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Abstract

This paper describes a stochastic ice accretion method to model in-flight ice

accretion. The approach consists in complementing the deterministic quasi-

steady process generally used to simulate ice accretion by treating the effects of

water-droplet deposition and freezing on the ice growth in a stochastic and un-

steady manner. The baseline algorithm thus features an unstructured advancing

front technique modeling the freezing of individual water particles. Stochastic-

ity is introduced in the seeding process by generating a random initial position

and diameter for each injected particle. The particles are treated sequentially

and their impingement position is obtained from their trajectory, which is ex-

tracted as a streamline of the deterministic quasi-steady droplet velocity field

computed by an Eulerian droplet impingement model. The thermodynamic

state of the deposited water is then assessed and an advancing front algorithm

is used to generate the corresponding elements of ice, which allows capturing

the unsteady behavior of the ice growth. The mass of water to be frozen is

given by the freezing fraction, computed by the deterministic quasi-steady ap-

proach, the remaining mass flowing downstream until the particle is completely

frozen. Unlike deterministic approaches, the process treats the ice density as

a dependent variable. The verification of the model shows its convergence ac-

cording to the ice element size, which is the main computational parameter.
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An extended 2D model is presented to cater for 3D effects by introducing the

concept of permeability of the ice front. Validation is performed by comparing

the obtained ice shapes to the experimental results for four test cases of the

literature. The method successfully captures both rime and glaze ice geome-

tries. Finally, the stochasticity observed in the experimental ice shapes and the

formation of discrete ice structures are well captured, which are usually missed

by the state-of-the-art deterministic icing frameworks.

Keywords: In-flight icing, Ice accretion model, Modeling, Stochasticity,

Non-deterministic

1. Introduction

In-flight icing is primarily due to the impingement of supercooled water

droplets on the exposed surface of an aircraft (Trontin and Villedieu, 2018).

As the ice accumulates, it leads to changes in the aircraft geometry, which

may result in aerodynamic performance degradation. Even though it is a well-5

known hazard, the extent of the underlying mechanisms involved is not yet fully

understood. Computational models are developed to better assess the impact

of such phenomena.

State-of-the-art icing software mainly implement a deterministic and con-

tinuous framework in which the mathematical foundations are based on partial10

differential equations, as presented at the first Ice Prediction Workshop (IPW)

(Laurendeau et al., 2022). For such solvers, the calculation procedure is sequen-

tial and quasi-steady. The aerodynamic flow is first solved around the clean

surface. The droplet trajectories are then computed. The freezing and runback

of the deposited water are finally simulated. These physical models are solved15

in the steady state because the ice growth has a very long characteristic time

and the flow is thus considered as established around a fixed shape.

As the ice grows, the shape of the exposed surface is updated with a user-

specified time-step. Multi-stepping can be used: the quasi-steady process is

looped several times. The number of loops (i.e., steps) is usually the result of a20
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Figure 1: Experimental variability of the ice shape - IPW’s Case 242 (Oztekin, 2021; Broeren,

2021). The grayscale represents the likelihood of the results : the darker the area is, the most

probable it is the obtained ice at this position

trade-off between computation time, accuracy and empirical know-how.

In such frameworks, the final ice shape is smooth, continuous and corre-

sponds to a converged solution of the systems of equations. However, in real

icing conditions, the obtained experimental shapes are variable, as presented

in Figure 1, where seven different experimental ice shapes are represented for25

the same icing tunnel conditions (Case 242 (Lee et al., 2014; Laurendeau et al.,

2022), described in table 1). One can observe significant variations within the

ice shapes, which are missed by the state-of-the-art icing frameworks. This

can lead to inaccurate predictions of the ice shapes and thus, the associated

performance degradations.30

Previous works proposed non-deterministic frameworks to reproduce the ob-

served stochasticity in the experimental ice shapes. Szilder originally developed

the Morphogenetic Model (Szilder and Lozowski, 2004), a particle-based method

that discretizes the accretion domain with a complete Cartesian grid. The cells

of this lattice are filled by individual particles of water according to the im-35

pingement and freezing processes. Following the impingement of a particle,

the runback water is modeled by a random walk: the particle moves down-

stream, from cell to cell, and freezes according to the results of a comparison

3
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between a random number and a probability of freezing (Forsyth and Szilder,

2022). The latter is computed according to the icing conditions. Butnarasu40

et al. proposed a multi-layer extension of the Morphogenetic model using the

software FENSAP-ICE (Butnarasu et al., 2015). While the approach and its

extension successfully model complex and variable ice shapes, the use of a com-

plete Cartesian grid represents a drawback as the associated computational

cost is significant. Bourgault-Côté re-examined the Morphogenetic approach by45

proposing a Cartesian advancing front technique to reduce the computational

cost in a multi-layer framework using B-splines to re-generate a valid and con-

tinuous geometry from the discrete ice shape after each layer (Bourgault-Côté,

2019; Papillon-Laroche et al., 2021). Stochasticity is introduced in both the im-

pingement and freezing process through the use of probabilities. The stochastic50

impingement is controlled by the collection efficiency obtained from an Eulerian

droplet solver converted directly to an impingement probability. One drawback

of this approach is its inability to predict glaze ice shape, as stated in the works

of Bourgault-Côté (2019) and Papillon-Laroche et al. (2021). Other works, such

as Leroy (2004) and Yuki and Yamamoto (2014), proposed meshless approaches55

to model the discontinuous and random growth of the ice. Their models dis-

cretize the fluid elements using either individual spheres of ice or clusters of

small particles. The main source of stochasticity in both methods comes from

the seeding of the droplets in the accretion domain. It is interesting to note

that all these approaches revisit the assumption of pure quasi-stationarity of60

droplet deposition with respect to the evolution of the exposed surface. The

two physics are linked in these methods by updating the ice shape exposed to

droplet deposition and taking into account the potential effects of the ice shape

on the droplet deposition.

This paper proposes a complete two-dimensional (2D) ice accretion model65

using an unstructured advancing front technique to model the phenomenon in

a building block manner, following the work of Papillon-Laroche (2022). It fea-

tures a stochastic impingement process based on the extraction of the droplet

trajectories. The prediction of complex ice morphologies is enabled by a com-

4
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plete freezing process and a finer coupling between the geometry evolution and70

the droplet trajectories, despite the proposed method being a single-layer frame-

work (i.e. the field values are computed only once at the beginning of the pro-

cess). This paper first provides a complete description of the baseline model and

its verification. Then, an extension of the 2D framework is proposed to model

3D phenomena by introducing permeability in the ice. Finally, ice accretion75

results are presented and discussed for four cases from the literature.

