥)/4 if 𝑁𝑠(𝑥) > 1, and 0, otherwise. For the DRF case, the average in-vehicle 

travel time is given by 𝐶𝐷𝑅𝐹/4 + Δ𝑙(𝑥)/𝑣𝐷𝑅𝐹 . The local cost for the feeder in-vehicle travel time is: 

𝑦𝑇,𝑗(𝑥) = {
𝑁(𝑥) ∙ (1 − 𝑝𝑤𝑎𝑙𝑘,𝐹𝑅𝐹) ∙ [

𝐶𝐹𝑅𝐹

4
+

(Δ𝑙(𝑥)+
𝑑(𝑥)

2
)

𝑣𝐹𝑅𝐹
]        if 𝑗 = FRF

𝑁(𝑥) ∙ (1 − 𝑝𝑤𝑎𝑙𝑘,𝐷𝑅𝐹) ∙ [
𝐶𝐷𝑅𝐹

4
+

Δ𝑙(𝑥)

𝑣𝐷𝑅𝐹
]                    if 𝑗 = DRF 

   

We can summarize the formulas above, for any FMLM feeder type, by using indicator functions. 
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 𝑦𝐴(𝑥) = ∑  𝕀𝑗(𝑥)𝑗∈{𝐹𝑅𝐹,𝐷𝑅𝐹} ∙ 𝑦𝐴,𝑗(𝑥)    

 𝑦𝑊(𝑥) = ∑  𝕀𝑗(𝑥)𝑗∈{𝐹𝑅𝐹,𝐷𝑅𝐹} ∙ 𝑦𝑊,𝑗(𝑥)   

 𝑦𝑇(𝑥) = ∑  𝕀𝑗(𝑥)𝑗∈{𝐹𝑅𝐹,𝐷𝑅𝐹} ∙ 𝑦𝑇,𝑗(𝑥) .  

A.6 Derivation operational constraints for the FMLM 

Vehicle capacity constraint. The expected maximum number of passengers on board a FRF or a 

DRF vehicle is constrained to be less than the vehicle’s passenger-carrying capacity, i.e., 𝑂𝑗(𝑥) ≤

𝐶𝑝𝑎𝑥,𝑗, 𝑗 ∈ {𝐹𝑅𝐹, 𝐷𝑅𝐹}. The demand originated in one unit of time within a strip of a FMLM sub-

region is 𝜌(𝑥) ∙ 𝑤(𝑥) ∙ 𝑙(𝑥). Of these passengers, only a fraction 1 − 𝑝walk,𝑗(𝑥) takes the feeder bus. 

The number of buses in a unit of time is 
1

ℎ(𝑥)
. Therefore, the number of passengers per feeder 

vehicle is 

𝑂𝑗(𝑥) = 𝜌(𝑥) ∙ 𝑤(𝑥) ∙ 𝑙(𝑥) ∙ (1 − 𝑝walk,𝑗(𝑥)) ∙ ℎ(𝑥) , if 𝑥 > 𝑟. (A.8) 

Appendix B. Agent-based simulation of a small-scale scenario 

The methodology adopted throughout this paper is Continuous Approximation (CA). CA allows 

obtaining managerial insights on the impact of different design parameters on the overall 

performance of transit and the trade-offs involved. Therefore, it is a useful high-level tool for 

transportation planners. However, the CA model of transit is abstract and it is not easy to translate it 

to a real deployment. In reality, transit lines cannot be as symmetric as assumed in our CA model. 

Moreover, the assumption of representing demand via a density function is highly idealized, since 

the real demand results from the behaviour of different individual travellers. 

To study the benefits of Adaptive Transit removing such idealizations, we resort in this appendix to 

Agent-Based Modelling. However, studying Adaptive Transit in the same large-scale scenarios 

targeted with CA would require huge computational effort, which is out of the scope of this paper 

and would deserve a separate article. We instead focus on a small case scenario, in which we 

confirm that the concept of Adaptive Transit, i.e., appropriately shifting bus operating regimen 

between fixed-route and demand-responsive, greatly reduces user-related costs, while preventing 

agency-related cost from exploding. 

