
HAL Id: hal-04062934
https://hal.science/hal-04062934v2

Preprint submitted on 28 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On factorization of rank-one auto-correlation matrix
polynomials

Konstantin Usevich, Julien Flamant, Marianne Clausel, David Brie

To cite this version:
Konstantin Usevich, Julien Flamant, Marianne Clausel, David Brie. On factorization of rank-one
auto-correlation matrix polynomials. 2023. �hal-04062934v2�

https://hal.science/hal-04062934v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


On factorization of rank-one auto-correlation matrix polynomials

Konstantin Usevicha, Julien Flamanta, Marianne Clauselb, David Briea
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Abstract

This article characterizes the rank-one factorization of auto-correlation matrix polynomials. We establish
a sufficient and necessary uniqueness condition for uniqueness of the factorization based on the greatest
common divisor (GCD) of multiple polynomials. In the unique case, we show that the factorization
can be carried out explicitly using GCDs. In the non-unique case, the number of non-trivially different
factorizations is given and all solutions are enumerated.
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1. Introduction

Let Γ(z) = [Γij(z)]
K,K
i,j=1 be an K × K matrix polynomial of degree at most 2(N − 1), with complex

coefficients. The goal of this paper is to characterize the matrix polynomials that admit the following
rank-one factorization:

Γ(z) =

Γ11(z) · · · Γ1K(z)
...

...
ΓK1(z) · · · ΓKK(z)

 =

X1(z)
...

XK(z)

[X̃1(z) · · · X̃K(z)
]
, (1)

where Xk(z), k ∈ {1, . . . ,K} are polynomials with degree at most N −1; in (1), the notation Ỹ (z) denotes
the complex conjugate reversal

Ỹ (z) := zN−1Y (z−1) =

N−1∑
n=0

y[N − 1− n]zn (2)

of a polynomial Y (z) =
∑N−1
n=0 y[n]zn of degree at most N − 1. In this paper we address the following

questions:

• when is the factorization (1) unique?

• if it is not unique, how to find all possible factorizations (1)?
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The polynomial factorization problem arises in several applications in signal processing, such as phase
retrieval problems [1] and blind system identification [2]. In such applications, one is interested to recon-

struct a number of signals (vectors) xk =
[
xk[0] · · · xk[N − 1]

]> ∈ CN , k ∈ {1, . . . ,K}, given a set of

their correlations sequences (γij [n])
K,K,N−1
i,j=1,n=−N+1 defined as follows:

γij [n] :=

N−1−n∑
m=0

xi[m+ n]xj [m]. (3)

Such correlation functions encode the K × K auto-correlation matrix sequence of the K-dimensional
vector signal ([x1[n] . . . xK [n]]>)N−1

n=0 ). Moreover it can be shown (see Appendix A) that the elements in
(3) corresponds exactly to the coefficients of the polynomial Γij(z) factorized as (1). Thus the problem of
recovery of the vectors xk from correlations sequences is equivalent to the problem of factorizing1 a given
matrix polynomial as (1).

In this paper we provide a complete characterization of all possible factorizations rank-one matrix
polynomial (1); in fact, these factorizations are entirely characterized by the greatest common divisor of

all the matrix elements Γij(z), denoted as gcd{Γij}K,Ki,j=1. In particular, we prove the following theorem.

Theorem 1. The factorization (1) is unique up to global scaling if and only if the greatest common divisor

H(z) = gcd{Γij}K,Ki,j=1 is 1 or it roots lie only on the complex unit circle T := {z ∈ C | |z| = 1}.

By uniqueness up to global scaling in (1) we mean that any alternative factorization Γij(z) = Yi(z)Ỹj(z)
satisfies Yi(z) = cXi(z) with some c ∈ T. Moreover, in the non-unique case, we provide all possible
factorizations modulo the global scaling, which again depend on roots of the polynomial H(z) and their
multiplicities.

Related work. Factorizations of matrix polynomials and matrix functions are a classic topic in linear
algebra and operator theory [3]. In fact, it can be shown that the matrix polynomials factorized as (1) have
the so-called ∗-palindromic structure [4]. Several previous works have addressed the spectral properties
or the Smith normal form of palindromic matrix polynomials, but, up to the authors knowledge, none of
them discussed in detail uniqueness and characterization of solutions, which is a very important question
in applications mentioned above. The factorization (1) also resembles the problem of spectral factorization
of matrix functions [5], however, unlike the latter problem, in the factorization (1) there is no restriction on
location of roots of the polynomials inside the unit disk. Very few papers on low-rank factorization treat
the low-rank case [6]. It is shown that [6, Theorem 1] that any rank-one matrix polynomial that is positive-
semidefinite on the complex unit circle T admits a factorization (1) that is unique if one imposes additional
constraints (minimum phase requirement). The question of characterizing the set of non-minimal-phase
spectral factorizations was only analyzed [7] for the full rank case; also, only the generic case (determinant
with only simple roots) is treated.