2. Computational Methodology of the Baseline Algorithm

The method borrows from the deterministic approach, presented in Section

2.1, which is always run prior to the stochastic process. It is used to compute

the trajectories of the water droplets, as well as the thermodynamic balance for80

the water deposited on the exposed surface (in particular the solidification rate

of the water). The proposed stochastic method is then called to change the ice

shape, as described in Section 2.2. It is thus still based on the quasi steady-state

assumptions used in ice accretion modelling, but it introduces stochasticity in

the latter and enhanced interactions between water deposition and ice shape85

evolution. The latter is made possible by the advancing front algorithm pre-

sented in Section 2.3. The stochastic side of the process concerns the injection

of the droplets (Section 2.4). In rather warm conditions, some water runback

occurs on the iced surface. Section 2.5 explains how the deterministic calcula-

tion is used in the stochastic framework and how the advancing front algorithm90

is adapted to deal with water runback. Finally, the evolution process of the ice

shape is stopped when a criterion, also derived from the deterministic calcula-

tion, is fulfilled (Section 2.6). After the verification presented in Section 2.7,

some results of ice accretion on literature test cases are presented in Section 2.8.

2.1. Deterministic Framework95

The developments of the stochastic method are implemented in the new

Computational Fluid Dynamic (CFD) solver named CHApel Multi-Physics Sim-

ulation (CHAMPS) (Parenteau et al., 2021). It is developed at Polytechnique

5
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Montreal using the Chapel programming language (Chapel, 2022), enabling na-

tive shared and distributed memory parallelizations of the software. Here, a100

brief overview of its features is presented with a focus on the icing modules;

a more detailed description of the software can be found in (Parenteau et al.,

2021). It performs unstructured simulations in 2D, 2.5D, and 3D using the

finite volume method to solve the Reynolds-Averaged Navier-Stokes (RANS)

equations, closed by the Spalart-Allmaras (Spalart and Allmaras, 1992) or the105

K-ω SST-V (Menter, 1992) turbulence models. The flux discretization follows

Roe (Roe, 1981) or AUSM (Blazek, 2015) schemes and the second-order of ac-

curacy is enabled using the Green-Gauss or Weighted Least Square gradient

formulations (Blazek, 2015).

The icing framework follows the flowchart presented in Figure 3. It assumes110

a quasi-steady phenomenon: the flow and droplet fields, as well as the thermo-

dynamic exchanges and the geometry evolution, are resolved in a steady-state

fashion and the resolution assumes a one-way coupling between each module.

The accuracy in time is increased using a multi-layer framework, the RANS

mesh being regenerated at each quasi-steady iteration using a hyperbolic mesh115

generation algorithm (Chan, 1999).

An Eulerian droplet model is used to resolve the impingement map at the

wall (Bourgault et al., 1999), with an upwind scheme for the convective fluxes

and the same gradient formulations as the flow solver (Parenteau et al., 2021).

The thermodynamic exchanges are obtained from an Iterative Messinger model120

(Zhu et al., 2012; Lavoie et al., 2016), and the geometry evolution is per-

formed using either a Lagrangian (or algebraic) method, or a hyperbolic scheme

(Bourgault-Côté, 2019).

2.2. Global Stochastic Process

The proposed stochastic method corresponds to a geometry evolution mod-125

ule, thus replacing its deterministic counterpart. The methodology, the results

and the figures presented in the following sections were originally reported in

the work of Papillon-Laroche (2022). The method is based on the discrete

6
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Figure 2: Global stochastic process

representation of the accretion domain by individual elements of ice, as pro-

posed in (Szilder and Lozowski, 2004; Bourgault-Côté, 2019; Papillon-Laroche130

et al., 2021). However, the approach breaks with the Cartesian grid framework

originally proposed by Szilder and Lozowski (2004), as it uses an unstructured

advancing front mesh generator, enabling a body-conforming method. The cells

of the created mesh represent the elements of ice.

An element of ice is generated from the incoming mass of water, as illustrated135

in Figure 2. The droplets are injected, one at a time, upstream of the studied

geometry at a random position. The impingement location on the clean or

iced geometry is computed using the droplet trajectory, which is extracted as a

streamline of the deterministic droplet velocity field, knowing that the particle

trajectories and streamlines coincide in the steady-state assumption. To reduce140

the computational cost, the droplets are gathered in clusters of mass mcluster in

[kg], as proposed by Szilder and Lozowski (2004) : it is assumed that the droplets

forming a cluster follow the same trajectory. The cluster mass is related to the

ice element volume as presented in Section 2.3.

The cluster of droplets freezes either at the impingement location on the145

ice front or further downstream. It depends on the thermodynamic state at

the cluster’s current location, taken as its freezing fraction ffr. The latter is

obtained from the resolution of thermodynamic exchanges in a deterministic

7
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fashion on the clean geometry, before the stochastic computations. When the

thermodynamic state is favorable, a new element of ice is generated using the150

unstructured advancing front algorithm. The process stops when the accreted

ice mass reaches the targeted ice mass (i.e., the stop criterion), as presented in

Section 2.6.

Figure 3 illustrates the deterministic and stochastic icing frameworks in

CHAMPS. The airflow, the droplet field, and the thermodynamic exchanges155

are resolved before the stochastic geometry evolution module (Figure 3a), in the

same fashion as the deterministic framework (Figure 3b). This means that these

solutions are available for the stochastic computations. Furthermore, Figure 3a

shows that the stochastic method corresponds to a single-layer framework, con-

trary to the multi-layer deterministic solver. However, it accounts for the effects160

of the dynamic evolution of the ice front on the droplet trajectories in a finer

way than the multi-layer simulations. Also, it could be considered to include

this process in a multi-layer approach by extracting a meshable iced surface at

the end of the stochastic process.

2.3. Unstructured Advancing Front Algorithm165

The proposed method aims to model the icing phenomenon using a piecewise

accretion process. Since the ice growth is a dynamic evolution, an unstructured

advancing front algorithm is proposed, following the works of Bourgault-Côté

(2019) and Papillon-Laroche et al. (2021).

2.3.1. General Process170

The unstructured advancing front is typically used as a mesh generator. The

method is based on the dynamic generation of triangular (2D) or tetrahedral

(3D) elements from topological entities called the front facets. Here, the frame-

work is in 2D and follows the methods of Lohner and Parikh (1988), Peraire

et al. (1992) and Jin and Tanner (1993).175

The discretization of the boundaries, e.g., the geometry walls and the farfield,

forms the initial front as presented in Figure 4a in red. The front facets cor-

8
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Figure 3: Differences between the icing frameworks implemented in CHAMPS.
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(a) Initial front (b) Generation of one el-

ement and update of the

front

(c) Front and mesh after

several iterations

Figure 4: Unstructured advancing front process. The front is represented in red.

respond to the surface elements available to form a new volume element. The

process goes as follows (Lohner and Parikh, 1988):

1. Select the next front facet to be treated following a predefined order of180

treatment.

2. Generate a new element, as illustrated in Figure 4b:

(a) Select an existing front node in the neighbourhood of the selected

facet or create a new node;

(b) Check the validity of the new element (i.e., check for intersections185

with existing elements). If the element is invalid, return to step (2a).

3. Update the active front (Figure 4b, in red) :

(a) Remove the treated facet;

(b) Add the created facets.

4. Repeat steps 1 to 3 until reaching the stop criterion (Figure 4c), which is190

usually when the front is empty.

