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In this note we represent and characterize a tango-quadrilateral as a quadrilateral having a circle that is tangent to the lines supporting its sides.

Introduction

The problem of tangential resp. extangential quadrilaterals and their characterizations is a well known problem, see [START_REF] Josefsson | More characterizations of Tangential Quadrilaterals[END_REF] resp. [START_REF] Josefsson | New Characterizations of Extangential Quadrilaterals[END_REF]. By definition an extangential quadrilateral is a convex quadrilateral with an external circle tangent to the extensions of all four sides. Similarly a tangential quadrilateral is a convex quadrilateral with an incircle, that is a circle tangent at the inside of the quadrilateral to all four sides.

Our purpose here is to give a unified presentation for both tangential and extangential quadrilaterals. Throughout this paper we assume quadrilaterals without three aligned vertices. Definition 1. A tango-quadrilateral is any quadrilateral having a circle tangent to the lines supporting its four sides, (see Figure 1).

Convex Concave Crossed

We start by some classic properties of tangential and extangential quadrilaterals:

Lemma 1 (Pitot's theorem). [START_REF] Josefsson | More characterizations of Tangential Quadrilaterals[END_REF] A convex quadrilateral is tangential if and only if the sum of opposite sides are equal.

Lemma 2. [2]

A convex quadrilateral is extangential if and only if the sum of two adjacent sides is equal to the sum of the other two.

The reader can see [START_REF] Josefsson | More characterizations of Tangential Quadrilaterals[END_REF][START_REF] Josefsson | New Characterizations of Extangential Quadrilaterals[END_REF] and the references therein for further equivalent properties of such quadrilaterals.

Lemma 3 (Newton's line). [START_REF] Josefsson | New Characterizations of Extangential Quadrilaterals[END_REF][START_REF] Bogomolny | Newton's Theorem and Leon Anne's Theorem[END_REF] Suppose ABCD is a tangential or extangential quadrilateral. If M and N are the midpoints of its diagonals and O the center of the tangent circle then M ,N and O are collinear.

See also [START_REF] Ayme | La ponctuelle de Newton d'un quadrilatère circonscriptible[END_REF] for a proof of Lemma 3 with a historical view. We reprove previous lemmas analytically in a slightly more general setting together with a trigonometric characterization for tango-quadrilaterals.

Given a quadrilateral ABCD with corners A, B, C, D and sides [AB], [BC], [CD] and [DA], we call an inside (internal) bisector of a corner angle, the bisector of the angle formed by the segments of adjacent sides. The other bisector is called the outside (external) bisector (the one of the supplementary angle). The following is a basic formulation of tango-quadrilaterals: Proposition 1. A quadrilateral ABCD is a tango-quadrilateral if and only if there exist four (equivalently 3) angle bisectors one from each corner such that they intersect at a single point denoted by O.

Main Results

Before stating the main results we consider which angle bisectors are like to intersect.

Proposition 2. For a tango-quadrilateral ABCD, if 4 corner bisectors intersect at O then no consecutive two are both outside bisectors.

Proof. This is straightforward, for suppose not the two outside consecutive bisectors intersect at point O outside of ABCD and it is easy to see that the fourth side (line) can not be tangent to that circle (using that from a point T on circle (C) there is a single line tangent to (C) and from a point T outside of (C) there are only two tangents to (C)).

Similarly we have: Proposition 3. For a crossed tango-quadrilateral ABCD, if 4 corner bisectors intersect at O, no consecutive two are both inside bisectors.

Figure 2

2.1. A slope formula. We shall prove a slope formula that may be used in a Newton's line characterization of tango-quadrilaterals. We also give a direct application of the formula as an exercise.

Given an orthonormal axis (O; -→ i ; -→ j ), the equation of a line (l) is y = αx + β for some reals α and β, α is called the slope of (l). In the sequel we take α (without loss of generality) to be finite and well defined, the case of a vertical line is taken as a tending limit for α → ±∞ and α = y -y A x -x A for some point A ∈ (l). 

(CM ) = st -r(ta + sb) sa + bt -r . Proof. Set f = b(y B -y C ), i = b(x B -x C ), h = a(y A = y C ), k = a(x A -x C ).

