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Introduction

We characterize the inverse designs for Conservation Laws and for Hamilton-Jacobi equations. They are the sets of those initial data that, separately for the two equations, evolve into a given prole after a given positive time.

As is well known, both Conservation Laws and Hamilton-Jacobi equations generate Lipschitz continuous semigroups whose orbits are solutions, either in the entropy sense or in the viscosity sense. However, the insurgence of singularities implies that these evolutions may not be time reversible, in general. As a result, inverse designs, when non empty, may well display interesting innite dimensional geometric or topological properties.

From a control theoretic point of view, the characterization of inverse designs solves the most elementary controllability problem, thus playing a key role in subsequent developments. Indeed, the rst step in the study of inverse designs consists in a full characterization of the attainable sets, i.e., of the proles leading to non empty inverse designs. In this connection, the current literature oers a few results, typically limited to the x-independent case. We refer the reader to [START_REF] Ancona | On the attainable set for scalar nonlinear conservation laws with boundary control[END_REF] for a characterization of the attainable set for a conservation law (here, with boundary); to [START_REF] Esteve-Yagüe | Reachable set for Hamilton-Jacobi equations with non-smooth Hamiltonian and scalar conservation laws[END_REF] for a result on the attainable set for Hamilton-Jacobi equations in several space dimensions and to [START_REF] Corghi | On the attainable set for scalar balance laws with distributed control[END_REF] for the case of an x-dependent source term. A triangular system of conservation laws is considered in [START_REF] Andreianov | On the attainable set for a class of triangular systems of conservation laws[END_REF].

Below, we proceed beyond reachable sets and fully characterize inverse designs.

More precisely, we consider the conservation law

∂ t u + ∂ x H(x, u) = 0 (t, x) ∈ ]0, +∞[ × R u(0, x) = u o (x) x ∈ R (CL)
and the Hamilton-Jacobi equation

∂ t U + H(x, ∂ x U ) = 0 (t, x) ∈ ]0, +∞[ × R U (0, x) = U o (x)
x ∈ R (HJ) both in the scalar, one dimensional, non homogeneous, i.e., x-dependent, case. Denote by

S CL : R + × L ∞ (R; R) → L ∞ (R; R) and S HJ : R + × Lip(R; R) → Lip(R; R) , (1.1) 
respectively, the semigroups whose orbits are entropy solutions to (CL) and viscosity solutions to (HJ), see [16, 2.5]. For any positive T and for any assigned proles w ∈ L ∞ (R; R) and W ∈ Lip(R; R), the inverse designs are

I CL T (w) := u o ∈ L ∞ (R; R) : S CL T u o = w and 
I HJ T (W ) := U o ∈ Lip(R; R) : S HJ T U o = W . (1.2) 
In the homogeneous x-independent case, a general characterization of I CL T (w) and I HJ T (W ) is given in [START_REF] Colombo | Initial data identication in conservation laws and Hamilton Jacobi equations[END_REF]. Other more specic results in this setting are [START_REF] Liard | Initial data identication for the one-dimensional Burgers equation[END_REF], devoted to Burgers' equation; [START_REF] Ancona | On the attainable set for scalar nonlinear conservation laws with boundary control[END_REF], specic to boundary value problems arising in the modeling of vehicular trac. The multidimensional setting is considered in [START_REF] Esteve | The inverse problem for hamiltonjacobi equations and semiconcave envelopes[END_REF], specically in the case of (HJ). A classical reference for analytic techniques used in these papers is [START_REF] Barron | Regularity of Hamilton-Jacobi equations when forward is backward[END_REF].

The present non homogeneous case signicantly diers from the homogeneous one and signicantly less results in the literature are available. The explicit example constructed below shows that when H depends on x (even smoothly), the inverse design I CL T (w) may have properties in a sense opposite to the general ones that hold in the homogeneous case, according to [START_REF] Colombo | Initial data identication in conservation laws and Hamilton Jacobi equations[END_REF]. In particular, for instance, the results in [START_REF] Colombo | Initial data identication in conservation laws and Hamilton Jacobi equations[END_REF] ensure that in the x-independent case

S CL T L ∞ (R; R) = cl L 1 S CL T u o ∈ C 1 (R; R) : S t u o ∈ C 1 (R; R) for all t ∈ [0, T ]
which can be false when H depends on x, as in the case of the example in Section 4. It thus appears that non homogeneous Conservation Laws are, in a sense, more singular than homogeneous ones. Assume I CL T (w) is non empty. Then, in the x-independent case, the presence of a shock in w is a necessary and sucient condition for I CL T (w) to be innite or, equivalently, I CL T (w) is a singleton if and only if w is continuous. More precisely, in the x-independent case, the presence of a shock in w implies that I CL T (w) is a close convex cone without extremal faces of nite dimension. On the contrary, in the x-dependent case, we exhibit an example where I CL T (w) is a singleton although w displays a shock. This is explained in Section 4, where the theory of generalized characteristics, see [START_REF] Dafermos | Generalized characteristics and the structure of solutions of hyperbolic conservation laws[END_REF], is deeply exploited. Graphs of the constructed solution are in Figure 1. 1. We defer further remarks on these dierences to Theorem 4.1 and to the subsequent discussion. Let us recall that a rst step in this direction, limited to the study of the attainable Figure 1.1: Superposition of a solution to (CL) at dierent times with the orbits of the Hamiltonian system (HS). x (or q) is on the horizontal axis and u (or p) on the vertical axis. As proved later in Theorem 4.1, the initial datum (5.29) is the unique one that evolves into the depicted proles where, at time T = π (2 √ 2) , a shock arises.

set, is [START_REF] Ancona | Attainable proles for conservation laws with ux function spatially discontinuous at a single point[END_REF], where H in (CL) consists of an expression for x > 0 and another expression for x < 0, see also the related preprint [START_REF] Adimurthi | Exact and optimal controllability for scalar conservation laws with discontinuous ux[END_REF].

The analytic techniques developed below take advantage of the deep connection between (CL) and (HJ). We know, on the basis of [START_REF] Colombo | Conservation laws and HamiltonJacobi equations with space inhomogeneity[END_REF], that both these Cauchy problems are (globally) well posed under the same set of assumptions, namely Smoothness: H ∈ C 3 (R 2 ; R) .

(C3)

Compact NonHomogeneity:

∃X > 0, ∀(x, p) ∈ R 2 , |x| ≥ X =⇒ ∂ x H(x, p) = 0. (CNH)
Strong Convexity:

∀x ∈ R, p → ∂ p H(x, p) is an increasing C 1 -dieomorphism of R onto itself. (CVX)
Rather than tackling directly the characterization of the inverse design for (CL), we do it for (HJ) and use the correspondence to get back to (CL). Assumption (CVX) implies that H is strictly convex with respect to the second variable. As is well known, the mappings x → -x and H → -H transform the convex case into the concave one, and vice versa. Recall that (CVX) is a recurrent assumption in the context of (HJ) where it allows a connection to optimal control, see [START_REF] Bardi | Optimal control and viscosity solutions of HamiltonJacobi-Bellman equations[END_REF][START_REF] Barles | An introduction to the theory of viscosity solutions for rst-order HamiltonJacobi equations and applications[END_REF][START_REF] Cannarsa | Semiconcave functions, HamiltonJacobi equations, and optimal control[END_REF]. On the contrary, the use of Assumption (CNH) in conservation laws, to the authors' knowledge, was recently introduced in [START_REF] Colombo | Conservation laws and HamiltonJacobi equations with space inhomogeneity[END_REF].

It is worth noting that the assumptions (C3)(CNH)(CVX) comprise uxes (Hamiltonians) that do not t in the classical Kruºkov paper [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF]. Indeed, following [START_REF] Colombo | Conservation laws and HamiltonJacobi equations with space inhomogeneity[END_REF]Example 1.1] consider the Hamiltonian

H(x, u) := V (x) u 1 - u R(x) , (1.3) 
where V, R ∈ C 3 (R; R) are both strictly positive and with compactly supported derivative. The conservation law (CL)(1.3) describes the time evolution of the density u = u(t, x) of a ow of vehicles along a one-dimensional road that allows a space dependent maximal density R = R(x) and maximal speed V = V (x). It is readily checked that H in (1.3) satises (C3), and it is strongly concave analogously to (CVX). On the other hand, this H may not meet the assumptions of [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF]. In particular, it fails the growth assumption [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF]Formula (4.2)]. While inverse design refers to going back in time, the dual approach is connected to the problem of the compactness of the range of the semigroup S CL t , apparently considered only in the homogeneous case [START_REF] De Lellis | A quantitative compactness estimate for scalar conservation laws[END_REF], extended in [START_REF] Ancona | Lower compactness estimates for scalar balance laws[END_REF] to balance laws, but the case of uxes depending on the space variable is, to our knowledge, still open.

sup (x,u)∈R 2 -∂ 2 xu H(x, u) < +∞, see
The next section provides the basic background. Then, on the basis of [START_REF] Colombo | Conservation laws and HamiltonJacobi equations with space inhomogeneity[END_REF], Section 3 extends to the x-dependent case several classical results, see [START_REF] Colombo | Initial data identication in conservation laws and Hamilton Jacobi equations[END_REF]. On the contrary, the example constructed in Section 4 shows how deep can be the dierences between the homogeneous and non homogeneous case. All proofs are deferred to Section 5.

Notations and Denitions

Recall the classical denition of entropy solution [28, Denition 1], as tweaked in [START_REF] Colombo | Conservation laws and HamiltonJacobi equations with space inhomogeneity[END_REF].

Denition 2.1. Fix u o ∈ L ∞ (R; R). A bounded function u ∈ L ∞ (R + × R; R) is a solution to (CL) if for all test functions ϕ ∈ C ∞ c (R + × R; R + )
and for all scalar k ∈ R:

+∞ 0 R u(t, x) -k ∂ t ϕ(t, x) dx dt + +∞ 0 R sgn u(t, x) -k H x, u(t, x) -H(x, k) ∂ x ϕ(t, x) dx dt - +∞ 0 R sgn u(t, x) -k ∂ x H(x, k) ϕ(t, x) dx dt + R u o (x) -k ϕ(0, x) dx ≥ 0 .
Denition 2.1, taken from by [16, Denition 2.1] is apparently weaker than the classical Kruºkov denition since it does not require the trace at 0 condition [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF]Formula (2.2)]. Nevertheless, under Assumption (C3), Denition 2.1 ensures uniqueness and uniform L 1 loc continuity in time of the solution, as proved in [START_REF] Colombo | Conservation laws and HamiltonJacobi equations with space inhomogeneity[END_REF]Theorem 2.6].

The following Lemma ensures the existence of left and right traces in the space variable at any point. In the homogeneous x-independent case, this is classically obtained through the well known Oleinik estimates [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF]Theorem 11 Lemma 2.2. Let H satisfy (C3), (CNH) and (CVX). Fix T > 0 and w ∈ L ∞ (R; R) so that I CL T (w) ̸ = ∅. Then, for all x ∈ R, w admits nite left and right traces at x.