Generation of new elements. From the selection of the next front facet to be

treated, an element can be generated either with an existing node or a new

node. To that end, a search of front nodes is performed in the neighborhood of

the optimal node position, denoted Popt :195

Popt = Pfacet +
δ
√

3

2
~nfacet (1)

10
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where Pfacet and ~nfacet are respectively the center of the selected front facet

and its unit normal, and δ is the targeted element size in [m]. Since the method

aims to generate as much as possible regular elements (equilateral triangles),

Popt is set to form an equilateral triangle of a side length of δ with a regular

front facet, hence the term δ
√
3

2 (i.e., the height of the corresponding equilateral200

triangle) in Equation 1.

The search of front nodes is performed around Popt within a radius of 0.75δ,

following the methodologies presented in (Lohner and Parikh, 1988; Peraire

et al., 1992; Jin and Tanner, 1993). The validity of the elements formed by

the treated facet and each resulting neighbor node is tested so that the new205

element does not intersect with any existing elements of the mesh. If there is

more than one valid potential element, the most regular is selected to form the

new element. If none of the neighbor front nodes form a valid element, a new

node is created and a new valid element is generated with the latter.

2.3.2. Application to Icing210

The key component of the method for the present icing application is the

dynamic evolution of the front: the active front represents the ice front, which

advances in space as the ice grows from the clean geometry. Additionally, specific

phenomena, namely the variable ice density and the formation of shadow zones,

are captured by the technique. Thus, the following features are of interest:215

• Initial front;

• Order of treatment of the front facets;

• Creation of a new node and selection of an existing node;

• Element size.

Initial front. The initial front corresponds to the surface discretization of the220

studied geometry. A uniform surface mesh is created, based on the same geom-

etry as the RANS mesh, using Pointwise (Pointwise, 2022). This ensures the

regularity of the surface discretization required by the algorithm to converge,

11
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Figure 5: Comparison of the initial front and RANS surface mesh on the lower surface of a

NACA0012

i.e., to reach the stop criterion with a complete and valid mesh. Additionally,

it allows better control over the targeted element size of the ice mesh, indepen-225

dently of the surface discretization used for the RANS mesh generation. The

comparison between the uniform surface mesh and the RANS surface mesh is

presented in Figure 5.

Order of treatment of the front facets. When a cluster is injected into the com-

putational domain, the intersection between its trajectory and the active front230

corresponds to the impingement location. This point is located on a front facet.

For a rime thermodynamic state, i.e., ffr = 1.0, the latter corresponds to the

next front facet to be treated. For a glaze thermodynamic state, i.e., ffr < 1.0,

a fraction of the cluster flows further downstream on the ice front, requiring

querying the thermodynamic state at each step of the cluster motion. Addi-235

tional details on the freezing process are presented in section 2.5.

This process allows considering the ice front as a boundary (i.e., an obstacle)

to the droplet impingement. Therefore, the shadowing effect of the growing ice

is taken into account, contrary to the method of Bourgault-Côté (2019) or in

single-layer deterministic approaches. Figure 6 illustrates this features. At a240
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Figure 6: Shadow zones

macroscopic scale, it enables to better model the shadow zones behind ice horns.

At a mesoscopic scale, it contributes to the formation of porosities within the

ice, as described in the following paragraph.

Creation of a new node and selection of an existing node. The generation of a

new element requires either the creation of a new node or the selection of an ex-245

isting one. The former situation enables to advance the ice front in space, while

the latter can lead to the generation of porosities within the ice, as illustrated

in Figure 7. This is due to the creation of a second front, corresponding to the

boundaries of the porosity (dashed red lines in Figure 7), as the main ice front

(solid red lines in Figure 7) closes on itself. After their creation, the boundaries250

of the porosities can not be impinged again, resulting in a variable ice density.

Element size. The targeted element size δ controls the element size over the

entire mesh, as well as the mass of the seeded cluster mcluster in [kg]:

mcluster =
δ2
√

3

4
· ρice,pure · b

13



Journal Pre-proof
Figure 7: Creation of an air pocket

where ρice,pure = 917 kg/m3, corresponding to the pure ice density (Szilder and

Lozowski, 2004), and b = 1.0 m represents the span to respect the units in this255

2D framework. The term δ2
√
3

4 represents the area of a equilateral triangle of

side δ.

2.4. Impingement Process

To obtain the impingement location required by the advancing front algo-

rithm, the droplet trajectories are extracted as the streamlines of the droplet260

velocity field computed by the deterministic Eulerian solver. Hence, the trajec-

tories are computed using the RANS volume mesh, since the Eulerian droplet

velocity field is obtained for the latter discretization. The complete process

corresponds to an adaptation of the finite volume representation of the stream-

lines proposed by Rendall and Allen (2014). Following the assumption that the265

droplets forming a cluster have the same evolution, the cluster trajectory cor-

responds to the trajectory of a single droplet subjected to the same conditions.

2.4.1. Global Process

The process is illustrated in Figure 8 and goes as follows:

1. Insert a cluster of droplets at a random position Pd,0 on a seeding plane,270

upstream of the studied geometry.

2. Identify the initial cell of the RANS mesh in which the cluster is seeded,

using an octree geometric search algorithm (Press et al., 2007).

• The cluster’s initial position, Pd,0, corresponds to its entry point,

Pd,entry, in the initial RANS cell (Figure 8a).275

14
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(a) Droplet trajectory (in blue) in the

RANS mesh (in black).

Current cell
Next cell

(b) Facet/velocity ray intersection com-

putations in the current cell (in black).

Figure 8: Droplet trajectory computation

3. Compute the cluster’s exit point, Pd,exit, of the current RANS cell (Figure

8b):

(a) Retrieve the droplet velocity ~ud from the current RANS cell.

(b) Compute the intersection between the velocity ray (formed by ~ud

and passing by Pd,entry) and the facets of the cell (obtained from the280

cell-to-facets connectivity list).

• Pd,exit corresponds to the intersection point in the same direction

as ~ud :

(Pd,exit − Pd,entry) · ~ud > 0

(c) With the cell-to-cells connectivity list, identify the next RANS cell

along the streamline:285

• It corresponds to the cell on the other side of the intersected

facet.

(d) Return to step 3(a), using the Pd,exit of the current cell as the Pd,entry

in the next cell : Pd,entry = Pd,exit.

15
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(a) Droplet trajectory intersection with

the ice front

(b) Intersection check zoomed

Figure 9: Computation of the impingement location

The process stops if either the clean geometry wall or the active ice front is290

intersected. Both cases are treated in the same way as the clean geometry is

represented by the initial front. When the trajectory is close to the ice front,

a geometric search is performed around the current volume cell being crossed.

To that end, an intersection check between the trajectory and the facets within

a search radius of r = 0.5 ||Pd,exit − Pd,entry|| of the coordinate Pd,entry + r295

is performed, as depicted in Figure 9b. The impingement location corresponds

to the intersection between the ice front and the droplet trajectory, and the

intersected front facet is the impinged facet. An octree is used to reduce the

cost of such a geometric search.