B.1 Simulation scenarios 

We simulate three hypothetical scenarios (labelled as SC0, SC1, SC2) on a prototypical urban 

network as follows: 



49 

 

• Scenario SC0 represents the baseline scenario involving fixed route (FR) transit and private 

modes; in particular, the following modes are available to travellers: private modes 

(including car, car-pooling, taxi) and public transit, i.e., FR bus or MRT or the combination 

of the two, with walk access. 

• In scenario SC1, there are no FR buses. Transit users access MRT either by walking or via 

demand-responsive feeder (DRF) buses, directly from their doorsteps. 

• In scenario SC2, Adaptive Transit is introduced, which operates the FR buses during the 

peak (when higher capacity vehicles are required) and DRF services during the off-peak. In 

other words, SC2 is equal to SC0 during the peak and to SC1 during the off-peak. 

We utilize an agent-based traffic simulation platform (called SimMobility Mid-term) that models 

individual daily activity patterns through an activity-based model (ABM) system (Ben-Akiva et al., 

1996) and simulates the trajectories of vehicles and passengers on a multimodal network using a 

mesoscopic traffic simulator (combining the speed density relationships with a queuing model). 

Details may be found in Adnan et al. (2016), Lu et al. (2015). Recently, SimMobility has been 

enhanced with a controller that models the fleet operations of demand-responsive services (i.e., 

Shared AV taxi (Oh et al., 2020a), Minibus service (Oh et al., 2020b)). 

Observe that in this appendix we do not want to mimic exactly the scenarios of the main paper 

(Section 3.2), as in any case a strict comparison between the results of CA and simulation would not 

be useful, due to the enormous difference in the scale of the scenarios considered. This appendix 

has thus to be considered as a separate small-scale study to confirm, from another angle, the 

potential benefits of the concept of Adaptive Transit. 

B.2 Simulation settings 

The three scenarios are compared in a prototypical urban network, which is moderately sized and 

consists of land use patterns and household socio-demographics that resemble Singapore in small 

scale. The synthetic population consists of 350,000 individuals distributed over the geographical 

region shown in Figure B1a. Details of the synthesis of this prototypical network are available in 

Zhu and Ferreira (2014) and Basu and Ferreira (2021). The network consists of 95 nodes connected 

by 254 links across 24 traffic analysis zones. There are 12 bus lines covering 86 bus stops, and 2 

MRT lines traversing 20 stations. The central business district (CBD) is also demarcated on the 

map. 
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Figure B1b shows the demand pattern over the time-of-day, which we assume fixed across 

scenarios, which involves around 532,000 trips for the 24 hour period. The mode shares in the 

baseline scenario (SC0) are: 14.7% (bus), 19% (MRT), 21.6% (private vehicle trips, PVT), and 

44.8% (Walk from origin to destination).  

After preliminary empirical parameter value optimization, the fleet size for the DRF service is set to 

be 1000 vehicles, which ensures 100% of satisfaction rate of trip requests within a waiting time 

threshold of 10 mins (See more details on fleet sizing in Oh et al. 2020a, 2020b). FR bus and MRT 

operate with a predefined dispatching headway: 5.2 min (06:30 - 08:30 for AM, 17:00 - 20:30 for 

PM) during the peak and 12.7 min during the off-peak on average, which are aligned with the 

Google transit network data in Singapore. This results in 642 and 820 bus departures from the 

terminal during the peak/off-peak respectively. Also note that there are a total of 120 departures for 

each MRT line during a day. Since the focus of this study is on the performance of transit, the share 

between private modes and transit is kept fixed along the three scenarios. 

  

Figure B1. Prototypical urban network and demand pattern: (a) Road and transit network; (b) Demand distribution. 

B.3 Simulation results 

The three scenarios clearly result in different operating costs which can be approximated by VKT 

(Vehicle-Km Travelled), shown in Figure B2. The VKT generated by the DR service in SC1 and 

SC2 include both ‘operational’ trips (e.g., empty trips for cruising, parking, pick-up) and ‘service’ 

trips from pick-up to drop-off points. Private trips (PVT) are the predominantly responsible for 

VKT (generating more than 545,000 veh-km), while Transit only accounts for 7% of VKT in SC0. 