Consequently we have

t = h k and s = f i , slope (CM ) = ay A + by B -y C ax A + bx B -x C = h + f k + i . For x = k i , it can be verified that r = hb -f a kb -ia = txb -sa xb -a and after simplification x = (r -s)a (r -t)b
. We also have slope (CM ) = txi + si xi + i which is the formula given after simplifying i.

As an application consider the points O(0; 0), E(-a; Proof. We take here an orthonormal axis centered at A, up to a scalar multiple let d(O; (AB)) = 1, so the circle is of radius one. We find the slopes of (OC), (OA) and (AC) in order to apply Proposition 4 on the median (OJ). The slope of (OI) can be deduced by replacing a ↔ b, d ↔ x and adding a minus sign to the corresponding slopes (vertical reflection). Call t = tan(a) the slope of (OA) and s = -tan(2b + d) that of (OC).

M (x M ; y M ) = M ( ax A + bx B a + b ; ay A + by B a + b ).
From the angle definitions we have A(0; 0), O( cos A similar characterization holds if we consider two angle bisectors of two opposite corners for the quadrilateral ABCD.

Lemma 5. In an orthonormal system (O; -→ i ; -→ j ), let A(r cos(θ); r sin(θ)), C(c; 0) for some positives r, c and θ ∈ R. If a point B(t cos(α); t sin(α)) is taken such that (OB) is an angle bisector of the lines (BA) and (BC) at B then t = rc sin(2α -θ) c sin(α) -r sin(θ -α) .

Proof. We use the characterization of an angle bisector so:

d(O; (BA)) k = d(O; (BC)) h .
By the law of cosines:

4Area(OCB) 2 =h 2 (t 2 + c 2 -2tc cos(α)) = t 2 c 2 sin(α) 2 . 4Area(OAB) 2 =k 2 (t 2 + r 2 -2tr cos(θ -α)) = t 2 r 2 sin(θ -α) 2 .
The equation h 2 = k 2 gives the quadratic (t(c sin(α) + r sin(θ -α)) -rc sin(θ))(t(r sin(α -θ) + c sin(α)) -rc sin(2α -θ)) = 0.

The roots are t 1 = rc sin(θ) c sin(α) + r sin(θ -α) and t 2 = rc sin(2α -θ) c sin(α) -r sin(θ -α)

. The first root gives A, B and C aligned which we have already excluded. 

(OC). Assume that (B

1 A) ∩ (B 2 C) = D. It can be verified that (B 2 C) is the line y = y B x c -x B + y B c x B -c and (B 1 A) is y = x B sin(2θ) -y B cos(2θ) -r sin(θ) x B cos(2θ) + y B sin(2θ) -r cos(θ) x + ry B cos(θ) -rx B sin(θ) x B cos(2θ) + y B sin(2θ) -r cos(θ)
.

This gives point D(x D ; y D ) where

x D = rx B sin(θ)(c -x B ) + y B (rx B cos(θ) -cx B cos(2θ) -cy B sin(2θ)) (cx B -t 2 ) sin(2θ) + y B (r cos(θ) -c cos(2θ)) + r sin(θ)(x B -c) . Simplify y D + y B x D + x B to get slope (OI) = sin(α) t -r cos(α) cos(θ) cos(α) t - c sin(2θ -2α) + r sin(2α) cos(θ) sin(2θ) cos(α) , (ID = IB), slope (OJ) = r sin(θ) r cos(θ) + c = m, (JA = JC).
Equivalently slope

(OI) = 2 sin(θ) sin(α)(r cos(α) -t cos(θ)) c sin(2(θ -α)) + r sin(2α) cos(θ) -t sin(2θ) cos(α) = n.
Solving n = m gives sin(θ) cos(θ)(t(c sin(α) + r sin(α -θ)) + rc sin(θ -2α)) = 0, this is true for θ ≡ 0 (mod 90 • ) and for t = rc sin(2α -θ) c sin(α) + r sin(α -θ)

. The case θ ≡ 0 (mod 180 • ) gives ABCD a kite, otherwise the given solution is the one for ABCD a tango-quadrilateral by Lemma 5. Now assume θ ≡ 0 (mod 90 • ) the particular case when

r cos(α) cos(θ) = c sin(2θ -2α) + r sin(2α) cos(θ) sin(2θ) cos(α)
gives c = r cos(α) cos(θ -α) = c 0 . For c = c 0 , from t = r cos(α) cos(θ) , (B 1 A) ≡ (B 2 C) (excluded) and from slope (OI) = sin(α) cos(α) = m we get c = r sin(θ-α) sin(α)

= c 1 . The equation c 0 = c 1 is equivalent to sin(2α) = sin(2θ -2α) so α ≡ θ 2 (mod 90 • ), c = r and ABCD is a kite, or θ = 90 • . This completes the proof.

