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Highlights:  34 

• Melatonin-related gene expression tested at night under 2 light levels in 2 anurans 35 
• Gene analysis based on respective species transcriptome and valid reference genes 36 
• Preliminary description of a nocturnal rhythm in gene expression in tadpoles 37 
• In both species, light pollution did not affect melatonin synthesis at gene level 38 
• Melatonin signaling was slightly altered by light pollution during the night  39 



 

Abstract:  40 

The worldwide expansion of artificial light at night (ALAN) is acknowledged as a 41 

threat to biodiversity through alterations of the natural photoperiod triggering the disruption 42 

of physiological functions. In vertebrates, melatonin production during the dark phase can be 43 

decreased or suppressed by nocturnal light as shown in many taxa. But the impact of ALAN 44 

at low intensity  mimicking light pollution in periurban area has never been investigated in 45 

amphibians. We filled this gap by studying the impact of low ALAN levels on the expression 46 

of genes related to melatonin synthesis and signaling in two anurans (agile frog, Rana 47 

dalmatina, and common toad, Bufo bufo). Circadian expression of genes encoding enzymes 48 

catalyzing melatonin synthesis (aralkylamine N-acetyltransferase, AANAT and 49 

acetylserotonin O-methyltransferase, ASMT) or melatonin receptors (Mel1a, Mel1b and 50 

Mel1c) was investigated using RT-qPCR after 23 days of exposure to control (< 0.01 lx) or 51 

low ALAN level (3 lx) at night. We showed that the relative abundance of most transcripts 52 

was low in late afternoon and early evening (06 pm and 08 pm) and increased throughout the 53 

night in R. dalmatina. However, a clear and ample nocturnal pattern of target gene expression 54 

was not detected in control tadpoles of both species. Surprisingly, a low ALAN level had little 55 

influence on the relative expression of most melatonin-related genes. Only Mel1c expression 56 

in R. dalmatina and Mel1b expression in B. bufo were affected by ALAN. This target gene 57 

approach therefore provides experimental evidence that the melatonin signaling pathway was 58 

slightly affected by low ALAN level in anuran tadpoles.  59 

 60 
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1. Introduction  65 

The natural light/dark cycle leads to the rhythmic development of biological processes, 66 

from molecules to organisms (Gaston et al., 2013). However, for the last decades, due to the 67 

worldwide use and spread of artificial light at night (ALAN), a dramatic alteration of the 68 

photoperiod regime beyond its natural range has been observed especially in urbanised areas 69 

(Bennie et al., 2016; Cinzano et al., 2001; Gaston et al., 2014, 2012). In both terrestrial and 70 

aquatic ecosystems (Davies and Smyth, 2018; Desouhant et al., 2019; Gaston et al., 2013; 71 

Jechow and Hölker, 2019; Longcore and Rich, 2004; Secondi et al., 2017), ALAN was shown 72 

to impact numerous behavioural and physiological mechanisms altering reproduction and 73 

survival (Gaston et al., 2017, 2014; Longcore and Rich, 2004; Schroer and Hölker, 2017; 74 

Touzot et al., 2020, 2019). ALAN is therefore likely to threaten population dynamic of wild 75 

species (Sanders et al., 2015) and community composition (Davies et al., 2015, 2012; Sanders 76 

et al., 2021). 77 

Most of these alterations could be linked to a disruption of circadian timekeeping, 78 

mainly regulated by melatonin. In most vertebrates, this hormone, which is only synthetized 79 

during nocturnal periods in the absence of light, is defined as the chemical expression of 80 

darkness (Reiter, 1991; Zhao et al., 2019). In addition to its function of relaying information 81 

about changes in the photoperiod, melatonin plays important physiological roles in the 82 

regulation of oxidative stress (Reiter et al., 2016; Tan et al., 2010), immune system (Calvo et 83 

al., 2013; Carrillo-Vico et al., 2013; Pohanka, 2013) or sexual hormones (Mayer et al., 1997; 84 

Tan et al., 2010). Melatonin is synthesized from tryptophan through four successive 85 

enzymatic steps, two of them involving rate-limiting enzymes (Hardeland, 2008). Indeed, 86 

melatonin production is limited by the availability of 1) aralkylamine N-acetyltransferase 87 

(AANAT), that catalyses the transfer of the acetyl group of Acetyl-CoA to the primary amine 88 

of serotonin, thereby producing CoA and N-acetylserotonin, and 2) N acetylserotonin O-89 



 

methyltransferase (ASMT) that catalyses the methylation of N-acetylserotonin to generate 90 

melatonin. The rate of both enzymatic steps depends on the light/dark cycle and therefore 91 

impacts melatonin synthesis, but differences in the circadian expression of these enzymes 92 

exist between species (Borjigin et al., 1995; Coon et al., 2002; Ribelayga et al., 1999). 93 

Melatonin actions are mediated through transmembrane G-protein-linked receptors, with two 94 

subtypes identified in mammals (Mel1a and Mel1b) and three subtypes characterized in 95 

amphibians, fishes, and birds (Mel1a, Mel1b and Mel1c). In vertebrates, these receptors exist 96 

in many structures within the brains and in peripheral tissues, including kidney, liver, 97 

intestine, blood, gills and skin (Confente et al., 2010; Hardeland, 2008; Jones et al., 2012). 98 

The expression of these receptors also varies along the light/dark cycle (Li et al., 2013). 99 

However, slight differences in circadian gene expression pattern exist depending on subtypes, 100 

tissues and species (Confente et al., 2010; Jones et al., 2012; Maugars et al., 2020; Rada and 101 

Wiechmann, 2006), which could partly be explained by the fact that to exert full physiological 102 

action, melatonin receptors may form functional homo or heterodimers (Ayoub et al., 2002).  103 

