
HAL Id: hal-04062705
https://hal.science/hal-04062705v1

Submitted on 12 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mathematical derivation of wave propagation properties
in hierarchical neural networks with predictive coding

feedback dynamics
Grégory Faye, Guilhem Fouilhé, Rufin VanRullen

To cite this version:
Grégory Faye, Guilhem Fouilhé, Rufin VanRullen. Mathematical derivation of wave propagation
properties in hierarchical neural networks with predictive coding feedback dynamics. Bulletin of
Mathematical Biology, In press, �10.1007/s11538-023-01186-9�. �hal-04062705�

https://hal.science/hal-04062705v1
https://hal.archives-ouvertes.fr


Mathematical derivation of wave propagation properties

in hierarchical neural networks

with predictive coding feedback dynamics

Grégory Faye∗1,3, Guilhem Fouilhé1,2,3, and Rufin VanRullen2,3
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Abstract

Sensory perception (e.g. vision) relies on a hierarchy of cortical areas, in which neural activity prop-

agates in both directions, to convey information not only about sensory inputs but also about cognitive

states, expectations and predictions. At the macroscopic scale, neurophysiological experiments have de-

scribed the corresponding neural signals as both forward and backward-travelling waves, sometimes with

characteristic oscillatory signatures. It remains unclear, however, how such activity patterns relate to

specific functional properties of the perceptual apparatus. Here, we present a mathematical framework,

inspired by neural network models of predictive coding, to systematically investigate neural dynamics

in a hierarchical perceptual system. We show that stability of the system can be systematically de-

rived from the values of hyper-parameters controlling the different signals (related to bottom-up inputs,

top-down prediction and error correction). Similarly, it is possible to determine in which direction, and

at what speed neural activity propagates in the system. Different neural assemblies (reflecting distinct

eigenvectors of the connectivity matrices) can simultaneously and independently display different prop-

erties in terms of stability, propagation speed or direction. We also derive continuous-limit versions of

the system, both in time and in neural space. Finally, we analyze the possible influence of transmission

delays between layers, and reveal the emergence of oscillations at biologically plausible frequencies.

∗gregory.faye@math.univ-toulouse.fr
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1 Introduction

The brain’s anatomy is characterized by a strongly hierarchical architecture, with a succession of brain

regions that process increasingly complex information. This functional strategy is mirrored by the suc-

cession of processing layers found in modern deep neural networks (and for this reason, we use the term

“layer” in this work to denote one particular brain region in this hierarchy, rather than the laminar orga-

nization of cortex that is well-known to neuroscientists). The hierarchical structure is especially obvious

in the organization of the visual system [15], starting from the retina through primary visual cortex (V1)

and various extra-striate regions, and culminating in temporal lobe regions for object recognition and in

parietal regions for motion and location processing.

In this hierarchy of brain regions, the flow of information is clearly bidirectional: there are comparable

number of fibers sending neural signals down (from higher to lower levels of the hierachy) as there are going

up [8]. While the bottom-up or “feed-forward” propagation of information is easily understood as integra-

tion of sensory input (and matches the functional structure found in artificial deep learning networks), the

opposite feedback direction of propagation is more mysterious, and its functional role remains unknown.

Predictive coding is one dominant theory to explain the function of cortical feedback [27]. Briefly, the

theory states that each layer in the cortical hierarchy generates predictions about what caused their own

activity; these predictions are sent to the immediately preceding layer, where a prediction error can be

computed, and carried forward to the original layer, which can then iteratively update its prediction. Over

time (and as long as the sensory input does not change), the system settles into a state where top-down

predictions agree with bottom-up inputs, and no prediction error is transmitted. Like any large-scale

theory of brain function, the predictive coding theory is heavily debated [22]. But macroscopic (EEG)

experiments have revealed characteristic propagation signatures that could be hallmarks of predictive cod-

ing. For instance, Alamia and VanRullen [1] showed evidence for alpha-band (7-15Hz) oscillatory travelling

waves propagating in both directions (feed-forward and feedback); the oscillation frequency and dynamics

were compatible with a simplistic hierarchical model that included a biologically plausible time delay for

transmitting signals between layers, and was also confirmed by a rudimentary mathematical model. In

another study, Bastos et al [4, 5] found that beta (15-30Hz) and gamma-frequency (30-100Hz) oscillations

could reflect, respectively, the predictions and prediction errors signals carried by backward and forward

connections.

More recently, predictive coding has been explored in the context of deep neural networks [9, 25, 32]. For

instance, Choksi et al [9] augmented existing deep convolutional networks with feedback connections and

a mechanism for computing and minimizing prediction errors, and found that the augmented system dis-

played more robust perception, better aligned with human abilities. In another study, Pang et al [25] used

a similar system and reported the emergence of illusory contour perception comparable to what humans

(but not standard deep neural networks) would typically perceive.

While the concept of predictive coding is potentially fundamental for understanding brain function, and

its large-scale implementation in deep artificial neural networks provides empirical support for its potential

functional relevance, there is a gap of theoretical knowledge about the type of brain activity that predic-

tive coding could engender, and the potential conditions for its stability. Here, we propose a mathematical

framework where a potentially infinite number of neuronal layers exchange signals in both directions ac-

cording to predictive coding principles. The stable propagation of information in such a system can be

explored analytically as a function of its initial state, its internal parameters (controlling the strength of
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inputs, predictions, and error signals) and its connectivity (e.g. convolution kernels). Our approach con-

siders both a discrete approximation of the system, as well as continuous abstractions. We demonstrate

the practical relevance of our findings by applying them to a ring model of orientation processing. Finally,

we extend our analytical framework to a more biologically plausible situation with communication delays

between successive layers. This gives rise to oscillatory signals resembling those observed in the brain.

2 Model description

Our initial model is inspired by the generic formulation of predictive coding proposed in the context of

deep learning models by Choksi et al. [9]. This formulation considers different update terms at each time

step: feed-forward inputs, memory term, feedback- and feed-forward prediction error corrections. By mod-

ulating the hyper-parameters controlling each of these terms, the model can be reconciled with different

formulations of predictive coding (for instance, the Rao and Ballard model [27] by setting the feed-forward

input term to zero) or other models of hierarchical brain function (e.g. similar to Heeger’s model [19] by

setting the feed-forward error correction to zero). Indeed, our objective is precisely to characterize the

propagation dynamics inside the network as a function of the relative value of these hyper-parameters,

which in turn alters the model’s functionality.

We consider the following recurrence equation where Enj ∈ Rd represents an encoder at step n and layer j

En+1
j = βWfEn+1

j−1 + (1− β)Enj − αFnj−1 − λBnj , j = 1, · · · , J − 1 ,

where Wf ∈ Md(R) is a d × d square matrix representing the weights of feedforward connections which

we assume to be the same for each layer such that WfEn+1
j−1 models an instantaneous feedforward drive

from layer j − 1 to layer j, controlled by hyper-parameter β. The term Fnj−1 encodes a feedforward error

correction process, controlled by hyper-parameter α, where the reconstruction error Rnj−1 at layer j − 1,

defined as the square error between the representation Enj−1 and the predicted reconstruction WbEnj , that

is

Rnj−1 :=
1

2
‖Enj−1 −WbEnj ‖2,

propagates to the layer j to update its representation. Here, Wb ∈ Md(R) is a d × d square matrix

representing the weights of feedback connections which we assume to be the same for each layer. Following

[1, 9, 27, 32], the contribution Fnj−1 is then taken to be the gradient of Rnj−1 with respect to Enj , that is

Fnj−1 = ∇Rnj−1 = −(Wb)tEnj−1 + (Wb)tWbEnj .

On the other hand, Bnj incorporates a top-down prediction to update the representation at layer j. This

term thus reflects a feedback error correction process, controlled by hyper-parameter λ. Similar to the

feedforward process, Bnj is defined as the the gradient of Rnj with respect to Enj , that is

Bnj = ∇Rnj = −WbEnj+1 + Enj .

As a consequence, our model reads

En+1
j = βWfEn+1

j−1 + α(Wb)tEnj−1 +
[
(1− β − λ)Id − α(Wb)tWb

]
Enj + λWbEnj+1, (2.1)
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Figure 1: Schematic illustration of the network structure of model (2.1) where each point represents a given neuronal

layer index j (x-axis) at a particular time step n (y-axis), and the red arrows indicate the contributions leading to

the update of En+1
j .

for each j = 1, · · · , J − 1 and n ≥ 0 where we denoted Id the identity matrix of Md(R). We supplement

the recurrence equation (2.1) with the following boundary conditions at layer j = 0 and layer j = J . First,

at layer j = 0, we impose

En0 = Sn0 , n ≥ 0, (2.2)

where Sn0 ∈ Rd is a given source term, which can be understood as the network’s constant visual input. At

the final layer j = J , there is no possibility of incoming top-down signal, and thus one gets

En+1
J = βWfEn+1

J−1 + α(Wb)tEnJ−1 +
[
(1− β)Id − α(Wb)tWb

]
EnJ , n ≥ 0. (2.3)

Finally, at the initial step n = 0, we set

E0
j = Hj , j = 0, · · · , J, (2.4)

for some given initial sequence (Hj)0,··· ,J . For instance, in Choksi et al [9], Hj was initialized by a first

feedforward pass through the system, i.e. β > 0 and α = λ = 0. Throughout we assume the natural

following compatibility condition between the source terms and the initial condition, namely

S0
0 = H0. (2.5)

Regarding the hyper-parameters of the problem we assume that

0 ≤ β < 1, with 0 ≤ α+ λ ≤ 1. (2.6)

Our key objective is to characterize the behavior of the solutions of the above recurrence equation (2.1)

as a function of the hyper-parameters and the feedforward and feedback connections matrices Wf and

Wb. We would like to stay as general as possible to encompass as many situations as possible, keeping in

mind that we already made strong assumptions by imposing that the weight matrices of feedforward and

feedback connections are identical from one layer to another. Motivated by concrete applications, we will

mainly consider matrices Wf and Wb which act as convolutions on Rd.
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3 The identity case

It turns out that we will gain much information by first treating the simplified case where Wf and Wb are

both identity. That is, from now on, and throughout this section we assume that

Wf =Wb = Id.

That is, each neuron in a layer is only connected to the corresponding neuron in the immediately preceding

and following layer, with unit weight in each direction. Under such a setting, the recurrence equation (2.1)

reduces to a scalar equation, that is

en+1
j = βen+1

j−1 + αenj−1 + (1− β − λ− α)enj + λenj+1, j = 1, · · · , J − 1, (3.1)

with this time the unknown enj ∈ R, together with

en0 = sn0 , n ≥ 0, (3.2)

and

en+1
J = βen+1

J−1 + αenJ−1 + (1− β − α)enJ , n ≥ 0. (3.3)

with

e0
j = hj , j = 0, · · · , J. (3.4)

3.1 Wave propagation on an infinite depth network

It will be first useful to consider the above problem set on an infinite domain and look at

en+1
j = βen+1

j−1 + αenj−1 + (1− β − λ− α)enj + λenj+1, j ∈ Z, (3.5)

given some initial sequence

e0
j = hj , j ∈ Z.

This situation has no direct equivalent in the brain, where the number of hierarchically connected layers

is necessarily finite; but it is a useful mathematical construct. Indeed, such recurrence equations set on

the integers Z are relatively well understood from the mathematical numerical analysis community. The

behavior of the solution sequence (enj )j∈Z can be read out from the so-called amplification factor function

defined as

ρ(θ) :=
α
(
e−iθ − 1

)
+ 1− β + λ

(
eiθ − 1

)
1− βe−iθ

, θ ∈ [−π, π], (3.6)

and which relates spatial and temporal modes. Indeed, formally, the sequence (ρ(θ)neijθ)j∈Z is an explicit

solution to (3.5) for each θ ∈ [−π, π]. Actually one can be much precise and almost explicit in the sense

that one can relate the expression of the solutions to (3.5) starting from some initial sequence (hj)j∈Z to

the properties of ρ in a systematic way that we now briefly explain.

Let us first denote by Gn = (Gnj )j∈Z the sequence which is the fundamental solution of (3.5) in the special

case where (Hj)j∈Z is the Dirac delta sequence δ. The Dirac delta sequence δ is defined as δ0 = 1 and

δj = 0 for all j ∈ Z\{0}. As a consequence, we have G0 = δ and for each n ≥ 0

Gn+1
j − βGn+1

j−1 = αGnj−1 + (1− β − λ− α)Gnj + λGnj+1, j ∈ Z.
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The starting point of the analysis is the following representation formula, obtained via inverse Fourier

transform, which reads

Gnj =
1

2π

∫ π

−π
eijθρ(θ)ndθ, n ≥ 1, j ∈ Z. (3.7)

Then, given any initial sequence (hj)j∈Z, the solution (enj )j∈Z to (3.5) can be represented as the convolution

product between the initial sequence and the fundamental solution, namely

enj =
∑
`∈Z
Gnj−`h`, j ∈ Z, n ≥ 1. (3.8)

That is, having characterized the fundamental solution for a simple input pattern (δ), with a unitary

impulse provided to a single layer, we can now easily generalize to any arbitrary input pattern, by applying

the (translated) fundamental solution to each layer.

Our aim is to understand under which conditions on the hyper-parameters we can ensure that the solutions

of (3.5) given through (3.8) remain bounded for all n ≥ 1 independently of the choice of the initial sequence

(hj)j∈Z. More precisely, we introduce the following terminology. We say that the recurrence equation is

stable if for each bounded initial sequence (hj)j∈Z ∈ `∞(Z), the corresponding solution (enj )j∈Z given by

(3.8) satisfies

sup
j∈Z
|enj | −→n→∞ 0.

On the other hand, we say that the recurrence equation is unstable if one can find a bounded initial sequence

(hj)j∈Z ∈ `∞(Z) such that the corresponding solution (enj )j∈Z given by (3.8) satisfies

sup
j∈Z
|enj | −→n→∞ +∞.

Finally, we say that the recurrence equation is marginally stable if there exists a universal constant C > 0

such that for each bounded initial sequence (hj)j∈Z ∈ `∞(Z), the corresponding solution (enj )j∈Z given by

(3.8) satisfies

sup
j∈Z
|enj | ≤ C sup

j∈Z
|hj |, n ≥ 1.

It turns out that one can determine the stability properties of the recurrence equation by solely looking at

the amplification factor function. Indeed, from [29], we know that

lim
n→∞

‖Gn‖1/n
`1(Z)

= max
θ∈[−π,π]

|ρ(θ)|,

where we have set

‖Gn‖`1(Z) :=
∑
j∈Z
|Gnj |.

As a consequence, we directly deduce that the recurrence equation is stable when |ρ(θ)| < 1 for all

θ ∈ [−π, π], whereas it is unstable if there exists θ0 ∈ [−π, π] such that |ρ(θ0)| > 1. The limiting case

occurs precisely when max
θ∈[−π,π]

|ρ(θ)| = 1 and there is actually a long history of works [10, 12, 14, 26, 30]

that have studied the marginal stability of the recurrence equation in that case. All such results rely on a

very precise understanding of the amplification factor function and lead to the following statement.
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Theorem 1 ([10, 12, 14, 26, 30]). Suppose that there exist finitely many θ1, · · · , θK ∈ [−π, π] such that

for all θ ∈ [−π, π]\ {θ1, · · · , θk} one has |ρ(θ)| < 1 and |ρ(θk)| = 1 for each k = 1, · · · ,K. Furthermore,

assume that there exist ck ∈ R, σk ∈ C with Re(σk) > 0 and an integer µk ≥ 1 such that

ρ(θk + θ)

ρ(θk)
= exp

(
−ickθ − σkθ2µk +O(|θ|2µk+1)

)
, as θ → 0.

Then the recurrence equation is marginally stable.

Based on the above notions of stability/instability, we see that the only interesting situation is when the

recurrence equation is marginally stable, and thus when the amplification function is contained in the unit

disk with finitely many tangent points to the unit circle with prescribed asymptotic expansions. This is

also the only interesting situation from a biological standpoint, as it ensures that the network remains

active, yet without runaway activations.

3.1.1 Study of the amplification factor function

Since we assumed that 0 ≤ β < 1, the denominator in (3.6) never vanishes and is well-defined. Next, we

crucially remark that we always have

ρ(0) = 1.

We will now check under which conditions |ρ(θ)| ≤ 1 for all θ ∈ [−π, π] to guarantee marginal stability of

the recurrence equation.

To assess stability, we compute

|ρ(θ)|2 =
((λ+ α)(cos(θ)− 1) + 1− β)2 + (λ− α)2 sin(θ)2

1− 2β cos(θ) + β2

=
(λ+ α)2(cos(θ)− 1)2 + 2(1− β)(λ+ α)(cos(θ)− 1) + (1− β)2 + (λ− α)2(1− cos(θ)2)

(1− β)2 + 2β(1− cos(θ))

=
(1− cos(θ))

(
(λ+ α)2(1− cos(θ))− 2(1− β)(λ+ α) + (λ− α)2(1 + cos(θ))

)
+ (1− β)2

(1− β)2 + 2β(1− cos(θ))

=
(1− cos(θ))

(
−4αλ cos(θ)− 2(1− β)(λ+ α) + 2(λ2 + α2)

)
+ (1− β)2

(1− β)2 + 2β(1− cos(θ))

such that |ρ(θ)|2 ≤ 1 is equivalent to

(1− cos(θ))
(
2β + 4αλ cos(θ) + 2(1− β)(λ+ α)− 2(λ2 + α2)

)
≥ 0, θ ∈ [−π, π],

and since 1− cos(θ) ≥ 0 we need to ensure

β + 2αλ cos(θ) + (1− β)(λ+ α)− λ2 − α2 ≥ 0, θ ∈ [−π, π],

and evaluating at ±π the above inequality we get

β + (1− β)(λ+ α)− (λ+ α)2 ≥ 0.