The proof is deferred to Section 5. Once this Lemma is proved, we are able to use Dafermos' techniques based on generalized characteristics from [START_REF] Dafermos | Generalized characteristics and the structure of solutions of hyperbolic conservation laws[END_REF], where solutions are however required to have traces at each point. Alternatively, another reference is [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF]Chapter 10] or [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF]Section 11.11] for the inhomogeneous case, but here solutions are required to be in BV. Thus, particular care has to be taken here to avoid circular arguments. We now recall the framework of viscosity solutions to (HJ), introduced by CrandallLions.

Denition 2.3 ([19, Denition 5.3]). Let U ∈ Lip([0, T ] × R; R) satisfy U (0) = U o .
(i) U is a subsolution to (HJ) when for all test functions ϕ ∈ C

1 (]0, T [ × R; R) and for all (t o , x o ) ∈ ]0, T [ × R, if U -ϕ has a point of local maximum at the point (t o , x o ), then ∂ t ϕ(t o , x o ) + H x o , ∂ x ϕ(t o , x o ) ≤ 0;
(ii) U is a supersolution to (HJ) when for all test functions ϕ ∈ C

1 (]0, T [ × R; R) and for all (t o , x o ) ∈ ]0, T [ × R, if U -ϕ has a point of local minimum at the point (t o , x o ), then ∂ t ϕ(t o , x o ) + H x o , ∂ x ϕ(t o , x o ) ≥ 0.
(iii) U is a viscosity solution to (HJ) if it is both a supersolution and a subsolution.

The literature oers a standardized framework for the well posedness of (CL), typically referred to the classical paper [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF], see also [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF]. On the contrary, a wide variety of assumptions are available, where results ensuring the well posedness of (HJ) can be proved, see for instance [START_REF] Bardi | Optimal control and viscosity solutions of HamiltonJacobi-Bellman equations[END_REF][START_REF] Barles | An introduction to the theory of viscosity solutions for rst-order HamiltonJacobi equations and applications[END_REF][START_REF] Cannarsa | Semiconcave functions, HamiltonJacobi equations, and optimal control[END_REF][START_REF] Crandall | Viscosity solutions of HamiltonJacobi equations[END_REF] or the textbooks [9, Chapter 9], [START_REF] Evans | Partial Dierential Equations[END_REF]Chapter 10]. Here we recall in particular [START_REF] Sylla | Heterogeneity in scalar conservation laws: approximation and applications[END_REF], devoted to the convex case, and [START_REF] Colombo | Conservation laws and HamiltonJacobi equations with space inhomogeneity[END_REF] where the two equations are considered under the same set of assumptions, thus allowing a detailed description of the correspondence between the solutions to the two equations. Indeed, the orbits of the semigroups ( For any positive T and for any assigned proles w ∈ L ∞ (R; R) and W ∈ Lip(R; R), we rst present conditions ensuring that the sets I CL T (w) and I HJ T (W ) in (1.2) are not empty and then prove geometrical/topological properties. In light of the correspondence U → u = ∂ x U between S HJ and S CL , see [START_REF] Colombo | Conservation laws and HamiltonJacobi equations with space inhomogeneity[END_REF]Theorem 2.20] or also [START_REF] Cifani | Entropy solution theory for fractional degenerate convectiondiusion equations[END_REF][START_REF] Coclite | Viscosity solutions of Hamilton-Jacobi equations with discontinuous coecients[END_REF][START_REF] Colombo | Initial data identication in conservation laws and Hamilton Jacobi equations[END_REF][START_REF] Karlsen | A note on front tracking and equivalence between viscosity solutions of Hamilton-Jacobi equations and entropy solutions of scalar conservation laws[END_REF], each of the two characterizations can be deduced from the other one.

As usual, in connection with (HJ) and (CL), we use of the system of ordinary dierential equations

q = ∂ u H(q, p) ṗ = -∂ x H(q, p) (HS)
which we consider equipped with initial or with nal conditions. Basic properties of (HS) under (C3)(CNH)(CVX) are proved in Lemma 5.2 and in the subsequent ones. For a xed positive T , with reference to (HS), we also introduce the set

R T := q ∈ C 1 ([0, T ]; R) : ∃ p ∈ C 1 ([0, T ]; R) such that (q, p) solves (HS) . (2.1)
whose elements we call Hamiltonian rays. For all w ∈ L ∞ (R; R) such that I CL T (w) ̸ = ∅, so that Lemma 2.2 applies and we can dene

π w : R -→ R x -→ q(0),
where (q, p) solves (HS) with datum q(T ) = x p(T ) = w(x-) .

(2.

2)

The map π w assigns to x ∈ R the intersection of the minimal backward characteristics emanating from (T, x), see [20, Denition 3.1, Theorems 3.2 and 3.3], with the axis t = 0. Lemma 2.2 and Lemma 5.2 ensure that π w is well dened. Remark that in the x-independent case, all Hamiltonian rays are straight lines, as also any extremal characteristics, a key simplication exploited in [START_REF] Colombo | Initial data identication in conservation laws and Hamilton Jacobi equations[END_REF]Formula (2.3)].

As is well known, thanks to (CVX), Hamilton-Jacobi equation (HJ) is deeply related and motivated by the search for minima of functionals of the type

J t : W 1,1 ([0, t]; R) -→ R y -→ t 0 L y(s), ẏ(s) ds + U o y(0) (2.3)
where U o ∈ Lip(R; R) and L is the Legendre transform of H in p, i.e.,

L : R 2 -→ R (x, v) -→ sup p∈R p v -H(x, p) .
(2.4)

As general references for this minimization problem, we refer to [10, Chapter 5], [13, Part III], [START_REF] Evans | Partial Dierential Equations[END_REF]Chapter 3]. Below, for detailed proofs about the connection between solutions to (HJ) and to minimization problems in our specic functional setting, we often refer to [32, 8.3]. Recall, in particular, that U solves (HJ) if and only if for all (T, x)

∈ [0, +∞[ × R, U (T, x) = inf γ(T )=x γ∈R T T 0 L γ(s), γ(s) ds + U o γ(0) , (2.5) 
see [START_REF] Sylla | Heterogeneity in scalar conservation laws: approximation and applications[END_REF]Corollary 8.3.15]. Note moreover that by [START_REF] Sylla | Heterogeneity in scalar conservation laws: approximation and applications[END_REF]Theorem 8.3.12]

U (T, x) = inf γ(T )=x γ∈Lip([0,T ];R) T 0 L γ(s), γ(s) ds + U o γ(0) ,
As a rst step, we verify that the present assumptions (C3)(CNH)(CVX) allow to apply the results in [START_REF] Colombo | Conservation laws and HamiltonJacobi equations with space inhomogeneity[END_REF], where convexity was relaxed to genuine nonlinearity and uniform coercivity.

Proposition 2.4. Let H satisfy (C3)(CNH)(CVX). Then. the following properties hold:

Uniform Coercivity : ∀ h ∈ R ∃ U h ∈ R : ∀ (x, u) ∈ R 2 if H(x, u) ≤ h then |u| ≤ U h . (UC)
Weak Genuine NonLinearity : (WGNL)

The proof is deferred to Section 5.

Extensions from Homogeneous to Non Homogeneous

This section is focused on those properties known to hold in the homogeneous case, see [START_REF] Colombo | Initial data identication in conservation laws and Hamilton Jacobi equations[END_REF], whose statement admits a natural extension to the non homogeneous case. However, the proofs typically require a new approach. An interesting connection between (CL) and (HJ) is the following result, which shows that minimal and maximal backward characteristics are minima of the functional (2.3). Theorem 3.1. Let H satisfy (C3)(CNH)(CVX). Fix U o ∈ Lip(R; R) and let U solve (HJ) in the sense of Denition 2.3. Fix (t, x) ∈ ]0, +∞[ × R and let ζ, respectively ζ, be the minimal, respectively maximal, backwards characteristics, related to u = ∂ x U which solves (CL), emanating from (t, x), see [START_REF] Dafermos | Generalized characteristics and the structure of solutions of hyperbolic conservation laws[END_REF]Denition 3.1]. Then, with reference to the functional (2.3),

U (t, x) = J t ( ζ) = J t ( ζ) .
The proof is deferred to 5.1.

We are now ready to state the conditions ensuring that I HJ T (W ), as dened in (1.2), is not empty. In other words, the next result completely characterizes the reachable set for (HJ). Theorem 3.2. Let H satisfy (C3)(CNH)(CVX). Fix T > 0, W ∈ Lip(R; R) and dene

U * o : R -→ R x -→ sup q(0)=x q∈R T W q(T ) - T 0 L q(s), q(s) ds , (3.1) 
where L is as in (2.4) and R T as in (2.1). Then, the following conditions are equivalent:

(1) U * o ∈ I HJ T (W ).

(

) I HJ T (W ) ̸ = ∅. 2 
(3) The set

G := (x o , x T ) ∈ R 2 : ∃ q ∈ R T , (i) q(0) = x o , q(T ) = x T (ii) U * o (x o ) = W (x T ) - T 0 L q(s), q(s) ds (3.2)
has the following property:

(x o , x ′ T ), (x o , x ′′ T ) ∈ G =⇒ ∀ x T ∈ [x ′ T , x ′′ T ], (x o , x T ) ∈ G . (3.3) 
Moreover, any of the conditions above implies that the map π W ′ dened in (2.2) is well dened and nondecreasing.

The proof is deferred to 5.2. The set G is more readily interpreted from the point of view of (CL). In particular, (3.3) describes the structure of rarefaction-like waves and, limited to the x-independent case, deriving the condition on G from the property of π W ′ is straightforward. In this connection, the x-dependent case is signicantly more intricate. We signal in Lemma 5.9 additional properties of the set G.

We are now ready to provide a full and general characterization of the inverse designs.

Theorem 3.3. Let H satisfy (C3), (CNH) and (CVX). Fix T > 0 and W ∈ Lip(R; R)

such that I HJ T (W ) ̸ = ∅ and dene U * o as in (3.1). Then, for all U o ∈ Lip(R; R), U o ∈ I HJ T (W ) ⇐⇒ (i) U o ≥ U * o (ii) U o = U * o on π W ′ (R). (3.4) 
where π W ′ is dened as in (2.2).

The proof is deferred to 5. The latter corollary extends to the x-dependent case some of the properties known to hold in the x-independent case, see [START_REF] Colombo | Initial data identication in conservation laws and Hamilton Jacobi equations[END_REF].

Peculiarities of the x-Dependent Case

The extension to the x-dependent case can not be merely reduced to the rise of technical diculties. Indeed, some properties are irremediably lost and new phenomena arise, as shown below. The most apparent dierence between the two situations is described in Figure 4.1, with reference to extremal backward generalized characteristics, whose behaviors in the two cases are quite dierent. In the x-independent case, extremal backward characteristics dene a non uniqueness gap, see Figure 4.1. On the contrary, in the x-dependent case, extremal backward characteristics may well intersect at the initial time, so that the non uniqueness gap disappears.