Amphibian species, which are among the most endangered vertebrates today 104 

(International Union for Conservation of Nature, IUCN), are particularly exposed to ALAN 105 

due to the fact that wetlands are subjected to light pollution (Secondi et al., 2017). Among 106 

amphibians, anurans are the most likely to be affected by ALAN (Buchanan, 2006). In 107 

anurans, ALAN was shown to increase stress level (Forsburg et al., 2021), alter larval 108 

development (Dananay and Benard, 2018), reduce nocturnal activity affecting daily energy 109 

allocation (Touzot et al., 2019), impact breeding behaviour and depress male reproductive 110 

success (Touzot et al., 2020). Moreover, in adult cane toads, Rhinella marina, ALAN reduced 111 

and delayed nocturnal activity peak and decreased body mass gain (Secondi et al., 2021). 112 

When ALAN intensity is sufficient to alter photoperiod perception, in early stages of 113 

development, tadpoles with a relatively immature circadian system and incomplete 114 



 

differentiation of organs and tissues (Gosner, 1960) might be particularly sensitive to rhythm 115 

disruption through ALAN (Fonken and Nelson, 2016).  116 

Although amphibians are an ecological relevant model group to focus on the effects of light 117 

pollution studies, consequences of such pollution on melatonin synthesis and signalling have 118 

not been investigated yet (Grubisic et al., 2019). The lack of data in amphibians may be 119 

explained by the difficulty in measuring melatonin production in non-model animal species. 120 

Among the classical techniques for measurements, radio-immuno assay (RIA) and more 121 

recently enzyme immunoassay (EIA) can be used (e.g., Delgado and Vivien-Roels, 1989; 122 

Edwards and Pivorun, 1991; Jessop et al., 2014; Wright et al., 2006; Wright and Alves, 2001 123 

Bayarri et al., 2004; Rebollar et al., 1999), but they consume a large amount of plasma 124 

samples. Conversely, nowadays such invasive blood sampling on adults is not feasible 125 

because it involves injury risk on protected species, and the small size of tadpoles precludes 126 

RIA analysis. Since proteins, such as enzymes and receptors, are encoded by genes, 127 

assessment of gene expression by quantitative reverse transcription polymerase chain reaction 128 

(RT-qPCR) appears as a relevant method, with the advantages of being high throughput, 129 

repeatable and allowing the assay of multiple genes per sample, thus limiting animal sample 130 

size (Ginzinger, 2002).  131 

Thus, this study focused on the influence of ALAN on the expression of genes encoding 132 

enzymes catalyzing melatonin synthesis or its receptors in two species of amphibians. 133 

Because Ranidae and Bufonidae are two of the most widespread and species families of 134 

amphibians worldwide (https://amphibiaweb.org/lists/), we selected Rana dalmatina and Bufo 135 

bufo to investigate whether a pattern of common consequences exists in two species of 136 

anurans. During the breeding season, adults of these species are frequently found in urban and 137 

peri-urban areas with wetlands (Beebee, 1979), subjected to light pollution, and laying eggs, 138 

themselves exposed to ALAN. In this study, we aimed at (a) validating a RT-qPCR method 139 



 

valuable on both anuran species, and (b) assessing by RT-qPCR the nocturnal expression of 140 

five target melatonin-related genes (AANAT, ASMT, Mel1a, Mel1b and Mel1c) on tadpoles 141 

of both species exposed during one third of their aquatic life to low light illuminances:  <0.01 142 

lx, which correspond to a control light level, and 3 lx, representing levels encountered in areas 143 

hosting amphibians (Secondi et al., 2017). 144 

2. Methods  145 

2.1. Animal collection, housing conditions 146 

Six fragments of approximatively 20 eggs each were randomly sampled from a clutch 147 

of both species, R. dalmatina and B. bufo, in March during the breeding season in natura in 148 

Saint André de Corcy (46°N, 5°E) and Sainte-Croix (45°N, 5°E), France, respectively. Those 149 

sites were chosen as they are located approximatively 20 km from Lyon, reducing ALAN 150 

exposure in natura. Upon arrival at the animal care facility (EcoAquatron, University of 151 

Lyon), the 6 fragments per species were individually placed in an aquarium (32 cm X 17.5 cm 152 

X 18.5 cm) containing 7.4 L of dechlorinated and oxygenated water. Each fragment was 153 

immediately randomly assigned to one of the two experimental treatments (control, i.e., <0.01 154 

lx, and ALAN night light treatment, i.e., 3 lx), resulting in 3 aquariums per experimental 155 

treatment and per species. We used the classification of Gosner (Gosner, 1960) to distinguish 156 

the different stages of tadpoles. From stage 25 of Gosner, the stage at which independent 157 

feeding is possible, to the end of the experiment, tadpoles were fed every two days with 158 

boiled organic green salad. Each week, one-third of the water of the aquarium was renewed 159 

with dechlorinated and oxygenated water. Ambient temperature and relative humidity were 160 

kept constant during the whole experiment at 16.0 ± 0.3 °C and 55.3 ± 0.3%, respectively 161 

(mean ± SEM). After egg hatching, tadpole mortality was monitored and was equal to zero 162 

during our experiments.   163 



 

2.2. Light treatments  164 

 To mimic natural photoperiod, all aquariums were kept under a photoperiod 165 

corresponding to the latitude of Lyon (45°N) at the date of the experiment (at the beginning of 166 

the experiment photoperiod of 12.5L/11.5D and at the end of the experiment photoperiod of 167 

14L/10D). During the daytime, illuminance provided by light tubes (Philips Master TL-D 58 168 

W/865 and Exo Terra Repti Glo 2.0, 40 W T8) for all aquariums was 1906 ± 159 lx (mean ± 169 

SEM). The spectrum of our daylight is characteristic of fluorescent lamps (Touzot et al., 170 