But we remark that the above expression can be factored as

(β + λ+ α) (1− λ− α) ≥ 0.
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(a) β = 0 and α+ λ < 1.
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(b) β > 0 and α+ λ < 1.
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(c) β = 0 and α+ λ = 1.
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(d) β > 0 and α+ λ = 1.

Figure 2: Several representative illustration of the curve θ 7→ ρ(θ) for θ ∈ [−π, π] in the case where β = 0 and

β 6= 0. (a)-(b) Amplification factor function ρ(θ) (blue curve) with a unique tangency point on the unit circle at

z = 1 corresponding θ = 0. (c)-(f) When α + λ = 1 the function ρ(θ) (blue curve) has two tangency points on the

unit circle at z = 1 corresponding θ = 0 and z = −1 corresponding to θ = ±π.

As a consequence, |ρ(θ)|2 ≤ 1 if and only if λ + α ≤ 1. This is precisely the condition that we made in

(2.6). We can actually track cases of equality which are those values of θ ∈ [−π, π] for which we have

(1− cos(θ))
(
2β + 4αλ cos(θ) + 2(1− β)(λ+ α)− 2(λ2 + α2)

)
= 0.

We readily recover that at θ = 0 we have |ρ(0)| = 1. So, now assuming that θ 6= 0, we need to solve

β + 2αλ cos(θ) + (1− β)(λ+ α)− λ2 − α2 = 0,

which we write as

β − 2αλ+ (1− β)(λ+ α)− λ2 − α2 + 2αλ (cos(θ) + 1)) = 0,

and using the previous factorization we get

(β + λ+ α) (1− λ− α) + 2αλ (cos(θ) + 1)) = 0,

and we necessarily get that both 1 + cos(θ) = 0 and 1 − λ − α = 0 must be satisfied. As consequence,

|ρ(±π)| = 1 if and only if 1 = λ+ α.

As a summary we have obtained that:

• if 0 ≤ λ+ α < 1 and 0 ≤ β < 1, then |ρ(θ)| < 1 for all θ ∈ [−π, π]\{0} with ρ(0) = 1;

• if λ+ α = 1 and 0 ≤ β < 1, then |ρ(θ)| < 1 for all θ ∈ (−π, π)\{0} with ρ(0) = 1 and ρ(±π) = −1.

We present in Figure 2 several representative illustrations of the spectral curves ρ(θ) for various values of

the hyper-parameters recovering the results explained above.

Furthermore, near θ ∼ 0, we get that ρ admits the following asymptotic expansion

ρ(θ) = exp

(
−i
β + α− λ

1− β
θ − β(1− α− λ) + α+ λ− (λ− α)2

2(1− β)2
θ2 +O(|θ|3)

)
, as θ → 0,

provided that

β(1− α− λ) + α+ λ− (λ− α)2 6= 0.
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In fact, since −(λ− α)2 ≥ −(λ+ α)2 as both α and λ are positive, we remark that

β(1− α− λ) + α+ λ− (λ− α)2 ≥ β(1− α− λ) + α+ λ− (λ+ α)2 = (β + λ+ α) (1− λ− α) ≥ 0.

Finally, we remark that when α+ λ = 1 we have

ρ(θ + π) = − exp

(
−i
−β + α− λ

1 + β
θ − 1− (α− λ)2

2(1 + β)2
θ2 +O(|θ|3)

)
, as θ → 0.

From now on, we denote

c0 :=
β + α− λ

1− β
, σ0 :=

β(1− α− λ) + α+ λ− (λ− α)2

2(1− β)2
,

cπ :=
−β + α− λ

1 + β
, σπ :=

1− (α− λ)2

2(1 + β)2
,

and we always assume that

σ0 > 0, and σπ > 0,

which is equivalent to assume that 0 < α < 1 and 0 < λ < 1.

Here, (c0, σ0) and (cπ, σπ) are derived, respectively, from the asymptotic expansions of the amplification

factor function ρ(θ) near θ = 0 and θ = π, as defined above. On the one hand c0 reflects the propagation

speed of the solution associated with ρ(0), while σ0 can be understood as its spatio-temporal spread (and

similarly for the solution potentially associated with ρ(π)). In the following, we explore the fundamental

solutions of this system for various values of its hyper-parameters.

3.1.2 Turning off the instantaneous feedforward connections: case β = 0

We first investigate the case where there is no instantaneous feedforward connections in the network, that is

we set β = 0. This case, although less generic, is compatible with the prominent Rao-Ballard formulation of

predictive coding [27], in which feedforward connections—after contributing to setting the initial network

activity—only convey prediction errors, as captured by the hyper-parameter α. In that case, the model

is fully explicit: the update at time step n+ 1 only depends on the internal states at the previous step n

since we simply have

en+1
j = αenj−1 + (1− λ− α)enj + λenj+1, j ∈ Z.

As we assumed that α+λ ≤ 1, the right-hand side of the recurrence equation is a positive linear combination

of elements of the sequence (enj ) such that we have positivity principle of the solution, namely

∀j ∈ Z, 0 ≤ hj =⇒ ∀j ∈ Z, n ≥ 1, 0 ≤ enj .

Furthermore, since the recurrence equation is explicit, we have finite speed propagation, in the following

sense. Recall that when β = 0, the fundamental solution Gn is solution to

Gn+1
j = αGnj−1 + (1− λ− α)Gnj + λGnj+1, n ≥ 1, j ∈ Z,

starting from G0 = δ. Finite speed of propagation then refers to the property that

Gnj = 0, |j| > n.
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Figure 3: Illustration of the evolution of the fundamental solution Gn starting from the Dirac delta sequence at j = 0

in the case β = 0 at several time iterations. The circles represent the numerically computed solution while the plain

lines represent the Gaussian approximation. (a) When λ < α there is a rightward propagation along a Gaussian

profile whose leading profile is given by 1√
4πσ0n

exp
(
− |j−c0n|

2

4σ0n

)
. (b) When α < λ there is a leftward propagation

along a Gaussian profile whose leading profile is given by 1+(−1)n+j

√
4πσ0n

exp
(
− |j−c0n|

2

4σ0n

)
which vanishes whenever n+ j

is odd.

This in turn implies that necessarily c0 ∈ (−1, 1) which is readily seen from the explicit formula c0 = α−λ
in that case. Actually, it is possible to be more precise and to give a general expression for the fundamental

solution. Roughly speaking, each Gnj ressembles a discrete Gaussian distribution centered at j = c0n and

we refer to the recent theoretical results of [10, 12, 14, 26] for a rigorous justification.

Essentially, the results can be divided into two cases depending on whether or not α + λ = 1. As can be

seen above, the special case α+λ = 1 results in a cancellation of the “memory” term, such that a neuronal

layer j’s activity does not depend on its own activity at the previous time step, but only on the activity of

its immediate neighbors j − 1 and j + 1. More precisely, we have the following:

• Case: 0 ≤ λ+ α < 1. The fundamental solution can be decomposed as

Gnj =
1√

4πσ0n
exp

(
−|j − c0n|2

4σ0n

)
+N n

j , |j| ≤ n,

where the remainder term satisfies an estimate∣∣N n
j

∣∣ ≤ C

n
exp

(
−κ |j − c0n|2

n

)
, |j| ≤ n,

for some universal constants C, κ > 0 which only depend on the hyper-parameters and not n and j.

In Figure 3(a), we represented the fundamental solution Gnj at different time iterations (circles) in

the case λ < α where there is rightward propagation with c0 > 0 and compared it with the leading

order fixed Gaussian profile centered at j = c0n (plain line). On the other hand, in Figure 4, panels

(a)-(b)-(c), we illustrate the above results by presenting a space-time color plot of the fundamental

solution rescaled by a factor
√
n. We observe rightward (respectively leftward) propagation with

c0 > 0 (respectively c0 < 0) when λ < α (respectively α < λ), while when α = λ we have c0 = 0 and

no propagation occurs.

10
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(a) β = 0, λ < α and α+ λ < 1.
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(b) β = 0, λ = α and α+ λ < 1.
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(c) β = 0, α < λ and α+ λ < 1.
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(d) β = 0, λ < α and α+ λ = 1.
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(e) β = 0, λ = α and α+ λ = 1.
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(f) β = 0, α < λ and α+ λ = 1.

Figure 4: Illustration of the evolution of the rescaled solution sequence (
√
nGnj )j∈Z starting from the Dirac delta

sequence at j = 0 in the case β = 0. First row: α + λ < 1 and second row: α + λ = 1. When λ ≶ α, we observe

a rightward/leftward propagation while when α = λ no propagation occurs. In all panels, the pink curve is given by

j = nc0, clearly illustrating the fact that c0 measures the propagation speed of the solution. Note that in the case

β = 0 and α+ λ = 1, we have c0 = cπ which results in the tiled patterns observed in panels (d)-(e)-(f).

• Case: λ+ α = 1. In this case, we first note that we have c0 = cπ together with σ0 = σπ and

Gnj =
1 + (−1)n+j

√
4πσ0n

exp

(
−|j − c0n|2

4σ0n

)
+N n

j , |j| ≤ n,

where the remainder term satisfies an estimate∣∣N n
j

∣∣ ≤ C

n
exp

(
−κ |j − c0n|2

n

)
, |j| ≤ n,

for some universal constants C, κ > 0. In Figure 3(b), we represented the fundamental solution

Gnj at different time iterations (circles) in the case α < λ where there is leftward propagation with

c0 < 0 and compared it with the leading order fixed Gaussian profile centered at j = c0n (plain line).

Similarly as in the previous case, in Figure 4, panels (d)-(e)-(f), we illustrate the above results by

presenting a space-time color plot of the fundamental solution rescaled by a factor
√
n. The direction

of propagation still depends on the sign of c0 and whether or not λ ≶ α. Unlike the case α+ λ < 1,

we observe a tiled pattern where Gnj = 0 for even or odd integers alternatively for each time step.

As a partial intermediate summary, we note that the sign of c0 (directly related to the sign of α−λ) always

indicates in which direction the associated Gaussian profile propagates. Namely if α > λ and c0 > 0 (resp.

11



α < λ and c0 < 0) there is rightward (resp. leftward) propagation. Intuitively, this behavior reflects the

functional role of each hyper-parameter, with α and λ controlling feed-forward and feed-back prediction

error correction, respectively. When α = λ, the two terms are equally strong, and there is no dominant

direction of propagation. In addition, when λ + α = 1, the Gaussian profile is oscillating because of

the presence of (−1)n+j . As will be seen later when considering continuous versions of our model, this

oscillatory pattern might not be truly related to neural oscillations observed in the brain, but could instead

arise here as a consequence of discrete updating.

Finally, we note that the fundamental solution sequence (Gnj )j∈Z is uniformly integrable for all values of the

parameters, that is there exists some universal constant C > 0, depending only on the hyper-parameters

such that

‖Gn‖`1(Z) :=
∑
j∈Z
|Gnj | ≤ C, n ≥ 1.

As a consequence, since given any bounded initial sequence (hj)j∈Z ∈ `∞(Z), the solution (enj )j∈Z to (3.5)

can be represented as the convolution product between the initial sequence and the fundamental solution,

namely

enj =
∑
`∈Z
Gnj−`h`, j ∈ Z, n ≥ 1,

we readily deduce that the solution (enj )j∈Z is uniformly bounded with respect to n, that is there exists

some universal constant denoted C > 0, such that

sup
j∈Z

∣∣enj ∣∣ ≤ C sup
j∈Z
|hj | , n ≥ 1.

This is exactly our definition of marginal stability.

3.1.3 Turning on the instantaneous feedforward connections: case β > 0

We now turn to the general case where β > 0. That is, the feed-forward connections continue to convey

sensory inputs at each time step following the network initializing, and β controls the strength of these

signals. In that case, the recurrence equation is no longer explicit but implicit and the positivity property

together with the finite speed propagation no longer hold true in general. Indeed, upon introducing the

shift operator

S : (uj)j∈Z 7→ (uj+1)j∈Z,

we remark that equation (3.5) can be written(
Id− βS−1

)
en+1 = αS−1en + (1− β − λ− α)en + λSen, n ≥ 0,

with en = (enj )j∈Z. Since 0 < β < 1 and ‖|S−1‖|`q(Z)→`q(Z) = 1 for any q ∈ [1,+∞], the operator Id−βS−1

is invertible on `q(Z) for any q ∈ [1,+∞] with inverse

(
Id− βS−1

)−1
=
∞∑
`=0

β`S−`.

12
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(a) β + α < λ.

-50 0 50
0

50

100

150

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) β + α = λ.
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(c) λ < β + α.

Figure 5: Effects of turning on β > 0 when α + λ < 1. When β + α < λ we have c0 < 0 and observe backward

propagation in panel (a) while when λ < β + α we have c0 > 0 and have forward propagation as seen in panel (c).

At the transition β + α = λ, the wave speed vanishes c0 = 0 and there is no propagation as illustrated in panel

(b).Intuitively, α and β, both propagating signals in the forward (rightward) direction, compete with λ carrying the

feedback (leftward) prediction signals; this competition determines the main direction of propagation of neural activity

in the system.

As a consequence, the recurrence equation can be recast as a convolution operator across the network

layers with infinite support, namely

en+1
j = α

∞∑
`=0

β`enj−`−1 + (1− β − λ− α)
∞∑
`=0

β`enj−` + λ
∞∑
`=0

β`enj−`+1, j ∈ Z, n ≥ 0.

From the above expression, we readily deduce that the positivity of the solution is preserved whenever

0 < β < 1−λ−α. Furthermore, for the fundamental solution starting from the Dirac delta solution which

solves

Gn+1
j − βGn+1

j−1 = αGnj−1 + (1− β − λ− α)Gnj + λGnj+1, j ∈ Z, n ≥ 0,

we only have that

Gnj = 0, j < −n,

which implies that −1 < c0, cπ < +∞. Indeed, from the formula of c0 we get that

c0 ∼
1− α− β

1− β
−→ +∞, as β → 1−.

Once again, as in the case with β = 0, we can precise the behavior of the fundamental solution by using

the combined results of [10, 12].

• Case: 0 ≤ λ+ α < 1. There exist some universal constants C, κ > 0 and L > 0 such that

Gnj =
1√

4πσ0n
exp

(
−|j − c0n|2

4σ0n

)
+N n

j , −n ≤ j ≤ Ln,

where the remainder term satisfies a Gaussian estimate∣∣N n
j

∣∣ ≤ C

n
exp

(
−κ |j − c0n|2

n

)
, −n ≤ j ≤ Ln.

13
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(a) α < β + λ and β + α < λ.

-50 0 50
0

50

100

150

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) α < β + λ and β + α = λ.

-50 0 50
0

50

100

150

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(c) α < β + λ and λ < β + α.
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(d) β + λ < α.
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(e) β + λ = α.
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(f)

Figure 6: Effects of turning on β > 0 when α + λ = 1. We now observe a secondary wave with associated wave

speed cπ whose sign depends on the competition between α and β + λ. (a)-(b)-(c) When α < β + λ, the wave speed

of the secondary wave always verifies cπ < 0, and the competition between λ and β + α gives the direction of the

primary wave as previously reported in Figure 5. (d) When β + λ < α which always implies that α + β > λ, we

have 0 < cπ < c0 traducing forward propagation for both waves. We remark that the secondary wave is slower. (e)

When β + λ = α which also implies that α+ β > λ, we get 0 = cπ < c0 such that the secondary wave is blocked. (f)

Summary of the sign of the wave speeds c0 and cπ when β > 0 when α+ λ ≤ 1.

While for j > nL we simply get a pure exponential bound∣∣Gnj ∣∣ ≤ Ce−κn−κj , nL < j.

Inspecting the formula for c0, we notice that when α + β ≶ λ we have c0 ≶ 0 and the wave speed

vanishes precisely when α + β = λ. This is illustrated in Figure 5, where we see that α and β,

both propagating signals in the forward (rightward) direction, compete with λ carrying the feedback

(leftward) prediction signals; this competition determines the main direction of propagation of neural

activity in the system.

• Case: λ + α = 1. What changes in that case is the existence of a secondary wave with associated

wave speed cπ whose sign depends on the competition between α and β + λ. When α < β + λ then

we have cπ < 0, and the competition between λ and β+α will determine the sign of c0, as illustrated

in panels (a)-(b)-(c) of Figure 6. On the other hand, when β + λ < α implying that cπ > 0, we

note that α + β > λ and thus c0 > 0. In that case, the explicit formula for cπ and c0 shows that

14



0 < cπ < c0 and the secondary wave associated to cπ is slower to propagate into the network, see

Figure 6(d). Finally, when β + λ = α we have 0 = cπ < c0 and the secondary wave is blocked, see

Figure 6(e).

We have summarized in the diagram of Figure 6(f) all possible configurations for the sign of the wave

speeds c0 and cπ when β ∈ (0, 1) when α+ λ ≤ 1. We notably observe that when β is increased the region

of parameter space where c0 < 0 diminishes while the region of parameter space where cπ < 0 increases,

indicating that for high values of β the primary wave is most likely to be forward while the secondary wave

is most likely to be backward.