Furthermore, in the x-independent case, an isentropic solution, see [START_REF] Colombo | Conservation laws and HamiltonJacobi equations with space inhomogeneity[END_REF]Theorem 3.1], is constructed lling the non uniqueness gap with Hamiltonian rays (2.1) emanating from q(T ) = x, p(T ) = θ w(x+) + (1 -θ) w(x-), for θ ∈ [0, 1]. On the contrary, the same idea fails in the x-dependent case. The numerical integrations in o is one sided Lipschitz continuous, but also that the solution ũ to (CL) with datum u * o evolving into w is Lipschitz continuous on any compact subset of ]0, T [ × R. Thus, ũ satises the inequality in Denition 2.1 with an equality, i.e., it is an isentropic and also reversible in time solution, see related multi-dimensional results in [START_REF] Barron | Regularity of Hamilton-Jacobi equations when forward is backward[END_REF].

This actually characterizes the homogeneous case. Indeed, there exists an x-dependent Hamiltonian H, a prole w and a time T > 0 such that I CL T (w) ̸ = ∅ but in any solution evolving from an initial datum in I CL T (w) shocks arise at a time t < T , so that no reversible solution is possible, see Figure 1.1. In other words, the prole w can be reached exclusively producing a sucient amount of entropy and no isentropic solution evolves into w. Each of these facts necessarily requires H to depend on x and can not take place in an x-independent setting, as shown in [START_REF] Colombo | Initial data identication in conservation laws and Hamilton Jacobi equations[END_REF]. A consequence is that no direct denition of u * o is available, as it was in the x-independent case, and we have to resort to (HJ) for its construction. 

H(x, u) := u 2 2 + g(x) where g(x) := 1 -(1 -x 2 ) 4 if |x| ≤ 1 , 1 otherwise. (4.1)
Then, (C3), (CNH) and (CVX) hold. Moreover, for all T > π/(2 √ 2), there exists w ∈ L ∞ (R; R) that contains a discontinuity and such that I CL T (w) is a singleton.

The proof is deferred to 5.4. Remark that if H does not depend on x, as soon as w has a jump, then the contrary to the conclusion of Theorem 4.1 holds true, see [START_REF] Colombo | Initial data identication in conservation laws and Hamilton Jacobi equations[END_REF]. Indeed, I CL T (w) is either empty or innite, whenever w has a discontinuity. In particular, [15, (G1) in Proposition 5.2] does not hold.

Recall that [8, Section 5] presents, in the n dimensional case, a backward procedure to construct what corresponds here, in the x-independent case, to U * o in (3.1). Then, [8, Example 6.3] proves that this procedure may well fail in the x-dependent case. In Theorem 4.1, which is however restricted to the 1 dimensional case, the function H also satises (CNH), showing that the behavior for |x| → +∞ is not relevant in this context. More relevant, Theorem 4.1 shows that there may well be an intrinsic minimal entropy production, independently of any constructive procedure. As a matter of fact, the U * o in (3.1) corresponds to the construction in [START_REF] Barron | Regularity of Hamilton-Jacobi equations when forward is backward[END_REF], although it is built by means of optimal control problems rather than by means of backward HamiltonJacobi equations. However, we are here interested in the broader inverse design characterization discussed in Section 3, rather than in time reversibility.

The evolution of the numerical solution computed with a standard nite volume scheme, is represented in Figure 4.4, see also Figure 1.1. Remark, and this is intrinsic to the heterogeneous case, that the initial rarefaction prole evolves into a shock wave. The time asymptotic behavior shows further dierences with the x-independent case, see [START_REF] Colombo | Peculiarities of space dependent conservation laws: Inverse design and asymptotics[END_REF] for more details.

Proofs

Several results of use below can be obtained through rather classical techniques but can hardly be precisely localized in the literature. In these cases, we refer to [START_REF] Sylla | Heterogeneity in scalar conservation laws: approximation and applications[END_REF], where all details are provided. 

(R + ; R) that veries ∀(x, p) ∈ R 2 , H(x, p) ≥ ϕ |p| with ϕ(r) r -→ r→+∞ + ∞ . (5.1)
Then, (UC) readily follows. □ Then for all s, τ ∈ [0, T ] with s < τ , 

ζ(τ ) ξ(τ ) U (τ, x) dx - ζ(s) ξ(s) U (s, x) dx + τ s ζ(t) ξ(t) H x, ∂ x U (t, x) dx dt = τ s ζ(t) U t, ζ(t) -ξ(t) U t,
1 ε ζ(t) ζ(t)-ε U (t, y) dy - 1 ε ζ(0) ζ(0)-ε U o (y) dy + 1 ε t 0 ζ(s) ζ(s)-ε H y, ∂ x U (s, y) dy ds = 1 ε t 0 ζ(s) U s, ζ(s) -U s, ζ(s) -ε ds . (5.3) 
We want to pass to the limit ε → 0 in (5.3) 

) -U (s, x 1 ) = x 2 x 1 ∂ x U (s, y) dy, so that for a.e. s ∈ [0, t], U (s, •) is dierentiable at x = ζ(s) and ∂ x U s, ζ(s) = lim h→0 ∂ x U (s, ζ(s) + h).
We thus obtain:

U t, ζ(t) -U o ζ(0) = t 0 ζ(s) ∂ x U s, ζ(s) -H ζ(s), ∂ x U s, ζ(s) ds . (5.4) Since ζ is genuine, there exists a function ω ∈ C 1 (]0, t[; R) such that (ζ, ω) is a solution to system (HS) with nal conditions ζ(t) = x and ω(t) = ∂ x U (t, x+), since ζ is a maximal characteristics, see [20, Theorem 3.3]. Moreover, for a.e. s ∈ [0, t], ω(s) = ∂ x U s, ζ(s) .
Combining these details with (5.4) and (CVX), classical computations lead to:

U (t, x) -U o ζ(0) = t 0 ζ(s) ω(s) -H ζ(s), ω(s) ds = t 0 ∂ p H ξ(s), ω(s) ω(s) -H ζ(s), ω(s) ds = t 0 L ζ(s), ∂ p H ξ(s), ω(s) ds = t 0 L ζ(s), ζ(s) ds ,
concluding the proof. □

Further information about the regularity of U along characteristics can be found in [10, 5.5].

5.2

Proof of Theorem 3.2

In the light of the regularity proved in Lemma 2.2, whenever w ∈ L ∞ (R; R) is such that I CL T (w) ̸ = ∅, then by w(x), we mean the left trace w(x-) of w at x, for all x ∈ R.

Lemma 5.2. Let H satisfy (C3), (CNH) and (CVX). Then, for all (q o , p o ) ∈ R 2 , the Cauchy problem (HS) with initial datum (q o , p o ) at time 0 admits a unique maximal solution (q, p) dened on all R and satisfying, with the notation (2.4),

p(t) ≤ sup |u|≤|po| x∈R H(x, u) + sup |v|≤1 x∈R L(x, v) . (5.5) 
Moreover, calling (q, p) the solution to (HS) with datum (q o , p o ) at time 0, the maps

F : R 3 -→ R 2 (t, q o , p o ) -→ q(t), p(t) F q : R 3 -→ R (t, q o , p o ) -→ q(t) F p : R 3 -→ R (t, q o , p o ) -→ p(t) (5.6) are of class C 2 .
Proof of Lemma 5.2. By (C3), the standard Cauchy Lipschitz Theorem ensures local existence and uniqueness of a solution (q, p) to the Cauchy problem for (HS) with datum (q o , p o ). Moreover, since H is conserved along solutions to (HS), for all t where (q, p) is dened,

sup |u|≤|po| x∈R H(x, u) ≥ H(q o , p o ) = H q(t), p(t) ≥ p(t) -sup |v|≤1 x∈R L(x, v) ,
where we used (2.4), see also [START_REF] Sylla | Heterogeneity in scalar conservation laws: approximation and applications[END_REF]Formula (8.1.5)] with λ = 1, proving (5.5). By (HS), (C3) and (5.5), we also have that the solution (q, p) is bounded and uniformly continuous on bounded intervals. Hence, it is globally dened. Standard results on ordinary dierential equations, see e.g. [9, Theorem 3.9, Theorem 3.10], ensure that the ow F is as regular as ∂ q H, ∂ x H and, by (C3), the proof is completed.

□ The next three lemmas state in full rigor simple geometric properties that are consequences of (CVX) and (CNH) on the graph of H (essentially, a canyon along the x direction). Lemma 5.3. Let H satisfy (C3), (CNH) and (CVX). Then, there exists a unique function (ii) m and M have a compact space dependency:

z : R -→ R x -→ z(x) such that ∀ x ∈ R ∂ p H x, z(x) = 0 . (5.7) Moreover, z ∈ C 2 (R; R), if |x| ≥ X then z ′ (x) =
|x| > X and c > K =⇒ ∂ x m(x, c) = 0 and ∂ x M (x, c) = 0 . (5.11) (iii) For all x ∈ R, m(x, •) is decreasing while M (x, •) is increasing. (iv) For all x ∈ R, lim c→+∞ m(x, c) = -∞ and lim c→+∞ M (x, c) = +∞.
Proof of Lemma 5.4. We only prove the results for M , the details for m are entirely similar.

Assumption (CVX) ensures that condition (5.10) uniquely denes the map M in (5.9

). An application of the Implicit Function Theorem shows the regularity, by (C3), proving (i).

Again, by the Implicit Function Theorem and the chain rule, we have

∂ x H x, M (x, c) + ∂ x M (x, c) ∂ p H x, M (x, c) = 0 ,
which implies (5.11) by (CNH) and by (5.9) and (5.10), proving (ii). By the denitions (5.7) of z and (5.9)(5.10) of M , we have that for all (x, c)

∈ R×]K, +∞[, M (x, c) > z(x) and hence ∂ p H x, M (x, c) > 0. Again using the Implicit Function Theorem, ∂ c M (x, c) ∂ p H x, M (x, c) = 1 proving that ∂ c M (x, c) > 0, proving (iii). Since M is increasing, lim c→+∞ M (x, c) = sup c>K M (x, c
). The boundedness of c → M (x, c) for some x then contradicts the equality H x, M (x, c) = c, proving (iv). □ Lemma 5.5. Let H satisfy (C3), (CNH) and (CVX). Referring to the constant K in Lemma 5.3 and to the functions m, M in Lemma 5.4, dene the functions:

v : ]K, +∞[ -→ R c -→ sup x∈R ∂ p H x, m(x, c) and V : ]K, +∞[ -→ R c -→ inf x∈R ∂ p H x, M (x, c)
Then:

(i) v is nonincreasing and V is nondecreasing;

(ii

) lim c→+∞ v(c) = -∞ and lim c→+∞ V (c) = +∞.
Proof of Lemma 5.5. By (CNH) and (ii) in Lemma 5.4, v and V are well-dened. We now prove the statements (i) and (ii) for V , the case of v being entirely analogous.