The uniqueness of the factorization (1) is also closely related to uniqueness of the solution in (algebraic)
phase retrieval problems (see [1]). For the latter problem, the case K = 1 (corresponding to 1×1 matrices)
was fully characterized in [8]. In the case K > 1, only partial results are available in [2], while our paper
provides a complete characterization in the language of matrix polynomial factorizations.

Caveat. In this paper, we employ the formalism of univariate polynomials with roots at infinity, that is
crucial for the algebraic theory of Hankel matrices [9, §I.0] and matrix methods for approximate greatest
common divisor computations [10]. This formalism simplifies the proofs and allows for a transparent
and complete characterization for the polynomial factorization problem. However, the notion of greatest
common divisor is slightly different from the standard one, as it takes into account the possible roots at
infinity.

1This is the reason why in [1] we refer to (1) as the polynomial auto-correlation factorization (PAF) problem.
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Organization of the paper. The main notation and main facts regarding polynomials with roots at
infinity is surveyed in Section 2. In Section 3, we provide the main result on uniqueness of the factorization,
which is a slight generalization of Theorem 1. Finally, in Section 4 we discuss the complete description of
the set of solutions.

2. Background: polynomials with roots at infinity

The goal of this subsection is to introduce the formalism of the polynomials with the roots at infinity
used later in the paper. As mentioned in [10], such spaces of polynomials can be identified with the space
of homogeneous bivariate polynomials with roots in a projective space (an approach commonly used in
algebraic geometry [11, Ch. 8]). In this paper, however, for simplicity we prefer to work with univariate
polynomials in C≤D[z] instead.

2.1. Vector spaces of polynomials of bounded degree

Let C denote the complex field, T = {z ∈ C | |z| = 1} denote the unit circle, and let C≤D[z] denote the
space of univariate polynomials with complex coefficients of degree at most D. Any polynomial A ∈ C≤D[z]
is in one-to-one correspondence with its vector of coefficients:

A(z) =

D∑
n=0

a[n]zn ↔ a =
[
a[0] a[1] · · · a[D]

]>
; (4)

thus C≤D[z] is a (D + 1)-dimensional vector space that is isomorphic to CD+1. In what follows, we are
going to use the notation a, A(z), a[n] for the vectors, polynomials and coefficients of polynomials/vectors
(with some abuse of meaning for the brackets).

The conjugate reversal Ã(z) of the polynomial in (4) is given by (2) and corresponds to the complex-
conjugated and reversed vector of coefficients

ã =
[
a[D] · · · a[1] a[0]

]>
.

Finally, we define the multiplication of polynomials, as usual, but viewing it as a map between the finite-
dimensional vector spaces

C≤D1 [z]× C≤D2 [z]→ C≤(D1+D2)[z]

(A(z), B(z)) 7→ C(z) = A(z)B(z).
(5)

Remark 2. The multiplication of polynomials defined in (5) (via the isomorphism (4)) becomes a bilinear
mapping CD1+1 × CD2+1 → CD1+D2+1, defined as

(a,b) 7→ c = MD1
(b)a = MD2

(a)b, (6)

where ML(a) is the multiplication matrix

ML(a) :=



a[0]
...

. . .

a[D] a[0]
. . .

...
a[D]

 ∈ C(D+L+1)×(L+1), (7)

defined for any non-negative integer L and a vector of coefficients a in (4). Therefore, the multiplication
of polynomials corresponds essentially to the convolution of vectors.
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We will also remark how the usual inner product on CN can computed using multiplications of poly-
nomials.

Lemma 3. Let X,Y ∈ C≤N−1[z]. The coefficient of the polynomial X(z)Ỹ (z) at the monomial zN−1 is
equal to the inner product between the vectors of coefficients, that is:

(X(z)Ỹ (z))
∣∣∣
zN−1

= 〈X,Y 〉 =

N−1∑
n=0

x[n]y[n] = 〈x,y〉CN .

In particular, (X(z)X̃(z))
∣∣∣
zN−1

= 〈X,X〉 = ‖X‖22 = ‖x‖22.

Proof. It follows from straightforward calculation (see also Appendix A, where the relation between (1)
and correlation sequences is detailed).

2.2. Divisors and greatest common divisors

In this paper, we work with the multiplication defined in Equation (5): as a result, we always take care
of the space where polynomials belongs to2. Therefore, we need a special definition of divisibility.

Definition 4 (Divisors of polynomials). We say that the polynomial C ∈ C≤N [z] has a divisor B ∈
C≤D[z] \ {0} if there is a polynomial C ∈ C≤N−D[z] such that C(z) = A(z)B(z) in the sense of Equa-
tion (5).