3.2 Wave propagation on a semi-infinite network with a forcing source term

Now that we have understood the intrinsic underlying mechanisms of wave propagation for our model (3.1)

set on an infinite domain, we turn to the case where the network is semi-infinite. That is, the network

admits an input layer that is only connected to the layer above. The problem now reads
en+1
j − βen+1

j−1 = αenj−1 + (1− β − λ− α)enj + λenj+1, j ≥ 1, n ≥ 0,

en0 = sn0 , n ≥ 0,

e0
j = hj , j ≥ 1.

(3.9)

We see that the system depends on the source term sn0 applied to its input layer at each time step, also

called a boundary value, and on the starting activation value (hj) applied to each layer at the initial time

point, also called the initial value. In fact, the linearity principle tells us that the solutions of the above

problem can be obtained as the linear superposition of the solutions to the following two problems, the

boundary value problem, where all layers except the input layer are initialized at zero:
gn+1
j − βgn+1

j−1 = αgnj−1 + (1− β − λ− α)gnj + λgnj+1, j ≥ 1, n ≥ 0,

gn0 = sn0 , n ≥ 0,

g0
j = 0, j ≥ 1,

(3.10)

and the initial value problem, where the input layer source term is set to zero for all time steps:
fn+1
j − βfn+1

j−1 = αfnj−1 + (1− β − λ− α)fnj + λfnj+1, j ≥ 1, n ≥ 0,

fn0 = 0, n ≥ 0,

f0
j = hj , j ≥ 1.

(3.11)

Subsequently, the generic solution sequence (enj )j≥1 can be obtained as

enj = fnj + gnj , j ≥ 1, n ≥ 1.

3.2.1 The initial value problem (3.11)

It is first natural to investigate the initial value problem (3.11) since it is really close to the infinite network

case of the previous section. Here, we consider the effect of the initial value assigned to each layer j > 0
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Figure 7: Space-time evolution of the rescaled solution sequence (
√
nGnivp(j, j0))j≥1 to (3.11) starting with a Dirac

delta sequence at j0 = 25 in different cases with leftward propagation. (a) β = 0 & α+ λ < 1 with c0 < 0. (b) β = 0

& α+ λ = 1 with c0 < 0. (c) 0 < β < 1 & α+ λ = 1 with −1 < cπ < c0 < 0.

at the first time step (n = 0), except the input layer (j = 0) which is set to zero. The dynamics of (3.11)

is still read out from the amplification factor function ρ defined in (3.6) and once again the solutions to

(3.11) can be obtained as the convolution of the initial sequence with the fundamental solution associated

to the problem. For j0 ≥ 1, we denote by δj0 the Dirac delta sequence defined as δj0j0 = 1 and δj0j = 0

for all j ≥ 1 and j 6= j0. Correspondingly, we denote by Gnivp(·, j0) = (Gnivp(j, j0))j≥1 the solution to (3.11)

starting from δj0 , and let us remark that the solutions to (3.11) starting from any initial condition (hj)j≥1

can be represented as

fnj =
+∞∑
j0=1

Gnivp(j, j0)hj0 , j ≥ 1, n ≥ 1.

Combining the results of [10, 12] together with those of [13, 16, 17] which precisely deal with recurrence

equations with boundary conditions, one can obtain very similar results as in the previous case. The very

first obvious remark that we can make is that for all j, j0 ≥ 1 and 1 ≤ n < j0 we have

Gnivp(j, j0) = Gnj−j0 ,

meaning that it takes n = j0 iterations before the solution arrives at the boundary j = 0 and for 1 ≤ n < j0
the problem is similar to the one set on the infinite network. This behavior is illustrated in Figure 7 for

several values of the hyper-parameters where we represent the spatio-temporal evolution of the rescaled

solution sequence (
√
nGnivp(j, j0))j≥1. We clearly observe a Gaussian behavior before the solution reaches

the boundary. And for all n ≥ j0, we can write

Gnivp(j, j0) = Gnj−j0 + Gnbl(j, j0),

where Gnbl(j, j0) is a remainder term generated by the boundary condition at j = 0. It is actually possible

to bound Gnbl(j, j0) in each of the cases treated above.

When β = 0 and α+ λ < 1 with α < λ such that c0 < 0, then Gnbl(j, j0) is well approximated by

Gnbl(j, j0) ≈

{
− 1√

4πσ0n
exp

(
− |−j0−c0n|

2

4σ0n

) (
α
λ

)j
, 1 ≤ j ≤ j0,

e−κn−κ(j−j0), j > j0,
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Figure 8: Illustration of the solution Gnivp(j, j0) to (3.11) in the case where β = 0 and α + λ < 1 with α < β.

(a) Visualizations of the solution Gnivp(j, j0) (circles) at different time iterations. The plain lines correspond to

the Gaussian approximation 1√
4πσ0n

exp
(
− |j−j0−c0n|

2

4σ0n

)
and remark the presence of a boundary layer (seen as a

mismatch between the circles and the Gaussian lines approximation). (b) We represent the boundary layer by

plotting (circles) Gnivp(j, j0) − 1√
4πσ0n

exp
(
− |j−j0−c0n|

2

4σ0n

)
and we compare it to our boundary layer approximation

− 1√
4πσ0n

exp
(
− |−j0−c0n|

2

4σ0n

) (
α
λ

)j
(plain lines). (c) Finally we compare the solution Gnivp(j, j0) (circles) to its first

order approximation 1√
4πσ0n

exp
(
− |j−j0−c0n|

2

4σ0n

)
− 1√

4πσ0n
exp

(
− |−j0−c0n|

2

4σ0n

) (
α
λ

)j
(plain lines).

while when λ < α with c0 > 0, then Gnbl(j, j0) is well approximated by

Gnbl(j, j0) ≈

{
e−κn−κ(j0−j), 1 ≤ j ≤ j0,
− 1√

4πσ0n
exp

(
− |j−c0n|

2

4σ0n

) (
λ
α

)j0
, j0 < j,

this is illustrated in Figure 8 in the case c0 < 0.

On the other hand for α+ λ = 1 with α < λ such that c0 < 0, then Gnbl(j, j0) is well approximated by

Gnbl(j, j,0 ) ≈

{
−1+(−1)n√

4πσ0n
exp

(
− |−j0−c0n|

2

4σ0n

) (
α
λ

)j
, 1 ≤ j ≤ j0,

e−κn−κ(j−j0), j > j0,

while when λ < α with c0 > 0, then Gnbl(j, j0) is well approximated by

Gnbl(j, j0) ≈

{
e−κn−κ(j0−j), 1 ≤ j ≤ j0,
−1+(−1)n√

4πσ0n
exp

(
− |j−c0n|

2

4σ0n

) (
λ
α

)j0
, j0 < j.

When 0 < β < 1 and α + λ < 1 the approximations are similar as for the case with β = 0. We thus need

to discuss three cases.

• Case −1 < cπ < c0 < 0. In that case, we have for 1 ≤ j ≤ j0 that

Gnbl(j, j0) ≈ − 1√
4πσ0n

exp

(
−| − j0 − c0n|2

4σ0n

)(
α+ β

λ

)j
− (−1)n√

4πσπn
exp

(
−| − j0 − cπn|

2

4σπn

)(
α− β
λ

)j
,

with an exponential bound for j > j0. This situation is presented in Figure 7(c)
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• Case −1 < cπ < 0 < c0. In this case we have

Gnbl(j, j0) ≈

 −
(−1)n√
4πσπn

exp
(
− |−j0−cπn|

2

4σπn

)(
α−β
λ

)j
, 1 ≤ j ≤ j0,

− 1√
4πσ0n

exp
(
− |j−c0n|

2

4σ0n

)(
λ

α+β

)j0
, j0 < j < Ln.

• Case −1 < 0 < cπ < c0. In this case we have

Gnbl(j, j0) ≈ − 1√
4πσ0n

exp

(
−|j − c0n|2

4σ0n

)(
λ

α+ β

)j0
− (−1)n√

4πσπn
exp

(
−|j − cπn|

2

4σπn

)(
λ

α− β

)j0
for j0 < j < Ln.

3.2.2 The boundary value problem (3.10)

We now turn our attention to the boundary value problem (3.10) where the network is initialized with zero

activity, for all layers except the input. Motivated by applications, we will only focus on the case where

sn0 = s0 ∈ R for all n ≥ 0 (i.e., a constant sensory input) and thus study:
gn+1
j − βgn+1

j−1 = αgnj−1 + (1− β − λ− α)gnj + λgnj+1, j ≥ 1, n ≥ 0,

gn0 = s0, n ≥ 0,

g0
j = 0, j ≥ 1.

(3.12)

Case β = 0. Here, the stimulus information so does not directly propagate through the network via

its feedforward connections (since β = 0), but may still propagate towards higher layers j > 0 via the

feedforward prediction error correction mechanism, governed by parameter α. When α + λ ≤ 1, we

distinguish between three cases. Here and throughout, we denote by erf the error function defined by

erf(x) :=
2√
π

∫ x

0
e−z

2
dz, x ∈ R.

• Case α < λ. In this case we have

gnj = s0

(α
λ

)j (
1 + ωnj

)
, with

∣∣ωnj ∣∣ ≤ Ce−κn−κj , j ≥ 1, n ≥ 1.

It is interesting to note that the sequence
(
s0

(
α
λ

)j)
j≤1

is a stationary solution to (3.12) and we have

uniform convergence at exponential rate toward this stationary solution, that is

sup
j≥1

∣∣∣∣gnj − s0

(α
λ

)j∣∣∣∣ ≤ Ce−κn −→n→+∞
0.

We illustrate this uniform convergence in Figure 9 (a)-(d).

• Case α = λ. We have∣∣∣∣gnj − s0

(
1− erf

(
j√

4σ0n

))∣∣∣∣ ≤ C

n
exp

(
−κj

2

n

)
, j ≥ 1, n ≥ 1.
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In this case, we observe a slow convergence to the steady state s0. Indeed, for each δ ∈ (0, 1/2) we

have

lim
n→+∞

sup
1≤j≤nδ

∣∣gnj − s0

∣∣ = 0,

while for any δ > 1/2 we get

lim
n→+∞

sup
j≥nδ

∣∣gnj ∣∣ = 0.

The propagation is thus diffusive along j ∼
√
n. This can be seen in Figure 9 (b)-(e).

• Case λ < α. In this case we have∣∣∣∣gnj − s0

2

(
1− erf

(
j − c0n√

4σ0n

))∣∣∣∣ ≤ C√
n

exp

(
−κ(j − c0n)2

n

)
, j ≥ 1, n ≥ 1.

In this case, we deduce that we have local uniform convergence towards the steady state s0, actually

we have spreading at speed c0. More precisely, for any c ∈ (0, c0) we have

lim
n→+∞

sup
1≤j≤cn

∣∣gnj − s0

∣∣ = 0,

while for any c > c0, we get

lim
n→+∞

sup
j≥cn

∣∣gnj ∣∣ = 0.

We refer to Figure 9 (c)-(f) for an illustration. The figure clearly shows the competition between

hyperparameters α and λ, with forward propagation of the sensory input only when α ≥ λ.

Case 0 < β < 1. Here, the stimulus information so propagates through the network not only via its

feedforward connections (governed by β > 0) but also via the feedforward prediction error correction

mechanism, governed by parameter α. In the case where α+λ ≤ 1, the results from the case β = 0 remain

valid, the only differences coming from the fact that the above approximations in the case λ ≤ α are only

valid for 1 ≤ j ≤ Ln for some large constant L > 0 with exponential localized bounds for j ≥ Ln and

that the steady state is now

(
s0

(
α+β
λ

)j)
j≥1

whenever α + β < λ. This confirms that the feedforward

propagation of the input s0 is now dependent on both terms α and β, jointly competing against the feedback

term λ.

Let us remark that when 0 < β < α − λ and in the special case α + λ = 1, where a second stable point

exists for the amplification factor function at ρ(π), we can get a slightly more accurate description of the

solution in the form

gnj =
s0

2

(
1− erf

(
j − c0n√

4σ0n

))
− s0

2(1 + β)

(−1)j√
4πσπn

exp

(
−(j − cπn)2

4σπn

)
+ rnj , n ≥ 1, 1 ≤ j ≤ Ln,

where the remainder term satisfies an estimate of the form∣∣rnj ∣∣ ≤ C√
n

exp

(
−κ(j − c0n)2

n

)
+
C

n
exp

(
−κ(j − cπn)2

n

)
.

This is illustrated in Figure 10. It should be noted here that, while the main wavefront reflecting solution

c0 is a generic property of our network in the entire range of validity of parameters 0 ≤ β < 1 and α+λ ≤ 1,

the second oscillatory pattern reflecting cπ only appears in the special case of β 6= 0 and α + λ = 1. This

oscillation is, in fact, an artifact from the discrete formulation of our problem, as will become evident in

the next section, where we investigate continuous formulations of the problem.
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(a) α < λ.
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(b) α = λ.
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(c) λ < α.
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(d) α < λ.
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(e) α = λ.
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(f) λ < α.

Figure 9: Case β = 0 and α+ λ ≤ 1. Visualization of the solution (gnj )j≥1 of (3.12) when sn0 = 1 for all n ≥ 0. Top

row: space-time plots of the solution depending on α and λ. Bottom row: solution profiles at different time iterations

(circles) compared with the leading order approximations. In the case α < λ, we observe uniform convergence (in

space) at exponential rate (in time) toward the stationary solution s0

((
α
λ

)j)
j≥1

while when λ < α we observe the

propagation of a wavefront where the uniform steady state s0 is propagating at speed c0 > 0. In the intermediate case

where α = λ we get a diffusive invasion as illustrated by the curve j =
√

4σ0n.

3.3 Towards continuous predictive models

Starting from a discrete approximation of our system made sense, not only for mathematical convenience

but also because artificial neural networks and deep learning systems implementing similar predictive coding

principles are intrinsically discrete. Nonetheless, it can be useful to discard this discrete approximation

and investigate our system in the continuous limit. Note that in the following, we will explore continuous

extensions of our model in both time and space. Biological neural networks, like any physical system,

operate in continuous time and thus it is more biologically accurate to relax the temporal discretization

assumption. This is what we do in the first part of this section. In the spatial domain, however, the

discretization of our system into successive processing layers was not just an approximation, but also a

reflection of the hierarchical anatomy of the brain. Nonetheless, we can still represent neuronal network

depth continuously, even if only as a mathematical abstraction. This is what we will do in the subsequent

part of this section. Understanding such continuous limits can allow us to test the robustness of our

framework, and to relate it to canonical models whose dynamics have been more exhaustively characterized.
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(a) Space-time plot.
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(b) Profile of the solution at n = 70.
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Figure 10: Case 0 < β < 1 and α+ λ = 1 with 0 < β < α− λ. Visualization of the solution (gnj )j≥1 of (3.12) when

sn0 = 1 for all n ≥ 0. The solution is the super-position of a leading rightward front spreading at speed c0 > 0 and an

oscillatory Gaussian profile propagating at speed cπ > 0 with cπ < c0.

3.3.1 Continuous in time interpretation

As a first step, we present a continuous in time interpretation of the model (3.9). We let ∆t > 0 be some

parameter which will represent a time step and reformulate the recurrence equation as

(1− β)
en+1
j − enj

∆t
=

β

∆t

(
en+1
j−1 − e

n+1
j

)
+

λ

∆t

(
enj+1 − enj

)
− α

∆t

(
enj − enj−1

)
.

We now interpret enj as the approximation of some smooth function of time ej(t) evaluated at tn := n∆t,

that is enj ∼ ej(tn). As a consequence, we get that

en+1
j ∼ ej(tn+1) = ej(tn + ∆t) = ej(tn) + ∆t

d

dt
ej(tn) +O(|∆t|2), as ∆t→ 0,

such that
en+1
j − enj

∆t
∼ d

dt
ej(tn), as ∆t→ 0.

Now, introducing the scaled parameters

β̃ :=
β

∆t
, λ̃ :=

λ

∆t
, and α̃ :=

α

∆t
,

we get at the limit ∆t→ 0 the following lattice ordinary differential equation

d

dt
ej(t) = (β̃ + α̃)ej−1(t)− (β̃ + α̃+ λ̃)ej(t) + λ̃ej+1(t), t > 0. (3.13)

When defined on the infinite lattice Z, one can represent the solutions as

ej(t) =
∑
k∈Z

Gj−k(t)hk, j ∈ Z, t > 0,

starting from the initial sequence ej(t = 0) = (hj)j∈Z where (Gj(t))j∈Z is the fundamental solution to

(3.13) starting from the Dirac delta sequence δ. Once again, each Gj(t) can be represented by the inverse
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Fourier transform and reads

Gj(t) =
1

2π

∫ π

−π
eν(θ)teijθdθ, t > 0, j ∈ Z,

where the function ν(θ) is defined as

ν(θ) := (β̃ + α̃)e−iθ − (β̃ + α̃+ λ̃) + λ̃eiθ, θ ∈ [−π, π].

The function ν(θ) serves as an amplification factor function for the time continuous equation (3.13). To

ensure stability1, one needs to impose that Re(ν(θ)) ≤ 0 for each θ ∈ [−π, π]. From its formula, we obtain

that

Re(ν(θ)) = (β̃ + α̃+ λ̃)(cos(θ)− 1), θ ∈ [−π, π],

such that we deduce that Re(ν(0)) = 0 and Re(ν(θ)) < 0 for all θ ∈ [−π, π]\{0}. In particular, it

is now evident that, contrary to the discrete case, ν(π) cannot be a stable solution for the continuous

system (except in the trivial case where all hyperparameters α̃, β̃, λ̃ are zero). This confirms that the

previously observed oscillations associated with ρ(π) in specific cases were merely an artifact of the temporal

discretization.