2021) and is recommended for the housing of amphibians in animal care facility. Until 171 

hatching, during night-time, individuals remained under dark conditions (<0.01 lx). From the 172 

day of hatching, i.e., 5 days since the start of our study under our conditions, the aquariums 173 

were exposed to their respective light treatment at night. During night-time, to simulate 174 

ALAN, we used white light-emitting diode (LED) ribbons (white cold Light Plus, 6000-6500 175 

K, 14 W, 60 LED/m) whose spectrum is different from our daylight (Touzot et al., 2021). 176 

White LEDs were chosen because they are increasingly used for street lighting worldwide 177 

(Falchi et al., 2016). A LED ribbon of 95 cm (57 LEDs) combined with a light diffuser was 178 

suspended horizontally 41.5 cm above the bottom of the aquariums. Each LED ribbon was 179 

connected to a dimmer (manual dimmer, 12 V max, 8 A) and a laboratory power supply (15 180 

V/DC max, 3 A), which allowed illuminance to be set for each light treatment. The aquariums 181 

belonging to one light treatment were isolated from the others with tarpaulins to avoid light 182 

spilling over from another treatment. At night, the control group was exposed to dark 183 

conditions, i.e., <0.01 lx, hereafter called “control-group”, corresponding to the illuminance 184 

of a sky under clear conditions with a quarter moon (Gaston et al., 2013). The experimental 185 

group was exposed to 3 lx, hereafter called “ALAN-group”, which corresponds to levels 186 

encountered in areas hosting amphibians (Secondi et al., 2017) and in urban parks (Segrestin 187 

et al., 2021). The daylight and 3 lx illuminances were measured with a luxmeter (Illuminance 188 



 

meter T-10A, Konica Minolta). Illuminances for the control-group were set using a highly 189 

sensitive light meter (Sky Quality Meter SQM-L, Unihedron). Consequently, to compare 190 

illuminances, SQM-measured values were converted into lx according to the relationship 191 

curve between SQM and lx measurements (Touzot et al., 2020), as lx is the main unit used in 192 

ALAN studies (Longcore and Rich, 2004). Illuminances were measured at the water surface 193 

of each aquarium (24 cm from the LED) and checked every week (0.005 ± 0.001 lx for the 194 

control-group and 3.26 ± 0.75 lx for the ALAN-group, mean ± SEM).  195 

2.3. Experiment  196 

When tadpoles reached development stage 31 of Gosner, corresponding to 23 days of 197 

experiment, for each species, 5 tadpoles of each treatment were randomly sampled every two 198 

hours between 06 pm and 08 am, resulting in 8 timepoints (random sampling on the 3 199 

aquariums of each light treatment). For each species, this resulted in 80 tadpoles sampled.  200 

Development stage 31 of Gosner was chosen, because it is an easily identifiable stage as the 201 

foot is paddle-shaped at this stage only Gosner. Development stage 31 also allowed long-term 202 

exposure to ALAN, while being distant enough from metamorphosis, i.e., stage 46 of  Gosner, 203 

the ultimate stages of development during which thyroid hormones are strongly produced to 204 

trigger many functional and morphological changes in the organisms (Galton, 1992; 205 

Kikuyama et al., 1993). Tadpoles were individually sampled and immediately placed in liquid 206 

nitrogen and then stored at -80°C until molecular analyses. As the main source of melatonin 207 

synthesis is located in the pineal gland and eyes in amphibians (Delgado and Vivien-Roels, 208 

1989), RNA extractions were realised on tadpole head, after tissues collection using a section 209 

behind the eyes.  210 

2.4. Molecular analyses 211 

2.4.1. Target and housekeeping gene selection 212 



 

 We examined the relative abundance of the transcripts of five target genes related to 213 

melatonin; two enzymes: AANAT and ASMT, and three receptors: Mel1a, Mel1b and Mel1c. 214 

Finding appropriate housekeeping genes was a prerequisite to limit the biases related to the 215 

daily variation in their expression. The majority of studies in amphibians have focused on the 216 

stability of housekeeping genes during development (Dhorne-Pollet et al., 2013; Lou et al., 217 

2014), but not at the circadian scale. Since we were interested in temporal monitoring of gene 218 

expression, housekeeping genes selected for normalization should have a constant level of 219 

expression over 24h (Hellemans et al., 2007). In a first step, using genes selected from 220 

developmental studies in amphibians (Dhorne-Pollet et al., 2013; Lou et al., 2014), i.e., rpl8 221 

(60S ribosomal protein L8) and tbp (TATA-binding protein) or circadian rhythm studies in 222 

rodents (Kamphuis et al., 2005), i.e., β-actin and GluR2 (AMPA-type glutamate receptor), we 223 

performed an analysis of gene expression stability overnight. For each target and 224 

housekeeping gene, existing amphibian nucleotide sequences have been searched in the NCBI 225 

Nucleotide database (Appendix Table A) and blasted on the respective de novo transcriptome 226 

of each species (see Touzot et al., 2021 for B. bufo transcriptome and see Appendix Text A 227 

for R. dalmatina transcriptome). After validation of the gene sequences (identity percentages 228 

greater than 70% and minimum length of 200 bp), specific primer pairs of 20 bp were created 229 

for both species based on their respective de novo transcriptome, except for R. dalmatina for 230 

which GluR2 has not been tested, as it had not been chosen as housekeeping gene in B. bufo 231 

(Table 1). 232 

 233 

Table 1  234 

 235 

2.4.2. RNA extraction and cDNA synthesis  236 

 237 



 

Total RNA was extracted by adding 500 µL of TRI Reagent (Molecular Research 238 

Center MRC, TR118) to the 160 samples and by homogenising tissues with a tissue lyser 239 

during 2 minutes at 30Hz (Retsch, MM200) and then placing them immediately on ice. All 240 

remaining steps were carried out according to the manufacturer’s protocol (Molecular 241 