A particular case of Theorem 1 is proved in [START_REF] Josefsson | New Characterizations of Extangential Quadrilaterals[END_REF] (Theorem 5.2). A rhombus is a tangential quadrilateral and if only one diagonal is the perpendicular bisector of the other one then such quadrilateral (a kite) has an incircle and an external circle tangent to the lines of its sides. Proof. The case y J = 0 is already discussed so assume y J = 0 and so is y I , we need to prove y I y J < 0, equivalently • Say 90 

• < b + d ⇔ 2b + d > 180 • -d ⇔ b + d -a > 180 • -b -d -a. Since b + d <

Proposition 4 .

 4 Take three non collinear points in the plan A(x A ; y A ), B(x B ; y B ), C(x C ; y C ) and a point M ∈ (AB) with M (ax A + bx B ; ay A + by B ) for a, b ∈ R * : a + b = 1. If slope (CB) = s, slope (CA) = t and slope (BA) = r, then slope

  1), F (b; 1), E = F for a, b ∈ R. A line (l) passes through O of equation y = ex, E / ∈ (l) and F / ∈ (l); (l) ∩ (EF ) = K and the perpendiculars at E resp. F to (OE) resp. (OF ) intersect at C.

Finally

  from H ∈ (l) let a perpendicular line to (l) intersect (CF ) at A and (CE) at B. If (KC) ∩ (HA) = M , show that
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  (a) sin(a) ; 1), B( cos(a) sin(a) + cos(b) sin(b) ; 0), C( cos(a) sin(a) -cos(2b+d) sin(d) ; 1 + sin(2b+d) sin(d) ). Letting r denote the slope of (AC), r = sin(a) sin(d) + sin(2b + d) sin(a) sin(d) cos(a) -sin(a) cos(2b + d) . If m is the slope of (OJ), m = 2ts -r(t + s) s + t -2r , it can be verified that m = sin(a)(sin(d) -sin(2b + d)) sin(a) cos(2b + d) + sin(d) cos(a) consequently the slope n of (OI) is n = -sin(b)(sin(x) -sin(2a + x)) sin(b) cos(2a + x) + sin(x) cos(b) . Solving n = m in x gives: sin(a)(sin(d + b -b) -sin(b + b + d)) sin(a) cos(b + b + d) + sin(d + b -b) cos(a) = -sin(b)(sin(x + a -a) -sin(a + a + x)) sin(b) cos(a + a + x) + sin(x + a -a) cos(b) , after expanding and simplifying we get: 2 sin(a) sin(b) sin(b -a) + tan(a + x) cos(a + b) = 2 sin(a) sin(b) sin(b -a) -tan(b + d) cos(a + b) , equivalently (sin(a) sin(b) = 0) tan(a + x) cos(a + b) = tan(-b -d) cos(a + b) which implies x + a + b + d ≡ 0 (mod 180 • ) as cos(a + b) = 0.

Theorem 1 .

 1 Given a quadrilateral ABCD with no three aligned vertices; let the angle bisectors of two opposite corners intersect at O with an angle θ. If θ = 90 • , the midpoints of the diagonals (I and J) are collinear with O if and only if ABCD is a tango-quadrilateral. Proof. Take as in Lemma 5 the points O(0; 0), A(r cos(θ); r sin(θ)), C(c; 0) and B(t cos(α); t sin(α)) where r and c are positives reals with θ ∈ [0; 180 • ]. We start by the following figure, let B 1 resp. B 2 be the symmetric of B with respect to (OA) resp.