From the monotonicity of M and ∂ p H with respect to their second argument:

∀ x ∈ R, ∀ c 1 , c 2 > K, if c 1 < c 2 then ∂ p H x, M (x, c 1 ) ≤ ∂ p H x, M (x, c 2 ) .
Taking the inmum over x ∈ R we prove (i). By (i), lim c→+∞ V (c) = sup c>K V (c). By contradiction, assume that V := sup c>K V (c) is nite. By the denition of V and (CNH),

∀ n ∈ N ∩ ]K, +∞[ ∃ x n ∈ [-X, X], such that ∂ p H x n , M (x n , n) ≤ V .
(5.12)

Up to a subsequence, we can assume that (x n ) n converges to some x ∈ [-X, X]. Item (iv) in Lemma 5.4 and (CVX) imply that lim n→+∞ ∂ p H x, M (x, n) = +∞. Therefore,

∃ N ∈ N ∩ ]K, +∞[ such that ∀ n ≥ N, ∂ p H x, M (x, n) > V .
(5.13)

The monotonicity of M and (CVX), combined with (5.12), result in:

∀n ≥ N, ∂ p H x n , M (x n , N ) ≤ V
which contradicts (5.13), proving (ii). □ Lemma 5.6. Let H satisfy (C3), (CNH) and (CVX). Fix q o ∈ R and T ∈ R. Then, the map p → F q (T, q o , p) dened in (5.6) is surjective, in the sense that ∀ q T ∈ R, ∃ p * ∈ R such that F q (T, q o , p * ) = q T , (5. [START_REF] Coclite | Viscosity solutions of Hamilton-Jacobi equations with discontinuous coecients[END_REF] or, with the notation (2.1),

∀ (x o , x T ) ∈ R 2 , ∃ q ∈ R T such that
q(0) = x o and q(T ) = x T .

(5.15)

Proof of Lemma 5.6. Recall the map z and the scalar K dened in Lemma 5.3. Fix c o > K and let p o = M (q o , c o ). By the conservation of H, for all t ∈ R we have H F q (t, q o , p o ), F p (t, q o , p o ) = c o . Hence, by the denition (5.8) of K, for all t ∈ R, it follows that F p (t, q o , p o ) ̸ = z F q (t, q o , p o ) .

Using the continuity of F, proved in Lemma 5.2, as well as the fact that p o > z(q o ), we deduce that ∀t ∈ R, F p (t, q o , p o ) > z F q (t, q o , p o ) .

Therefore, for all t ∈ R, F p (t, q o , p o ) = M F q (t, q o , p o ), c o , as dened in (5.9)(5.10). Thus, by (HS) and the denition of V in Lemma 5.5, we have:

F q (T, q o , p o ) = q o + T 0 q(s) ds ≥ q o + V (c o ) T -→ co→+∞ + ∞ . A similar argument, with p o = m(q o , c o ), yields F q (T, q o , p o ) ≤ q o + v(c o ) T -→ co→+∞ -∞.
The continuity of F q coupled with the Intermediate Value Theorem concludes the proof of Lemma 5.6. □ 

≤ U o y(0) = U o (x) .
By taking the supremum over y ∈ R T , by (3.1) we complete the proof. □ By the second condition in (5.1), for any W ∈ Lip(R; R), there exists C H,W > 0 such that

∀r ∈ R + , r ≥ C H,W =⇒ ϕ(r) 1 + r > sup |p|≤∥W ′ ∥ L ∞ (R;R) q∈R H(q, p) + sup |v|≤1 q∈R L(q, v) ,
(5.17) Lemma 5.8. Let H satisfy (C3), (CNH) and (CVX). Fix T > 0 and W ∈ Lip(R; R).

Then, U * o dened by (3.1) is Lipschitz continuous and

(U * o ) ′ L ∞ (R;R) ≤ T sup |v|≤C H,W x∈R ∂ x L(x, v) + W ′ L ∞ (R;R) . (5.18) 
Moreover, in its denition (3.1), the sup is attained and for any Hamiltonian ray q realizing the maximum in (3.1),

∥ q∥ L ∞ ([0,T ];R) ≤ C H,W .
Proof of Lemma 5.8. First, thanks to (3.1), remark that

∀x ∈ R, -U * o (x) = inf q(0)=x q∈R T T 0 L q(s), q(s) ds -W q(T ) .
Now reverse time applying the change of variable τ := T -s and introducing q r (τ ) := q(Tτ ), L r (x, v) := L(x, -v), H r (x, p) := sup v∈R p v -L r (x, v) so that H r (x, p) = H(x, -p). Moreover, using p r (τ ) = -p(T -τ ), q ∈ R T if and only if q r ∈ R r T , where R r T is the set of Hamiltonian rays (2.1) dened by H r , with reversed time.

∀x ∈ R, -U * o (x) = inf q r (T )=x q r ∈R r T T 0
L r q r (τ ), qr (τ ) dτ -W q r (0) .

Then, in view of [START_REF] Sylla | Heterogeneity in scalar conservation laws: approximation and applications[END_REF]Corollary 8.3.15],

∀x ∈ R, -U * o (x) = inf q r (T )=x q r ∈Lip([0,T ];R) T 0 L r q r (τ ), qr (τ ) dτ -W q r (0) . (5.19)
So that, by [START_REF] Sylla | Heterogeneity in scalar conservation laws: approximation and applications[END_REF]Theorem 8.3.12], -U * o (x) = U r (T, x), with U r being the viscosity solution to the Hamilton-Jacobi equation

∂ t U r + H r (x, ∂ x U r ) = 0 Ũ (0, x) = -W (x) , proving (5.18).
The result in [START_REF] Sylla | Heterogeneity in scalar conservation laws: approximation and applications[END_REF]Corollary 8.3.15] ensures that the supremum in Denition (3.1) is attained as a maximum. We can now combine [32, Theorem 8.3.9] and [START_REF] Sylla | Heterogeneity in scalar conservation laws: approximation and applications[END_REF]Corollary 8.3.15] to complete the proof. □

Remarkably, the next Lemma does not require W to be reachable.

Lemma 5.9. Let H satisfy (C3), (CNH) and (CVX). Fix T > 0 and W ∈ Lip(R; R).

Then G, as dened in (3.2) has the following properties.

(i) G is surjective in the following sense:

∀x o ∈ R, ∃x T ∈ R, (x o , x T ) ∈ G. (5.20) (ii) G is a closed subset of R 2 .
(iii) For all (x o , x T ) ∈ G, we have

|x o -x T | ≤ T C H,W . (5.21) 
(iv) G is monotone in the following sense: Proof of (ii): Let (x n o , x n T ) n be a sequence taking values in G which converges to some (x o , x T ) ∈ R 2 . By denition, for all n ∈ N, there exists q n ∈ R T such that

∀ (x o , x T ), (y o , y T ) ∈ G, x o < y o =⇒ x T ≤ y T ; x T < y T =⇒ x o ≤ y o . ( 5 
x n o = q n (0), x n T = q n (T ), U * o (x n o ) = W (x n T ) - T 0
L q n (s), qn (s) ds .

(5.23)

For all n ∈ N, let us denote by p n ∈ C 1 ([0, T ]; R) a curve associated with q n , given by (x n o , x n T ) ∈ G. Lemma 5.8 ensures that for all n ∈ N, ∥ qn ∥ L ∞ (]0,T [;R) ≤ C H,W . Note that for all n ∈ N, q n ∈ C 1 ([0, T ]; R) by (2.1). Thanks to (CVX) and (2.4),

qn (t) = ∂ p H q n (t), p n (t) ⇐⇒ p n (t) = ∂ v L q n (t), qn (t) .
This proves the boundedness of p n (0) and, up to a subsequence, we can assume that p n (0), q n (0) n converges to (p o , x o ) with p o ∈ R. By Lemma 5.2, the ow of the Hamiltonian system is continuous and we establish the existence of (q, p) ∈ C 0 ([0, T ]; R 2 ) such that (q n ) n and (p n ) n converge uniformly on [0, T ] to q and p, respectively. Using the integral form of (HS), we deduce that (q, p) solves (HS). Hence, q ∈ R T and (x o , x T ) ∈ G.

Proof of (iii): Let (x o , x T ) ∈ G and let q ∈ R T with q(0) = x o and q(T ) = x T . Then, in view of Lemma 5.8 (latter part), we have

|x o -x T | = q(0) -q(T ) ≤ T ∥ q∥ L ∞ (]0,T [;R) ≤ T C H,W .
Proof of (iv): We only prove the rst implication in (5.22), the details of the proof for the second one are similar so we omit them. Let x, y ∈ R T be two maximizers for U * o (x o ) and U * o (y o ), respectively. By assumption, we have x(0) < y(0) so that we can dene τ = sup t ∈ [0, T ] : x(s) < y(s) for all s ∈ [0, t] (5.24)

and assume, by contradiction, that τ < T , so that x(τ ) = y(τ ). Dene the concatenation

∀t ∈ [0, T ], ξ(t) = y(t) if 0 ≤ t ≤ τ , x(t) if τ < t ≤ T .
Clearly, ξ ∈ Lip([0, T ]; R) and ξ(0) = y o . We now prove that ẋ(τ ) ̸ = ẏ(τ ). Denote p x , p y ∈ C 1 ([0, T ]; R) the curves associated with x and y, respectively, given by (x o , x T ), (y o , y T ) ∈ G. Then,

ẋ(τ ) = ẏ(τ ) ⇐⇒ ∂ p H x(τ ), p x (τ ) = ∂ p H y(τ ), p y (τ ) ⇐⇒ ∂ p H y(τ ), p x (τ ) = ∂ p H y(τ ), p y (τ ) ⇐⇒ p x (τ ) = p y (τ ) , since p → ∂ p H y(τ )
, p is a bijection by (CVX). However this contradicts the uniqueness of solutions to (HS), see Lemma 5.2.

Hence, ξ is not dierentiable at point τ . Moreover, since x and y are maximizers, we have, in light of the Dynamic Programming Principle [START_REF] Sylla | Heterogeneity in scalar conservation laws: approximation and applications[END_REF]Corollary 8.3.15]:

U * o (x o ) -W (x T ) = -inf q(0)=xo q∈R T T 0 L q(s), q(s) ds = - inf q(0)=xo q∈Lip(]0,T [;R) T 0 L q(s), q(s) ds = - inf q(0)=xo,q(τ )=ξ(τ ) q∈Lip(]0,τ [;R) τ 0 L q(s), q(s) ds - inf q(τ )=ξ(τ ),q(T )=x T q∈Lip(]τ,T [;R) T τ L q(s), q(s) ds = - τ 0 L y(s), ẏ(s) ds - T τ L x(s), ẋ(s) ds = - T 0 L ξ(s), ξ(s) ds .
This ensures that ξ is a Lipschitz maximizer for [START_REF] Sylla | Heterogeneity in scalar conservation laws: approximation and applications[END_REF]Corollary 8.3.7]. However, this contradicts the fact that ξ is not dierentiable at t = τ . We conclude that x and y do not cross in ]0, T [ implying x(T ) ≤ y(T ) and, hence, x T ≤ y T . □ Proof of Theorem 3.2. The proof of the implication (1) =⇒ (2) is clear.