Research Center MRC, TR118). Then, the RNA was treated with Turbo DNase enzyme 242 

(Turbo DNA free kit, Invitrogen, AM1907) and assayed by fluorescence using a Qubit 243 

fluorometer (Qubit® RNA HS Assay Kits Molecular Probes, Invitrogen, Q32855). RNA 244 

integrity was assessed using a Bioanalyzer 2100 with Agilent RNA 6000 Nano kit (Agilent, 245 

5067-1511). Total RNA was reverse transcribed into cDNA using the transcriptase 246 

SuperScript® III (Invitrogen, 18080-044) according to the manufacturer’ protocol and using 247 

oligo(dt) to isolate mRNAs. cDNA obtained were then treated with Ribonuclease H (RNase 248 

H, Invitrogen, AM1907). 249 

2.4.3. RT-qPCR realisation  250 

RT-qPCR was performed on the 160 samples with Universal SYBR Green Supermix 251 

(BIORAD, 1725274) according to the manufacturer’s protocol. Samples were run in 252 

duplicates on a thermocycler CFX96 (BIORAD) with the following program: initial 253 

denaturation and enzyme activation for 30 s at 95 °C, followed by 40 cycles of 10 s at 95 °C 254 

and 30 s at 60 °C. A melting curve was then created for validation of the PCR products. 255 

Quantification cycle (Cq) values were obtained and analyzed with Biorad CFX Manager 3.0. 256 

software, using the regression method. Cq values were considered valid if duplicate 257 

measurements (Δ Cq) differed by less than 1 cycle, otherwise, both Cq values were removed 258 

from the analysis. For each pair of primers, the amplification efficiency was calculated from a 259 

standard curve, generated from 6 pre-dosed amplicon range points with a dilution factor of 10, 260 

and was comprised between 90 and 110%. For technical reasons, mainly related to an assay 261 



 

plate effect, some samples had a Δ Cq higher than 1 and had to be removed from the analysis, 262 

reducing the sampling size from 80 to 77 samples for AANAT, ASMT and Mel1b and to 75 263 

samples for Mel1c in R. dalmatina, and from 80 samples to 65 samples for AANAT, ASMT, 264 

Mel1a and Mel1c and to 63 samples for Mel1b in B. bufo.  265 

2.4.4. Selection of housekeeping genes, and relative mRNA quantification and analysis 266 

The stability of the four housekeeping genes was analysed using software programs 267 

GeNorm v3.5 (Vandesompele et al., 2002) and Normfinder v5 (Andersen et al., 2004), in 268 

order to select genes showing the most stable expression necessary for normalization 269 

(Hellemans et al., 2007). The two software programs evaluate stability slightly differently. 270 

GeNorm estimates the expression stability of a gene, considered as a housekeeping, by 271 

calculating the average variation of the expression levels ratios between this gene and another 272 

one, also considered as housekeeping gene, in all samples (Vandesompele et al., 2002). Genes 273 

with the lowest average variation (i.e., lowest calculated stability value) have the most stable 274 

expression. Stability in GeNorm is estimated for the entire dataset without distinction between 275 

factors (i.e., light treatment or timepoint). On the other hand, Normfinder estimated the 276 

expression stability of a target gene using the Cq values and allows to consider factors effect 277 

(i.e., light treatment or timepoint). Target genes were normalised with the selected 278 

housekeeping genes using easyqPCR v1.21.0 package (Hellemans et al., 2007; Le Pape, 279 

2013), which allows the target genes to be normalized by several housekeeping genes. The 280 

normalisation of each target gene was done with the three selected housekeeping genes 281 

measured at the same timepoint. Specifically, it converts the Cq values of each sample into a 282 

normalized relative quantity, considering the variation in Cq between genes, the efficiency of 283 

PCR and the number of housekeeping genes. Relative target gene expression was analysed 284 

with a generalised additive model (GAM) as it is the standard and most relevant model for 285 



 

analysing data with cyclicity (Faraway, 2006; Zuur et al., 2009). The GAM analysis was 286 

conducted using the mgcv v1.8-28 package (Wood, 2006) with a gamma distribution and 287 

inverse function, with timepoint, light treatment and their interaction as explanatory factors. 288 

We selected the best models based on the lowest Akaike’s Information Criterion (AIC) when 289 

the difference in AIC score between two models was higher than 2. A significance threshold 290 

of 0.05 was adopted for all statistical analyses. All analyses and graphics were performed with 291 

R software v3.5.3 (“R Core Team,” 2018). 292 

2.5. Ethical note 293 

The sampling of R. dalmatina and B. bufo clutches was authorized by the Préfecture 294 

de l’Ain (DDPP01-20-369 and 16-271) and by the French government in accordance with the 295 

ethical committee of the University of Lyon (APAFIS#27760-2020102115402767 v2). The 296 

animal care structure “EcoAquatron” (University of Lyon) received an agreement of 297 

veterinary services (approval DSV 692661201). At the end of the experiment, all the 298 

remaining tadpoles were released on the capture sites. 299 

3. Results 300 

3.1. Housekeeping gene selection 301 

The analysis of housekeeping gene expression stability with GeNorm and Normfinder 302 

recommended to select three housekeeping genes in B. bufo (Table 2). β-actin, rpl8 and tbp 303 

presented the lowest variation in relative expression (i.e., lowest stability value) for both 304 

software while GluR2 always showed the highest variability (see Table 2 and Appendices 305 

Table B and Table C for details). Therefore, GluR2 has been excluded from our housekeeping 306 

gene selection. The three housekeeping genes selected for B bufo also showed a low variation 307 

in expression in R. dalmatina (Table 2). Therefore, for both species we selected β-actin, rpl8 308 

and tbp as housekeeping genes.  309 



 

