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LIMITED-MEMORY STOCHASTIC PARTITIONED
QUASI-NEWTON TRAINING

{ PAUL RAYNAUD, DOMINIQUE ORBAN } GERAD, POLYTECHNIQUE MONTRÉAL

PARTIALLY-SEPARABLE TRAINING PROBLEM

Loss structure

min
w∈Rn

1

N

N∑
l=1

L(x(l), y(l);w),

resembles that of partially-separable f : Rn → R
:

f(w) =

N∑
j=1

fj(Ujw), fj : Rn
j → R, nj < n,

where the Uj ∈ Rnj×n select a subset of vari-
ables.
The negative log likelihood

− log

ecy(l) (x
(l);w)

/
C∑

j=1

ecj(x
(l);w)

 ,

based on class scores cj , 1 ≤ j ≤ C, is not
partially-separable.
We define the partially-separable loss (PSL)

L(w) := 1

N

N∑
l=1

C∑
j=1

e
cj(x

(l);w)−c
y(l) (x

(l);w)
,

=
C∑

k=1

C∑
j=16=k

hk,j(w)

hk,j(w) :=
1

N

N∑
l=1

δy(l),k e
cj(x

(l);w)−ck(x(l);w),

where δy(l),k = 1 if y(l) = k, and 0 otherwise.
Each element depends of one pair of scores.

PARTITIONED QUASI-NEWTON METHODS

The partitioned structure of derivatives of
partially-separable f allow us to constructs B ≈
∇2f(w) as

B :=
N∑
j=1

U>j BjUj ,

where Bj ≈ ∇2fj(w) is a quasi-Newton linear
operator. Example:

f(w) = f1(w1, w2, w3) + f2(w3, w4, w5) + f3(w1, w5)

B =




Partitioned approximations:

• are finer Hessian approximations;

• are limited memory operators: storage in
O(

∑N
j=1 2mnj), 1 ≤ m ≤ 5;

• produce 3 methods:

– PLBFGS: each Bj is a LBFGS opera-
tor;

– PLSR1: each Bj is a LSR1 operator;

– PLSE: mixes LBFGS and LSR1 oper-
ators to best satisfy the secant equa-
tion Bk+1(wk+1 −wk) = ∇f(wk+1)−
∇f(wk).

LENET ARCHITECTURE

• LeNet’s scores are parametrized by every
variable beneath the last layer.

ARCHITECTURE DETAILS

PSNet (n=12200) LeNet (n=24092)

Conv 10 channels Conv 6 channels
4x4 kernel, stride=1, max-pooling 2x2

Conv 20 channels Conv 6 channels
4x4 kernel, stride=1, max-pooling 2x2

Separable 320x200 Dense 256x84

Separable 200x100 Dense 84x10

Separable 100x10

PARTITIONED ARCHITECTURE
• Split two consecutive layers into C

densely-connected partitions.

• Involve C times fewer variables than
dense layers.

• Each score depends on a small fraction of
variables.

Figure 1: PSNet architecture

• Must not be terminated by a dense layer.

• As the number of scores increases, the
fraction of variables they depend on de-
creases.

FUTURE RESEARCH

• Improve partially-separable networks
evaluations, in particular the partitioned
gradient computation or adapt the parti-
tioned updates to use an aggregate gradi-
ent for the variables shared.

• Extend the partial separability concepts
to other networks (mainly residual neural
network).

• Develop parallel partitioned methods to
run on several GPUs simultaneously.

• Explore how layer’s dropout during train-
ing reduce the overlapping between ele-
ment functions.

• Study how separable layers affect the van-
ishing gradient problem.

CONTACT INFORMATION
Web github.com/paraynaud,

dpo.github.io
Email paul.raynaud@polymtl.ca,

dominique.orban@gerad.ca
Code and more

github.com/JuliaSmoothOptimizers
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RESULTS

• Close accuracy between LeNet and PSNet.

• Similar asymptotic accuracy for all methods.

• Noisy progress of partitioned quasi-Newton method accuracies.