We note that, near the tangency point at θ = 0, the function ν(θ) has the following asymptotic expansion

ν(θ) = −(β̃ + α̃+ λ̃)iθ − β̃ + α̃+ λ̃

2
θ2 +O(|θ|3), as θ → 0.

It is also possible to prove a Gaussian approximation in that case, and following for example [6], we have

Gj(t) =
1√

4πσ̃0t
exp

(
−|j − c̃0t|2

4σ̃0t

)
+ Rj(t), j ∈ Z, t > 0,

with

|Rj(t)| ≤
C√
t

exp

(
−κ |j − c̃0t|2

t

)
, j ∈ Z, t > 0,

for some universal constants C > 0 and κ > 0. Here, c̃0 and σ̃0 are given by

c̃0 = β̃ + α̃− λ̃, and σ̃0 =
β̃ + α̃+ λ̃

2
> 0.

We remark that both c̃0 and σ̃0 are linked to c0 and σ0 (the propagation speed and spread of the solution

in the case of the discrete model) in the following sense

c0

∆t
→ c̃0, and

σ0

∆t
→ σ̃0, as ∆t→ 0.

We also note that the spatially homogeneous solutions of (3.13) are trivial in the sense that if we assume

that ej(t) = e(t) for all j ∈ Z then the equation satisfied by e(t) is simply

d

dt
e(t) = 0.

Finally, we conclude by noticing that in this continuous in time regime, there is no possible oscillations

either in space or time, in the sense that the fundamental solution always resembles a fixed Gaussian

profile advected at wave speed c̃0. The formula for c̃0 highlights the intuitive functional relation between

the propagation (or advection) direction and the “competition” between the feedforward influences α̃+ β̃

and the feedback influence λ̃.
1Note that the notions of stability/unstability and marginal stability introduced in the fully discrete setting naturally

extend to the semi-continuous setting.
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3.3.2 Fully continuous interpretation: both in time and depth

In this section, we give a possible physical interpretation of the discrete model (3.9) via continuous transport

equations, in which both time and space (i.e., neuronal network depth) are made continuous. Let us

introduce ∆t > 0, ∆x > 0 and set ν := ∆x
∆t . As before, we can view ∆t as a time step for our system;

additionally, ∆x can be viewed as a spatial step in the (continuous) neuronal depth dimension, and thus

ν becomes akin to a neural propagation speed or a conduction velocity. We then rewrite the recurrence

equation as

(1− β)
en+1
j − enj

∆t
= βν

en+1
j−1 − e

n+1
j

∆x
+ λν

enj+1 − enj
∆x

− αν
enj − enj−1

∆x
.

The key idea is to now assume that enj represents an approximation of some smooth function e(t, x)

evaluated at tn := n∆t and xj := j∆x, that is enj ∼ e(tn, xj). Then passing to the limit ∆t→ 0, ∆x→ 0

with ∆x
∆t = ν > 0 fixed and assuming that β + α 6= λ, one gets the partial differential equation

∂te(t, x) +
ν(β + α− λ)

1− β
∂xe(t, x) = 0, t > 0, x > 0, (3.14)

with boundary condition e(t, x = 0) = s0(t) and initial condition e(t = 0, x) = h(x) satisfying the

compatibility condition s0(0) = h(0) where s0(t) is a smooth function such that s0(tn) = sn0 and h(xj) = hj .

The above partial differential equation is a transport equation with associated speed ν(β+α−λ)
1−β = νc0.

Depending on the sign of c0, we have a different representation for the solutions of (3.14).

• Case c0 < 0. Solution is given by

e(t, x) = h (x− νc0t) , t > 0, x > 0.

Let us remark that when c0 < 0 the trace of the solution at x = 0 is entirely determined by the initial

data h(x) since

e(t, x = 0) = h (−νc0t) , t > 0.

Intuitively, this reflects the dominance of backward (leftward) propagation in this network, with

solutions determined entirely by the initial value h(x), even for x = 0 (the source term, s0(t), having

no influence in this case).

• Case c0 > 0. Solution is given by

e(t, x) =

{
s0

(
t− x

νc0

)
, x ≤ νc0t,

h (x− νc0t) , x > νc0t,
t > 0, x > 0.

Intuitively, this reflects the dominance of forward (rightward) propagation in this network, with both

the source term s0(t) and the initial values h(x) transported at constant velocity νc0.

Thanks to the explicit form of the solutions, we readily obtain many qualitative properties of the solution

e(t, x). Boundedness and positivity of the solutions are inherited from the functions s0(t) and h(x). In the

case where β + α = λ (i.e., with balanced feed-forward and feedback influences), the limiting equation is

slightly different. Indeed, in this case, introducing δ := ∆x2

∆t and letting ∆t→ 0, ∆x→ 0 with δ > 0 fixed,

on gets the partial differential equation

∂te(t, x) =
δ(β + α+ λ)

2(1− β)
∂2
xe(t, x), t > 0, x > 0, (3.15)
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and we readily observe that when β + α = λ, we have that

β + α+ λ

2(1− β)
=
β(1− α− λ) + α+ λ− (λ− α)2

2(1− β)2
= σ0 > 0.

We obtain a heat equation with a boundary condition e(t, x = 0) = s0(t) and initial condition e(t = 0, x) =

h(x). Upon denoting

S(t, x, y) :=
1√

4πδσ0t

(
e
− (x−y)2

4δσ0t − e−
(x+y)2

4δσ0t

)
,

the solution of the equation is given by

e(t, x) = s0(t) +

∫ +∞

0
S(t, x, y) (h(y)− s0(0)) dy −

∫ t

0

∫ +∞

0
S(t− s, x, y)s′0(s)dyds, t > 0, x > 0,

Let us remark that when s0(t) = s0 ∈ R is constant for all t ≥ 0, the above expression simplifies to

e(t, x) = s0

(
1− erf

(
x√

4δσ0t

))
+

∫ +∞

0
S(t, x, y)h(y)dy, t > 0, x > 0.

In conclusion, this section extended our discrete model towards a continuous limit in both space and time.

In the temporal domain, it allowed us to understand our stable solution as an advection behavior, and

alerted us that the other apparently oscillatory solutions previously observed in specific cases were mainly

due to our discretization approximation. In the spatio-temporal domain, the continuous limit (3.14) al-

lowed us to realize that our main equation (3.1) was merely a discrete version of a transport equation.

In the following sections, we will systematically return to discrete implementations (with gradually increas-

ing functionality), before considering, again, their continuous formulations.

4 Beyond the identity case

In the previous section we have studied in depth the case where Wf and Wb are both the identity matrix:

each neuron in any given layer directly conveys its activation value to a single corresponding neuron in

the next layer, and to a single neuron in the previous layer. Motivated by concrete implementations of the

model in deep neural networks [9, 32], we aim to investigate more realistic situations with more complex

connectivity matrices. While the generic unconstrained case (i.e. two unrelated and dense connection

matrices Wf and Wb) does not easily lend itself to analytical study, we will consider here two situations

of practical interest: in the first one, the forward and backward connection matrices are symmetric and

identical; in the second case, each matrix is symmetric, but the two are not necessarily identical.

4.1 The symmetric Rao & Ballard case

Following the pioneering work of Rao & Ballard [27], we will assume in this section that Wf = (Wb)t and

Wf is symmetric, which implies that

Wf =Wb ∈ Sd(R),

where we denoted Sd(R) the set of symmetric matrices on Rd.
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The underlying interpretation is that, if a strong synaptic connection exists from neuron a to neuron b,

then there is also a strong connection from b to a. This assumption, which follows from Hebbian plasticity

rules (“neurons that fire together wire together”) does not capture all of the diversity of brain connectivity

patterns, but can be considered a good first approximation [27].

4.1.1 Neural basis change and neural assemblies

The spectral theorem ensures that Wf (and thus Wb) is diagonalizable in an orthonormal basis. Namely,

there exists an orthogonal invertible matrix P ∈ Md(R) such that PP t = P tP = Id and there exists a

diagonal matrix denoted D ∈Md(R) such that

Wf =Wb = PDP t.

We denote by γp ∈ Rd, p = 1, · · · , d the diagonal elements of D and without loss of generality we may

assume that

γ1 ≤ · · · ≤ γd.

Thanks to this diagonalization, we can now perform a change of basis for our neuronal space. We set

Unj := P tEnj as the new basis, with PUnj := Enj . Each Unj can now be understood as a neural assembly,

reflecting one of the principal components of the weight matrixWf =Wb. Importantly, although assemblies

may overlap, activity updates induced by feedforward or feedback connections to one given assembly do

not affect the other assemblies, since the matrix P is orthogonal. Therefore, our problem is much simplified

when considering activity update equations at the level of these neural assemblies Unj rather than across

individual neurons Enj . Our model (2.1) becomes

Un+1
j = βDUn+1

j−1 + αDUnj−1 +
[
(1− β − λ)Id − αD2

]
Unj + λDUnj+1.

Note that, because all matrices in the above equation are diagonal, we have totally decoupled the d

components of the vector Unj . More precisely, by denoting unj,p the pth component of Unj , that is Unj =

(unj,1, · · · , unj,d)t, we obtain

un+1
j,p − βγpu

n+1
j−1,p = αγpu

n
j−1,p + (1− β − λ− αγ2

p)unj,p + λγpu
n
j+1,p, p = 1, · · · , d.

This indicates that one needs to study

un+1
j − βγun+1

j−1 = αγunj−1 + (1− β − λ− αγ2)unj + λγunj+1, (4.1)

where γ ∈ R is a given parameter. Here, γ can be thought of as the connection strength across layers (both

feedforward and feedback, since we assumed here symmetric connectivity) of the neural assembly under

consideration. By construction, each assembly in a given layer is only connected to the corresponding

assembly in the layer above, and similarly in the layer below. Note that when γ = 1, we encounter again

the exact situation that we studied in the previous section (3.9), but now with neural assemblies in lieu of

individual neurons.

25



4.1.2 Study of the amplification factor function

Based on our previous analysis, the behavior of the solutions to (4.1) are intrinsically linked to the properties

of the amplification factor function:

ργ(θ) =
αγ
(
e−iθ − γ

)
+ 1− β + λ

(
γeiθ − 1

)
1− βγe−iθ

, θ ∈ [−π, π],

where one needs to ensure that |ργ(θ)| ≤ 1 for all θ ∈ [−π, π]. The very first condition is to ensure that

1 6= β|γ| (to avoid division by zero). Next, we investigate the behavior of ργ(θ) at θ = 0 and check under

which condition on γ we can ensure that −1 ≤ ργ(0) ≤ 1. We have

ργ(0) = 1 +
(1− γ)(αγ − λ− β)

1− βγ
,

which readily tells us that ργ(0) = 1 if and only if γ = 1 or γ = λ+β
α . And on the other hand ργ(0) = −1

if and only if γ = γ0
± with

γ0
± =

λ+ α− β ±
√

(λ+ α− β)2 + 4α(2− λ− β)

2α
,

with γ0
− < 0 < γ0

+ since λ+ β < 2 by assumption. One also notices that

(λ+ α− β)2 + 4α(2− λ− β) = (λ+ 3α− β)2 + 8α(1− α− λ),

such that either α+ λ = 1 and in that case γ0
− = −1 and γ0

+ = 1 + 1−β
α > 1, or α+ λ < 1 and in that case

γ0
− < −1 and γ0

+ > 1 + 1−β
α > 1. Next, we remark that

ργ(π) = 1− (1 + γ)(αγ + λ+ β)

1 + βγ
= ρ−γ(0),

which then implies that ργ(π) = 1 if and only if γ = −1 or γ = −λ+β
α and ργ(π) = −1 if and only if

γ = −γ0
±.

As explained in the beginning, our aim is to completely characterize under which conditions on γ ∈ R,

0 ≤ β < 1 and 0 < α, λ < 1 with α+ λ ≤ 1, one can ensure that |ργ(θ)| ≤ 1 for all θ ∈ [−π, π].

Potential regions of marginal stability are thus given by those values of the parameters satisfying γ = ±1,

γ = ±λ+β
α , γ = ±γ0

+ and γ = ±γ0
−, and it is important to determine the intersections among the above

regions. We have already proved that γ0
− = −1 whenever α = 1 − λ. Next, we compute that γ0

− = −λ+β
α

whenever α = λ(λ+β)
1−λ−β =: Λ, while γ0

− = −γ0
+ whenever α = β − λ and γ0

+ = λ+β
α when α = β(λ+ β). Let

us already point out that Λ is only defined if λ+ β < 1 and in that case Λ > 0.

We now introduce five regions in the quadrant (β, λ) ∈ [0, 1) × (0, 1) which are depicted in Figure 11(a).

First, since 1−λ = Λ = λ+β if and only if 2λ+β = 1 (which corresponds to the blue line in Figure 11(a)),

we deduce that when 2λ+ β ≥ 1 we have 1− λ ≤ min(Λ, λ+ β) which leads us to define the following two

regions:

(I) := {(β, λ) ∈ [0, 1)× (0, 1) | 2λ+ β ≥ 1 and β ≤ λ} ,
(II) := {(β, λ) ∈ [0, 1)× (0, 1) | 2λ+ β ≥ 1 and β > λ} .
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Figure 11: Stability/instability regions and their boundaries as a function of (α, γ) for (4.1) while (λ, β) being fixed in

one the five regions given in panel (a). Shaded orange regions correspond to an instability for (4.1) while purple regions

correspond to a stability for (4.1). The boundaries of the stability/instability regions are given by the intersections

of the parametrized curves γ = ±1 (dark red curves), γ = ±γ0− (dark blue curves), γ = ±γ0+ (pink curves) and

γ = ±λ+βα (magenta curves). Note that the region of interest is 0 < α ≤ 1−λ. Along each such parametrized curves

equation (4.1) is marginally stable.

Now, when 2λ + β < 1, we have the strict ordering 0 < Λ < λ + β < 1 − λ and when β > λ it is thus

necessary to compare Λ to β−λ. We remark that Λ = β−λ = β(λ+β) if and only if β2−β(1−λ)+λ = 0,

which corresponds to the yellow parabola in Figure 11(a). We thus define the following three regions:

(III) := {(β, λ) ∈ [0, 1)× (0, 1) | 2λ+ β < 1 and β ≤ λ} ,
(IV) :=

{
(β, λ) ∈ [0, 1)× (0, 1) | 2λ+ β < 1, β > λ and β2 − β(1− λ) + λ ≥ 0

}
,

(V) :=
{

(β, λ) ∈ [0, 1)× (0, 1) | 2λ+ β < 1, β > λ and β2 − β(1− λ) + λ < 0
}
.

Note that when (β, λ) is in region (IV), we have the ordering

0 < β − α ≤ Λ < λ+ β < 1− λ,

while for (β, λ) in region (V), we have

0 < Λ < β(λ+ β) < β − α < λ+ β < 1− λ.

27



γ = 1 γ = −1 γ = λ+β
α γ = −λ+β

α γ = γ0
± γ = −γ0

±

cγ0
β+α−λ

1−β
α−λ−β

1+β
(β+λ)(β+α−λ)
α−β(λ+β)

γ0±(β+λ−α)

1−βγ0±

cγπ
α−λ−β

1+β
β+α−λ

1−β
(β+λ)(β+α−λ)
α−β(λ+β)

γ0±(β+λ−α)

1−βγ0±

Table 1: Expressions of the wave speed cγ0 and cγπ for values of γ corresponding the boundaries of the stability regions

from Figure 11. Let us note that c1π and c−10 only exist when α+ λ = 1.

We can characterize the stability of our equation separately for each of the five regions defined in Fig-

ure 11(a). Since the region already determines the value of the parameters β and λ, the stability will

be expressed as a function of the two remaining parameters α and γ (Figure 11(b-f)). We refer to Fig-

ures 11(b-f) for a comprehensive representation of the stability regions. Note that the boundaries of the

stability/instability regions are precisely given by the intersections of the parametrized curves γ = ±1 (dark

red curves), γ = ±γ0
− (dark blue curves), γ = ±γ0

+ (pink curves) and γ = ±λ+β
α (magenta curves). Along

each such parametrized curves equation (4.1) is marginally stable. We comment below the case (λ, β) in

Region (III). The other cases can be described in the same way, but we leave this out for conciseness.

Suppose that (λ, β) belongs to Region (III). We present the results of Figure 11(d) by letting α vary

between 0 and 1 − λ and γ ∈ R. More precisely, for each fixed α ∈ (0, 1 − λ) we investigate the stability

properties as a function of γ. We have to distinguish between several subcases.

(i) If 0 < α < Λ. Then, equation (4.1) is stable for each γ ∈ (−1, 1), unstable for |γ| > 1 and marginally

stable at γ = ±1 with ρ1(0) = 1 and ρ−1(±π) = 1.

(ii) If α = Λ. Then γ0
− = −λ+β

α and equation (4.1) is stable for each γ ∈ (−1, 1), unstable for |γ| > |γ0
−|

and |γ0
−| > |γ| > 1, whereas it is marginally stable at γ = ±1 and at γ = ±γ0

− with ρ1(0) = 1,

ρ−1(±π) = 1, ργ0−(0) = −1 and ρ−γ0−(±π) = −1 together with ρ−γ0−(0) = 1, ργ0−(±π) = 1.