 310 

Table 2 311 

 312 

3.2. Influence of timepoint and ALAN on melatonin-related gene expression 313 

3.2.1. In R. dalmatina 314 

In R. dalmatina, the GAM analyses revealed that the relative abundance of transcripts 315 

encoding AANAT (F1.76 = 3.64, p = 0.028) and ASMT (F1 = 13.32, p < 0.001) was affected 316 

by timepoint (see Table 3 and Appendix Table D for details). A low relative abundance of 317 

transcripts encoding AANAT and ASMT was observed in the late afternoon and early 318 

evening (06 pm and 08 pm, respectively), while it increased throughout the night, nearly 319 

doubling in the early morning and 2 hours after the beginning of the day period (06 am and 08 320 

am, respectively) (Fig. 1a and Fig. 1b). Although all melatonin receptor subtypes have been 321 

assayed in R. dalmatina, only the relative abundance of transcripts encoding Mel1b and 322 

Mel1c have been analysed, as the relative abundance of transcripts encoding Mel1a was too 323 

low to be exploited (Cq values between 30 and 35, i.e., within the detection limit of RT-324 

qPCR). Timepoint (F1 = 21.24, p < 0.001) had a significant effect on the relative abundance 325 

of transcripts encoding Mel1b (see Table 3 and Appendix Table D for details). We observed a 326 

progressive increase throughout the night to reach its highest value 2 hours after the beginning 327 

of the day period (08 am) (Fig. 1c). Light treatment significantly affected the relative 328 

abundance of transcripts encoding for melatonin-related gene through an interaction with 329 

timepoint in Mel1c (see Table 3 and Appendix Table D for details). In control conditions, the 330 

relative abundance of transcripts encoding Mel1c varied with timepoint (F1.32 = 7.72, p = 331 

0.002). Indeed, the relative abundance of transcripts encoding Mel1c was weak in the late 332 

afternoon and early evening (06 pm and 08 pm) and increased throughout the night, more than 333 

doubling in the early morning and 2 hours after the beginning of the day period (06 am and 08 334 



 

am) (Fig. 1d). Exposure to ALAN inhibited night-time variation of the relative abundance of 335 

transcripts encoding for Mel1c (F1 = 0.36, p = 0.549), as it remained statistically stable 336 

throughout the night (Fig. 1d).  337 

 338 

Table 3 339 

 340 

Figure 1 341 

 342 

3.2.2. In B. bufo 343 

The GAM analyses showed that the relative abundance of transcripts encoding for 344 

Mel1a was significantly affected by timepoint (F1 = 6.53, p = 0.013) (see Table 4 and 345 

Appendix Table E for details). The relative abundance of transcripts encoding for Mel1a was 346 

low in the late afternoon and early evening (06 pm and 08 pm) and progressively increased 347 

throughout the night, to its highest value 2 hours after the beginning of the day period (08 am) 348 

(Fig. 2c). Light treatment significantly affected the relative abundance of transcripts encoding 349 

for melatonin-related gene through an interaction with timepoint in Mel1b in B. bufo (see 350 

Table 4 and Appendix Table E for details). Exposure to ALAN induced night-time increase 351 

(F1 = 7.15, p = 0.009) in the relative abundance of transcripts encoding for Mel1b (Fig. 2d). 352 

While in control conditions, this parameter remained statistically stable throughout the night 353 

(F3.51 = 1.06, p = 0.387). However, the relative abundance of transcripts encoding for 354 

AANAT, ASMT and Mel1c (Fig. 2a, 2b and 2e, respectively) was not affected by timepoint 355 

(see Table 4 and Appendix Table E for details).  356 

 357 
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 359 
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 361 

4. Discussion 362 

 In this study, we developed a RT-qPCR method to investigate the nocturnal changes in 363 

the relative expression of two melatonin-synthesis related enzymes (AANAT and ASMT) and 364 

three melatonin-related receptors (Mel1a, Mel1b and Mel1c) in tadpoles of two non-model 365 

amphibian species under low levels of artificial light at night. Despite variations in relative 366 

abundance of most transcripts during the night in R. dalmatina, a marked night-time circadian 367 

pattern could not be demonstrated in control tadpoles of both species. Contrary to our working 368 

hypotheses and surprisingly, a low level of ALAN had little influence on most melatonin-369 

related genes. Only Mel1c expression in R. dalmatina and Mel1b expression in B. bufo were 370 

affected by low levels of ALAN at night. 371 

4.1. Robust molecular methodology based on use of respective transcriptomes and 372 

validated housekeeping gene stability  373 

 For our RT-qPCR analysis, we gave special attention to the methodological issue to 374 

ascertain the correct assessment of relative gene expression in tadpoles. Firstly, considering 375 

that our study was conducted on two non-model species, but which are representative of the 376 

most widespread and species families of amphibians worldwide, primers were designed with 377 

the respective transcriptome of each species, thus favoring sequence identity and detection of 378 

the target mRNAs. Each target gene sequences were validated by identity percentages greater 379 

than 70% when compared to sequences obtain in different taxa (amphibian, fish, birds, and 380 



 

mammals) and when the minimum length of the sequence was of 200 bp. In addition, to 381 

confirm the correct amplification of the sequences corresponding to our target genes, gene 382 

amplification was checked by Sanger sequencing and melting curves confirmed the specificity 383 

of amplification. Secondly, finding appropriate housekeeping genes for normalization was a 384 

prerequisite to limit the biases related to the daily variation in gene expression. Indeed, the 385 

normalization of relative quantities of target genes with housekeeping genes relies on the 386 

assumption that these housekeeping genes are stably expressed across all tested samples, 387 

stability which is most of the time lacking in the studies (Hellemans et al., 2007). In our study, 388 

we tested and verified the stable expression across circadian scale and light treatments of 389 

genes commonly used for amphibians, such as rpl8 and tbp (Dhorne-Pollet et al., 2013; Lou et 390 

al., 2014) or used in circadian rhythm studies in rodents, such as β-actin and GluR2 391 