A similar approach is presented in the work of Butnarasu et al. (2015).300

However, in the latter approach, the ice accretion domain is discretized by a

complete Cartesian grid, and the droplet streamlines are extracted for each

visited cell of the Cartesian grid, requiring both interpolation of the droplet

velocity (from the RANS mesh to the Cartesian grid) and the integration of

the streamline at each step (i.e., at each visited cell). The process proposed in305
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the present paper does not require any interpolation or integration due to the

finite volume representation of the streamline which simply corresponds to its

geometric representation.

It is worth justifying the use of the Eulerian droplet velocity field to retrieve

~ud, instead of resolving the droplet equations of motion within a Lagrangian310

particle tracking method:

• The Eulerian droplet impingement model computes the impingement map

on the clean geometry. This allows to extract the impingement limits on

the surface and retrieve the seeding limits on the seeding plane, as de-

scribed in Section 2.4.2. Therefore, the insertion of the clusters is limited315

to a seeding window and the computational cost associated with the clus-

ters not impacting the ice front is reduced. Additionally, the clusters are

injected on a seeding plane positioned upstream of the geometry, at about

one chord length of the leading edge. The only restriction on its position

is to ensure that the clusters are always seeded upstream (in front) of320

the ice. In other words, it only has to accommodate the growth of the

ice contrary to a traditional Lagrangian particle tracking method, which

requires the droplets to be seeded where they are subjected to the free

stream conditions (Erhan et al., 2011).

• The thermodynamic exchanges over the surface are computed according325

to the impinging water mass rate on the clean geometry, obtained from

the Eulerian solver. This allows to establish :

1. the thermodynamic state for each cluster and the corresponding mass

of water to be frozen using the computed freezing fraction, as detailed

in Section 2.5;330

2. the stop criterion of the process using the computed ice mass rate,

as detailed in Section 2.6.

This process is consistent with mass conservation.

17
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The proposed impingement process would also be compatible with a La-

grangian particle tracking method, but further developments would be needed335

to establish a consistent stop criterion.

2.4.2. Seeding Process

The seeding plane is parallel to the vertical axis, denoted y, and its position

along the x-axis is given as an user input : x = pseed. Thus, the initial position

of a cluster is : Pd,0 = (pseed, yd,0). The coordinate y-component yd,0 is ran-340

domly generated in a seeding window using a Pseudo Random Number (PRN)

generator.

Seeding window. To reduce the computational cost of the impingement pro-

cess, the number of clusters not impinging the ice front is limited due to the

computation of a seeding window, meaning that :345

yd,0 ∈ [yd,min, yd,max]

These extremum values are obtained from impingement limits on the surface.

Indeed, the process computes the upstream trajectories from the two positions

on the clean geometry where the collection efficiency β (computed by the Eu-

lerian solver) reaches the condition β < ε, where ε = 10−8 in this paper, as

illustrated in Figure 10. Their computation follows the steps presented in Sec-350

tion 2.4.1, but instead of selecting the intersection point in the same direction

as ~ud at step 3(b), the one in the opposite direction is selected as the exit point

(Rendall and Allen, 2014):

(Pd,exit − Pd,entry) · ~ud < 0

The intersection of the upstream trajectories with the seeding plane gives the

interval [yd,min, yd,max]. Finally, to ensure a sufficient seeding window (i.e., the355

entire ice front can receive water) as the ice grows into significant ice structures,

the interval’s endpoints are shifted so that the window size is extended by at

least 50%. The extended seeding window is denoted [y′d,min, y
′
d,max] .
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Figure 10: Seeding plane position and limits obtained from the upwind droplet trajectories of

the impingement limits

The pseudo-random initial position yd,0 on the seeding plane is then gener-

ated in the interval [y′d,min, y
′
d,max] using a Permuted Congruential Generator360

(PCG) (O’Neill, 2014), available in the Chapel language as a standard library

(Chapel, 2022). The PCG is based on the generation of PRNs with a medium-

quality PRN generator. Then, the quality of the generated PRNs’ are improved

using a permutation function, resulting in PRNs of good statistical properties

(period, uniformity, and predictability). The reader is referred to (O’Neill, 2014)365

for more details on this PRNs generator. The PRNs are generated following a

uniform probability density function, as the spatial distribution of the droplets

in a cloud is considered to be uniform (Shaw et al., 2002).

Droplet Size Distribution Treatement. The other source of stochasticity in the

icing phenomenon considered in the proposed method is the variation of the370

size of the droplets throughout the cloud. To that end, using the experimental

droplet size distribution, the diameter of the droplets in a given cluster is gener-

ated using the inverse transform sampling method (Sugiyama, 2016). A cluster

is formed by droplets of the same size; the stochasticity of the droplet sizes

throughout the cloud is introduced by randomly selecting the droplet diameter375

associated to a given cluster following the experimental droplet size distribution.
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The droplet size distribution is often given as the cumulative fraction of the

liquid water content (LWC) according to the droplet diameter in a discrete form,

as illustrated in Figure 11. In the deterministic framework, the Eulerian droplet

trajectory model solves the velocity field for each droplet diameter and the re-380

sulting collection efficiency is the weighted average of the collection efficiencies

computed for each droplet diameter (Lavoie, 2017). In the proposed stochastic

framework, the size of the droplets forming a cluster is randomly generated for

each seeded cluster. The inverse transform sampling method allows generat-

ing a random sample from a given discrete cumulative density function (CDF)385

following the associated probability density function (Sugiyama, 2016). The

process is illustrated in Figure 12. Either the experimental droplet size distri-

bution or an empirical distribution, such as the Langmuir D presented in Figure

11, is used as the discrete CDF. The Eulerian velocity fields are obtained for

the same distribution. Each droplet diameter i of the discrete size distribution390

is associated with a sub-interval Ii of the cumulative LWC fraction. Then, a

uniform pseudo-random number u ∈ [0, 1] is generated using the PCG, and the

interval Ii for which u ∈ Ii is found. The randomly sampled droplet diameter

corresponds to the diameter i.

Finally, once the cluster formed by droplets of the randomly sampled diam-395

eter is seeded, the trajectory is computed using the corresponding velocity field

obtained from the same droplet diameter with the Eulerian droplet trajectory

model. Here, it is worth noting that the cluster mass does not change as it is

associated only with the element size in the advancing front technique.

2.4.3. Verification of the Droplet Trajectory Model400

The stochastic impingement maps for two test cases are compared against

the deterministic results of CHAMPS. The selected cases are Cases 241 and 364

of the first IPW (Laurendeau et al., 2022) and the corresponding icing conditions

are given in Table 1.

The collection efficiency is computed for both methods on the clean surface,405

i.e., there is no ice accumulated to allow a direct comparison between the results.
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Figure 11: Langmuir D distribution with the data extracted from (Papadakis et al., 2007)
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Figure 12: Inverse transform sampling

For Case 241, a monodispersed size distribution is considered, while Case 364

considers the experimental size distribution, given in (Laurendeau et al., 2022).
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The stochastic collection efficiency is obtained from its Lagrangian definition:

βi,stoch =
ni,imp mcluster

∆si ∆ticing Uinf LWC

where βi,stoch is the collection efficiency for the front facet i, ∆si is its area410

in [m2] and ∆si = li · b with li being the length of the facet in [m], ni,imp is

the number of clusters that have impinged the facet i, and ∆ticing and Uinf

are respectively the icing time in seconds and the magnitude of the free stream

velocity in m/s.