  Now consider an orthonormal system centered at O with d(O; (AB)) = 1, we have A(-cos(a) sin(a) ; -1), B( cos(b) sin(b) ; -1), C(-cos(2b+d) sin(d) ; sin(2b+d) sin(d) ). The midpoints I and J are: and y J = 0 if and only if sin(2b + d) = sin(d) thus b + d ≡ 90 • (mod 180 • ). Equivalently b + d = 90 • for b acute and b + d = 450 • for b obtuse (d verifies d < 180 • -b or d > 360 • -b), this gives J(-cos(a) 2 sin(a) + sin(b) 2 cos(b) ; 0). When a + x = 90 • or a + x = 450 • we get I( cos(b) 2 sin(b) -sin(a) 2 cos(a) ; 0) and it is easy to verify that x I x J > 0 resp. x I x J < 0 for a or b obtuse resp. a and b acute with x I = x J = 0 if and only if a + b = 90 • (ABCD is a rhombus). With the same previous notations: Proposition 5. For x + a + b + d = 180 • , -→ OJ = α -→ IO with α ∈ R + , α is nul if and only if ABCD is a rhombus.

(2. 1 )

 1 (sin(2b + d) -sin(d))(sin(b + d -a) -sin(b + d + a)) < 0.

  180 • and a acute this implies that sin(2b + d) < sin(d) and sin(b + d -a) > sin(b + d + a). • When 2b + d < 180 • -d so 0 < b + d < 90 • ; sin(2b + d) > sin(d) and sin(b + d -a) < sin(b + d + a).Proposition 6. For x + a + b + d = 540 • , -→ OJ = α -→ IO with α ∈ R * -.Proof. We may assume y I and y J are not zero, by Remark 1 we know that sin(x) sin(d) < 0. Let without loss of generality d < 180• -b < 180 • so 180 • < b + d + a < 360 • and (2.1) is proved as follows:• If 180 • < b + d + a < 270 • , for b + d > 90 • , sin(b + d -a) -sin(b + d + a) > 0 and similarly to the last proof sin(2b + d) < sin(d). When b + d -a < 180 • -a -b -d, b + d < 90 • , a > 90 • with sin(b + d -a) -sin(b + d + a) < 0 and sin(2b + d) > sin(d). • If 270 • ≤ b + d + a < 360 • , from 180 • > b + d > 90 • , a > 90• and b < 90 • : sin(b + d -a) -sin(b + d + a) > 0 and sin(2b + d) < sin(d). Proposition 7. Under the previous notations: ) sin(d) cos(2b + 2a + d + x) if and only if x + a + b + d ≡ 0 (mod 180 • ). Proof. Expanding and simplifying gives cos(x + d) = cos(2a + 2b + d + x) and thus x + a + b + d ≡ 0 (mod 180 • ). It can be verified that: sin(d) cos(2b + 2a + d + x). Notice that ( cos(x) sin(x) + cos(d) sin(d) ) has the same sign as sin(x+d) sin(x) sin(d) . From Remark 1, given a tango-quadrilateral sin(x + d) > 0. For x + a + b + d = 180 • : sin(x) sin(d) > 0 and for x + a + b + d = 540 • : sin(x) sin(d) < 0. For d < 180 • (resp. x < 180 • ), BC = cos(b) sin(b) + cos(d) sin(d) with b + d < 180 • (resp. AD = cos(x) sin(x) + cos(a) sin(a) with a + x < 180 • ). For d > 180 • (resp. x > 180 • ), BC = cos(180 • -b) sin(180 • -b) + cos(360 • -d) sin(360 • -d) = -( cos(b) sin(b) + cos(d) sin(d) ) with b + d > 360 • (resp. AD = -( cos(a) sin(a) + cos(x) sin(x) ) with a + x > 360 • . Consequently we have the following: • If x < 180 • and d < 180 • , then ABCD is a tango-quadrilateral with an incircle if and only if AB + DC = AD + BC. • If x > 180 • and d < 180 • , then ABCD is a tango-quadrilateral with an excircle if and only if AD + AB = DC + BC. • If x < 180 • and d > 180 • , then ABCD is a tango-quadrilateral with an excircle if and only if AB + BC = DC + AD. • If x > 180 • and d > 180 • , ABCD is not a tango-quadrilateral.
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