U * o (x o ), therefore, ξ ∈ W 2,∞ (]0, T [; R) by
Proof of ( 2) =⇒ (3). Suppose that I HJ T (W ) ̸ = ∅ and set w = W ′ , so that I CL T (w) ̸ = ∅ by the correspondence between (CL) and (HJ) proved in [START_REF] Colombo | Conservation laws and HamiltonJacobi equations with space inhomogeneity[END_REF]Theorem 2.20]. We check that G in (3.2) enjoys the maximal property (3.3) Above, we used the fact that U o ≥ U * o , see Lemma 5.7. We deduce that

. Fix U o ∈ I HJ T (W ), (x o , x ′ T ), (x o , x ′′ T ) ∈ G, with x ′ T < x ′′ T , and x T ∈ ]x ′ T , x ′′ T [. Let y, z ∈ R T ,
U * o ξ(0) ≤ W (x T ) - T 0 L ξ(s), ξ(s) ds .
By denition (3.1) of U * o , we have equality above, and therefore ξ is a point of maximum of the functional in (3.1). We deduce that (ξ(0), x T ) ∈ G. By (5.22) in Lemma 5.9,

x ′ T < x T =⇒ x o ≤ ξ(0) and x ′′ T > x T =⇒ x o ≥ ξ(0).
We deduce that ξ(0) = x o and, therefore,

(x o , x T ) ∈ G.
Proof of ( 3) =⇒ (1). We now show that U * o , as dened in (3.1), is in I HJ T (W ). We rst check that:

∀ x T ∈ R, ∃ x o ∈ R, (x o , x T ) ∈ G.
(5.25)

Note that (5.25) diers from (i) in Lemma 5.9, since the roles of the elements in the pair (x o , x T ) are reversed. Fix x T ∈ R and introduce the subset:

E = x ∈ R : ∃ y ∈ ]-∞, x T [ and (x, y) ∈ G . Fix x ∈ R such that x < x T -T C H,W
. As a consequence of (i) in Lemma 5.9, there exists y ∈ R such that (x, y) ∈ G. Now, using (iii) in Lemma 5.9, we can write

y = (y -x) + x < |x -y| + (x T -T C H,W ) ≤ x T , which ensures that ]-∞, x T -T C H,W [ ⊂ E and, therefore, E is non-empty. Moreover, for all x ∈ E, if y ∈ R (y < x T ) is such that (x, y) ∈ G, then we have x ≤ (x -y) + y < |x -y| + x T ≤ T C H,W + x T ,
proving that E is bounded above. Hence, x = sup E is nite. Likewise, the subset

F = x ∈ R : ∃ y ∈ ]x T , +∞[ and (x, y) ∈ G
is nonempty and bounded below. Therefore, x = inf F is nite. The monotonicity of G in (iv) of Lemma 5.9 ensures that x ≤ x.

Let (x n ) n be a sequence of E which converges to x. For all n ∈ N, there exists y n < x T such that (x n , y n ) ∈ G. Since (x n ) n is bounded, (y n ) n is bounded as well, as a consequence of (iii) in Lemma 5.9. Up to the extraction of a subsequence, we can assume that (y n ) n converges to some y ≤ x T . Since G is closed, by (i) in Lemma 5.9, (x, y) ∈ G. The same way, there exists y ≥ x T such that (x, y) ∈ G. Let us conclude the proof by a case by case study.

Case 1: x = x. Call x o this common value. Since y ≤ x T ≤ y, we have by (3.3)

(x o , y), (x o , y) ∈ G =⇒ (x o , x T ) ∈ G .
Case 2: x < x. Fix x o ∈ ]x, x[. By (i) in Lemma 5.9, there exists y ∈ R such that (x o , y) ∈ G.

However, by the denition of x, we necessarily have y ≥ x T . Similarly, the denition of x ensures that y ≤ x T . We proved that y = x T and therefore, (x o , x T ) ∈ G for any x o ∈ ]x, x[. Equality (5.25) rewrites as:

∀ x ∈ R, ∃ q ∈ R T : q(T ) = x and W (x) = T 0 L q(s), q(s) ds + U * o q(0) . (5.26) 
Moreover, by the denition of U * o , we also have

∀ q ∈ R T T 0 L q(s), q(s) ds + U * o q(0) ≥ W q(T ) . (5.27) 
Together (5.26) and (5.27) imply that

∀x ∈ R, W (x) = inf q(T )=x q∈R T T 0 L q(s), q(s) ds + U * o q(0) = inf q(T )=x q∈Lip(]0,T [;R) T 0 L q(s), q(s) ds + U * o q(0) ,
by [START_REF] Sylla | Heterogeneity in scalar conservation laws: approximation and applications[END_REF]Corollary 8.3.15]. This last equality means that the viscosity solution U to (HJ) associated with initial datum U * o veries U (T ) = W , using the classical correspondence viscosity solution/calculus of variations, see [START_REF] Sylla | Heterogeneity in scalar conservation laws: approximation and applications[END_REF]Theorem 8.3.12]. We proved that U * o ∈ I HJ T (W ).

Proof of (2) =⇒ π W ′ is well dened and nondecreasing. Suppose that I HJ T (W ) ̸ = ∅ and set w = W ′ , so that I CL T (w) ̸ = ∅ by [START_REF] Colombo | Conservation laws and HamiltonJacobi equations with space inhomogeneity[END_REF]Theorem 2.20]. In the light of both Lemma 2.2 and Lemma 5.2, π w is well-dened by (2.2).

Fix x, y ∈ R with x < y. Since I CL T (w) ̸ = ∅, π w assigns to x, respectively y, the value at time t = 0 of the minimal backward generalized characteristics emanating from (T, x), respectively from (T, y), which we denote by ξ x , respectively ξ y . By [20, Theorem 3.2], ξ x and ξ y are genuine, hence they do not intersect in ]0, T [, see [START_REF] Dafermos | Generalized characteristics and the structure of solutions of hyperbolic conservation laws[END_REF]Corollary 3.2]. This implies in particular that ξ x (0) ≤ ξ y (0), proving that π w is nondecreasing. □

5.3

Proof of Theorem 3.3

Proof of Theorem 3.3. We prove the two implications separately.

Claim: If U o ∈ I HJ T (W ), then (i) and (ii) hold. Point (i) comes from Lemma 5.7.

Let us prove that (ii) holds. Fix x o ∈ π W ′ (R). By denition, there exists an x ∈ R such that x o = π W ′ (x). This means that x o is the value at time t = 0 of the minimal backward characteristics ξ, see [20, Denition 3.1, Theorems 3.2 and 3.3] emanating from (T, x). Since U o ∈ I HJ T (W ), Theorem 3.1 ensures that

W (x) = T 0 L ξ(s), ξ(s) ds + U o (x o ) .
On the other hand, by (3.1),

U * o (x o ) = sup y(0)=xo y∈R T W y(T ) - T 0 L y(s), ẏ(s) ds ≥ W (x)- T 0 L ξ(s), ξ(s) ds = U o (x o ). So, U o = U * o on π W ′ (R).
These two functions are continuous, hence they coincide on π W ′ (R).

Claim: If (i) and (ii) hold, then U o ∈ I HJ T (W ). Fix x ∈ R. Recall that I HJ T (W ) ̸ = ∅ which, by Theorem 3.2, ensures that U * o ∈ I HJ T (W ). This, together with the inequality U o ≥ U * o , immediately implies:

W (x) = inf y(T )=x y∈R T T 0 L y(s), ẏ(s) ds + U * o y(0) ≤ inf y(T )=x y∈R T T 0 L y(s), ẏ(s) ds + U o y(0) . (5.28) 
Denote by ξ the minimal backward characteristics emanating from (T, x). Using both the facts that U * o ∈ I HJ T (W ) and that, by Theorem 3.1, ξ is a minimizer, we have:

W (x) = T 0 L ξ(s), ξ(s) ds + U * o ξ(0) .
Clearly, ξ(0) ∈ π W ′ (R) and therefore, by (ii), we can replace U * o ξ(0) by U o ξ(0) in the last equality. This ensures that we have equality in (5.28), which means that U o ∈ I HJ T (W ). □ Figure 5.1: On the horizontal axis, the q component of solutions to (5.30), while t is on the vertical axis. Brown curves are those considered in (i) of Lemma 5.12; green curves refer to Lemma 5.13. The 2 red thicker curves depict solutions corresponding to the initial data (0, √ 2) and (0, 2). The black curves are those considered in Lemma 5.10 and in Lemma 5.11.

We then deduce that p(τ ) = p(τ ), which contradicts the uniqueness proved by Cauchy Lipschitz Theorem. □ Lemma 5.12. Let H be as in (4.1) and u o be as in (5.29). Fix p o ∈ [ √ 2, 2[. Denote by (q, p) the global solution to (5.30) with initial datum (0, p o ). (Refer to Figure 5

.1.) (i) If p o ∈ ] √ 2, 2[, then q is increasing on [0, +∞[ and q(t) -→ t→+∞ + ∞. (ii) If p o = √ 2, then q is increasing on [0, +∞[, q(t) -→ t→+∞ 1 and q is concave.
Refer to the middle curves in Figure 5.1 for an illustration of the dierent behaviors of q described in Lemma 5.12.

Proof of Lemma 5.12. The proof of (i) is identical to that of Lemma 5.10, so we omit it.

Concerning (ii), p is positive on ]0, +∞[. assume by contradiction that there exists a minimal τ > 0 such that p(τ ) = 0. By (5.31), we deduce that q(τ ) = 1. However, (q s , p s ) : t → (1, 0) is the unique global solution to (5.30) with datum (1, 0). Hence, p is positive on ]0, +∞[. Thus, by (5.30), q is increasing on [0, +∞[ and positive on ]0, +∞[. Once again, (5.31) and the presence of the stationary solution (q s , p s ) ensure that for all t ∈ [0, +∞[, q(t) < 1. Therefore, as t → +∞, q admits a nite limit, say q ∞ , which is not greater than 1.

Moreover, the positivity of q ensures, by (5.30), that p is nonincreasing on [0, +∞[, so that by (5.30), q is concave. Since p is also bounded, by (5.5) in Lemma 5.2, p admits a nite limit as t → +∞. Hence, q has a nite limit as t → +∞ and, since we already showed that q converges to q ∞ as t → +∞, then q → 0 and therefore p → 0 as t → +∞. By (5.31), we get g(q ∞ ) = 1, and hence q ∞ ≥ 1, therefore q ∞ = 1, completing the proof of (ii). □ Lemma 5.13. Let H be as in (4.1) and u o be as in (5.29). Let p o ∈ ]0, √ 2[. Denote by (q, p) the global solution to (5.30) with initial data (0, p o ). Then, q is periodic. Introduce the map

T : ]0, √ 2[ -→ ]0, +∞[ p o
-→ the smallest period of q (5.32)

(i) q is concave on [0, T (p o )/2].
(ii) For all t ∈ 0, T (p o )/2 , q(t) = q T (p o )/2 -t .

(iii) For all t ∈ 0, T (p o ) , q(t) = -q T (p o ) -t .

(iv) q admits its maximum at T (p o )/4.