(iii) If Λ < α < λ+ β. Then, equation (4.1) is stable for each γ ∈ (−1, 1) and λ+β
α < |γ| < |γ0

−|, unstable

for |γ| > |γ0
−| and λ+β

α > |γ| > 1 and marginally stable at γ ∈
{
±1,±λ+β

α ,±γ0
−

}
with ρ1(0) = 1,

ρ−1(±π) = 1, ρλ+β
α

(0) = 1, ρ−λ+β
α

(±π) = 1, ργ0−(0) = −1 and ρ−γ0−(±π) = −1.

(iv) If α = λ+β. Then, equation (4.1) is stable for each γ ∈ (γ0
−,−γ0

−)\{±1}, unstable for |γ| > |γ0
−| and

marginally stable at γ ∈
{
±1,±γ0

−
}

with ρ1(0) = 1, ρ−1(±π) = 1, ργ0−(0) = −1 and ρ−γ0−(±π) = −1.

Remark that in this case we have λ+β
α = 1.

(v) If λ + β < α < 1 − λ. Then, equation (4.1) is stable for each γ ∈
(
−λ+β

α , λ+β
α

)
and 1 < |γ| < |γ0

−|,

unstable for |γ| > |γ0
−| and 1 > |γ| > λ+β

α and marginally stable at γ ∈
{
±1,±λ+β

α ,±γ0
−

}
with

ρ1(0) = 1, ρ−1(±π) = 1, ρλ+β
α

(0) = 1, ρ−λ+β
α

(±π) = 1, ργ0−(0) = −1 and ρ−γ0−(±π) = −1.

(vi) If α = 1 − λ. Then, equation (4.1) is stable for each γ ∈
(
−λ+β

α , λ+β
α

)
, unstable for |γ| > |γ0

−| = 1

and 1 > |γ| > λ+β
α and marginally stable at γ ∈

{
±1,±λ+β

α

}
with ρ1(0) = 1 and ρ1(±π) = −1,

ρ−1(±π) = 1 and ρ−1(0) = −1, with ρλ+β
α

(0) = 1, ρ−λ+β
α

(±π) = 1. Remark that in this case we have

γ0
− = −1.
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Figure 12: Plot of the wave speeds c10, c
λ+β
α

0 and c
γ0
−

0 as a function of α in the case (λ, β) in Region III associated to

Figure 11(d).

Summary. In summary, we see that stability is nearly guaranteed whenever −1 < γ < 1, regardless of

the values of other parameters (as long as 0 < α < 1− λ). This makes intuitive sense, as γ represents the

connection strength across layers of a particular neural assembly, a connection weight |γ| < 1 implies that

activity of this assembly will remain bounded across layers. Additionally, and perhaps more interestingly,

in some but not all regions (e.g. Regions II and V) stability can be obtained for much larger values of |γ|;
this, however, appears to coincide with low values of the α parameter. In other words, for high connection

strengths |γ|, the feedforward error correction term α makes the system unstable.

4.1.3 Wave speed characterization

In the previous section (The Identity Case), we have proved that the direction of propagation was given

by the sign of c0 and cπ whenever they exist which could be read off from the behavior of ργ(θ) near θ = 0

or θ = ±π. We have reported the values of cγ0 and cγπ for different values of γ in Table 1. For example, in

Figure 12 we illustrate the changes in propagation speed and direction for cγ0 for the case (λ, β) in Region

(III) (as defined in Figure 11a), but the calculations remain valid for the other regions.

It is worth emphasizing that for fixed values of the hyper-parameters α, β and λ, we see here that varying

γ can give rise to different propagation speeds or even different directions. As each neuronal assembly uj,p
in a given layer j is associated with its own connection strength γp, it follows that different speeds and even

different directions of propagation can concurrently be obtained in a single network, one for each assembly.

For instance, in a given network with hyperparameters α = 0.2, β = 0.2 and λ = 0.3 (region III), a neural

assembly with a connection strength of γ = 1 would propagate forward at a relatively slow speed, while

another with γ = 2.5 would propagate in the same direction at a much faster speed, and yet another

assembly with γ = γ0
− ≈ −2.09 would simultaneously propagate in the opposite backward direction.

4.1.4 Continuous in time interpretation

We can repeat the “continuous system” analysis conducted in the previous section (The Identity Case),

which has lead to (3.13), but this time with Rao-Ballard connection matrices between layers. With the
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Figure 13: Stability/instability regions and their boundaries as a function of (α̃, γ) for (4.2) for any (λ̃, β̃) fixed.

The shaded orange region corresponds to an instability for (4.2) while the purple region corresponds to a stability

for (4.2). The boundaries of the stability/instability regions are given by the intersections of the parametrized curves

γ = ±1 (dark red curves) and γ = ±λ+βα (magenta curves) where equation (4.2) is marginally stable.

same scaling on the hyperparameters

β̃ :=
β

∆t
, λ̃ :=

λ

∆t
, and α̃ :=

α

∆t
,

we get that, at the limit ∆t → 0, the equation (4.1) becomes the following lattice ordinary differential

equation
d

dt
uj(t) = (β̃ + α̃)γuj−1(t)− (β̃ + λ̃+ α̃γ2)uj(t) + λ̃γuj+1(t), t > 0. (4.2)

Note that the neuronal layer activity is now expressed in terms of neural assemblies uj rather than indi-

vidual neurons ej .

The amplification factor function in this case is given by

νγ(θ) = (β̃ + α̃)γe−iθ − (β̃ + λ̃+ α̃γ2) + λ̃γeiθ, θ ∈ [−π, π],

whose real part is given by

Re(νγ(θ)) = (β̃ + α̃+ λ̃)γ cos(θ)− (β̃ + λ̃+ α̃γ2), θ ∈ [−π, π].

When γ > 0, we observe that

max
θ∈[−π,π]

Re(νγ(θ)) = Re(νγ(0)) = (λ̃+ β̃ − α̃γ)(γ − 1),

whereas when γ < 0, we have

max
θ∈[−π,π]

Re(νγ(θ)) = Re(νγ(±π)) = −(λ̃+ β̃ + α̃γ)(γ + 1).

As a consequence, the stability analysis in this case is very simple and depends only on the relative position

of γ with respect to ±1 and ± λ̃+β̃
α̃ . It is summarized in Figure 13.

The simple behavior illustrated in Figure 13 for our continuous system contrasts with the number and

diversity of behaviors obtained for the discrete version of the same system (Figure 11). A number of
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points are worth highlighting. For instance, although the values of β and λ were critical for the discrete

system (to define the region (I) to (V)), they do not affect the qualitative behavior of the continuous

system. Furthermore, some observations in the continuous system appear to contradict the conclusions

made previously in the discrete case. We see that stability can still be obtained with high values of the

connection weight γ >> 1, but this time the stable regions coincide with high α values, whereas it was

the opposite in Figure 11 panels (b),(f). This qualitative difference in behavior can be taken as a point of

caution, to remind us that a discrete approximation of the system can be associated with important errors

in interpretation.

Finally we note that, while stability regions are qualitatively different in the continuous case compared

to the discrete approximation, the speed and direction of propagation of neural signals (reflected in the

variables c0 and cπ when they exist) remains comparable.

4.1.5 A class of examples

In this section, we provide a class of examples ofWf amenable to a complete analysis. Namely we consider

Wf as the following linear combination

Wf = ζId + ξA, (4.3)

for some ζ, ξ ∈ R where A ∈Md(R) is given by

A =



−2 1 0 · · · · · · 0

1 −2 1
. . .

. . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . . 1 −2 1

0 · · · · · · 0 1 −2


.

The matrix A is nothing but the discrete laplacian and Wf acts as a convolution operator on Rd. More

precisely, Wf combines a convolution term with a residual connection term, as in the well-known ResNet

architecture [18]. Let us also note that the spectrum of A is well known and given by

Spec(A) =

{
−4 sin2

(
pπ

2(d+ 1)

)
, p = 1, · · · , d

}
.

As a consequence, the spectrum of Wf is simply given by

Spec(W f ) =

{
ζ − 4ξ sin2

(
pπ

2(d+ 1)

)
, p = 1, · · · , d

}
.

One can for example set

ζ =
sin2

(
dπ

2(d+1)

)
+ sin2

(
π

2(d+1)

)
sin2

(
dπ

2(d+1)

)
− sin2

(
π

2(d+1)

) and ξ =
1

2
(

sin2
(

dπ
2(d+1)

)
− sin2

(
π

2(d+1)

)) ,
such that

ζ − 4ξ sin2

(
dπ

2(d+ 1)

)
= −1, ζ − 4ξ sin2

(
π

2(d+ 1)

)
= 1,
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and for all p = 2, · · · , d− 1

ζ − 4ξ sin2

(
pπ

2(d+ 1)

)
∈ (−1, 1).

Next, for any p = 1, · · · , d the eigenvector corresponding to the eigenvalue −4 sin2
(

pπ
2(d+1)

)
is

Up =

(
cos

(
pπ

d+ 1

)
, · · · , cos

(
pkπ

d+ 1

)
, · · · , cos

(
pdπ

d+ 1

))t

∈ Rd.

Up is the projection vector that corresponds to the pth neural assembly uj,p as defined above.

Along U1, the recurrence equation reduces to (4.1) with γ = 1, while along Ud, the recurrence equation

reduces to (4.1) with γ = −1, and we can apply the results of the previous section (the Identity case). In

between (for all 1 ≤ p ≤ d) we see that the eigenvalues of our connection matrix W f span the entire range

between −1 and 1, that they can be explicitly computed, and thus that the stability, propagation speed

and direction of activity in the corresponding neural assembly can be determined.

4.1.6 Fully continuous interpretation in time, depth and width.

For the same class of example (connection matrix composed of a convolution and residual terms), we now

wish to provide a fully continuous interpretation for model (2.1) in the special case ζ = 1 and ξ adjusted

as follows. By fully continuous, we mean that we explore the limit of our model when not only time t,

but also network depth x and neuronal layer width y are considered as continuous variables. Although we

already presented a model that was continuous in both time and depth in subsection 3.3.2, the layers in

that model only comprised a single neuron, and had no intrinsic spatial dimension. We now introduce this

third continuous dimension. The starting point is to see Enj,k, the kth element of Enj , as an approximations

of some continuous function E(t, x, y) evaluated at tn = n∆t, xj = j∆x and yk = k∆y for some ∆t > 0,

∆x > 0 and ∆y > 0. Let us first remark that the action of A on Enj is given by

(AEnj )k = Enj,k−1 − 2Enj,k + Enj,k+1,

which can be seen at a discrete approximation of ∂2
yE(tn, xj , yk) up to a scaling factor of order ∆y2. Once

again, setting ν = ∆x
∆t and introducing κ = ∆y2

∆t , we may rewrite (2.1) with Wf =Wb = Id + ξA as

(1− β)
En+1
j − Enj

∆t
= βν

En+1
j−1 − E

n+1
j

∆x
+ λν

Enj+1 − Enj
∆x

− αν
Enj − Enj−1

∆x

+ βξκ
A

∆y2
En+1
j−1 + αξκ

A

∆y2
Enj−1 − 2αξκ

A

∆y2
Enj − αξ2κ∆y2 A

∆y2

A

∆y2
Enj

+ λξκ
A

∆y2
Enj+1.

Now letting ∆t→ 0, ∆x→ 0 and ∆y → 0 with ν and κ fixed, we obtain the following partial differential

equation

∂tE(t, x, y) +
ν(β + α− λ)

1− β
∂xE(t, x, y) =

ξκ(β + λ− α)

1− β
∂2
yE(t, x, y).

This is a diffusion equation along the y dimension while being a transport in the x direction. As such, it

is only well defined (or stable) when the sign of the diffusion coefficient in front of ∂2
yE(t, x, y) is positive.

This depends on the sign of ξ and β + λ − α, which need to verify ξ(β + λ − α) > 0. In that case, the

system diffuses neural activity along the dimension y such that the entire neuronal layer converges to a

single, uniform activation value when t→∞.
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4.2 The general symmetric case

Finally, we now wish to relax some of the assumptions made in the previous Rao-Ballard case. Thus, the

last case that we present is one where we assume that

(i) Wf and Wb are symmetric matrices, that is Wf ,Wb ∈ Sd(R),

(ii) Wf and Wb commute, that is WfWb =WbWf .

But we do not necessarily impose thatWf = (Wb)t as in the Rao & Ballard’s previous case. Let us already

note that examples of matrices verifying the above conditions are residual convolution matrices introduced

in (4.3), that is Wf = ζfId + ξfA and Wb = ζbId + ξbA for some ζb,f , ξb,f ∈ R. Under assumptions (i) and

(ii), Wf andWb can be diagonalized in the same orthonormal basis, meaning that there exist an invertible

orthogonal matrix P ∈ Md(R) such that PP t = P tP = Id, and two diagonal matrices Df ∈ Md(R) and

Db ∈Md(R) with the properties that

P tWfP = Df , and P tWbP = Db.

For future reference, we denote by γf,bp for each 1 ≤ p ≤ d the diagonal elements of Df,b. Once again, we

can use the matrix P to apply an orthonormal basis change and create neural asssemblies Unj := P tEnj .

With PUnj := Enj , the recurrence equation becomes

Un+1
j − βDfUn+1

j−1 = αDbUnj−1 +
[
(1− β − λ)Id − αDbDb

]
Unj + λDbUnj+1.

Note that, because all matrices in the above equation are diagonal, we have also totally decoupled the d

components of the vector Unj . More precisely, by denoting unj,p the pth component of Unj , that is Unj =

(unj,1, · · · , unj,d)t, we obtain

un+1
j,p − βγ

f
pu

n+1
j−1,p = αγbpu

n
j−1,p + (1− β − λ− α

(
γbp

)2
)unj,p + λγbpu

n
j+1,p, p = 1, · · · , d.

This indicates that one needs to study

un+1
j − βγ1u

n+1
j−1 = αγ2u

n
j−1 + (1− β − λ− αγ2

2)unj + λγ2u
n
j+1, (4.4)

where γ1,2 ∈ R are now two given parameters. As before, γ1,2 can be thought of as the connection strength

across layers of the neural assembly under consideration. By construction, each assembly in a given layer is

only connected to the corresponding assembly in the layer above, and similarly in the layer below, with γ1

for the feedforward direction and γ2 for the feedback direction. Note that γ1 = γ2 would then correspond

to the Rao-Ballard situation studied previously.

4.2.1 Study of the amplification factor function

Repeating the previous analysis, one needs to understand the amplification factor

ργ1,γ2(θ) =
αγ2

(
e−iθ − γ2

)
+ 1− β + λ

(
γ2e

iθ − 1
)

1− βγ1e−iθ
, θ ∈ [−π, π].
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We already note a symmetry property of the amplification factor function which reads

ργ1,γ2(θ) = ρ−γ1,−γ2(θ ± π), θ ∈ [−π, π].

As a consequence, whenever ργ1,γ2(0) = ±1 one has ρ−γ1,−γ2(±π) = ±1 for the same values of the param-

eters. Then, we note that

ργ1,γ2(0) = 1⇐⇒ γ1 = χ(γ2),

where the function χ(x), depending only on the hyper-parameters, is given by

χ(x) :=
αx2 − (α+ λ)x+ λ+ β

β
, x ∈ R. (4.5)

Thus, using the above symmetry, we readily deduce that

ργ1,γ2(±π) = 1⇐⇒ γ1 = −χ(−γ2).

Finally, we compute that

ργ1,γ2(0) = −1⇐⇒ γ1 = ζ(γ2),

where the function ζ(x), depending only on the hyper-parameters, is given by

ζ(x) :=
−αx2 + (α+ λ)x+ 2− λ− β

β
, x ∈ R. (4.6)

Using the above symmetry, we readily deduce that

ργ1,γ2(±π) = −1⇐⇒ γ1 = −ζ(−γ2).

A complete and exhaustive characterization of all possible cases as a function of γ1,2 and the hyper-

parameters is beyond the scope of this paper. Nevertheless, we can make some few further remarks. The

four above curves γ1 = χ(γ2), γ1 = −χ(−γ2), γ1 = ζ(γ2) and γ1 = −ζ(−γ2) form parabolas in the plane

(γ1, γ2) that can intersect and provide the boundaries of the stability regions. For example, we can notice

that γ1 = ζ(γ2) and γ1 = −ζ(−γ2) intersect if and only if γ2 = ±
√

2−λ−β
α whereas γ1 = χ(γ2) and

γ1 = −χ(−γ2) can never intersect. We refer to Figure 14 for an illustration of the stability regions and

their boundaries in the case (α, β, λ) = (0.4, 0.2, 0.3). Here, we see that stability can be obtained with large

values of the feedforward connection strength γ1, but this requires the feedback connections strength γ2 to

remain low. Of course, different qualitative behaviors and stability regions may be obtained for different

choices of the hyperparameters (α, β, λ); while it is beyond the scope of the present study to characterize

them all, it is important to point out that such a characterization is feasible using the present method, for

any choice of the hyperparameters.