(Kamphuis et al., 2005). Among the genes tested, we selected those with the most stable 392 

expression across circadian scale and light treatments and opted for a normalization based on 393 

multiple housekeeping genes, known to produce more reliable data (Hellemans et al., 2007). 394 

Our approach highlights the need to validate housekeeping genes for each biological model 395 

and specific experimental conditions. This step is crucial especially when the expression of 396 

the targeted genes varies with time. Considering all these methodological parameters, our 397 

robust molecular biology methodology gave confidence about the results obtained in this 398 

study.  399 

4.2. Lack of marked effects of low ALAN levels on melatonin synthesis   400 

In a recent study, we showed that tadpole global gene expression, through 401 

transcriptomic approach, was largely impacted by low levels of ALAN illuminance (Touzot et 402 

al., 2021). In the present study, we used target-specific approaches to decipher potential 403 

effects of ALAN on melatonin-related gene expression, but these effects were weak and 404 

complex. Indeed, we did not detect a marked impact of ALAN on the relative expression of 405 



 

genes encoding melatonin synthesis enzymes. This unexpected result weakens the hypothesis 406 

that in tadpoles the negative impact of ALAN could result from an alteration in the level of 407 

melatonin synthesis and/or induce a shift in the rhythm of melatonin synthesis as shown in 408 

fishes (Brüning et al., 2016, 2015; Kupprat et al., 2020; Vera et al., 2005), in birds (de Jong et 409 

al., 2016; Dominoni et al., 2013; Jiang et al., 2020) and in mammals (Le Tallec et al., 2016; 410 

Rahman et al., 2019). Several hypotheses could be put forward to explain our results. First, 411 

tadpoles could have been exposed to a lower light illuminance than expected (as 3 lx was the 412 

illuminance measured at the upper water level). However, melatonin production can be 413 

suppressed by very low light illuminances (reviewed in Grubisic et al., 2019). Melatonin 414 

production, measured in water tank or measured on individual plasma, is inhibited in fishes 415 

and rodents, respectively, as early as 0.01 − 0.03 lx, and in human saliva from 6 lx. Because 416 

in this study we only tested one level of ALAN (3 lx), we could also have missed a non-417 

monotone dose-response relationship (inverted U-shaped curve), where the effect of ALAN 418 

on relative expression of genes increases up to a certain light level, and then decreases past 419 

this threshold. Such pattern have already been observed for physiological parameters (Yang et 420 

al., 2018, 2016) and behavioural variables (Gomes et al., 2021; Touzot et al., 2020), whose 421 

responses to light exposure is non-linear. Still, our results support the possibility that 422 

ecologically relevant and low levels of ALAN may have a masking effect on molecular 423 

pacemakers, i.e., circadian clock genes, in vertebrates, as it has been suggested in the diurnal 424 

songbird, Zebra finch (Alaasam et al., 2021). The masking effect, which appears to occur at 425 

low ALAN levels, corresponds to a situation in which the behavior and the physiology are 426 

altered by the external environment (i.e., low light intensity) without any change in the central 427 

circadian clock genes (Mrosovsky, 1999; Rietveld et al., 1993). Second, the faint nocturnal 428 

pattern in the expression of genes encoding melatonin synthesis enzymes in control tadpoles 429 

could suggest that at this early stage of development, mechanisms regulating circadian rhythm 430 



 

may not be fully matured. Indeed, it is known that in addition to a circadian rhythm, the 431 

activity of AANAT varies during the development of tadpoles, with a low AANAT activity in 432 

the first development stages (Alonzo-Gómez et al., 1994). For instance, in the Perez’s frog, 433 

Pelophylax perezi, an increase of 26% of AANAT activity was observed between the Gosner 434 

development stages 26/27 and 40 (Alonzo-Gómez et al., 1994). However, many studies 435 

showed that the circadian rhythm of melatonin synthesis is strongly dependent on the 436 

light/dark cycle in tadpole (Green et al., 1999) and appears very early in the development of 437 

amphibians (Alonzo-Gómez et al., 1994). Indeed, in P. perezi, a significant day/night rhythm 438 

of AANAT was detected in the eyes at development stage 25 of Gosner and at development 439 

stage 43/44 of Nieuwkoop and Faber in the Xenopus laevis (Alonzo-Gómez et al., 1994). The 440 

small differences in overnight gene expression in tadpoles in the present study could also be 441 

partly related to the use of the whole head for the RNA extraction which could contain other 442 

melatonin-synthesizing tissues. Indeed, melatonin production was detected in the gut of adult 443 

frogs, Rana pipiens and Lithobates catesbeianus (Bubenik and Pang, 1997) and in various 444 

tissues and glands in L. catesbeianus tadpoles (Wright et al., 2001). These extra pineal and 445 

extra retinal sites of melatonin production could be independent of the light/dark cycle and be 446 

rather regulated by tissue demands, such as the local defense against oxidative stress (Acuña-447 

Castroviejo et al., 2014). Alternatively, although a positive correlation between retinal 448 

AANAT activity and retina melatonin level has been demonstrated during the light/dark cycle 449 

in adult green frogs, P. esculenta (d’Istria et al., 1994; Serino et al., 1993), this was not the 450 

case in adult European green toads, Bufo viridis (Serino et al., 1993). Similarly, in adult 451 