Proof of Lemma 5.13. Note rst that by (5.31), q is bounded, since for all t ∈ R, g q(t) =

p 2 o 2 - (p(t)) 2 2 ≤ p 2 o
2 < 1 and hence q(t) < 1 for all t ∈ R. Assume now, by contradiction, that q does not vanish on ]0, +∞[. Since q(0) = 0 and q(0) > 0, we have that for all t ∈ ]0, +∞[, q(t) > 0. Therefore, p is decreasing on [0, +∞[ by (5.30), bounded by (5.31) and thus admits a nite limit as t → +∞.

Thus, q is bounded and its derivative q = p has a nite limit as t → +∞, hence lim t→+∞ q(t) = 0 and also lim t→+∞ p(t) = 0. Therefore, by monotonicity, p is nonnegative on all [0, +∞[. Consequently, q is nondecreasing and bounded, therefore it admits a nite limit q ∞ ≥ 0 as t → +∞. On the one hand, by taking the limit as t → +∞ in (5.31), we get:

g(q ∞ ) = p 2 o 2 ∈ ]0, 1[ =⇒ q ∞ ∈ ]0, 1[ =⇒ g ′ (q ∞ ) ̸ = 0.
On the other hand, ṗ(t) = -g ′ q(t) → -g ′ (q ∞ ). Moreover, p has a nite limit as t → +∞, ṗ(t) → 0. This provides the needed contradiction. Thus we proved that there exists τ > 0 such that q(τ ) = 0. As a consequence, the number

τ * := sup t ∈ ]0, +∞[ : ∀ s ∈ ]0, t[, q(s) > 0 (5.33)
is well-dened and satises q(τ * ) = 0. Note that for t ∈ ]0, τ * [, q is positive, p is decreasing and hence q is concave on [0, τ * ], proving (i) on [0, τ * ]. Furthermore, p(τ * ) < p o . Apply (5.31) at time t = τ * to obtain p(τ * ) 2 = p 2 o , which implies p(τ * ) = -p o . Now we verify that q is 2τ * periodic. To this aim, introduce ξ(t) = -q(t + τ * ) and ν(t) = -p(t + τ * ). Thanks to g being even, it is straightforward to check that both (q, p) and (ξ, ν) solve the same Cauchy problem (5.30). Consequently, ∀ t ∈ R q(t + 2τ * ) = -q(t + τ * ) = q(t) .

(5.34) Hence, q is 2τ * periodic. By (5.33), 2τ * is the minimal period, completing the proof of (i). Finally, dene q(t) = q(τ * -t) and p(t) = -p(τ * -t). Note that (q, p) and ( q, p) both solve (5.30) with datum (0, p o ), since p(τ * ) = -p o . Hence, for all t ∈ [0, τ * ], q(t) = q(τ * -t), proving (ii). Combined with the concavity of q, this ensures that max t∈[0,τ * ] q(t) = q(τ * /2), proving (iv). Finally, (5.34) and (ii) imply (iii). □ Lemma 5.14. Let H be as in (4.1) and u o be as in (5.29). Call T the map dened in (5.32).

Then:

(i) T is continuous.

(ii) T strictly increasing.

(iii) inf po∈]0, √ 2[ T (p o ) = π √ 2 . (iv) lim po→ √ 2 T (p o ) = +∞.
Proof of Lemma 5.14.

Proof of (i). Fix p o ∈ ]0, √ 2[ and let q o = 0. Let (q, p) be the solution to (5.30). Then, by Lemma (5.13), we get p(t) = q(t) > 0 for all t ∈ ]0, T (p o )/4[. Hence, using (5.31) we get

∀ t ∈ ]0, T (p o )/4[ p(t) = p 2
o -2g q(t) and by (5.30), we have

T (p o ) 4 = T (po)/4 0 q(t) p 2 o -2g q(t)
dt .

(5.35)

Note that the integrand in the right hand side above is singular when t = T (p o )/4, but it is positive for all t. Use the change of variable x = q(t) to get 

T (p o ) 4 = g -1 (p 2 o /2)
T (p o ) = 2 √ 2 A g -1 (p 2 o /2) . (5.38)
The continuity of A is proved in Lemma A.2 in Appendix A, completing the proof of (i).

Proof of (ii). By [11, Theorem A], (5.38) and (5.31), the condition ≥ 0 for all x ∈ ]0, 1[ by means of Sturm Theorem, see [START_REF] Sturm | Mémoire sur la résolution des équations numériques[END_REF].

∀x ∈ ]0, 1[, d 2 dx 2 g(x) g ′ (x) 2 ≥ 0 ensures that E → 2 √ 2 A g -1 (E)
Proof of (iii). To prove the lower bound on T , introduce for any p o ∈ ]0, √ 2[, q > 0 so that g(q) = p 2 o /2: 

inf po∈]0, √ 2 
g ′′ (0) (1 -θ 2 ) = π √ 2 .
This completes the proof of (iii).

Proof of (iv). Similar computations, using now Fatou's Lemma, lead to

lim po→ √ 2 T (p o ) = 2 √ 2 lim r→1 1 0 r g(r) -g(θ r) dθ ≥ 2 √ 2 1 0 1 (1 -θ 2 ) 2 dθ = +∞ ,
completing the proof of (iv) and of Lemma 5.12. □ Lemma 5.15. Let H be as in (4.1) and u o be as in (5.29). Fix 0 < p o < p o < 2 and denote by (q, p), respectively ( q, p), the global solution to (5.30) with initial datum (0, p o ), respectively (0, p o ). Then,

(i) p o ∈ ]0, √ 2[ =⇒ ∀ t ∈ ]0, T (p o )/2] q(t) < q(t) ; (ii) p o ∈ [ √ 2, 2[ =⇒ ∀ t ∈ ]0, +∞[ q(t) < q(t) .
Refer to the middle and left curves in Figure 5.1 for an illustration of the dierent behaviors of q described in Lemma 5.15.

Proof of Lemma 5.15. We split the proof in several steps.

Claim 1: Let T > 0 be such that p(t) > 0 and p(t) > 0 for all t ∈ [0, T ]. Then, for all t ∈ [0, T ], q(t) < q(t). By contradiction, since p o < p o , there exists s ∈ ]0, T ] such that q(t) < q(t) for t ∈ ]0, s[, q(s) = q(s) and thus p(s) ≥ p(s). Then, by (5.31),

0 < p o < p o =⇒ H(0, p o ) < H(0, p o ) [By (4.1)]
=⇒ H q(s), p(s) < H q(s), p(s) [By (5.31)] =⇒ p(s) < p(s) [Since q(s) = q(s) and p(s) > 0, p(s) > 0]

which yields a contradiction, proving Claim 1.

Claim 2: (i) holds for p o ∈ ]0, √ 2[. By Claim 1, for all t ∈ ]0, T (p o )/4[, q(t) < q(t). Indeed, by (5.30) together with Lemma 5.13 and Lemma 5.14, both p and p are positive on ]0, T (p o )/4[ and Claim 1 applies. Hence, by the symmetry in (ii) of Lemma 5.13, we have

∀ t ∈ T ( p o ) 2 - T (p o ) 4 , T ( p o ) 2 q T ( p o ) 2 -t < q(t) .
Introduce the concave function ∀ t ∈ 0, 

η : 0, T ( po) 2 -→ R t -→            q(t) t ∈ 0, T (po) 4 q T (po) 4 t ∈ T (po) 4 , T ( po) 2 -T (po) 4 q T ( po) 2 -t t ∈ T ( po) 2 -T (po) 4 , T ( 
∀ t ∈ T (p o ) 4 , T (p o ) 2 q(t) ≤ q T (p o ) 4 < q T (p o ) 4 ≤ q(t) ,
completing the proof of Claim 3.

Claim 4: Proof of (ii

). If p o , p o ∈ [ √ 2 
, 2[, then by (i) and (ii) in Lemma 5.12, q and q are increasing, so that by (5.30) p and p are positive. So, Claim 1 applies, completing the proof. □ We use below the ow F introduced in (5.6) with reference to (HS), which we now particularize to (5.30). By Lemma 5.2, F is of class C 2 . Dene (q ♭ , p ♭ )(t) := F(t, 0, √ 2) and (q ♯ , p ♯ )(t) := F(t, 0, 2) , (5.40)

q ♭ , respectively q ♯ , being the leftmost, respectively rightmost, red line in Figure 5.1.

Lemma 5.16. Let H be as in (4.1) and u o be as in (5.29). Dene the set

D := [0, +∞[ × {2} ∪ {0} × ]0, 2] . (5.41) 
Then, there exists a unique map

∆ : ]0, +∞[ × ]0, +∞[ -→ D (t, x) -→ (q o , p o ) (5.42) such that F q (t, q o , p o ) = x and ∀ s ∈ ]0, t[, F q (s, q o , p o ) > 0 . (5.43) Moreover, 
(1) ∆ is continuous.

(

) ∆ is monotone, in the sense that setting ∆(t o , x o ) = (0, p o ) and ∆(t o , x ′ o ) = (0, p ′ o ), if 0 < x o < x ′ o < q ♯ (t o ), then p o < p ′ o . 2 
(3) For all x ∈ ]0, +∞[, lim t→0+ ∆(t, x) = (x, 2).

Proof of Lemma 5.16. We split the proof in several steps.

For all (t, x) ∈ ]0, +∞[ 2 , there exists (p o , q o ) ∈ D satisfying (5.43). Fix (t, x) ∈ ]0, +∞[× ]0, +∞[. If x = q ♯ (t) as in (5.40), then set (q o , p o ) = (0, 2). Otherwise, introduce the functions

h : [0, +∞[ -→ R q o -→ F q (t, q o , 2) -x and k : ]0, 2] -→ R p o -→ F q (t, 0, p o ) -x .
Note that if x > q ♯ (t) then h(0) < 0 and h(x + 1) = F q (t, x + 1, 2) -x > 0 by Lemma 5.10. By the Intermediate Value Theorem, there exists a q o such that h(q o ) = 0, hence F q (t, q o , 2) = x. By Lemma 5.10, for all s > 0, F q (s, q o , 2) > 0, proving (5.43) in the case x > q ♯ (t). (5.40). By the Intermediate Value Theorem, there exists p o such that k(p o ) = 0, i.e., F q (t, 0, p o ) = x. Then, by Lemma 5.15, the right part of (5.43) follows in the case x ∈ [q ♭ (t), q ♯ (t)].