Example 5. Consider the following polynomial from C≤5[z]:

A(z) = 0 · z5 + 0 · z4 +
1

2
z3 +

1

2
z2 − z ∈ C≤5[z], (8)

which has two zero leading coefficients. Then the polynomial F (z) = 0 · z3 + 0 · z2 + z + 2 ∈ C≤3[z] is a
divisor of the polynomial A(z) in (8), because A(z) = F (z)·( 1

2 (z−1)z) according to definition Equation (5).
However, the polynomial G(z) = 0 ·z4 +0 ·z3 +0 ·z2 +z+2 ∈ C≤4[z] is not a divisor of A(z), because there
is no H(z) ∈ C≤1[z] such that A(z) = G(z)H(z). Note that F (z) and G(z) represent the same polynomial
z + 2 in C[z] (if we forget the space in which the polynomial is living).

Remark 6 (Alternative definition of the divisibility). Example 5 suggests the following equivalent defini-
tion of divisibility: the polynomial C ∈ C≤N [z] has a divisor B ∈ C≤D[z] \ {0} if B is a divisor of C in
the usual sense, and, in addition B has at most the same number of zero leading coefficients as C.

For instance, in Example 5 the polynomial z + 2 is a divisor of A(z) = 1
2z

3 + 1
2z

2 − z ∈ C≤5[z], but
A(z) has two zero leading coefficients. The polynomials F (z) and G(z), in their turn, have 2 and 3 zero
leading coefficients, respectively.

Now we are ready to introduce the notion of the greatest common divisor of polynomials.

Definition 7. For a set of polynomials, X1 ∈ C≤N1
[z], . . . , XK ∈ C≤NK [z], the greatest common divisor

H is defined as the polynomial H ∈ C≤D[z] with highest possible D, such that H(z) is a divisor of all
polynomials X1, . . . , XK in the sense of Definition 4. We set gcd{A, 0} = A, and, if all polynomials are
zero, then we formally set gcd{X1, . . . , XK} = 0 ∈ C≤0[z] = C.

2Again, we could work instead homogeneous bivariate polynomials, but we stick to the notation with univariate polynomials
used in this paper.
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The GCD of polynomials in Definition 7 enjoys the usual properties of the greatest common divisor
(such as associativity). In particular, the GCD exists and is unique up to a multiplication by a nonzero
scalar. Therefore the notation

H = gcd{X1, . . . , XK} (9)

means that H is a GCD; the equality (9) is meant modulo multiplication by a nonzero scalar (a typical
abuse of notation in the literature). We say that the polynomials are coprime if gcd{X1, . . . , XK} = 1.

Remark 8. Similarly to Remark 6, the GCD of polynomials Xk ∈ C≤Nk [z] coincides with the GCD in
the usual sense with the zero leading coefficients equal to the minimal number of zero leading coefficients
among Xk.

Finally, we recall a matrix-based criterion of coprimeness of two polynomials.

Theorem 9. Two polynomials X1, X2 ∈ C≤N−1[z] are coprime in the sense of Definition 7 if and only if
its 2N × 2N Sylvester matrix

S(X1, X2) =
[
MN−1(x1) MN−1(x2)

]
is nonsingular.

We refer the reader to [10, Section 2] for more details and properties of the GCD, as well as the
generalizations of Theorem 9 and the matrix-based algorithms to compute the GCD.

2.3. Roots at infinity

An important tool used in this paper is that we operate with∞ roots. We will say that the polynomial
A ∈ C≤D[z] in (4) has a root at ∞ (with multiplicity µk) if its leading µk coefficients vanishes (i.e., if
a[D] = · · · = a[D − µk + 1] = 0). We will formally write (z − ∞)dB(z) to denote that d zero leading
coefficients are appended to the polynomial.

Example 10. Consider the polynomial from Example 5. The polynomial has roots {∞,−2, 1, 0}, where
the root ∞ has multiplicity 2. Hence it has the following factorization

A(z) =
1

2
(z −∞)2(z − 1)(z + 2)z. (10)

Remark 11. The root at infinity can be formally defined as:

(z −∞) := 0 · z + 1 ∈ C≤1[z].

Then the multiplication by such polynomial in the sense of the definition in (6) corresponds exactly to
adding a zero leading coefficient. In particular,

(z −∞)d := 0 · zd + 0 · zd−1 + · · ·+ 0 · z + 1 ∈ C≤d[z].

With such a convention, the following extended version of the fundamental theorem of algebra holds
true: any nonzero polynomial A ∈ C≤D[z] \ {0} can be uniquely factorized (up to permutation of roots)
as

A(z) = λ

m∏
i=1

(z − αi)µi , (11)

where λ ∈ C, αi ∈ C ∪ {∞} are distinct roots and µi are the multiplicities of αi, so that their sum is

µ1 + · · ·+ µm = D.