However, the footprint of transit becomes very high, up to 44% in SC1, due to the DR vehicles. 

Moreover, most of such VKT is “lost” in deadheading. Integrating FR and DR, as in SC2, brings 

(a)

) 

(b) 
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instead the transit footprint back to 22%. Scenario SC2 reduces significantly the total VKT of 

feeder by more than 70% compared to that of SC1. To understand how SC2 achieves such a 

reduction, Figure B2b shows the VKT of the DR fleet by time-of-day, and indicates that in SC1 a 

significant portion of VKT is generated during the peak periods. This is expected, as the DR service 

is incapable of efficiently serving high demand rates and would result in “tortuous” DR vehicle 

trajectories (Araldo et al., 2019), longer service/operational distance (Oh et al., 2020b), and network 

congestion (Oh et al. 2020a; Oh et al. 2021). Such an evident increase of VKT is prevented in SC2, 

during peak, by removing DRF buses and adopting fixed buses. 

 

Figure B2. Vehicle-Km Travelled: (a) Overall VKT; (b) VKT of DR (SC1, SC2). 

Despite the operational savings described above, SC2 does not degrade the travel time of users, as it 

is visible in Table B1, in which we report the average travel time components of users, depending 

on the kind of trip they choose, i.e., unimodal or multimodal. 

Observe that in SC0 the lower frequency of FR bus service during off-peak causes waiting time to 

be more than double than during peak hours. Instead, in SC1, the waiting time for the bus (DRF in 

that case) is sufficiently low, but worsens during the peak (waiting time for bus in SC1 is more than 

double than in SC0), as the DR vehicle routes are not able to efficiently serve high demand. 

(a)

) 

(b) 
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Combining FR and DR buses, as in scenario SC2, provides instead the best balance, as the waiting 

time is as good as SC0 during peak, and as good as SC1 during off-peak14 

Table B1. Average of travel time components of transit users (unit: minutes) 

Period SC Trip 
Pax 

(103) 

Walk 

time 

DR feeder bus FR bus MRT 

wait in-veh wait in-veh wait in-veh 

Peak 

SC0 

Multimodal 1.3 6.6 - - 2.9 6.7 4.0 4.5 

Unimodal: Bus 101.2 
6.7 

- - 3.3 8.7 - - 

Unimodal: MRT 36.1 - - - - 4.0 4.4 

SC1 
Multimodal 35.4 0 5.9 6.6 - - 4.6 4.7 

Unimodal: MRT 70.3 10.5 - - - - 4.0 4.7 

SC2 

Multimodal 4.1 6.7 - - 3.1 6.6 4.0 4.5 

Unimodal: Bus 97.0 
6.7 

- - 3.2 8.5 - - 

Unimodal: MRT 44.5   - - 4.0 4.5 

Off 

Peak 

SC0 

Multimodal 3.1 6.6 - - 6.8 6.3 4.6 4.1 

Unimodal: Bus 54.8 
6.9 

- - 6.6 7.4 - - 

Unimodal: MRT 14.7 - - - - 4.6 4.1 

SC1 
Multimodal 16.5 0 5.6 5.7 - - 5.0 4.6 

Unimodal: MRT 42.9 10.4 - - - - 4.4 4.2 

SC2 
Multimodal 12.5 0 5.5 5.6 - - 4.5 4.6 

Unimodal: MRT 10.8 10.8 - - - - 4.5 4.6 

To recap, the FR bus, as in SC0, is inefficient during off-peak hours (high waiting time). On the 

other hand, the DRF, as in SC1, is inefficient during the peak (high operational cost).  Adaptive 

Transit can get the best of FR buses and DRF (in terms of both agency and user related cost) by 

shifting between them, as in SC2, depending on time of day. 

  

 

14 One might be tempted to expect that the results concerning SC0 and SC2 to be the same during peak hours. Instead, the table shows that they are 

not exactly equal. This is due to the stochasticity of travel behaviors and network dynamics in simulation. The same occurs for SC1 and SC2 during 

off-peak. All simulation scenarios were achieved through several iterations to minimize this variability (Oh et al. 2021). 
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