If x ∈ [q ♭ (t), q ♯ (t)], then k( √ 2) ≤ 0 ≤ k(2) by
Similarly, if x ∈ ]0, q ♭ (t)[, then k( √ 2) > 0 and lim p→0+ k(p) = -x < 0. By the Intermediate Value Theorem, we can dene ∆ is uniquely dened. For all (t, x) ∈ ]0, +∞[ × ]0, +∞[ the uniqueness of a (q o , p o ) satisfying (5.43) follows from the monotonicity properties proved above. Indeed, recalling q ♯ as dened in (5.40), if 0 < q o < qo and p o = po = 2, then, by Lemma 5.11, for all s ∈ [0, +∞[, q ♯ (s) < F q (s, q o , p o ) < F q (s, qo , po ). On the other hand, if q o = qo = 0 and 0 < p o < po < 2, then by Lemma 5.12, Lemma 5.13 and Lemma 5.15, for all s such that F q (τ, q o , p o ) ≥ 0 for all τ ∈ [0, s], we have F q (s, q o , p o ) < F q (s, qo , po ) < q ♯ (s). Finally, if q o = 0, qo > 0, p o ∈ ]0, 2[ and po = 2, then Lemma 5.15 and Lemma 5.11 ensure that for all s such that F q (τ, q o , p o ) ≥ 0 for all τ ∈ [0, s], we have F q (s, q o , p o ) < q ♯ (s) < F q (s, qo , po ). The uniqueness of (q o , p o ) follows.

p o := max π o ∈ [0, √ 2] : k(π o ) = 0 . Hence, for all p ∈ ]p o , √ 2 
∆ is continuous. For any (q o , p o ) ∈ D and (t, x) ∈ R 2 + , if (q o , p o ) = ∆(t, x) then by (5.31), we have F p (t, q o , p o ) ≤ p 2 o + 2, so that by (5.30), F q (t, q o , p o ) -q o ≤ t p (5.44), also the sequence q n o is bounded, since also (t n , x n ) is bounded. Call (q o , p o ) the limit of any convergent subsequence, so that (q o , p o ) ∈ D. By the continuity of F proved in Lemma 5.2. up to a subsequence we have F q (t, q o , p o ) = lim n→+∞ F q (t n , q n o , p n o ) = lim n→+∞

x n = x .

(5.45)

This also shows that (q o , p o ) ∈ D. Otherwise, if (q o , p o ) ∈ D \ D, then (q o , p o ) = (0, 0) and for all t ∈ R, F q (t, 0, 0) = 0 ̸ = x. Since (q n o , p n o ) = ∆(t n , x n ), then x n = F q (t n , q n o , p n o ). Thus, if s ∈ ]0, t n [, then F q (s, q n o , p n o ) > 0. In the limit n → +∞, we have x = F q (t, q o , p o ) and if s ∈ ]0, t[, then F q (s, q o , p o ) ≥ 0.

The possible behaviors of s → F q (s, q o , p o ) classied in Lemma 5.10, Lemma 5.12 and in Lemma 5.13 ensure that for all s ∈ ]0, t[ we have F q (s, q o , p o ) > 0 so that also the second condition in (5.43) is met and ∆(t, x) = (q o , p o ), the limit (q o , p o ) being independent of the subsequence. This completes the proof of the continuity of ∆.

which is a contradiction. Therefore, ∂ q F (t o , x o , q o ) > 0.

Similarly, Lemma 5.15 implies that for all t > 0, p → F q (t, x, p) is increasing and therefore ∀ (t, p) ∈ ]0, +∞[ × ]0, 2[ , ∂ p F q (t, 0, p) ≥ 0 .

If ∂ p F q (t o , 0, p o ) = 0, then t o minimizes the map t → ∂ p F q (t, 0, p o ) so that d dt ∂ p F q (t, 0, p o ) = 0 and t → ∂ p F q (t, 0, p o ) solves the Cauchy problem

       ÿ(t) = -g ′′ F q (t, 0, p o ) y(t) y(t o ) = 0 ẏ(t o ) = 0 .
The uniqueness of solutions ensured by Cauchy Lipschitz Theorem, we thus have that y ≡ 0. On the other hand, deriving (5.30) with respect to p o , we see that y also solves The Implicit Function Theorem allows us to obtain a locally unique map Q such that q o = Q(t o , x o ) from the relation F (t o , q o , x o ) = 0 and, in the same way, to obtain p o = P (t o , x o ) from the relation G(t o , x o , p o ) = 0, with both functions Q and P of class C 1 . Note that by (5.42), by (5.43), by (1) in Lemma 5.16 and by the local uniqueness of Q and P , we get ∆(t, x) = Q(t, x), 2 if x > q ♯ (t) 0, P (t, x) if x < q ♯ (t) and, by (5.46), the C 1 regularity of u in Ω is proved. We now prove that u solves (CL) with H as in (4.1) and initial datum (5.29). To this aim, observe that the map x → u(t, x) is odd, for all t ∈ R + .

       ÿ(t) = -g ′′ F q (t, 0,
Assume x > 0. Then, by the Implicit Function Theorem and by (5.46), for all (t, x) ∈ Ω we have u(t, x) = F p t, Q(t, x), 2 if x > q ♯ (t) F p t, 0, P (t, x) if x < q ♯ (t) and ∂ t Q = - Hence, recalling also (5.30) 

∂ t u + u ∂ x u = ∂ t F p + ∂ q F p ∂ t Q + F p ∂ q F p ∂ x Q = -
B(r, θ) ≤ 1 √ 1 -θ min ρ∈[ε/2,1-ε] g ′ (ρ)
.

Hence, B is continuous and dominated, therefore A is continuous, too. □

  for a.e. x ∈ R the set w ∈ R : ∂ 2 ww H(x, w) = 0 has empty interior.

3 .Corollary 3 . 4 .

 334 Let H satisfy (C3), (CNH) and (CVX). Fix T > 0 and W ∈ Lip(R; R) such that I HJ T (W ) ̸ = ∅. Then, I HJ T (W ) is a closed convex cone with vertex U * o , dened in (3.1) and moreover U * o = min I HJ T (W ). The proof is an immediate consequence of the characterization provided by Theorem 3.3. Corollary 3.4 admits a clear counterpart related to (CL), on the basis of the correspondence between (CL) and (HJ) proved in [16, Theorem 2.20]. An analogous characterization in the x-independent case is provided by [15, Proposition 5.2, Item (G2)]. Corollary 3.5. Let H satisfy (C3), (CNH) and (CVX). Fix T > 0 and w ∈ L ∞ (R; R) such that I CL T (w) ̸ = ∅. Then, I CL T (w) is a closed convex cone with vertex u * o , dened by u * o = ∂ x U * o and U * o is as in (3.1).

Figure 4 . 1 :

 41 Figure 4.1: Left, in the x-independent case, extremal characteristics are straight lines and those emanating from the point of jump x in w at time T select the segment ]π w (x-), π w (x+)[ along the x axis at time 0 where the initial data has no eect on w. Right, in our x-dependent choice (4.1) of the ow, characteristics bend and uniquely determine the initial data evolving into w. Note that the solution in the region delimited by the characteristics is unique.

Figure 4 .

 4 2 referred to (HS) with Hamiltonian (4.1), show that extremal backward characteristics still do not intersect in ]0, T [ × R, but the intermediate Hamiltonian rays may well cross each other and even exit the region bounded by the extremal characteristics.

Figure 4 . 2 :

 42 Figure 4.2: Left, in the x-independent case, the Hamiltonian rays ll the non uniqueness gap described in Figure 4.1. Right, in the x-dependent case dened by the Hamiltonian (4.1), extremal characteristics still do not intersect, but Hamiltonian rays do and may well exit the non uniqueness gap or also intersect.

Theorem 4 . 1 .

 41 Dene, see Figure 4.3,

Figure 4 . 3 :

 43 Figure 4.3: Left, graph of g and, right, the graph of -g ′ , according to (4.1). Clearly, g is C 3 (R; [0, 1]), even, strictly increasing on [0, 1], g ′ attains values in [-2, 2] and H in (4.1) satises (CNH) with X = 1.

Figure 4 . 4 :

 44 Figure 4.4: Evolution in time of (a numerical approximation of) the solution u to (CL) (4.1)(5.29), constructed in Theorem 4.1, as a function of the space variable x, computed at dierent times, see also Figure 1.1. Note the initial rarefaction prole turning into a shock at time T = π (2 √ 2) .
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 51 Proof of Theorem 3.1 Lemma 5.1. Let H satisfy (C3), (CNH) and (CVX). Fix U o ∈ Lip(R; R) and let U solve (HJ) in the sense of Denition 2.3. Fix T > 0 and ξ, ζ ∈ Lip([0, T ]; R), with ξ ≤ ζ.

8 )

 8 0 and the following quantities are well dened z Proof of Lemma 5.3. Existence and uniqueness of z follow from (CVX). Together, (C3) and (CVX) allow to apply the Implicit Function Theorem, proving both the C 2 regularity of z and, by (CNH), that z ′ (x) = 0 whenever |x| ≥ X. The completion of the proof is now immediate. □ Lemma 5.4. Let H satisfy (C3), (CNH) and (CVX). Referring to the function z and to the constant K dened in Lemma 5.3, there exist functions m : R × ]K, +∞[ -→ R (x, c) -→ m(x, c) and M : R × ]K, +∞[ -→ R (x, c) -→ M (x, c) (5.9) uniquely characterized, for c > K and x ∈ R, by H x, m(x, c) = c and m(x, c) < z(x) H x, M (x, c) = c and M (x, c) > z(x) (5.10) Moreover, (i) m, M ∈ C 1 (R × ]K, +∞[; R).

Lemma 5 . 7 .

 57 Let H satisfy (C3), (CNH) and (CVX). Fix T > 0 and W ∈ Lip(R; R) such that I HJ T (W ) ̸ = ∅. Then, for all U o ∈ I HJ T (W ), with the notation (3.1), ∀x ∈ R, U o (x) ≥ U * o (x). (5.16) Proof of Lemma 5.7. Fix x ∈ R and y ∈ R T so that y(0) = x. Since U o ∈ I HJ T (W ), by (2.5) we have: W y(T )s), γ(s) ds + U o γ(0)s), ẏ(s) ds + U o y(0) -T 0 L y(s), ẏ(s) ds

  as dened in (2.1), be solutions to (HS) connecting (x o , x ′ T ) and (x o , x ′′ T ), respectively, and let ξ be the minimal backward generalized characteristics emanating from (T, x T ), associated with (CL) with initial data U ′ o . By [20, Theorem 3.2], ξ is genuine, ξ ∈ R T and by Theorem 3.1, W (x T ) = T 0 L ξ(s), ξ(s) ds + U o ξ(0) ≥ T 0 L ξ(s), ξ(s) ds + U * o ξ(0) .

- 1 |

 1 is the inverse of the C 1 dieomorphism g ) -g(θ r) dθ ,(5.37) so that the change of variable x = θ r with r = g -1 (p 2 o /2) in (5.36) leads to

po) 2 ( 5 Figure 5 . 2 :

 2552 Figure 5.2: Curves used in Claim 2 in the proof of Lemma 5.15. The dashed curve is the graph of η in (5.39). The continuous curves are the graphs of q restricted to [0, T (p o )/2] and of its translate. The dasheddotted curved is the graph of q.

  p o ) y(t) y(0) = 0 ẏ(0) = 1 , which is a contradiction. Therefore, ∂ p G(t o , x o , p o ) > 0.