More interestingly, we can investigate the dependence of the wave speed as a function of the parameters

γ1 and γ2. For example, when γ1 = χ(γ2), we have that

ρχ(γ2),γ2(θ) = exp

(
−i

(α− λ)γ2 + βχ(γ2)

1− βχ(γ2)
θ +O(|θ|2)

)
, as θ → 0,

such that the associated wave speed is given by

cχ0 =
(α− λ)γ2 + βχ(γ2)

1− βχ(γ2)
,

whose sign may vary as γ2 is varied. We refer to the forthcoming section 4.2.4 below for a practical example

(see Figure 18).
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Figure 14: Stability/instability regions and their boundaries as a function of (γ1, γ2) for (4.4) for fixed values of the

hyperparameters (α, β, λ). The shaded orange region corresponds to an instability for (4.4) while the purple region

corresponds to a stability for (4.4). The boundaries of the stability/instability regions are given by the intersections of

the parametrized curves γ1 = χ(γ2) (blue curve), γ1 = −χ(−γ2) (light blue curve), γ1 = ζ(γ2) (dark green curves) and

γ1 = −ζ(−γ2) (light green curves) where equation (4.4) is marginally stable. We represented the line γ1 = γ2 (black

curve) which corresponds to the case studied in Figure 11(d) with (β, λ) in Region (III) and α fixed in (Λ, λ+ β).

4.2.2 Continuous in time interpretation

As done in previous sections, we now perform a continuous in time limit of the model (4.4). With the same

scaling on the hyperparameters

β̃ :=
β

∆t
, λ̃ :=

λ

∆t
, and α̃ :=

α

∆t
,

we get that, at the limit ∆t → 0, the equation (4.4) becomes the following lattice ordinary differential

equation
d

dt
uj(t) = (β̃γ1 + α̃γ2)uj−1(t)− (β̃ + λ̃+ α̃γ2

2)uj(t) + λ̃γ2uj+1(t), t > 0. (4.7)

The amplification factor function in this case is given by

νγ1,γ2(θ) = (β̃γ1 + α̃γ2)e−iθ − (β̃ + λ̃+ α̃γ2
2) + λ̃γ2e

iθ, θ ∈ [−π, π],

whose real part is given by

Re(νγ1,γ2(θ)) = (β̃γ1 + (α̃+ λ̃)γ2) cos(θ)− (β̃ + λ̃+ α̃γ2
2), θ ∈ [−π, π].

When β̃γ1 + (α̃+ λ̃)γ2 > 0, we observe that

max
θ∈[−π,π]

Re(νγ1,γ2(θ)) = Re(νγ1,γ2(0)) = β̃γ1 + (α̃+ λ̃)γ2 − (β̃ + λ̃+ α̃γ2
2),

such that

max
θ∈[−π,π]

Re(νγ1,γ2(θ)) = 0⇐⇒ γ1 =
α̃γ2

2 − (α̃+ λ̃)γ2 + β̃ + λ̃

β̃
.
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Figure 15: Stability/instability regions and their boundaries as a function of (γ1, γ2) for (4.7) for any (α̃, λ̃, β̃) fixed

with α̃ = λ̃+β̃. The shaded orange region corresponds to an instability for (4.7) while the purple region corresponds to

a stability for (4.7). The boundaries of the stability/instability regions are given by the intersections of the parabolas

γ1 =
α̃γ2

2−(α̃+λ̃)γ2+β̃+λ̃
β̃

and γ1 =
−α̃γ2

2−(α̃+λ̃)γ2−β̃−λ̃
β̃

(magenta curves) where equation (4.7) is marginally stable. We

represented the line γ1 = γ2 (blue curve) which corresponds to the case studied in Figure 13.

Whereas, when β̃γ1 + (α̃+ λ̃)γ2 < 0, we observe that

max
θ∈[−π,π]

Re(νγ1,γ2(θ)) = Re(νγ1,γ2(±π)) = −β̃γ1 − (α̃+ λ̃)γ2 − (β̃ + λ̃+ α̃γ2
2),

such that

max
θ∈[−π,π]

Re(νγ1,γ2(θ)) = 0⇐⇒ γ1 =
−α̃γ2

2 − (α̃+ λ̃)γ2 − β̃ − λ̃
β̃

.

As a consequence, the stability regions are determined by the locations of the parabolas γ2 7→
α̃γ22−(α̃+λ̃)γ2+β̃+λ̃

β̃

and γ2 7→
−α̃γ22−(α̃+λ̃)γ2−β̃−λ̃

β̃
in the plane (γ1, γ2). We observe that they never intersect and are oriented

in the opposite directions and refer to Figure 15 for a typical configuration. Here, we see that the system

is stable for a very large range of values of both γ1 and γ2. In particular, for large enough values of the

feedback connection weight (e.g. |γ2| > 3), stability is guaranteed regardless of the value of the feedforward

connection weight γ1 (within a reasonable range, e.g. γ1 ∈ (−10, 10)). This is the opposite behavior as

that obtained for the discrete system in Figure 14, where stability was impossible under the same condi-

tions for γ1,2. This highlights again the errors of interpretation that can potentially be caused by discrete

approximation of a continuous system.

4.2.3 Fully continuous interpretation when Wf = Id + ξfA and Wb = Id + ξbA.

When Wf = Id + ξfA and Wb = Id + ξbA, one can once again identify E tj,k as the approximation of some

smooth function E(t, x, y) at tn = n∆t, xj = j∆x and yk = k∆y, along the three dimensions of time,
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network depth and neuronal layer width. We may rewrite (2.1) in this case as

(1− β)
En+1
j − Enj

∆t
= βν

En+1
j−1 − E

n+1
j

∆x
+ λν

Enj+1 − Enj
∆x

− αν
Enj − Enj−1

∆x

+ βξfκ
A

∆y2
En+1
j−1 + αξbκ

A

∆y2
Enj−1 − 2αξbκ

A

∆y2
Enj − αξ2

bκ∆y2 A

∆y2

A

∆y2
Enj

+ λξbκ
A

∆y2
Enj+1,

such that in the limit ∆t → 0, ∆x → 0 and ∆y → 0 with ν and κ fixed, we obtain the following partial

differential equation

∂tE(t, x, y) +
ν(β + α− λ)

1− β
∂xE(t, x, y) = κ

βξf + (λ− α)ξb
1− β

∂2
yE(t, x, y).

As before, this is a diffusion equation along the y dimension, whose stability depends on the positivity of

the diffusion coefficient, i.e. βξf + (λ− α)ξb ≥ 0 .

4.2.4 Application to a ring model of orientations

Going back to our discrete system, in this section we consider the case where neurons within each layer

encode for a given orientation in [0, π]. Here, we have in mind visual stimuli which are made of a fixed

elongated black bar on a white background with a prescribed orientation. We introduce the following

matrix Aper ∈Md(R) given by

Aper =



−2 1 0 · · · 0 1

1 −2 1
. . .

. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

0
. . .

. . . 1 −2 1

1 0 · · · 0 1 −2


,

which is nothing but the discretizing of the Laplacian with boundary condition. Indeed, for each Enj ∈ Rd,
we assume that neuron Enj,k encodes for orientation k

dπ for k = 1, · · · , d. We readily remark that 0 ∈
Spec(Aper) with corresponding eigenvector U1 = (1, · · · , 1)t ∈ Rd. Furthermore, we have:

• if d = 2m+1 is odd, then λp = −4 sin
(pπ
d

)2
with p = 1, · · · ,m is an eigenvalue of Aper of multiplicity

2 with associated eigenvectors

U2p =

(
cos

(
2pπ

d

)
, · · · , cos

(
2kpπ

d

)
, · · · , 1

)t

∈ Rd,

U2p+1 =

(
sin

(
2pπ

d

)
, · · · , sin

(
2kpπ

d

)
, · · · , 0

)t

∈ Rd;

• if d = 2m is even, then λp = −4 sin
(pπ
d

)2
with p = 1, · · · ,m−1 is an eigenvalue of Aper of multiplicity

2 with associated eigenvectors U2p and U2p+1 as above. And λ = −4 is a simple eigenvalue of Aper

with associated eigenvector Ud = (−1, 1,−1, 1, · · · ,−1, 1) ∈ Rd.
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(a) Eigenvectors U2 and U3. (b) Eigenvectors U4 and U5.

Figure 16: We plot the eigenvectors U2p and U2p+1 for p = 1 and p = 2 as a function of k
dπ for k = 1, · · · , d. We

note that U2p and U2p+1 encode the first Fourier modes. Here we have set d = 25.

It may be interesting to note that any linear combinations of U2p and U2p+1 can always be written in the

form

aU2p + bU2p+1 = A

(
cos

(
2pπ

d
+ ϕ

)
, · · · , cos

(
2kpπ

d
+ ϕ

)
, · · · , cos(ϕ)

)t

∈ Rd,

where A =
√
a2 + b2 > 0 and ϕ = −arctan

(
b
a

)
∈ (−π/2, π/2) whenever a 6= 0 and b 6= 0. This means that

U2p and U2p+1 span all possible translations modulo [0, π] of a fixed profile. We refer to Figure 16 for a

visualization of the first eigenvectors. In short, these eigenvectors Ui implement a Fourier transform of the

matrix Aper.

We now set Wb to be

Wb =
1

2
Id −

1

4
Aper =



1 −1
4 0 · · · 0 −1

4

−1
4 1 −1

4

. . .
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

0
. . .

. . . −1
4 1 −1

4

−1
4 0 · · · 0 −1

4 1


,

which means that Wb acts as a convolution with local excitation and lateral inhibition. From now on, to

fix ideas, we will assume that d = 2m is even. We define the following matrix

P = (U1, U2, · · · , Ud) ∈Md(R).

As a consequence, we have the decomposition

P tWbP = Db,

with Db = diag
(

1
2 ,

1
2 −

1
4λ1,

1
2 −

1
4λ1, · · · , 1

2 −
1
4λm−1,

1
2 −

1
4λm−1,

3
2

)
∈Md(R). Now, for given values of the

hyper-parameters (α, β, λ) with β > 0, we set Df := χ(Db) where the map χ, defined in (4.5), is applied

to the diagonal elements of Db, that is

Df = diag

(
χ

(
1

2

)
, χ

(
1

2
− 1

4
λ1

)
, · · · , χ

(
1

2
− 1

4
λm−1

)
, χ

(
3

2

))
∈Md(R).
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(b) Wb.

Figure 17: Illustration of the matrices Wf and Wb for d = 25 neurons and values of the hyper-parameters fixed to

(α, β, λ) = (0.1, 0.1, 0.5). Note the band structure of Wf with local excitation.

And then we set Wf := PDfP t. We refer to Figure 17 for an illustration of the structures of matrices Wf

and Wb. For large set of values of the hyper-parameters, Wf still present a band structure with positive

elements on the diagonals indicating thatWf can also be interpreted as a convolution with local excitation.

For the values of the hyper-parameters fixed in Figure 17, the feedforward matrix Wf is purely excitatory.

Reproducing the analysis developed in the previous Subsection 4.2, we perform a change of orthonormal

basis to express neural activities in terms of the relevant assemblies Unj := P tEnj . With PUnj := Enj , the

recurrence equation becomes

Un+1
j − βDfUn+1

j−1 = αDbUnj−1 +
[
(1− β − λ)Id − αDbDb

]
Unj + λDbUnj+1.

Then, if we denote by γp the pth diagonal element of Db, then for each p = 1, · · · , d the above recurrence

writes

un+1
j,p − βχ(γp)u

n+1
j−1,p = αγpu

n
j−1,p + (1− β − λ− αγ2

p)unj,p + λγpu
n
j+1,p,

where unj,p is the pth component (or neural assembly) of Unj . For each p = 1, · · · , d, the associated

amplification factor function reads

ρp(θ) =
αγp

(
e−iθ − γp

)
+ 1− β + λ

(
γpe

iθ − 1
)

1− βχ(γp)e−iθ
, θ ∈ [−π, π],

and with our specific choice of function χ, we have that ρp(0) = 1 with

ρp(θ) = exp

(
−i

(α− λ)γp + βχ(γp)

1− βχ(γp)
θ − σp0θ

2 +O(|θ|3)

)
, as θ → 0,

such that the associated wave speed is given by

cp0 =
(α− λ)γp + βχ(γp)

1− βχ(γp)
,

and where we have set

σp0 =
α(1 + 4λ)γ2

p + β + λ− (α+ λ)γp(αγ
2
p + β + λ)

2(1− βχ(γp))2
.
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Figure 18: Plot of the wave speed cp0 for p = 1, · · · , d (colored dots). The color code (blue/red) refers to the sign

of cp0: blue when positive and dark red when negative. Note that only the elements associated to the eigenvalues 1
2 ,

1
2 −

1
4λ1, 1

2 −
1
4λ2 and 1

2 −
1
4λ3 are positive. We also remark that cp0 is a monotone decreasing function. Here d = 25

and values of the hyper-parameters are fixed to (α, β, λ) = (0.1, 0.1, 0.5).

From now on, we assume that we have tuned the hyper-parameters such that |ρp(θ)| < 1 for all θ ∈
[−π, π]\ {0} and each p = 1, · · · , d. This can in fact be systematically checked numerically for a given

set of hyper-parameters. We report in Figure 18 the shape of p 7→ cp0 for the same values of the hyper-

parameters as the ones in Figure 17 and d = 25. We first remark that p 7→ cp0 is a monotone decreasing

map, and in our specific case we have

cd0 < cd−1
0 = cd−2

0 < · · · < c9
0 = c8

0 < 0 < c7
0 = c6

0 < c5
0 = c4

0 < c3
0 = c2

0 < c1
0.

Given a fixed input entry E0 ∈ Rd presented at j = 0 to the network continually at each time step, we

can deduce which components of E0 ∈ Rd will be able to propagate forward through the network. More

precisely, we can decompose E0 along the basis (U1, · · ·Ud) of eigenvectors, that is

E0 =
d∑
p=1

apUp,

for some real coefficients ap for p = 1, · · · , d. Assuming that the network was at rest initially, we get that

the dynamics along each eigenvector (or neural assembly) is given by
un+1
j,p − βχ(γp)u

n+1
j−1,p = αγpu

n
j−1,p + (1− β − λ− αγ2

p)unj,p + λγpu
n
j+1,p, j ≥ 1, n ≥ 0,

un0,p = ap, n ≥ 0,

u0
j,p = 0, j ≥ 1.

(4.8)

Thus, we readily obtain that

Enj =

d∑
p=1

unj,pUp, j ≥ 1, n ≥ 1,

where unj,p is a solution to (4.8).

As a consequence, the monotonicity property of the map p 7→ cp0 indicates that the homogeneous constant

mode U1 is the fastest to propagate forward into the network with associated spreading speed c1
0, it is then

followed by the modes (U2, U3) propagating at speed c2
0 = c3

0. In our numerics, we have set the parameters
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(a) Case p = 2 with γ2 = 1
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(b) Case p = 10 with γ10 = 1
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Figure 19: Space-time plot of the solution of the recurrence equation for (4.8) for p = 2 and p = 10 associated to

respectively positive wave speed c20 > 0 and negative wave speed c100 < 0. The neural assembly associated with the 2nd

eigenvector of the connectivity matrix propagates its input signal into the network at constant speed; but the neural

assembly associated with the 10th eigenvector does not propagate the signals it receives on the input layer.

such that c1
0 ≈ c2

0 = c3
0 with a significant gap with the other wave speeds. Lets us remark, that all modes

Up with p ≥ 8 are not able to propagate into the network (see Figure 19). Thus our architecture acts as a

mode filter.

Even more precisely, let us remark that the sequence

(
ap

(
αγp+βχ(γp)

λγp

)j)
j≥0

is a stationary solutions of

(4.8) which remains bounded whenever p is such that the associated wave speed is negative, that is cp0 < 0,

since in that case, one has αγp + βχ(γp) < λγp. The solution Enj can then be approximated as

Enj '
∑

p : cp0>0

ap
2

(
1− erf

(
j − cp0n√

4σp0n

))
Up +

∑
p : cp0<0

ap

(
αγp + βχ(γp)

λγp

)j
Up, j ≥ 1, n ≥ 1,

This is illustrated by a first example simulation in Figures 20 and 21. We present at j = 0 a fixed input

E0 which is generated as the superposition of a tuned curve at ϑ = 0 (blue) with some fixed random noise:

namely we select a1 = 0, a2 = 1, a3 = 0 and all other coefficients ap for p = 4, · · · , d are drawn from

a normal law with an amplitude pre-factor of magnitude ε set to ε = 0.1. The shape of the input E0 is

shown in Figure 20(a). The profile of Enj at time iteration n = 200 along the first layers of the network

j ∈ {1, 2, 3, 4, 5} is given in Figure 20(b)-(c)-(d)-(e)-(f) respectively. We first observe that the network

indeed acts as a filter since across the layers of the network the solution profile Enj has been denoised and

get closer to the tuned curve at ϑ = 0. Let us also remark that the filtering is more efficient for layers away

from the boundary and is less efficient for those layers near the boundary. This is rather natural since the

impact of the input E0 is stronger on the first layers. We see that already at layer j = 5, we have almost

fully recovered the tuned curve at ϑ = 0 (see Figure 20(f)). On the other hand, in Figure 21, we show the

time evolution of Enj at a fixed layer far away from the boundary, here j = 10. Initially, at n = 0, the layer

is inactivated (see Figure 21(a)), and we see that after several time iterations that the solution profile Enj
start to be activated. It is first weakly tuned (see Figures 21(b)-(c)-(d)) and then it becomes progressively

fully tuned and converges to the tuned curve at ϑ = 0 (see Figures 21(e)-(f)).
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(a) j = 0. (b) j = 1. (c) j = 2.

(d) j = 3. (e) j = 4. (f) j = 5.

Figure 20: A fixed input E0 (red) which is the superposition of a tuned curve at ϑ = 0 (blue) with some fixed random

noise is presented at layer j = 0. Profile (yellow) of Enj at time iteration n = 200 along the first layers of the network

j ∈ {1, 2, 3, 4, 5}.