Finally, we remark that the conjugate reflection (2) leads to reflection of roots.
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unit circle

complex plane C

ϕ(αi)

ϕ(αi
−1)

αi

αi
−1 0

∞

equator

Figure 1: Complex plane and the Riemann sphere (the preimage under the stereographic projection). The conjugate inversion
corresponds to reflection with respect to the equator on the Riemann sphere. Here φ : C → S2 denote the inverse stereographic
mapping onto the sphere S2.

Lemma 12. The conjugate reflection of the polynomial (11) admits a factorization

Ã(z) = λ̃

m∏
i=1

(
z − α−1

i

)µi
, where λ̃ := λ

m∏
i=1
αi 6=∞

(−αi)µi ,

i.e., the roots αi are mapped to α−1
i , where 0 is formally assumed to be the inverse of ∞ and vice versa.

Proof. Follows from straightforward calculation.

Example 13. For Example 10, the conjugate reflection Ã(z) ∈ C≤5[z], as well as its factorization becomes:

Ã(z) = 0 · z5 − z4 +
1

2
z3 +

1

2
z2 = (−1)(z −∞)(z +

1

2
)(z − 1)z2.

which has roots {∞, 1,− 1
2 , 0}, where the root 0 has multiplicity 2.

Graphically, the conjugate reflection of the roots has a nice interpretation in terms of the Riemann
sphere: the mapping of the root under conjugate reflection becomes simply a reflection with respect to the
plane passing through the equator, see Fig. 1.

Remark 14. When dealing with homogeneous polynomials, the roots in fact belong to the projective space
P1 which corresponds exactly to C ∪ {∞}.
Remark 15. Let (11) be the factorization of a polynomial A ∈ C≤D[z] with roots αi of respective multi-
plicities µi. Then B ∈ C≤D′ [z] \ {0} is a divisor of A if and only if it can be factorized as

B(z) = λ′
m∏
i=1

(z − αi)νi , (12)

where 0 ≤ νi ≤ µi and ν1 + · · ·+ νm = D′.

Example 16. Continuing Example 5, the polynomial 0 ·z4 +0 ·z3 +0 ·z2 +z+2 = (z−∞)3(z+2) ∈ C≤4[z]
is not the divisor of A(z) from (8), because there are not enough infinite roots in the expansion of A(z).
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3. Uniqueness of factorizations

The main goal of this section is to provide a proof of Theorem 1, thus giving a characterization of the
uniqueness properties of the polynomial factorization problem (1). In fact, we will prove a generalized
version of Theorem 1.

3.1. Key lemma and the coprime case

The following key lemma links the GCD of polynomials Xk(z) with the GCD of the elements of the
matrix polynomial Γ(z).

Lemma 17. Let Q(z) := gcd{X1, X2, . . . , XK} where Q ∈ C≤D[z], and define

H(z) = Q(z)Q̃(z). (13)

Then the GCD of the elements of Γ(z) must be equal to H(z):

gcd{Γij}K,Ki,j=1 = H(z).

Proof. Let R1, R2, . . . RK ∈ C≤N−D−1[z] be the corresponding quotients, i.e., Xk(z) = Q(z)Rk(z) for
k = 1, . . . ,K with gcd{R1, R2, . . . , RK} = 1. Direct calculations show that, for i, j = 1, . . . ,K,

Γij(z) = Xi(z)X̃j(z) = Ri(z)Q(z)R̃j(z)Q̃(z) = Ri(z)R̃j(z)H(z).

Then the GCD of polynomials Γij(z) can be explicitly computed as

gcd{Γij}K,Ki,j=1

= gcd
{

gcd{Γ1j}Kj=1, gcd{Γ2j}Kj=1, . . . , gcd{ΓRj}Kj=1

}
= gcd {R1H,R2H, . . . , RKH} since gcd{R̃1, R̃2, . . . , R̃K} = 1

= H(z) since gcd {R1, R2, . . . RK} = 1,

which concludes the proof.

Remark 18. If the matrix polynomial Γ(z) can be factorized as (1), then any simultaneous rescaling of
the polynomials X1(z), . . . , XK(z) by β ∈ T provides an alternative factorization sinceβX1(z)

...
βXK(z)

[βX̃1(z) · · · βX̃K(z)
]

=

X1(z)
...

XK(z)

[X̃1(z) · · · X̃K(z)
]
,

i.e., polynomials Yk(z) = βXk(z) provide an equivalent factorization since ββ = 1.
In what follows, we will say that the solution (1) is essentially unique if it is uniqueness up to a global

scaling by β ∈ T, i.e., for any alternative factorization

Γ(z) =

Y1(z)
...

YK(z)

[Ỹ1(z) · · · ỸK(z)
]
, (14)

there exists β ∈ T such that Yk(z) = βXk(z) for all k.