Figure 13 presents the results of β according to the arc length from the trail-415

ing edge (TE) for both cases: it shows that the stochastic impingement map

represents the deterministic collection efficiency. Furthermore, stochasticity is

observed in the distribution, which is expected for the proposed method. Addi-

tionally, the agreement between the stochastic and deterministic results of Case

364 in Figure 13b verifies that the droplet size distribution treatment is suit-420

able. However, a decrease of β near its maximum value, which corresponds to

the position of the stagnation point, is observed. This is assumed to be linked to

dividing streamlines in this region when the RANS mesh cells are parallel to the

streamlines. This occurs in Case 364 for which the flow is at 0o angle-of-attack

over a symmetrical geometry, as the RANS mesh used is a structured-type grid425

with the latter aligned with the flow direction in the symmetry plane. For this

situation, the streamlines are driven away from the stagnation point resulting

in a separation of the upper and lower trajectories near this point. A similar

observation of this phenomenon is made by Porter (2022) for trajectories com-

puted from a Lagrangian particle tracking algorithm. This leads to a shadow430

zone on the ice front where no cluster can impinge, as illustrated in Figure 14.

This constitutes a limitation of the proposed method. The phenomenon has less

impact on the collection efficiency obtained for Case 241 since an unstructured

RANS mesh is used.
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Figure 13: Verification of the collection efficiency
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Figure 14: Limitation of the droplet trajectory computation. The trajectories are represented

by the blue lines and the RANS mesh by the dotted black lines.

2.5. Freezing Process435

The freezing process follows the impingement of a cluster and is significant

for glaze icing cases. In such conditions, the cluster flows on the ice front from

its impingement location in the same direction as the shear stress at the wall.

The distance traveled depends on the thermodynamic state along the current

front. This motion of the cluster on the clean/iced surface is also found in the440

other Lagrangian icing models (Szilder and Lozowski, 2004; Bourgault-Côté,

2019; Leroy, 2004; Butnarasu et al., 2015). The thermodynamic state is given

by the freezing fraction ffr. The front facets downstream of the impingement

location are treated sequentially, enabling the modeling of the cluster motion

on the active front.445
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2.5.1. Thermodynamic Exchanges

The freezing fraction is computed prior to the stochastic process using an

Iterative Messinger model (Zhu et al., 2012) and is defined according to :

ffr =
ṁice

ṁimp + ṁin − ṁes
(2)

where ṁice, ṁimp, ṁin and ṁes are respectively the mass rates of accumulating

ice, impinging water, incoming runback water and evaporation/sublimation.450

This approach is compatible with the quasi-steady approaches classically used

for ice accretion modeling, for which it is assumed that all the liquid water flows

according to the shear stress direction, and does not stagnate locally or soak

the ice.

Equation 2 is adapted to the current framework with the two following con-455

siderations:

• The evaporation/sublimation mass rate is neglected, which was originally

proposed as a simplifying assumption in the work of Leroy (2004). It is

assumed to be negligible compared to the incoming mass rate.

• The mass rate terms in [kg/s] are replaced by mass terms in [kg], as a460

cluster of droplets corresponds to a given mass of water.

Therefore, Equation 2 is re-written according to :

ffr =
mice

mimp +min
(3)

At each step of the cluster motion on the front, the value of the freezing

fraction is approximated by its value at the nearest surface cell of the RANS

mesh as the thermodynamic exchanges are resolved with the latter discretization465

(Bourgault-Côté, 2019). The mass of water to be frozen is then given by :

mice = ffr(mimp +min) (4)
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Figure 15: Cluster motion on the active front

2.5.2. Runback Modeling

The mass of liquid water running back to the next front facet is obtained

from the mass balance at the surface of the current front facet:

mout = mimp +min −mice (5)

This mass corresponds to the incoming mass min for the next front facet, as470

presented in Figure 15. It is important to note that for the steps of the cluster

motion following the impingement, mimp = 0.0 kg since the clusters are treated

sequentially, i.e., there is no impinging water remaining on the front.

The next facet to receive the runback water mout, referred to as the receiving

facet, is selected as a direct neighbor of the current facet in the same direction475

of the shear stress at the front surface.

Runback direction. The runback water follows the direction of the skin friction

coefficient ~Cf at the geometry surface, which is either clean or iced. Since the

flow is not updated as the ice grows, ~Cf at the active ice front is unknown

in the proposed method. However, it can be approximated to the skin friction480

coefficient at the nearest cell of the surface RANS mesh, which is computed prior

to the stochastic method by the deterministic airflow solver. The approximated

direction is therefore denoted ~Cf
′
.

Selection of the receiving facet. The ice front being irregular and presenting

concavities, the identification of which neighboring front facet is in the direction485

of ~Cf
′

is ambiguous, as illustrated in Figure 16a where the red ‘X’ marks the
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Figure 16: Selection of the next receiving facet

impinging location. Therefore, to select the receiving facet, the vectors between

the impinged front facet and a 1D stencil of N neighboring front facets on the

left and right sides of the impingement location are compared to ~Cf
′
.

To do so, the scalar product between ~Cf
′

and the vector from the center of490

the impinged facet, Pfacet,imp, to the center of the ith neighbor facet, Pfacet,i,

is computed. If

(Pfacet,i − Pfacet,imp) · ~Cf
′
> 0

the vectors point in the same direction. This process is illustrated in Figures

16b and 16c. The side for which there are more facets in the same direction

of ~Cf
′

is selected as the runback side. This process is performed once, upon495

impingement, as it is assumed that the runback mass fraction of the cluster will

always flow according to the same direction (i.e., the cluster cannot go back on

its steps) until reaching the stop criterion.

Runback Stop Criterion. The runback process stops when the water outflow

mout computed with Equation 5 is negligible according to the following heuristic500

criterion:

mout ≤ 0.01mcluster
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When the criterion is reached, the remaining mass is entirely given to the last

visited facet, ensuring mass conservation. No proper parametric study was

done for this criterion, as for the upcoming criterion in Equation 6. This could

be done in the future, although the good results obtained afterwards and the505

fact that these are negligibility thresholds, suggest that the sensitivity to these

criteria is low.

2.5.3. Generation of a New Element of Ice

The mass of water to be frozen at each step of the cluster motion is given by

Equation 4. However, since the advancing front technique requires regularity in510

the size of the generated elements to converge (i.e., to result in a complete and

valid mesh), the process generates a new element of ice only if :

mice ≥ 0.9mcluster (6)

which is an heuristic criterion. The latter is checked at each step of the cluster

motion. If it is not reached, the ice mass given by Equation 4 is stored on the

front facet (denoted mice,stored), and is considered the next time this facet is515

visited :

mice = ffr(mimp +min) +mice,stored

When the criterion is reached, a new element of ice is generated with the ad-

vancing front technique. The heuristic criterion given by Equation 6 aims to

ease the advancing front technique by introducing some flexibility in the gen-

erated elements while keeping them mostly regular, especially when selecting520

existing nodes. Nonetheless, the mass conservation is ensured by the process.