Perez’s frogs, P. perezi, high retina AANAT activity during winter at any time of the day was 452 

associated with low retina melatonin synthesis (Delgado et al., 1993). This could also be the 453 

case in our species, i.e., enzyme activity did not reflect melatonin synthesis. Indeed, even if 454 



 

proteins come from the translation of mRNAs, it would be approximate to consider the 455 

proteome as the exact reflect of the transcriptome.  456 

4.3. Slight effects of low ALAN levels on melatonin signalling pathway  457 

 Present data also showed that the expression of genes encoding melatonin receptor 458 

subtypes could be detected in tadpoles of both R. dalmatina and B. bufo, in accordance with 459 

the ontogenic profile of melatonin binding sites in tadpoles of P. perezi (Isorna et al., 2005). 460 

For both species, we observed weak changes in the relative expression of melatonin receptor 461 

subtypes over time, with a global trend to overexpress at the end of the night/early morning. A 462 

recent comparison of transcriptomic levels during the day and the night in a freshwater 463 

teleost, Oryzias latipes, mainly revealed an up-regulation of melatonin receptors during the 464 

night, however, photoperiod has also been shown to act in a gene-specific and tissue-specific 465 

manner (Maugars et al., 2020). While it is at night that Mel1a increased in the pituitary and 466 

the heart, and Mel1c increased in the eye and the skin, Mel1b was significantly higher during 467 

the day in the adipose tissue of O. latipes (Maugars et al., 2020). Our results also showed for 468 

the first time to our knowledge that the expression of genes encoding for membrane melatonin 469 

receptors was impacted by ALAN, but without a clear pattern. In R. dalmatina, ALAN 470 

inhibited the nocturnal increase of Mel1c, a receptor of the quinone reductase 2 family that 471 

has only been identified in fish, amphibians, and birds (Li et al., 2013). Sparse studies in 472 

amphibians revealed that the Mel1c receptor is located in the retina, brain and peripheral 473 

tissues in amphibians (Ebisawa et al., 1994; Rada and Wiechmann, 2006; Wiechmann et al., 474 

2009, 1999) and a reduction of its expression could contribute to an alteration of the overall 475 

regulation of melatonin signal transduction (Maugars et al., 2020). Further studies are 476 

required to confirm this statement. In B. bufo, Mel1b, a receptor which is present in all 477 

vertebrates (Dubocovich and Markowska, 2005; Reppert et al., 1994; Slominski et al., 2005) 478 

and whose expression is stable over time in the control individuals of our study, was increased 479 



 

when tadpoles were exposed to ALAN. It therefore appears that low levels of ALAN act on 480 

the expression of genes encoding melatonin receptor in a gene-specific and a species-specific 481 

manner in amphibians. Such an observation is consistent with previous studies showing that 482 

the expression of melatonin receptors varies according to species, geographical area, lighting 483 

regime, time of day, stage of neuronal development and endocrine status (Jones et al., 2012; 484 

Vanecek, 1998; Witt-Enderby et al., 2003). Most of these studies concern adult organisms and 485 

present results suggest that studies on juvenile are necessary to better understand 486 

physiological impact of ALAN especially at early stage of organism development. 487 

5. Conclusion 488 

Through the development of a rigorous RT-qPCR method, we have described the 489 

nocturnal changes in the relative expression of two melatonin-synthesis related enzymes and 490 

three melatonin-related receptors in tadpoles of two non-model amphibian species, R. 491 

dalmatina and B. bufo. For the first time, the results provided experimental evidence that a 3 492 

lx ALAN illuminance, which is encountered in urban and peri urban areas, had weak effects 493 

on melatonin-related genes and melatonin signaling at this stage of development in contrast to 494 

the deleterious effects of such illuminance on adult physiology and behavior.  495 
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Tables and Figures  815 

Table 1: List of primers used for RT-qPCR for each target and housekeeping gene according 816 
to species. Target genes are AANAT: aralkylamine N-acetyltransferase, ASMT: N 817 
acetylserotonin O-methyltransferase, Mel1a, Mel1b and Mel1c: melatonin receptors. 818 
Housekeeping genes are β-actin, rpl8: 60S ribosomal protein L8, tbp: TATA-binding protein, 819 
and GluR2: AMPA-type glutamate receptor.  820 

 821 

Table 2: Housekeeping gene stability analysis with GeNorm and Normfinder for B. bufo and 822 
R. dalmatina. GeNorm stability values are given for the entire dataset. Normfinder stability 823 
was analysed according to light treatment or timepoint. A low stability value indicates a low 824 
variation in gene expression either globally or in each of the tested conditions of light 825 
treatment or timepoint. 826 

 827 

Table 3: GAM results for each target gene in R. dalmatina with the AIC scores for the 828 
complete model (Timepoint * Light treatment) and the best model. The « * » character 829 
indicates the interaction and the additive effects between the explanatory terms. Bold P-values 830 
are significant.  831 

 832 

Figure 1: Relative abundance of transcripts encoding for target gene in R. dalmatina exposed 833 
to two light treatments of different night-time illuminance: control-group (black) or ALAN-834 
group (orange) and sampled over 8 timepoints. Each panel corresponds to one melatonin-related 835 
target gene with a) AANAT, b) ASMT, c) Mel1b, and d) Mel1c. When the light treatment is 836 
significant, both treatments are distinguished (solid dots and lines), while when the light 837 
treatment is not significant, the treatments are not distinct (one dashed line). Darkblue shaded 838 
areas comprised between 20 and 06 hours correspond to night-time period. Dots represent 839 
relative abundance of transcripts of each sample, lines represent the regression from the GAM, 840 
and shaded areas correspond to the 95% confidence interval. Relative abundance of transcripts 841 
was normalised based on the transcription of β-actin, rpl8 and tbp housekeeping genes.  842 