  (4.1). Then, A is continuous on ]0, 1[.Proof of LemmaA.2. For (r, θ) ∈ ]0, 1[ × [0, 1[, dene B(r, θ) := r g(r) -g(θ r) . B is positive. For any ε ∈ ]0, 1/2[, x r ∈ [ε, 1 -ε]. Then, for θ ∈ [0, 1/2], B(r, θ) ≤ max [ε,1-ε]×[0,1/2] B, while for θ ∈ [1/2, 1[

  

  

  Proof of Lemma 2.2. Let u o ∈ I CL

T (w). Call U o a primitive of u o , so that ∂ x S HJ T U o = w by [16, Theorem 2.20]. Then, by [10, Theorem 5.3.8], (t, x) → (S HJ t U o )(x) is locally

  ξ(t) dt . Proof of Theorem 3.1. We only prove the result for the maximal backward characteristic ζ, which we denote for simplicity ζ. The details of the proof for the minimal characteristic ζ are similar.

	(5.2)
	This Lemma is analogous to [20, Lemma 3.2], see [32, Lemma 8.3.13] for a detailed proof.

Fix ε > 0. Apply Lemma 5.1 with ζ and ξ = ζ -ε on [0, t] and s = 0, τ = t. After dividing by ε, we obtain:

  that exist by Lemma 2.2 and coincide, since ζ is genuine [20, Denition 3.2 and Theorem 3.2]. The map U is Lipschitz continuous, hence U (s, x 2

. To this aim, recall that U (t, •) and U o are continuous in x by Denition 2.3. Moreover, ∂ x U solves (CL) in the sense of Denition 2.1 with initial data U ′ o , see [16, Theorem 2.20]. For a.e. s ∈ [0, t], ∂ x U (s, •) has left and right limits at x = ζ(s)

  By Claim 1, for all t ∈ ]0, T (p o )/4], q(t) < q(t). By (iv) in Lemma 5.13, for all t ∈ ]0, T (p o )/2[, q(t) ≤ q(T (p o )/4), while by (i) and (ii) in Lemma 5.12, for p o ∈ [

	Claim 3: (i) holds for p o ∈ [ √ 2, +∞[. √ 2, +∞[ and for all t ∈ [T (p o )/4, +∞[, q(t) > q(T (p o )/4). All this
	ensures that

T (po) 

4 q(t) ≤ η(t)

[By (5.39)]

∀ t ∈ 0, T ( po) 2 η(t) ≤ q(t) [By concavity of η and q] ∀ t ∈ T (po) 4 , T (po) 2 q(t) ≤ η(t) [By symmetry]

completing the proof of Claim 2.

  [, k(p) > 0. Proceed now by contradiction: assume there exists s ∈ ]0, t[ such that F q (s, 0, p o ) < 0. By Lemma 5.13, we get t > T (p o ). Using Lemma 5.14 and the Intermediate Value Theorem, it follows that there exists p ′ o ∈ ]p o , By Lemma 5.13, this implies that F q (t, 0, p ′ o ) = 0 and therefore k(p ′ o ) < 0, which contradicts the choice of p o .

	√	2[ such that
	T (p ′ o ) = t.	

  2 o + 2. Therefore, |q o | ≤ x + t p 2 o + 2 . (5.44) Choose now a sequence (t n , x n ) in ]0, +∞[ × ]0, +∞[ converging to (t, x) also in ]0, +∞[ × ]0, +∞[. Dene (q n o , p n o ) = ∆(t n , x n ). The sequence p n o is in [0, 2] by (5.41) and (5.42). By

  g ′ ∂ t F p + ∂ p F p ∂ t P + F p ∂ p F p ∂Proof of Lemma A.1. The Sturm sequence, see[START_REF] Sturm | Mémoire sur la résolution des équations numériques[END_REF], of P is:

									sign at -1	sign at 1
	x 8 -	32 7	x 6 +	59 7	x 4 -8x 2 -	6 7	-	-
	8x 7 -	192 7	x 5 +	236 7	x 3 -16x	+	-
		8 7	x 6 -	59 14	x 4 + 6x 2 +	6 7	+	+
			-	29 14	x 5 +	58 7	x 3 + 22x	-	+
				-	5 14	x 4 -	526 29	x 2 -	6 7	-	-
							-	3972 35	x 3 -	944 35	x	+	-
									3639116 201579	x 2 +	6 7	+	+
									137451770 6368453	x	-	+
									-	6 7	-	-

x P = -g ′ ensuring that u solves (CL)(4.1) in the classical sense in Ω. The case x < 0 is entirely similar by (5.46), since H is even in x and p.

Sturm Theorem, see

[START_REF] Sturm | Mémoire sur la résolution des équations numériques[END_REF]

, ensures that P has 4 -4 = 0 roots in [-1, 1]. Therefore, for all x ∈ [-1, 1], P (x) has the sign of P (0) = -6/7 < 0. □ Lemma A.2. Let A be as in (5.37) with g as in
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5.4

Proof of Theorem 4.1 In all proofs in this section, the reader might want to keep Figure 1.1 in mind for a helpful geometrical visualization.

Long but straightforward computations show that H, as dened in (4.1), satises (C3), (CNH) with X = 1, and (CVX), see Figure 4.3. With this ux, the conservation law (CL) is also the inviscid Burger equation with source term -g ′ , see Figure 4.3. We x the initial datum

which would evolve into a rarefaction in the homogeneous case. The proof of Theorem 4.1 is based on the Cauchy problem for (HS) which, in this case, reads

with g as in (4.1), (5.30) and to which Lemma 5.2 applies. The rst equation in (5.30) will be tacitly used throughout this section. By the Hamiltonian nature of (5.30), H is conserved along solutions, so that

Lemma 5.10. Let H be as in (4.1) and u o be as in (5.29). Fix q o ≥ 0. Denote by (q, p) the solution to (5.30) with initial datum q o , u o (q o +) = (q o , 2). Then, q is increasing on [0, +∞[ and q(t) -→ t→+∞ + ∞.

Proof of Lemma 5.10. Note that p o > 0. By (5.31), for all t ∈ R

Thus, for t ∈ R, p(t)≥ √ 2. By (HS), q is strictly increasing and q(t)≥ √ 2 t for t∈[0, +∞[. □

Refer to the lines on the right in Figure 5.1 for an illustration of the dierent behaviors of q described in Lemma 5.10 and Lemma 5.11. Lemma 5.11. Let H be as in (4.1) and u o be as in (5.29). Fix 0 ≤ q o < q o and denote by (q, p), respectively ( q, p), the global solution to (HS) with initial datum q o , u o (q o +) = (q o , 2), respectively q o , u o ( q o ) = ( q o , 2). Then, q(t) < q(t), for all t ≥ 0.

Proof of Lemma 5.11. Set p o = u o (q o ) and p o = u o ( q o ). We proceed by contradiction. Let τ > 0, be the smallest time where q(τ ) = q(τ ). Since q o < qo , we have that p(τ ) ≥ p(τ ). By Lemma 5.10, p(τ ) ≥ p(τ ) ≥ 0. Then,

Proof of ( 2) and ( 3). Fix a positive x. Let t n be any positive sequence converging to 0. Then, F q t n , ∆(t n , x) = x. The bound (5.44) ensures that, up to a subsequence, lim n→+∞ ∆(t n , x) = ξ, with ξ ∈ D satisfying F q (0, ξ) = x. Hence, ξ = (x, 2), proving (3). The monotonicity of ∆ follows from Lemma 5.15, completing the proof of (2). □ Proposition 5.17. Let H be as in (4.1) and u o be as in (5.29). Recall the notations (5.6) and (5.42). The function (5.29) in the sense of Denition 2.1, it is a classical strong solution outside x = 0 and outside |x| = q ♯ (t), it is continuous along |x| = q ♯ (t) and there is an entropic stationary shock along x = 0 for t > π/(2 √ 2).

The lack of dierentiability along |x| = q ♯ (t) is visible in Figure 1.1.

Proof of Proposition 5.17. Call Γ the graph of the map t → q ♯ (t) as dened in (5.40) and

dene Ω := ]0, +∞[ 2 \ Γ. Note that by Lemma 5.16 and (5.46

and is a classical solution to (CL)(4.1) (5.29) in Ω. This follows from an application of the Implicit Function Theorem. Indeed, let (t o , x o ) ∈ Ω. Then, either ∆(t o , x o ) = (q o , 2) or ∆(t o , x o ) = (0, p o ) for suitable q o > 0 or p o ∈ ]0, 2[. Thus, F q (t o , q o , 2) -x o = 0 or F q (t o , 0, p o ) -x o = 0 . Introduce the functions

Moreover, Lemma 5.11 implies that for all t > 0, q → F q (t, q, 2) is increasing and therefore,

If ∂ q F q (t o , q o , 2) = 0, then t o minimizes the map t → ∂ q F q (t, q o , 2) so that d dt ∂ q F q (t, q o , 2) = 0 and y : t → ∂ q F q (t, q o , 2) solves the Cauchy problem

The uniqueness of solutions is ensured by Cauchy Lipschitz Theorem, we thus have that y ≡ 0. On the other hand, deriving (5.30) with respect to q o , we see that y also solves

Claim 2: Conclusion. The monotonicity proved in Lemma 5.16 ensures that ∆, and hence u, admits traces along x = 0 for all t > 0 and u(t, 0-) = -u(t, 0+), because u(t) is odd. Since p → p 2 2 is an even function, by (4.1) and ( 5.46) H 0, u(t, 0+) = H 0, u(t, 0-) . Hence, either u(t, 0+) = u(t, 0-), or RankineHugoniot conditions hold along the stationary discontinuity along x = 0.

Assume that u(t, 0+) ̸ = u(t, 0-). Then, u(t, 0+) ̸ = 0. Moreover, by (5.46), for a positive sequence x n converging to 0, we have that u(t, x n ) ̸ = 0 and has a xed signed for all n. Hence, ∆(t, x n ) = (0, p n ) with p n ̸ = 0. Lemma 5.12 and Lemma 5.13 then ensure that p n ∈ ]0, √ 2[. Up to a subsequence, lim n→+∞ p n = p * for a suitable p * > 0 (for, otherwise, u would vanish). Note that F q (t, 0, p * ) = 0, so that by (5.43) the map t → F q (t, 0, p * ) passes from positive to negative at t, showing that d dt F q (t, 0, p * ) ≤ 0, so that u(t, 0+) ≤ u(t, 0-). By (CVX), we obtain the Lax Entropy Inequality [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF]Section 11.9] at x = 0.

Consider now the initial datum. By (3) in Lemma 5.16, for any x ∈ ]0, +∞[, lim t→0+ u(t, x) = lim t→0+ F p t, ∆(t, x) = F p (0, x, 2) = 2 = u o (x). The case x < 0 is entirely analogous.

Along Γ, u is continuous so that RankineHugoniot and Lax entropy conditions are met. Hence, u is an entropy solution to (CL)(4.1)(5.29) both where x > 0 and, by symmetry, also where x < 0. Along x = 0, RankineHugoniot conditions and the usual Lax entropy inequalities are met, both if u is continuous or not. As t → 0+, u(t) pointwise converges to the initial datum (5.29). A standard argument then ensures that u solves (CL)(4.1)(5.29) in the sense of Denition 2.1, see [START_REF] Colombo | Conservation laws and HamiltonJacobi equations with space inhomogeneity[END_REF]Conclusion in