Armed with Lemma 17, we can already give the characterization of the coprime case.
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Proposition 19. Let {Γij}K,Ki,j=1 be coprime (equivalently, let X1(z), . . . , XK(z) be coprime). Then

1. the rank-one factorization (1) is essentially unique (in the sense of Remark 18);

2. in particular, let
Aj(z) := gcd(Γj1, . . . ,ΓjK) (15)

and fix an index j such that Aj(z) 6≡ 0. Then a factorization (14) can be obtained by

Yk(z) = cj ·
Γkj(z)

Ãj(z)
, (16)

where cj is the normalization constant cj = ‖Aj‖/
√

Γjj(z)|zN−1.

Proof. We first prove 2). We first show that the polynomial Yk(z) defined in (16) provides an alternative
factorization. Indeed, for Aj defined in (15) we have

Aj(z) = gcd(XjX̃1, . . . , XjX̃K) = djXj(z), dj 6= 0. (17)

since X̃1(z), . . . , X̃K(z) are coprime. Then for the polynomial Yk(z) defined in (16) we get

Yk(z) =
Xk(z)X̃j(z)

djX̃j(z)
· ‖djXj(z)‖
‖Xj(z)‖

=
dj
|dj |

Xk(z), (18)

thanks to Lemma 3. By defining β =
dj
|dj | , we observe that β ∈ T, and therefore Γij(z) = Yi(z)Ỹj(z).

Proof of 1) Assume that apart from (14), there exists an alternative factorization Γij(z) = Ui(z)Ũj(z). Note

that by Lemma 17, we have gcd{U1, . . . , UK} = 1. Therefore Γij(z) = Xi(z)X̃j(z) and Γij(z) = Ui(z)Ũj(z)
are two valid factorizations that satisfy the conditions of 2). Now assume that Yk is computed as in (18).
Then, by 2) there are two constants β, δ ∈ T such that

Yk = βXk and Yk = δUk, for all k.

Therefore, we have that Uk = δ−1βXk, for all k, which completes the proof.

Proposition 19 already tells us how to deal with the coprime case, and provides us with a constructive
way to find the factorization (1) from the matrix polynomial Γ(z) (i.e., , by computing Yk as in (18)).
Moreover, this algorithm can be further simplified as shown by the following remark.

Remark 20. In the conditions of (19), the polynomials Xk can be retrieved, up to individual constants
from (15) (ı.e. Ak = βkXk). Therefore, if one is interested, for example, only in the roots of Xk, those
can be obtained just by computing Ak as in (15).

We also note that the Proposition 19 covers the generic case, as shown by the following corollary.

Corollary 21 (Almost everywhere uniqueness of (1)). In the generic case, the solution of (1) is essentially
unique: there exists a set of (Lebesgue) measure zero in A ⊂ (C≤N−1[z])K , such that for all (X1, . . . , XK) ∈
(C≤N−1[z])K \A the solution of (1) is essentially unique.

Proof. By Theorem 9 the two polynomials X1, X2 ∈ C≤N−1[z] are coprime if and only if S(X1, X2) is
invertible. The equation det(S1(X1, X2)) = 0 defines an algebraic variety V of dimension 2N − 1 ≤
dim((C≤N−1[z])2), thus it is a set of measure zero. Taking A = V × dim(C≤N−1[z])K−2 concludes the
proof.

Finally, we remark that the condition of coprimeness in Proposition 19 is only a sufficient condition
(and not a necessary condition as mistakenly claimed in [12, Theorem 1]). We establish a necessary and
sufficient condition in the next subsection.
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3.2. The main uniqueness result

Before proving the main uniqueness result, we establish another important lemma that shows what
happens in the non-coprime case.

Lemma 22. Let X1(z), . . . , XK(z) be a tuple of polynomials not vanishing simultaneously. Let Q =
gcd{X1, . . . , XK} ∈ C≤D[z] and R1, R2, . . . RK ∈ C≤N−D−1[z] be the corresponding quotients such that
Xk(z) = Q(z)Rk(z) for any k. Then Yk(z) provides a valid alternative factorization (14) if and only if the
polynomials have the form

Yk(z) = S(z)Rk(z) (19)

where S(z) satisfies S(z)S̃(z) = Q(z)Q̃(z).

Proof. The “if” part is obvious, because for any polynomial of the form (19)

Yi(z)Ỹj(z) = S(z)S̃(z)Ri(z)R̃j(z) = Q(z)Q̃(z)Ri(z)R̃j(z) = Xi(z)X̃j(z).

Now we will prove the “only if” part.
Let H(z) = Q(z)Q̃(z) (so that H(z) = gcd{Γij}K,Ki,j=1 by Lemma 17) , and fix and alternative factor-

ization Yk(z). Then, from Lemma 17, a GCD S = gcd{Y1, . . . , YK} must satisfy S(z)S̃(z) = cH(z) with
c ∈ C, where we can normalize c to be 1 (thanks to the freedom of choosing the normalization for S(z)).