In a second example simulation (Figure 22), we highlight the dynamics of the different modes in a situation

where the input is a narrow Gaussian profile (close to a Dirac function), with a superposition of various

Fourier modes. As expected from the different values of the propagation speed c0 (Figure 18), we see that

the mode associated with the first Fourier component is the first to reach layer j = 10, later followed by

successive modes associated with later Fourier components. In other words, this hierarchically higher layer

j = 10 first receives information about the coarse spatial structure of the input signal, and then gradually

about finer and finer spatial details.

4.3 Summary

In this section, we saw that the results obtained initially (The Identity Case) with the amplification

function can be extended to more realistic situations with forward and backward connection matrices,

for instance implementing (residual) convolutions or orientation processing. When we consider neural

assemblies capturing the principal components of the connection matrices, we see that each assembly can be

treated independently in terms of stability and signal propagation speed and direction. The exact behavior

of the system will depend on the actual connection matrices (and thus on the function that they implement

in the neural network), but the important point is that our generic framework can always be applied in

practice. In some example cases (ring model of orientations), we saw that only a few assemblies support
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(a) n = 0. (b) n = 20. (c) n = 40.

(d) n = 60. (e) n = 80. (f) n = 100.

Figure 21: Time evolution of Enj at layer j = 10 (yellow) for n ∈ {0, 20, 40, 60, 80, 100} with fixed input E0 at layer

j = 0 (red). The input E0 is the superposition of a tuned curve at ϑ = 0 (blue) with some fixed random noise.

signal propagation (implying that the system acts a filter on its inputs), and these assemblies propagate

information at different speeds (implementing a coarse-to-fine analysis). In other cases (e.g. Figure 12), we

have even seen that distinct assemblies can simultaneously propagate information in opposite directions,

with one assembly supporting feedforward propagation while another entails feedback propagation.

We have extended our equations to the continuous limit in time, and found that the amplification factor

function can give rise to qualitatively different stability regions compared to the discrete model. This

served as a cautionary note for situations where the discrete implementation must be chosen; in that case,

using smaller time steps will be preferable, because it makes such discrepancies less likely.

Finally, we also showed that it is possible to consider fully continuous versions of our dynamic system,

where not only time but also network depth and neural layer width are treated as continuous variables. This

gives rise to diffusion equations, whose stability can also be characterized as a function of hyperparameter

values.

In the following, we address possible extensions of the model to more sophisticated and more biologically

plausible neural architectures, taking into account the significant communication delays between layers.
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(a) n = 0. (b) n = 20. (c) n = 40.

(d) n = 60. (e) n = 80. (f) n = 100.

(g) n = 200. (h) n = 300. (i) n = 400.

Figure 22: Time evolution of Enj at layer j = 10 (orange) for n ∈ {0, 20, 40, 60, 80, 100, 200, 300, 400} with fixed input

E0 at layer j = 0 (blue). The input E0 is a Gaussian centered at ϑ = π/2.

5 Extension of the model: taking into account transmission delays

Deep feedforward neural networks typically implement instantaneous updates, as we did in Eq (2.1) with

our feedforward term En+1
j = βWfEn+1

j−1 + .... Similarly, artificial recurrent neural networks sequentially

update their activity from one time step to the next, as we did with the other terms in our equation (2.1)

(memory term, feedforward and feedback prediction error correction terms): En+1
j = ... + α(Wb)tEnj−1 +

(1− β − λ)Enj − α(Wb)tWbEnj + λWbEnj+1. However, in the brain there are significant transmission delays

whenever neural signals travel from one area to another. These delays could modify the system’s dynamics
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Figure 23: Illustration of the network structure of model (5.1) for k = 1 where the red arrows indicate the contributions

leading to the update of En+1
j .

and its stability properties. Therefore, in this section we modify model (2.1) by assuming that it takes k

time steps to receive information from a neighboring site in the feedback/feedforward dynamics, namely

we consider the following recurrence equation

En+1
j − βWfEn+1

j−1 = α(Wb)tEn−kj−1 + (1− β − λ)Enj − α(Wb)tWbEn−2k
j + λWbEn−kj+1 , (5.1)

where k ≥ 1 is some given fixed integer (see Figure 23 for an illustration with k = 1), and we refer

to [23] for the justification of the derivation of the model. (Note in particular that we did not modify

the instantaneous nature of our feedforward updating term En+1
j = βWfEn+1

j−1 + .... This is because, as

motivated in [9, 23], we aim for the feedforward part of the system to be compatible with state-of-the-art

deep convolutional neural networks, and merely wish to investigate how adding recurrent dynamics can

modify its properties.) We may already notice that when k = 0, we recover our initial model (2.1). In what

follows, for the mathematical analysis, we restrict ourselves to the identity case Wf =Wn = Id and when

the model is set on Z. Indeed, our intention is to briefly explain what could be the main new propagation

properties that would emerge by including transmission delays. Thus, we consider

en+1
j − βen+1

j−1 = αen−kj−1 + (1− β − λ)enj − αen−2k
j + λen−kj+1 , j ∈ Z. (5.2)

Let us also note that the system (5.2) depends on a “history” of 2k + 1 time steps; thus one needs to

impose 2k + 1 initial conditions:

emj = hmj , m = 0, · · · , 2k, j ∈ Z,

for 2k + 1 given sequences (hmj )j∈Z with m = 0, · · · , 2k.
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To proceed in the analysis, we first introduce a new vector unknown capturing each layer’s recent history:

En
j :=


en−2k
j

...

en−2
j

en−1
j

enj

 ∈ R2k+1, n ≥ 1, j ∈ Z,

such that the above recurrence (5.2) can then be rewritten as

En+1
j − βQ−1E

n+1
j−1 = αQ1E

n
j−1 +Q0E

n
j + λQ1E

n
j+1, n ≥ 1, j ∈ Z, (5.3)

where the matrices Q1, Q0, Q−1 ∈M2k+1(R) are defined as follows

Q0 =



0 1 0 · · · · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0
. . .

. . .
. . . 0 1

−α 0 · · · · · · 0 1− β − λ


,

and Q±1 have a single nonzero element on their last row:

(Q−1)2k+1,2k+1 = 1, (Q1)2k+1,k+1 = 1.

5.1 Mathematical study of the recurrence equation (5.3)

We now postulate an Ansatz of the form ρneiθjE for some non zero vector E ∈ C2k+1, and obtain

(
ρ
[
I2k+1 − βe−iθQ−1

]
−Q0 − (αe−iθ + λeiθ)Q1

)
︸ ︷︷ ︸

:=Ak(ρ,θ)

E =

 0
...

0


which is equivalent to

det
(
ρ
[
I2k+1 − βe−iθQ−1

]
−Q0 − (αe−iθ + λeiθ)Q1

)
= 0,

that is

(1− βe−iθ)ρ2k+1 − ρ2k (1− β − λ)− ρk
(
αe−iθ + λeiθ

)
+ α = 0. (5.4)

The above system has 2k + 1 roots in the complex plane that we denote ρm(θ) for m = 1, · · · 2k + 1. We

remark at θ = 0, ρ = 1 is always a root of the equation since in this case (5.4) reduces to

(1− β)ρ2k+1 − ρ2k (1− β − λ)− ρk (α+ λ) + α = 0. (5.5)
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By convention, we assume that ρ1(0) = 1. We further note that E1 = (1, · · · , 1)t is the associated

eigenvector. As usual, we can perform a Taylor expansion of ρ1 near θ = 0 and we obtain that

ρ1(θ) = exp

(
−i

α+ β − λ
1− β + k(λ− α)

θ +O(|θ|2)

)
, as θ → 0,

so that the associated wave speed is this time given by

ck0 =
α+ β − λ

1− β + k(λ− α)
,

and depends explicitly on the delay k. We readily conclude that:

• When α < λ, then ck0 is well defined for all values of k. Furthermore, the amplitude of the wave

speed k 7→ |ck0| decreases as k increases with |ck0| → 0 as k → +∞. That is, the activity waves may go

forward or backward (depending on the hyperparameter values), but the transmission delay always

slows down their propagation.

• When α = λ, then ck0 = β
1−β > 0 is independent of the delay k. This is compatible with our imple-

mentation choice, where the initial feedforward propagation term (controlled by β) is not affected by

transmission delays.

• When λ < α, then ck0 is well defined whenever k 6= 1−β
α−λ > 0. Furthermore, the wave speed ck0 > 0 for

1 ≤ k < 1−β
α−λ and increases with the delay k on that interval. That is, in this parameter range neural

activity waves propagate forward and, perhaps counterintuively, accelerate when the transmission

delay increases. On the other hand ck0 < 0 for k > 1−β
α−λ and k 7→ |ck0| decreases as k increases on

that domain with |ck0| → 0 as k → +∞. In this parameter range, waves propagate backward, and

decelerate when the transmission delay increases.

Coming back to (5.5), we can look for other potential roots lying on the unit disk, i.e., marginally stable

solutions. That is we look for ω ∈ (0, 2π) such that ρ = eiω. We obtain a system of two equations{
(1− β) cos((2k + 1)ω)− (1− β − λ) cos(2kω)− (α+ λ) cos(kω) + α = 0,

(1− β) sin((2k + 1)ω)− (1− β − λ) sin(2kω)− (α+ λ) sin(kω) = 0.
(5.6)

Case k = 1. When k = 1, coming back to (5.5), we see that the two other roots are real and given by

− λ
2(1−β) ±

√
λ2+4α(1−β)

2(1−β) , such that when α+ β+ λ = 1 the negative root is precisely −1 such that ω = π is

a solution which we assume, without loss of generality, to be the second root, that is ρ2(0) = −1 whenever

α+ β + λ = 1. In this specific case, the associated eigenvector is E−1 = (1,−1, 1)t. Recall that E reflects

the history of activity across the 2k + 1 = 3 preceding time steps. In this case, the eigenvector E−1 is a

rapid alternation of activity, i.e. an oscillation. We refer to Figure 24(a) for an illustration of the spectral

configuration in that case. We can perform a Taylor expansion of ρ2 near θ = 0 and we obtain that

ρ2(θ) = − exp

(
−i

α+ β − λ
5− 5β − α− 3λ

θ +O(|θ|2)

)
, as θ → 0,

which provides an associated wave speed c̃0 given by

c̃0 =
α+ β − λ

5− 5β − α− 3λ
.
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Figure 24: Spectral configurations in the case k = 1 (a) and k = 2 (c) with tangency points associated to θ = 0

in (5.5). In (b)-(d), we plot the left-hand side of the equations defining system (5.6) in the case k = 1 and k = 2

respectively where the first component is in blue and the second component in dark red. For k = 1, we have a solution

at ω = 0 and ω = π which can be seen in panel (a) with the tangency points at ±1. For k = 2, we have three solutions

ω = 0 and ω ∼ 1.885 and ω ∼ 2π − 1.885 which can be seen in panel (c) with the tangency points at 1 and e±i1.885.

Parameters are set to (α, β, λ) = (0.4, 0.3, 0.3) in (a)-(b) and (α, β, λ) = (0.3, 0.3292, 0.3).

As a consequence of the above analysis, if Gn
j denotes the fundamental solution of (5.3) starting from a

Dirac delta mass centered at j = 0 along the direction E ∈ R3, then we have the following representation

for Gn
j :

• If α+ β + λ 6= 1, then

Gn
j ≈

1√
4πσk0n

exp

(
−|j − c

k
0n|2

4σk0n

)〈
(0, 0, 1)t, π1(E)

〉
R3 ,

where π1 is the spectral projection of R3 along the direction E1 and 〈·, ·〉R3 is the usual scalar

product. Here σk0 is some positive constant that can be computed explicitly by getting the higher

order expansion of ρ1(θ).

• If α+ β + λ = 1, then

Gn
j ≈

1√
4πσk0n

exp

(
−|j − c

k
0n|2

4σk0n

)〈
(0, 0, 1)t, π1(E)

〉
R3

+
(−1)n√
4πσ̃0n

exp

(
−|j − c̃0n|2

4σ̃0n

)〈
(0, 0, 1)t, π−1(E)

〉
R3 ,

where π−1 is the spectral projection of R3 along the direction E−1. Here σ̃0 is some positive constant

that can be computed explicitly by getting the higher order expansion of ρ2(θ).

In Figure 25, we illustrate the previous results in the case where α + β + λ = 1. In panel (a), we have

set E = E1 (a constant history of activity over the previous 3 time steps), such that π1(E1) = E1 and

π−1(E1) = 0R3 so that we only observe a Gaussian profile propagating at speed ck0. On the other hand in

panel (b), we have set E = E−1 (an oscillating history of activity over the previous 3 time steps), such

that π1(E−1) = 0R3 and π−1(E−1) = E−1 so that we only observe an oscillating (in time) Gaussian wave

profile propagating at speed c̃0. Note that in this case, the period of the oscillation is necessarily equal to

2k, i.e. twice the transmission delay between layers. Finally in panel (c), we observe a super-position of

the two Gaussian profiles propagating at speed c1
0 and c̃0.
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Figure 25: Space-time plots of the last component of the rescaled fundamental solution En
j of (5.3) starting from

a Dirac delta mass centered at j = 0 along different directions E when k = 1 and α + β + λ = 1. (a) When

E = E1 (constant history of activity) is the eigenvector associated to A1(1, 0) we observe propagation at wave

speed c10. (b) When E = E−1 (oscillating history of activity) is the eigenvector associated to A1(−1, 0) we observe

propagation of an oscillatory wave at wave speed c̃0. (c) When E is a linear combination of E1 and E−1, we observe

two propagating waves (one of them oscillating) at wave speed c10 and c̃0 respectively. Parameter values are set to

(α, β, λ) = (0.4, 0.3, 0.3).

Case k ≥ 2. Studying the above system (5.6) in full generality is a very difficult task. We refer to

Figure 24(c)-(d) for an illustration in the case k = 2 with three tangency points associated to θ = 0 lying

on the unit circle. Increasing the delay k while keeping fixed the other hyper-parameters (α, β, λ) will

generically tend to destabilize the spectrum (as shown in Figure 26).

5.2 Continuous in time interpretation

As done before, we now re-examine our model (with transmission delays) in the time-continuous limit.

First, we recall our notations for the scaled parameters

β̃ :=
β

∆t
, λ̃ :=

λ

∆t
, and α̃ :=

α

∆t
,

where ∆t > 0 is some time step. Next we introduce the following rescaled time delay (representing the

transmission time for neural signals between adjacent areas)

τ := k∆t.

Identifying enj as the approximation of some continuous fonction ej(tn) at tn = n∆t, we readily derive a

delayed version of (3.13), namely

d

dt
ej(t) = β̃ej−1(t)− (β̃ + λ̃)ej(t) + α̃ej−1(t− τ) + λ̃ej+1(t− τ)− α̃ej(t− 2τ), t > 0, j ∈ Z.

In what follows, we first investigate the case of homogeneous oscillations, which are now possible because

of the presence of time delays into the equation. Then, we turn our attention to oscillatory traveling waves.
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Figure 26: Destabilization of the spectrum by increasing the delay k while keeping fixed the hyper-parameters to

(α, β, λ) = (0.3, 0.1, 0.3).

5.2.1 Homogeneous oscillations

One key difference of the above delayed equation compared to (3.13) is that spatially homogeneous solutions

(i.e., solutions ej(t) that are independent of the layer j) may now have a non trivial dynamics, such as a

broadly synchronized oscillation resembling brain rhythmic activity. Indeed, looking for solutions which

are independent of j, we get the delayed ordinary differential equation

d

dt
e(t) = −λ̃e(t) + (α̃+ λ̃)e(t− τ)− α̃e(t− 2τ), t > 0.

Looking for pure oscillatory exponential solutions e(t) = eiωt for some ω ∈ R we obtain

iω = −λ̃+ (α̃+ λ̃)e−iτω − α̃e−2iτω.

This leads to the system of equations{
0 = −λ̃+ (α̃+ λ̃) cos(τω)− α̃ cos(2τω),

ω = −(α̃+ λ̃) sin(τω) + α̃ sin(2τω).

Introducing % = λ̃/α̃ > 0, we observe that the above system writes instead{
0 = −%+ (1 + %) cos(τω)− cos(2τω),

ω = α̃ (−(1 + %) sin(τω) + sin(2τω)) .
(5.7)

Using trigonometry identities, the first equation can be factorized as

0 = (1− cos(τω))(%− 1− 2 cos(τω)).

We distinguish several cases. If % > 3, then the above equation has solutions if and only if τω = 2kπ

for k ∈ Z. Inspecting the second equation, we see that necessarily k = 0 and ω = 0 is the only possible

solution. When % = 3, we notice that the equation reduces to 0 = (1 − cos(τω))2, and the solutions are
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again given by τω = 2kπ for k ∈ Z, which yields ω = 0 because of the second equation. Now, if % ∈ (0, 3),

we deduce that either τω = 2kπ for k ∈ Z or

cos(τω) =
%− 1

2
.

In the first case, we recover that ω = 0. Assuming now that ω 6= 0, i.e., a true oscillation with non-zero

frequency, we derive that

τω = ±arccos

(
%− 1

2

)
+ 2kπ, k ∈ Z.

Injecting the above relation into the right-hand side of the second equation yields that

ω = α̃ (−(1 + %) sin(τω) + sin(2τω)) = ∓α̃
√

(1 + %)(3− %),

and thus necessarily

(τ, ω) =

−arccos
(
%−1

2

)
+ 2kπ

α̃
√

(1 + %)(3− %)
,±α̃

√
(1 + %)(3− %)

 , k ∈ Z.