2.6. Stop Criterion

The global process stops when the accumulated ice mass Macc,ice reaches

the targeted mass Mtotal,ice. The latter is computed from the deterministic

thermodynamic solution, and corresponds to the integral over the clean surface525

of the ice mass rate ṁice :

Mtotal,ice = ∆ticing

∫

S

ṁiceds
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= ∆ticing ·
n∑

i=1

ṁice,i∆si

where n corresponds to the number of surface elements of the RANS mesh and

ṁice,i is the ice mass rate of the surface element i. Macc,ice is computed as the

sum of the masses of the generated elements of ice :530

Macc,ice =
N∑

i=1

melement,i (7)

where N is the total number of elements of ice, melement,i = Velement,i · ρice,pure,
corresponding to the mass of the ith element, and Velement,i is its volume.

2.7. Mesh Convergence Study

A convergence study on the element size δ is performed, while the RANS

mesh remains unchanged. The ice density is selected as the study parameter535

since it is a dependent variable in the proposed method (Section 2.3.2). This

was initially proposed by Bourgault-Côté (2019) and re-examined by Papillon-

Laroche et al. (2021). Case 241 is selected as it represents rime icing conditions

for which the ice density is variable, contrary to the glaze icing conditions in

which it is typically ρice,pure = 917 kg/m3 . The accretion time is, however,540

decreased to 2.5 minutes to reduce the computational cost.

The values of the element size δ range from 1.0 × 10−3c to 6.25 × 10−5c

with a refinement factor of two, and since the process is random, five trials are

performed for each element size. The resulting ice meshes for a single trial of

the first four element sizes are presented in Figure 17.545

The ice density is extracted from a core sample at the leading edge of each

obtained ice mesh and is denoted ρice; more details on the ice density extraction

can be found in (Papillon-Laroche, 2022). Since there is no analytical solution

for this case, the exact value of the density is approximated to ρ∗ice = 753.81

kg/m3, which is the result on the finer mesh (δ = 6.25 × 10−5c). For each550

element size, the ice density corresponds to the average of the five trials.

The convergence of the ice density according to δ is presented in Figure 18

and shows that the method converges. The slopes of the 1st- and 2nd-orders of
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Figure 17: Element size effect on the ice shape
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accuracy are only depicted for reference purposes, as there is no formal order of

convergence for the proposed method.555
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Figure 18: Ice density convergence study

2.8. Results of the Baseline Algorithm

The ice shape for a single trial of Case 241 obtained from the baseline algo-

rithm is presented in Figure 19. The stochastic ice shape, in blue, is compared

to the inner and outer envelops of the scan of the experimental ice (Laurendeau

et al., 2022), in green, and to the 5 layers deterministic result of CHAMPS. The560

stochastic method successfully captures discrete ice structures and a variable

ice density. However, Figure 19 shows that the ice thickness of the stochastic

result is overestimated. The deterministic computations, which lead to an ice

thickness in the expected range, are resulting from the use of a constant ice

density of ρice = 820.0 kg/m3, while in Section 2.7, the mesh convergence study565

results in a stochastic ice density of 753.8 kg/m3. This suggests that the latter

is too low compared to the experimental value.
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This assumption can also be made for the regions in which discrete ice struc-

tures (i.e., ice feathers) are observed. This is mainly the case for the low surface,

downstream of the stagnation point. A numerical amplification of the feather570

formation is also suspected, as they are very long and thin, compared to the

voids separating them. The final shape of the ice in this region suggests their

formation is mainly driven by the first ice elements accumulated at the clean

surface.

Figure 19: Initial results for Case 241, δ = 1.25 × 10−4c

A lower ice density was also reported in the works of Szilder and Lozowski575

(2004) and Leroy (2004). To increase it, Szilder and Lozowski (2004) proposed a

cradle search, which allows a cluster to freeze beyond its freezing location. This

method emulates the surface tension effect, which drives the water’s tendency

to fill voids. The cradle search is performed in a radius of N times the Carte-

sian cell size of the freezing location, resulting in a method dependent on the580
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Cartesian discretization. Leroy (2004) proposed a similar approach, allowing a

fluid element to flow over a given distance after it reaches its freezing state.

3. Improved Algorithm

Here, an improved algorithm is presented to take into account the assumed

3D nature of the ice density, and to avoid the suspected numerical amplification585

of the ice feathers.

In the real icing phenomenon, the ice varies along the three axes of the ref-

erence frame: in the chordwise direction x, along the vertical axis y, and in the

spanwise direction z. This is ignored in the presented 2D framework unless one

considers that various trials correspond to different z-sections. The effect on the590

ice shape is assumed to be significant in light of the results presented in Figure

19. Indeed, if three droplets are seeded at respectively (xd,0, yd,0, zd,0 + ε),

(xd,0, yd,0, zd,0), and (xd,0, yd,0, zd,0 − ε), where ε corresponds to a small dis-

tance, their respective impingement position on the ice front can be significantly

different, as illustrated in Figure 20. This is however not captured by the ap-595

proach of the previous section because the trials are strictly independent and it

is then not possible to realistically assign three trials respectively to z = zd,0+ε,

z = zd,0 and z = zd,0 − ε.

z = -ε

z = 0

z = +ε

 

Figure 20: Interpretation of the effect of the spanwise direction

Therefore, to take into account this effect in the spanwise direction, the ice

front of a given trial is considered to be permeable to a certain extent, allowing600

some clusters to impinge behind the main ice front in an air pocket. Figure 21

shows this permeable front technique, which goes as follows for a given cluster:
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1. Compute the impingement location, denoted Pimp,0, as presented in Sec-

tion 2.4;

2. For each intersection Pinter,current with a front facet facing upstream605

(~nfacet · ~ud < 0) along the cluster trajectory :

(a) Generate a uniform PRN of either 0 (false) or 1 (true) :

• If PRN = 1, the current cluster intersection with the ice front

corresponds to the impingement location. Continue to the freez-

ing process described in Section 2.5;610

• Else (PRN = 0), compute the distance d between Pinter,current

and Pimp,0 :

– If d ≤ dmax, where dmax is a user-defined parameter, con-

tinue to the next intersection (step 2).

– Else (d > dmax), discard the cluster and continue with the615

injection of a new cluster upstream.

The PRN is generated using the PCG (O’Neill, 2014).

d

dmax
Cluster
trajectory

Figure 21: Process to emulate the permeability of the ice front. The intersections of the

trajectory with a front facet facing upstream are marked by a red ‘X’.