Now denote by Tk(z) the corresponding quotients of Yk(z) such that Yk(z) = S(z)Tk(z). Then the
matrix polynomial

G(z) :=
Γ(z)

H(z)

must have the factorization of its entries as Gij(z) = Ri(z)R̃j(z) = Ti(z)T̃j(z). However, since H =

gcd{Γij}K,Ki,j=1, we have gcd{Gij}K,Ki,j=1 = 1, and therefore, by Proposition 19 it has an essentially unique
factorization. Thus there exists a constant β ∈ T such that Tk = βRk for all k. In turn, we can define
S′(z) := βS(z), and one gets that Yk(z) can be expressed as

Yk(z) = S′(z)Rk(z),

where S′(z)S̃′(z) = Q(z)Q̃(z), which completes the proof.

Remark 23. Lemma 22 shows that the study of the uniqueness properties of (1) is directly related to

uniqueness of the univariate polynomial factorization H(z) = Q(z)Q̃(z), as the quotients can be obtained

thanks to the constructive procedure described in Proposition 19 applied to Γ(z)
H(z) .

In other words, all possible factorizations can be obtained from the Smith normal form of the rank-one
matrix polynomial Γ(z) [4].

Before giving the sufficient and necessary uniqueness condition, we make a remark about the roots of
the product Q(z)Q̃(z) which are key to understanding uniqueness.

Lemma 24. Let Q(z) = λ
∏D
i=1(z − αi) (with possibly repeating αi). Then H(z) = Q(z)Q̃(z) has the

following factorization

H(z) = λλ̃
∏

i:αi 6=∞
(−αi)

D∏
i=1

(z − αi)(z − α−1
i ). (20)

Furthermore, if α ∈ T, then α = α−1. Therefore, a unit-modulus α is a root of Q(z) of multiplicity µ if
and only if it is a root of H(z) of multiplicity 2µ.

Proof. Follows from Lemma 12.
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Theorem 25. Let X1(z), . . . , XK(z) be a tuple of polynomials not vanishing simultaneously. Then the
following equivalences are true:

1. The problem (1) admits a unique solution (in the sense of Remark 18);

2. X1(z), . . . , XK(z) have no common roots in (C∪{∞})\T (common roots may be only on the unit
circle);

3. H(z) = gcd{Γij}K,Ki,j=1 has no roots in C \ T.

Proof. The proof is organized in several parts.

• 2⇔ 3 By Lemma 17, H(z) = cQ(z)Q̃(z), where c is a constant and Q(z) = gcd{Xi(z)}Ki=1.
Therefore, by Lemma 24, H(z) does not have roots outside the unit circle T if and only if Q(z)
does not. Note that by Lemma 24, the roots of H(z) appear in pairs, and therefore H(z) has an
∞ root if and only 0 is also a root.

• 1⇒ 2 Suppose that the solution of (1) is essentially unique, but the polynomial Q(z) has a root

α outside the unit circle. Then easy calculations show that polynomial S(z) = Q(z)(z−α−1)
(z−α) satisfies

S(z)S̃(z) = Q(z)Q̃(z).

Note that S(z) is not proportional to Q(z), because

(z − α−1)

(z − α)
6= const.

Therefore the vector polynomial

(Y1(z), . . . , YK(z)) := (S(z)R1(z), . . . , S(z)RK(z)),

is not proportional to the vector (X1(z), . . . , XK(z)), but gives an alternative factorization Γij(z) =

Yi(z)Ỹj(z) (a contradiction).

• 1⇐ 2 Let Q(z) be the GCD of {Xk}Kk=1 and Rk(z) be the corresponding quotients. Since Q(z)

has only unit-modulus roots, by Lemma 24, the polynomial H(z) = Q(z)Q̃(z) has the roots with
doubled multiplicities. Therefore, there is a unique (up to a constant β ∈ T) way to factorize

H(z) (for any alternative factorization, H(z) = S(z)S̃(z), there exists a constant β ∈ T such
that S(z) = βQ(z)). Therefore, by Lemma 22, any other valid alternative factorization Yk(z) has
necessarily the form

Yk(z) = βQ(z)Rk(z),

which completes the proof.

4. Enumerating the factorizations

In this section, we refine Theorem 25 by providing the number of solutions and by describing the set
of solutions of (1) in the non-unique case. As mentioned in Remark 23, this description depends mainly
on uniqueness properties of the factorization (13) (i.e., how to find all Q(z) such that H(z) = Q(z)Q̃(z)).
The univariate factorization problem, in its turn, is known to closely related to enumerating the solutions
of the so-called univariate phase retrieval problem [8, 13]. In this section we enumerate in Theorem 29 all
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possible factorizations based on the technique used for the phase retrieval problem (see [8, Theorem 3.1,
Corollary 3.3] and [14, Proposition 6.1]) which goes back to the result of Fejér [15, p.61].