 843 

Table 4: GAM results for each target gene in B. bufo with the AIC scores for the complete 844 
model (Timepoint * Light treatment) and the best model. The « * » character indicates the 845 
interaction and the additive effects between the explanatory terms. Bold P-values were 846 
significant.  847 

 848 

Figure 2: Relative abundance of transcripts encoding for target gene in B. bufo exposed to 849 
two light treatments of different night-time illuminance: control-group (black) or ALAN-850 
group (orange) and sampled over 8 timepoints. Each panel corresponds to one melatonin-851 
related target gene with a) AANAT, b) ASMT, c) Mel1a, d) Mel1b and e) Mel1c. When the 852 
light treatment is significant, both treatments are distinguished (solid dots and lines), while 853 
when the light treatment is not significant, the treatments are not distinct (one dashed line). 854 
Darkblue shaded areas comprised between 20 and 06 hours correspond to night-time period. 855 
Dots represent relative abundance of transcripts of each sample, lines represent the regression 856 



 

from the GAM, and shaded areas correspond to the 95% confidence interval. Relative 857 
abundance of transcripts was normalised based on the transcription of β-actin, rpl8 and tbp 858 
housekeeping genes.  859 



 

Table 1  860 

Gene Species Forward 5’-3’ primer sequence Reverse 5’-3’ primer sequence Amplicon 
size (bp) 

Target genes 

AANAT R. dalmatina 
B. bufo 

CCTGCCAGTGAATTCCGTTG 
CCCGCCAGTGAATTCCGCTG 

CCTGACTTCATCCAGATGGA 
TCTAACTTCATCCAGGTGGA 

116 
116 

ASMT R. dalmatina 
B. bufo 

TTTCTTCAGTATATCTGATC 
TTTCCACCACGTACTTGGTC 

TAGCTTGAGGTAGGAATTG 
CAGCCTGCGGTAAGAAGTG 

104 
104 

Mel1a R. dalmatina 
B. bufo 

TTAATGGGAATAAGTGTCAT 
TTAATGGGAATAAGTGTCAT 

ATCCAACAAATAAATTTGGC 
ATCCAACAAATAAATTTGGC 

184 
184 

Mel1b R. dalmatina 
B. bufo 

TGCTGTTATATACGGATTGC 
TGCTGTGATTTATGGACTTC 

GCTCTTTGGGCATTCTGTTC 
GCTTTTAGGGCACTCTGTCG 

126 
126 

Mel1c R. dalmatina 
B. bufo 

CAAGCACAGAGTAAGACAAG 
CAAGTGAAGCACAGAGTAAG 

GCCACCGCTAGGCCAATAAA 
GCTACAGCAAGGCCAATGAA 

139 
139 

Housekeeping genes 

β-actin R. dalmatina 
B. bufo 

GAAAATTCTGACTGAGAGGG 
GAAGATTCTTACTGAGAGAG 

TGACCTGCCCATCAGGCAAC 
TGACCTGCCCATCAGGCAAC 

140 
140 

rpl8 R. dalmatina 
B. bufo 

GCTAAGCTCAGGGCTGTCGA 
GCTAAGCTCAGGGCTGTCGA 

AAGGCAACTTTAGCAAGTGG 
AAGGCAACCTTGGCAAGAGG 

109 
109 

tbp R. dalmatina 
B. bufo 

TGAAGAGCAGTCGCGCTTGG 
AACAATCTCGGTTAGCAGCC 

TTACATCACAGCTCCCTACC 
GATGCGTGAGCACGAGACCC 

115 
149 

GluR2 B. bufo ACCTTGATTATCATTTCATC GAATTCCTTTGTTGACCCTG 149 



 

Table 2  861 

Species Gene GeNorm stability value 
Normfinder stability value 
Light treatment 
effect 

Timepoint 
effect 

B. bufo 
β-actin 0.806 0.04 0.23 
rpl8 0.938 0.07 0.26 
tbp 0.993 0.07 0.28 
GluR2 1.006 0.09 0.36 

R. dalmatina 
β-actin 0.424 0.03 0.10 
rpl8 0.446 0.03 0.10 
tbp 0.439 0.04 0.11 



 

Table 3  862 

Gene Complete 
model AIC 

Best 
model AIC 

Explanatory term in  
the fixed part of  
the best model 

Explained 
deviance 
(%) 

Factor in the fixed part  
of the model F-value edf P-value 

 

AANAT 142.3 139.6 Timepoint 12.0 Timepoint 3.64 1.76 0.028 

ASMT 168.6 165.0 Timepoint 16.2 Timepoint 13.32 1 <0.001 

Mel1b 76.0 77.8 Timepoint 20.3 Timepoint 21.24 1 <0.001 

Mel1c 37.5 37.5 Timepoint * Light treatment 19.6 Control-group * Timepoint 
ALAN-group * Timepoint 

7.72 
0.36 

1.32 
1 

0.002 
0.549 



 

Figure 1  863 
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Table 4 864 

  865 

Gene Complete 
model AIC 

Best model 
AIC 

Explanatory term in 
the fixed part 
of the best model 

Explained 
deviance 
(%) 

Factor in the fixed part 
of the model F-value edf P-value 

AANAT 54.2 55.0 Timepoint 5.16 
 
Timepoint 
 

1.48 1.77 0.241 

ASMT 115.4 111.5 Timepoint 2.05 Timepoint 0.47 1.42 0.684 

Mel1a 136.9 133.3 Timepoint 10.10 Timepoint 6.53 1.00 0.013 

Mel1b 132.7 132.7 Timepoint * Light 22.80 Control-group * Timepoint 
ALAN-group * Timepoint 

1.06 
7.15 

3.51 
1 

0.387 
0.009 

Mel1c 101.7 102.7 Timepoint 0.03 
 
Timepoint 
 

0.016 1 0.900 
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