The parameter dmax does not have any physical meaning, thus requiring

a proper calibration to ensure the spatial convergence and the validity of the

model with this proposed extension. Figures 22 and 23 present the sensitivity620
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of the ice shape to the values dmax ranging from 5.0×10−4c to 3.2×10−2c, with

a scaling factor of 2. The light blue zone represents the projection in the xy-

plane of the spanwise experimental ice. The results show that the ice density

increases with the value of dmax, because more clusters are deposited in air

pockets, resulting in a decrease in the ice thickness. Also, the geometry of the625

ice feathers changes, starting with long and thin structures at the lower values

of dmax and ending with shorter and thicker structures accreted closer to each

other for the highest values of the range. This shows that the method allows, for

a given trial in the considered 2D plane, to model well the fact that the feathers

can thicken due to the deposition of water droplets seeded from a very close630

plane. Qualitatively, the values in the interval dmax = [5.0× 10−4c, 2.0× 10−3c]

lead to ice shapes in better agreement with the experimental results than the

baseline algorithm ice shape reported in Figure 19.

Finally, it is important to note that the permeable front technique is not

intended to replace the stochastic model extension to a fully 3D framework.635

However, the improvement of the results showed in Figure 22 justifies such an

extension to capture phenomena missed by the 2D framework.

4. Results and Discussion

The icing conditions of the test cases selected for the validation of the

proposed model are provided in Table 1. The computational domain for the640

NACA0012 geometry is discretized with a structured O-type grid and has 384x256

cells. The far-field is located at 50 chords. An unstructured mesh is used for the

NACA23012 cases, based on the wind-tunnel configuration provided by the IPW

(Laurendeau et al., 2022). The airfoil and wind tunnel walls are discretized with

respectively 778 and 198 vertices for a total of 68000 cells. For both meshes, the645

height of the first cell is at y+ < 1. For each case, the flow and droplet solvers

reach a density residual reduction of 10−5.

The value of dmax chosen for each case is based on sensitivity studies similar,

yet not as extensive, as the one presented in the previous section. dmax is thus
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(a) 5.0 × 10−4c (b) 1.0 × 10−3c

(c) 2.0 × 10−3c (d) 4.0 × 10−3c

Figure 22: Effect of dmax on the ice shape
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(a) 8.0 × 10−3c (b) 1.6 × 10−2c

(c) 3.2 × 10−2c

Figure 23: Effect of dmax on the ice shape (continued)
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case-dependent, a limitation that will be addressed in future works.650

Table 1: Test Cases Input Parameters

Case Case 241

(Laurendeau

et al., 2022)

Case 04

(Trontin

et al., 2017)

Case 242

(Laurendeau

et al., 2022)

Case 364

(Laurendeau

et al., 2022)

Geometry NACA23012 NACA0012 NACA23012 NACA0012

Chord [m] 0.4572 0.5334 0.4572 0.9144

Sweep [deg] 0.0 0.0 0.0 30.0

AoA [deg] 2.0 4.0 2.0 0.0

Mach [-] 0.32 0.32 0.31 0.35

Temperature [K] 250.70 262.3 265.65 259.60

Pressure [kPa] 92.528 101.325 92.941 89.632

LWC [g/m3] 0.42 0.6 0.75 0.5

MVD[µm] 30.0 15.0 15.4 20.5

Icing Time [s] 300 384 300 1020

Roughness [µm] 457.2 533.4 457.2 914.4

The average numbers of ice elements generated for each test case are reported

in table 2. The experimental droplet size distributions used for Cases 241, 242

and 364 are reported in table 3.

Table 2: Average numbers of ice elements generated for each test case

Case 241 Case 04 Case 242 Case 364

N̄ice,elem 63286 49717 62196 59282
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Table 3: Discrete Droplet Size Distributions

Case 241 Case 242 Case 364

Dia. [µm] Fraction

LWC [-]

Bin [µm] Fraction

LWC [-]

Bin [µm] Fraction

LWC [-]

6.9 0.05 6.7 0.05 6.4 0.05

9.8 0.10 8.9 0.10 8.7 0.10

14.7 0.20 11.3 0.20 11.7 0.20

30.3 0.30 15.0 0.30 20.3 0.30

60.5 0.20 20.8 0.20 36.9 0.20

100.4 0.10 27.3 0.10 61.4 0.10

163.8 0.05 36.0 0.05 99.9 0.05

4.1. Case 241

The ice shape for Case 241 is computed using δ = 2.5 × 10−4c and dmax =655

2.0 × 10−3c. The experimental droplet size distribution is used to obtain the

impingement map (Laurendeau et al., 2022). The results of five trials, each

using a different sequence of PRNs, are overlaid in Figure 24. Here, the air

pockets within the ice are not pictured for clarity’s sake. The likelihood of the

ice shape is shown with the grayscale and is obtained by decreasing the opacity660

level of each result to 20%. Therefore, a darker area in Figure 24 corresponds to

a zone it is more likely to observe ice. The experimental result presented in light

blue in Figure 24 is obtained from a spanwise invariant geometry. The light blue

zone thus corresponds to the projection of the experimental ice envelope along

the entire span on the xy-plane.665

The stochastic ice shapes are in good agreement with the experimental re-

sults: the ice thickness at the leading edge matches the expected range and the

tapered shape of the experimental ice is well captured. The latter is missed by

the 5-layers determinist result of CHAMPS, which has a rounded shape.
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The zones of higher variability are mainly where feathers are observed nu-670

merically in Figure 24. This means that the feathers are formed at random

locations downstream of the main ice accretion. It corresponds to the expected

behavior, as the experimental ice envelope is thicker for the same zones and the

ice scan shows discrete ice structures within these areas (Lee et al., 2014). This

observation is highlighted in Figure 25, where the ice shape for a single trial is675

presented. One can also observe the agreement between the experimental ice

limits and the stochastic result.
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Figure 24: Results for Case 241

4.2. Case 04

Case 04, presented originally by Trontin et al. (2017), is a glaze ice case

leading to the accretion of 2 ice horns. The stochastic ice shape is obtained680

for an element size of δ = 2.5 × 10−4c and for dmax = 8.0 × 10−3c, and a

monodisperse droplet size distribution is used due to the unavailability of the

experimental data. Again, the results for five trials are presented in Figure 26

and are compared to the deterministic results of CHAMPS for a single layer
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Figure 25: Result of one trial for Case 241

and of IGLOO2D using a predictor/corrector framework (Trontin et al., 2017).685

The stochastic method successfully captures the upper ice horn, even if it

corresponds to a single-layer framework. However, the lower horn is missed and

there is a discrepancy in the ice thickness at the stagnation point. It suggests

that runback water film on the lower surface is not well captured by the Iterative

Messinger model for a single layer simulation. The same observation can be690

made for the determinist result of CHAMPS, supporting this assumption. Thus,

for such ice geometries, an extension of the stochastic method to a multi-layer

framework is required. A multi-layer framework would require the extraction

of the highly irregular discrete ice front, followed by a post-treatment of the

extracted front to obtain a meshable geometry. An approach similar to the695

one proposed by Bourgault-Côté (2019) could be used. The latter involves the

conversion of the discrete ice front to a smooth B-Spline geometry, taking into

account the morphology of the ice (i.e. concave and convex features) to provide

an adequate discretization of the geometry. This method is used in a multi-layer

stochastic ice accretion model based on a Cartesian advancing front technique700

also proposed by Bourgault-Côté (2019).