The number of ways we can factorize H(z) depends on multiplicities of its roots, and the following
remark is very useful.

Remark 26 (Root pairs of H(z)). From Lemma 24, we know that the roots of H(z) come in conjugate-

reflected pairs, i.e., if a root δ 6∈ T is a root of H(z) with multiplicity µ then δ
−1

is also a root with the

same multiplicity. In such a case we will say that the pair (δ, δ
−1

) has multiplicity µ. In the case where
δ ∈ T is a root of H(z), then it must have even multiplicity.

Example 27. Consider Q(z) = A(z) that is the polynomial from Example 10 having double ∞ root and
simple roots {−2, 1, 0}. Then the polynomial H(z) = A(z)Ã(z) is given by

H(z) = −1

2
(z −∞)3

(
z +

1

2

)
(z + 2)(z − 1)2z3.

The multiplicity of the root pair (0,∞) is 3, the root pair (−2,− 1
2 ) has multiplicity 1, and the root pair 1

has multiplicity 2.

Remark 28. As shown in Example 27, different roots of Q(z) can merge to form root pairs (as it is the

case for the roots −2 and − 1
2 in Example 27). In general, if δ and δ

−1
are roots of Q(z) with multiplicities

ν1 and ν2, then the multiplicity of the pair (δ, δ
−1

) of H(z) is equal to ν1 + ν2.

Theorem 29 (Enumerating solutions of (1)). Let Q,R1, . . . , RK be as in Lemma 22, where the root
structure of the polynomial H(z) = Q(z)Q̃(z) is as follows:

• H(z) has P root pairs (δ1, δ
−1

1 ), . . . , (δP , δ
−1

P ) outside the unit circle with multiplicities µ1, . . . , µP
and

• roots ε1, . . . , εT ∈ T with (even) multiplicities ν1, . . . , νT .

Then all the possible alternative factorizations Y (z) such that Γ(z) = Y (z)Y (z) may be expressed as

Y1(z) = βS(z)R1(z)

...

YK(z) = βS(z)RK(z)

where β ∈ T is arbitrary, and where

S(z) = λ

P∏
i=1

(z − δi)`i(z − δ
−1

i )µi−`i
T∏
j=1

(z − εj)
νj
2 , (21)

0 ≤ `i ≤ µi are nonnegative integers, and λ > 0 is a constant that depends on a particular collection of `i
(see Lemma 24).

Remark 30. Theorem 29 gives a way to obtain all the polynomials from Γ(z). Indeed, the factorization
relies on H(z) = gcd{Γ(z)}Ki,j=1 (see Lemma 17) and the quotient polynomials R1(z), . . . , RK(z) can be
also obtained from Γ(z) thanks to Proposition 19.
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Corollary 31 (Number of factorizations of (1)). Under the assumptions of Theorem 29, the problem (1)
admits exactly

P∏
i=1

(µi + 1) (22)

different solutions. In particular, when roots of H(z) are all simple and outside the unit circle, there is
exactly 2D different solutions.

Proof of Theorem 29. Lemma 22 shows that the number of solutions of (1) is exactly the number of
different (up to multiplication by a scalar) polynomials S(z) such that H(z) = S(z)S̃(z). This spectral

factorization problem is equivalent to selecting the roots of Q(z) amongst the root pairs (δi, δ
−1

i ) of H(z)
outside T.

Consider a non-unit-modulus root pair (δi, δ
−1

i ) with multiplicity µi; then the number of different
combinations is equal to the number of outcomes of a random draw of µi items with replacement in a set
of 2 elements, i.e., µi + 1. Repeating the same process for each root pair gives all possible factorizations
(21) by selecting the integers 0 ≤ `i ≤ µi (the multiplicity of δi in S(z)).

Example 32. Continuing Example 27, we see that there are two root pairs not on the unit circle (with
multiplicities 3 and 1, respectively). This yields a total of 4 ·2 = 8 solutions, where the other factorizations
are given by permuting 0 and ∞ roots or/and replacing root −2 with − 1

2 , For example, some of possible
alternative factorisations are given by Q(z) = 1

2 (z + 2)(z − 1)z3 or Q(z) = (z + 1
2 )(z − 1)z3.

4.1. Case of two polynomials

We conclude this paper by providing an explicit expression of solutions of (1) in the simplified case of
K = 2 and where there are no 0 or ∞ roots in common, meaning that x[0] 6= 0 and x[N − 1] 6= 0. This
setting is relevant to the context of polarimetric phase retrieval [1].