The ice shape obtained with IGLOO2D results from the imposition of an ice

density computed with an empirical model based on the surface temperature.
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Therefore, care must be taken when comparing the results of the predictor step

of IGLOO2D to the stochastic ice shape, in which the ice density is a dependent705

variable.
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Figure 26: Results for Case 04

4.3. Case 242

The second glaze ice case selected for the model validation is Case 242 pre-

sented at the first IPW (Laurendeau et al., 2022). It features two ice horns

and was one of the least successful cases presented at the IPW. The droplet710

size distribution is set to a monodisperse distribution. Figure 27 shows the re-

sults of the stochastic method (for δ = 2.5 × 10−4c and dmax = 8.0 × 10−3c)

compared to five experimental trials. The latter are plotted using a light blue

scale, representing their likelihood, as explained previously. These ice contours

were obtained from five different runs. They correspond to the tracing of the715

experimental ice shape cuts, perpendicular to the leading edge, in the spanwise

direction (Laurendeau et al., 2022). Here, the result of CHAMPS deterministic

is not presented since the solver fails to predict an ice shape for this case.
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Compared to the experimental envelope (Figure 27), the stochastic method

succeeds to well capture the thickness at the leading edge, the ice limits, and720

the position and angle of the horns. However, it fails to predict their height

as well as the variability observed in the overall shape of the horns. Indeed, in

Figure 27, only one trial of the stochastic method is shown by the solid dark

blue line since no significant variation is observed between different runs. Only

the surface details on the ice front vary; the global ice shape (i.e., the position725

and angle of the horns, the ice thickness, and the ice limits) stays constant. It

suggests that other sources of stochasticity are involved in the icing process and

need to be modeled by the stochastic method to predict the observed variability

in the ice shapes.

This result is compared to the ice shapes presented by the participants of the730

IPW for the same case (Laurendeau et al., 2022) in Figure 28. The software used

by the participants implement deterministic and either multi-layer or predictor-

corrector frameworks. While their results are scattered, there are two main

characteristics of the computed ice shapes that stand out: i) the ice limits are

further downstream than the experiments, and ii) the ice horns are not captured735

or not well predicted, both for their position and their height. Nevertheless,

the proposed stochastic method successfully predicts these two features of the

ice, while implementing only a single-layer framework. It suggests that the

method succeeds to capture small details in the ice shape due to the accretion

of single elements of ice at a time. The few elements of ice generated at the740

beginning of the icing time are significant enough to predict the shadow zone

associated with the right ice limits. These small ice structures are assumed to be

linked to time scales smaller than the typical time step used in the multi-layer

frameworks, which can explain why the latter miss the experimental ice limits

and the formations of the two ice horns.745

4.4. Case 364

The studied geometry for Case 364 is a swept-wing (Λ = 30 degrees). The

flow and droplet fields and the thermodynamic exchanges are obtained from the
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2D geometry using a 2.5D approach. In this method, the 2D RANS equations

coupled with a crossflow equation are solved; more details on this approach are750

available in (Bourgault-Côté et al., 2017; Lavoie et al., 2018). The stochastic

method is then used in the presented 2D framework without any modification.

It is worth noting that in a 2.5D deterministic framework, the implementation

of the thermodynamic and the geometry evolution models are not modified ei-

ther (Lavoie et al., 2018). An element size of δ = 2.5 × 10−4c is used and755

dmax = 1.0× 10−3c. The impingement map is obtained using the experimental

droplet size distribution (Laurendeau et al., 2022). The results for five trials are

presented in Figure 29. While the ice thickness at the leading edge respects the

experimental thickness, the horn-like structures are missed. This is assumed to

be a result of the single-layer framework: runback water (i.e., glaze ice state)760

is missed by the Iterative Messinger model due to the very cold conditions.

Although the experimental ice shape has a very weak spanwise structure, a pe-

riodic variability of the ice shape is observed experimentally. This variability

is generally attributed in part to phenomena, not modeled here, of shadowing
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Figure 27: Results for Case 242
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Figure 28: Results for Case 242 compared to the participants of the IPW (Laurendeau et al.,

2022)

effects by the ice shape for the droplet trajectories along the spanwise direc-765

tion. However, the model successfully captures the angle at which the main

ice accretion grows, highlighted in Figure 30, where the result for a single trial

is presented. Additionally, one can observe the geometry of the obtained ice

feathers, appearing at discrete and random locations. Their prediction is in

agreement with the experimental ice scan for their position, height, and mor-770

phology. Such discrete ice structures are completely missed by the determinist

result of CHAMPS. As for Case 241, the variability in the ice shape is mainly

observed in the zone where feathers are formed.

5. Conclusion

An original ice accretion model is proposed to predict stochastic ice shapes as775

well as discrete morphologies such as ice feathers. It is developed in CHAMPS,

a complete icing suite implementing a flow solver resolving the RANS equations,
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Figure 29: Results for Case 364
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Figure 30: Result of one trial for Case 364

an Eulerian droplets impingement model, and an Iterative Messinger model for

the thermodynamic exchange resolution.
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The proposed baseline algorithm features an unstructured advancing front780

technique to model the ice accretion in a building block manner by successively

accumulating single elements of fluid. The latter are seeded upstream of the

studied geometry and their trajectories are extracted from the Eulerian droplet

velocity field. Upon impingement, the thermodynamic state of a given fluid

element, computed by the Iterative Messinger model, is checked to predict glaze785

ice conditions. The runback water is modeled by the motion of the fluid ele-

ments on the ice front. At each step of their motion, their thermodynamic state

determines if it flows further downstream or if a new element of ice is gener-

ated. The verification of the impingement process is performed by comparing

the collection efficiency obtained from the proposed stochastic method to the790

deterministic results for two cases of the literature. A space convergence study

shows that the ice density converges as the element size decreases. The results

of the baseline algorithm show that ice thickness is overestimated, suggesting

the obtained ice density is too low. An extension of the developed 2D framework

is thus proposed to model 3D mechanisms by introducing permeability in the795

front. Validation on four cases of the literature is performed. The resulting ice

shapes are in good agreement with the experiments, both for rime and glaze con-

ditions. The proposed method leads to the prediction of stochastic ice shapes

and discrete ice structures. The method effectively captures the presence of

feathers in the most downstream areas, especially in rime conditions. For glaze800

conditions, the presence of horns and the ice limits are better predicted than

with deterministic quasi-steady approaches. This is attributed in particular to

the unsteady growth process which allows modeling the shadowing effect.

The performances of the proposed method enable to envision future develop-

ments, such as extending the model to a multi-layer and 3D framework building805

on the experience of 3D literature (Szilder and Yuan, 2015) to improve the

temporal and spatial accuracies. Finally, the investigation of other sources of

stochasticity and their effects is required to accurately predict the randomness

observed in experimental setups.
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H
ighlights

 Stochasticity in the modeling of infyight ice accretion is ofen neglected in icing
sofware.

 Variability observed in experimental ice shapes is therefore not modeled.
 The ice accretion modeling in a building block manner enables the introduction

of stochasticity.
 Introduction of stochasticity in the impingement allows to model stochastic ice

shapes.
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