Proposition 33. Let K = 2, and H(z) be with roots in C \ {0,∞}, and fix a factorization of H(z):

H(z) = c

D∑
i=1

(z − βi)(z − β−1
i ).

Let {αji}N−D−1
i=1 be the roots (with repetitions) of the quotient polynomials Rj, j ∈ {1, 2}. Then the

corresponding rank-one factorization has the form

X1(z) = eθλ1

D∏
i=1

(z − βi)
N−D−1∏
i=1

(z − α1i), (23)

X2(z) = eθλ2

D∏
i=1

(z − βi)
N−D−1∏
i=1

(z − α2i), (24)

where the constants λ1, λ2 ∈ C are given by

λ1 =

√√√√|γ11[N − 1]|
D∏
i=1

|βi|−1

N−D−1∏
i=1

|α1i|−1, (25)

λ2 = e∆

√√√√|γ22[N − 1]|
D∏
i=1

|βi|−1

N−D−1∏
i=1

|α2i|−1, (26)
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where ∆ reads

∆ = π(N − 1) + arg γ12[N − 1] +

D∑
i=1

arg βi +

N−D−1∑
i=1

argα2i . (27)

Proof. To determine λ1 and λ2, one writes the expression of the elements of matrix polynomials in terms
of X1(z) and X2(z) above. For instance:

Γ11(z) = X1(z)zN−1X1(z−1)

= |λ1|2
D∏
i=1

(z − βi)
N−D−1∏
i=1

(z − α1i)

D∏
i=1

(1− βiz)
N−D−1∏
i=1

(1− α1iz)
(28)

Using that Γ11(z) :=
∑2N−2
n=0 γ11[n−N + 1]zn, identifying leading order coefficients yields

γ11[N − 1] = |λ1|2(−1)N−1
D∏
i=1

βi

N−D−1∏
i=1

α1i (29)

Similarly, one gets

γ22[N − 1] = |λ2|2(−1)N−1
D∏
i=1

βi

N−D−1∏
i=1

α2i (30)

γ12[N − 1] = λ1λ2(−1)N−1
D∏
i=1

βi

N−D−1∏
i=1

α2i (31)

These relations determine uniquely the moduli of λ1, λ2 as well as the difference of argument between λ1

and λ2. Thus λ1, λ2 are unique up to a global phase factor exp(θ), θ ∈ [−π, π). One obtains eventually
the following expressions

λ1 = eθ

(
|γ11[N − 1]|

D∏
i=1

|βi|−1
N−D−1∏
i=1

|α1i|−1

)1/2

(32)

λ2 = e(θ−∆)

(
|γ22[N − 1]|

D∏
i=1

|βi|−1
N−D−1∏
i=1

|α2i|−1

)1/2

(33)

with

∆ = arg(λ1λ2) (34)

= π(N − 1) + arg γ12[N − 1] +

D∑
i=1

arg βi +

N−D−1∑
i=1

argα2i .
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A. Link between matrix polynomial factorization and autocorrelation

The matrix polynomial rank-one factorization problem (1) arises in multivariates instances of Fourier
phase retrieval [1] and blind multichannel system identification [2]. In such applications, one is interested
in recovering a deterministic discrete vector signal x : J0, N−1K→ CR from the different cross-correlations
functions between the R signal channels. Now, define the polynomial representation of the i-th channel of x

as Xi(z) =
∑N−1
n=0 xi[n]zn. Similarly, define the correlation polynomial Γij(z) :=

∑2(N−1)
n=0 γij [n−N+1]zn.

Then, a key result is that

Γij(z) = Xi(z)X̃j(z) (35)

since

Xi(z)X̃j(z) =

(
N−1∑
n=0

xi[n]zn

)(
N−1∑
m=0

xj [N − 1−m]zm

)
(36)

=

N−1∑
m=0

N−1∑
n=0

xi[n]xj [N − 1−m]zn+m (37)

=

N−1∑
n=0

N−1∑
m=0

xi[n]xj [m]zn+N−1−m (38)

=

2(N−1)∑
n′=0

γij [n
′ −N + 1]zn

′
:= Γij(z). (39)

Therefore, defining the matrix polynomial Γ(z) such that

Γ(z) =

Γ11(z) · · · Γ1R(z)
...

...
ΓR1(z) · · · ΓRR(z)

 =

2N∑
n=0

γ11[n−N + 1] · · · γ1R[n−N + 1]
...

...
γR1[n−N + 1] · · · γRR[n−N + 1]

 zn :=

2(N−1)∑
n=0

Γ[n]zn

(40)
where {Γ[n] ∈ CR×R}N−1

n=−N+1 is the auto-correlation matrix sequence of the D-dimensional vector signal

{x[n] ∈ CR}N−1
n=0 . Plugging (35) into (40) yields the rank-one autocorrelation matrix factorization problem

(1).
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