We recover the fact that the system (5.7) is invariant by ω 7→ −ω. Since arccos
(
%−1

2

)
∈ [0, π], we

deduce that the smallest positive τ is always achieved at k = 1. We computed for several values of α̃ the

corresponding values of τ and ω (for k = 1) as a function of %, which are presented in Figure 27(a)-(b).

We observe that for values of % in the range (1/2, 1) the corresponding time delay τ takes values between

12ms to 23ms for values of 1/α̃ ranging from 5ms to 10ms. Correspondingly, in the same range of values

for %, the frequency ω/2π takes values between 30Hz to 60Hz.

This tells us that, when the time delay τ is chosen to be around 10− 20ms, compatible with biologically

plausible values for communication delays between adjacent cortical areas, and when hyperparameters α̃

and λ̃ are suitably chosen (α̃ in particular must be strong enough to allow rapid feed-forward error correction

updates, i.e. around 1/α̃ < 8ms, while λ̃ can be chosen more liberally, as long as it stays < 3α̃), then the

network produces globally synchronized oscillations, comparable to experimentally observed brain rhythms

in the γ-band regime (30-60Hz). In this context, it is interesting to note that theoretical and neuroscientific

considerations have suggested that error correction in predictive coding systems is likely to be accompanied

by oscillatory neural activity around this same γ-frequency regime [4].

5.2.2 Oscillatory traveling waves

However, experimental and computational studies have also suggested that oscillatory signatures of pre-

dictive coding could be found at lower frequencies, in the so-called α-band regime, around 7-15Hz. Fur-

thermore, these oscillations are typically not homogeneous over space, as assumed in the previous section,

but behave as forward- or backward-travelling waves with systematic phase shifts between layers [1]. To

explore this idea further, we now investigate the possibility of having traveling wave solutions of the form

ej(t) = ei(ωt+jθ), t > 0, j ∈ Z,

for some ω ∈ R (representing the wave’s temporal frequency) and θ ∈ [0, 2π) (representing the wave’s

spatial frequency, i.e. its phase shift across layers), and we are especially interested in deriving conditions
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Figure 27: (a) Representation of the (minimal) time delay τ expressed in milliseconds as a function of the parameter

% for various values of 1/α̃ ranging from 5ms to 10ms. We observe that for values of % in the range (1/2, 1) the

corresponding time delay τ takes values between 12ms to 23ms. (b) Representation of the frequency ω/2π (in Hertz)

as a function of the parameter % for various values of 1/α̃ ranging from 5ms to 10ms. We observe that for values of

% in the range (1/2, 1) the corresponding frequency ω/2π takes values between 30Hz to 60Hz.

under which one can ensure that θ 6= 0 (since otherwise, we would be again facing the homogeneous

oscillation case). We only focus on the case β̃ = 0 (as postulated, e.g. in Rao and Ballard’s work [27]) and

leave the case β̃ > 0 for future investigations. As a consequence, the equation reduces to

d

dt
ej(t) = −λ̃ej(t) + α̃ej−1(t− τ) + λ̃ej+1(t− τ)− α̃ej(t− 2τ), t > 0, j ∈ Z.

Plugging the ansatz ej(t) = ei(ωt+jθ), we obtain:

iω = α̃
(
e−i(ωτ+θ) − e−2iωτ

)
+ λ̃

(
e−i(ωτ−θ) − 1

)
.

Taking real and imaginary parts, we obtain the system{
0 = α̃ (cos(ωτ + θ)− cos(2ωτ)) + λ̃ (cos(ωτ − θ)− 1) ,

ω = −α̃ (sin(ωτ + θ)− sin(2ωτ))− λ̃ sin(ωτ − θ).

Once again, we introduce % := λ̃
α̃ ≥ 0 where we implicitly assumed that we always work in the regime

α̃ > 0. Then, we note that the right-hand side of the first equation of the above system can be factored as

α̃ (cos(ωτ + θ)− cos(2ωτ))+λ̃ (cos(ωτ − θ)− 1) = −2α̃ sin

(
θ − ωτ

2

)(
% sin

(
θ − ωτ

2

)
+ sin

(
θ + 3ωτ

2

))
.

As a consequence, either sin
(
θ−ωτ

2

)
= 0, that is ωτ = θ+ 2kπ for k ∈ Z, which then leads, from the second

equation, to ω = 0 and θ = 0 since we restrict θ ∈ [0, 2π), or sin
(
θ−ωτ

2

)
6= 0. In the latter case, assuming

that ωτ 6= θ + 2kπ for k ∈ Z, we get that

0 = % sin

(
θ − ωτ

2

)
+ sin

(
θ + 3ωτ

2

)
.

We will now study several cases.
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Figure 28: Representation of the temporal frequency ω/2π (in Hz) and the spatial frequency θ ∈ [0, 2π) (panel (a)

and (b) respectively) in the case λ̃ = 0 as a function of 1/α̃ (in ms) for several values of the time delay τ .

Case % = 0. (In other words, this case implies λ̃ = 0, that is, a system with no feedback error correction.)

From sin
(
θ+3ωτ

2

)
= 0, we deduce that θ = −3ωτ + 2kπ for some k ∈ Z, and reporting into the second

equation of the system, we end up with

ω = 2α̃ sin(2ωτ).

We always have the trivial solution ω = 0 with θ = 0. In fact, when 4α̃τ ≤ 1, ω = 0 is the only solution

of the above equation. On the other hand, when 4α̃τ > 1, there can be multiple non trivial solutions. At

least, for each (α̃, τ) such that 4α̃τ > 1 there always exist a unique ωc(α̃, τ) ∈
(
0, π2τ

)
solution of the above

equation. This gives a corresponding θkc = −3ωc(α̃, τ)τ + 2kπ with k ∈ Z, and retaining the corresponding

value of θ in the interval [0, 2π), we have θc = −3ωc(α̃, τ)τ + 2π. We refer to Figure 28 for an illustration

of the solutions (ω, θ) for several values of the parameters.

Interestingly, we see that for biologically plausible values of the time delay τ between 10ms and 20ms, the

observed oscillation frequency is lower than in the previous case, and now compatible with the α-frequency

regime (between 10Hz and 20Hz). Furthermore, the phase shift between layers θ varies roughly between

2 and 4 radians. As phase shifts below π or above π radians indicate respectively backward- or forward-

travelling waves, we see that the exact value of the parameters τ and α̃ critically determines the propagation

direction of the travelling waves: stronger feedforward error correction (lower values of 1/α̃) and longer

communication delays τ will tend to favor backward-travelling waves; and vice-versa, weaker feedforward

error correction (higher values of 1/α̃) and shorter communication delays τ will favor forward-travelling

waves.

Case % = 1. Now we assume that λ̃ 6= 0, that is, the system now includes feedback error correction. At

first, we consider the simpler case when % = 1, that is when α̃ = λ̃, where the equation can also be solved

easily. Indeed, we have either
ωτ − θ

2
=
θ + 3ωτ

2
+ 2kπ, k ∈ Z,

or
ωτ − θ

2
= π − θ + 3ωτ

2
+ 2kπ, k ∈ Z.
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This equivalent to

θ = −ωτ + 2kπ, k ∈ Z,

or

ωτ =
π

2
+ kπ, k ∈ Z.

Let assume first that θ = −ωτ + 2kπ for some k ∈ Z, then the second equation of the system gives ω = 0

since α̃ = λ̃ when % = 1, and thus we end up with θ = 0. Now, if ωτ = π
2 + kπ for some k ∈ Z, the second

equation leads to

ω = −2α̃ cos(θ + kπ),

from which we deduce that necessarily we must have

(2k + 1)π

−4α̃τ
= cos(θ + kπ), k ∈ Z.

We first remark that if 4α̃τ < π, then the above equation has no solution. On the other hand if 4α̃τ ≥ π,

one can obtain solutions to the above equation. Indeed, let us denote

p :=

⌊
4α̃τ

π

⌋
≥ 1

the integer part of 4α̃τ
π . Then, for each k ∈ Z such that |2k + 1| ≤ p, we have

θ = ±arcos

(
(−1)k+1 (2k + 1)π

4α̃τ

)
+ 2mπ, m ∈ Z,

with corresponding ω given by

ω =
π

2τ
+
kπ

τ
.

That is, the set of solutions is given by

(ω, θ) =

(
π

2τ
+
kπ

τ
,±arcos

(
(−1)k+1 (2k + 1)π

4α̃τ

)
+ 2mπ

)
,

for each k ∈ Z such that |2k+1| ≤
⌊

4α̃τ
π

⌋
and m ∈ Z. If we only retain the smallest ω and the corresponding

value of θ ∈ [0, 2π), we must take k = 0, and we have two solutions

(ω, θ) =
( π

2τ
, arcos

(
− π

4α̃τ

))
, and (ω, θ) =

( π
2τ
,−arcos

(
− π

4α̃τ

)
+ 2π

)
if 4α̃τ ≥ π.

We note that in this case the temporal frequency only depends on the time delay τ since it is given by
ω
2π = 1

4τ and ranges from 12.5Hz (α-band regime) to 25Hz (β-band regime) for values of τ between 10ms

to 20ms (as long as α̃ is fixed such that 4α̃τ ≥ π is verified). The corresponding spatial frequencies are

arcos
(
− π

4α̃τ

)
∈ (π/2, π) and −arcos

(
− π

4α̃τ

)
+ 2π ∈ (3π/2, 2π).

In summary, when the feedforward and feedback error correction strengths are matched (that is when

α̃ = λ̃) and sufficiently high (such that 4α̃τ ≥ π), then the system will show two simultaneous travelling

waves at the same frequency in the α-band or β-band regime, but travelling in opposite directions, one as

a feedforward wave and the other as a feedback wave.
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Case % > 1. Here, the feedback error correction λ is stronger than the feedforward α. In this case, we

remark that

% sin

(
θ − ωτ

2

)
+ sin

(
θ + 3ωτ

2

)
= (%+ cos(2ωτ)) sin

(
θ − ωτ

2

)
+ cos

(
θ − ωτ

2

)
sin(2ωτ).

Since % > 1 and ωτ 6= θ+2kπ for k ∈ Z, we have (%+ cos(2ωτ)) sin
(
θ−ωτ

2

)
6= 0, and thus cos

(
θ−ωτ

2

)
sin(2ωτ) 6=

0 otherwise we would reach a contradiction since we try to solve

% sin

(
θ − ωτ

2

)
+ sin

(
θ + 3ωτ

2

)
= 0.

As a consequence, cos
(
θ−ωτ

2

)
6= 0 and we can rewrite the above equation as

tan

(
θ − ωτ

2

)
= − sin(2ωτ)

%+ cos(2ωτ)
,

so that

θ = ωτ − 2arctan

(
sin(2ωτ)

%+ cos(2ωτ)

)
+ 2kπ, k ∈ Z.

Injecting this expression for θ into the second equation, we find, after simplification, that

ω = α̃
2 sin(2ωτ)

(
1− %2

)
2% cos(2ωτ) + %2 + 1

.

We first remark that ω = 0 is always a solution, giving θ = 0. Now, inspecting the right-hand of the above

expression, we get that
2α̃
(
1− %2

)
2% cos(2ωτ) + %2 + 1

< 0, for all ω ∈ R.

As a consequence, we look for the negative minima of the function ω 7→ sin(2ωτ)
2% cos(2ωτ)+%2+1

which are given by

ω0 = π
2τ + 1

2τ arcos
(

2%
1+%2

)
+ kπ

τ for k ∈ Z, at such minima, one gets that

sin(2ω0τ)

2% cos(2ω0τ) + %2 + 1
=

1

1− %2
.

This implies that if 4α̃τ < π + arcos
(

2%
1+%2

)
, then there is no other solution than (ω, θ) = (0, 0). As a

consequence, one needs to assume 4α̃τ ≥ π + arcos
(

2%
1+%2

)
to ensure the existence of at least one non

trivial solution. We remark that this condition is consistent with our condition 4α̃τ ≥ π derived in the

case % = 1.

Case 0 < % < 1. We start once again from the equation

0 = (%+ cos(2ωτ)) sin

(
θ − ωτ

2

)
+ cos

(
θ − ωτ

2

)
sin(2ωτ).

This time, it is possible that %+ cos(2ωτ) = 0, which gives necessarily that

ωτ = ±1

2
arcos(−%) + kπ, k ∈ Z.
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But if %+ cos(2ωτ) = 0, then one has 0 = cos
(
θ−ωτ

2

)
sin(2ωτ).

Let us first assume that it is 0 = cos
(
θ−ωτ

2

)
, such that θ = ωτ + (2k + 1)π for k ∈ Z. Now, looking at the

second equation, we find that

ω = 2α̃ sin(2ωτ) = ±2α̃
√

1− %2,

which implies that it is possible only if

τ =
arcos(−%) + kπ

4α̃
√

1− %2
, k ≥ 0.

As a conclusion, if τ and 0 < % < 1 satisfy τ = arcos(−%)+kπ

4α̃
√

1−%2
for some positive integer k ≥ 0, then

(ω, θ) =

(
2α̃
√

1− %2,
1

2
arcos(−%)− π

)
, and (ω, θ) =

(
−2α̃

√
1− %2,−1

2
arcos(−%) + π

)
,

are corresponding solutions of the problem.

Next, let us assume that it is sin(2ωτ) = 0, implying that 2ωτ = kπ for k ∈ Z. Now we readily remark

that since 0 < % < 1, we have arcos(−%) ∈ (π/2, π). As a consequence, we should have

±arcos(−%) + 2kπ = pπ, k, p ∈ Z,

this is impossible and thus sin(2ωτ) 6= 0 and we are back to the case treated before.

We now assume that %+ cos(2ωτ) 6= 0. In that case, we can proceed as in the case % > 1 and obtain that

θ = ωτ − 2arctan

(
sin(2ωτ)

%+ cos(2ωτ)

)
+ 2kπ, k ∈ Z,

which gives

ω = α̃
2 sin(2ωτ)

(
1− %2

)
2% cos(2ωτ) + %2 + 1

.

Once again, (ω, θ) = (0, 0) is always a solution. What changes in this case is that now

2α̃
(
1− %2

)
2% cos(2ωτ) + %2 + 1

> 0, for all ω ∈ R.

This time, one needs to look at the positive maxima of the map ω 7→ sin(2ωτ)
2% cos(2ωτ)+%2+1

which are given by

ω0 = π
2τ −

1
2τ arcos

(
2%

1+%2

)
+ kπ

τ for k ∈ Z, at such maxima, one gets that

sin(2ω0τ)

2% cos(2ω0τ) + %2 + 1
=

1

1− %2
.

As a consequence, if 4α̃τ < π−arcos
(

2%
1+%2

)
, then there is no other solution than (ω, θ) = (0, 0). To obtain

at least one non trivial positive solution, one needs to impose that 4α̃τ ≥ π − arcos
(

2%
1+%2

)
. Once again,

this condition is consistent with the condition 4α̃τ ≥ π derived in the case % = 1. We can also derive a

second simple condition which ensures the existence of a non trivial solution by looking at the behavior

near ω ∼ 0 where we have

α̃
2 sin(2ωτ)

(
1− %2

)
2% cos(2ωτ) + %2 + 1

∼ 4α̃τ (1− %)

1 + %
ω.
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Figure 29: Representation of the temporal frequency ω/2π (in Hz) and the spatial frequency θ ∈ [0, 2π) (panel (a) and

(c) respectively) as a function of % for fixed values of the time delay τ = 12ms and 1/α̃ = 15ms. Panel (b) represents

a zoom of panel (a) near % ∼ 1 where the two branches terminate.

Thus if

4α̃τ >
1 + %

1− %
,

then there exists at least one positive solution ω ∈ (0, π/2τ) to the above equation (and also one negative

solution in (−π/2τ, 0) by symmetry). Note that the condition 4α̃τ > 1+%
1−% is consistent with the condition

4α̃τ > 1 derived in the case % = 0.

Examples. To illustrate the different scenarios and their possible interpretations in terms of brain os-

cillations, we take here two distinct examples corresponding to the situations described above. We report

in Figure 29 the non trivial branches of solutions corresponding to positive values of ω, as a function of %

for fixed values of the time delay τ = 12ms and 1/α̃ = 15ms. These values are biologically plausible and

correspond to the values used in [1]. Upon denoting

%c :=
1− 4α̃τ

1 + 4α̃τ
∈ (0, 1),

for all % ∈ [0, %c), we get the existence of a unique branch of solution (blue curve) for the temporal frequency

ω/2π. A second branch (light blue curve) of solutions emerges precisely at % = %c. These two branches

cross at % = 1 where ω/2π = 1
4τ and terminate at a value of % = %0 ∼ 1.06 (see Figure 29(b)). The branch

of solutions which exists for all values of % ∈ [0, %0] has an associated spatial frequency which is almost

constant and whose value is around ∼ 2.82 ∈ (0, π). On the other hand, the branch of solutions which only

exists for values of % ∈ (%c, %0] has an associated spatial frequency which lies in (π, 2π). Let us remark

that at % = 1, the spatial frequencies of the two solutions are different and symmetric with respect to π.

Furthermore, at % = %0 ∼ 1.06 where the two branches collide the associated spatial frequency is θ ∼ π.

Let us finally note that for % ∈ [1, %0], the spatial frequencies of the two branches are almost identical,

although the secondary branch is slightly above the primary one.

Correspondingly we illustrate in Figure 30, the space-time plot of two points along the two different

branches which correspond to the orange and dark red points in Figure 29. The corresponding values

are (ω, θ) ∼ (0.12, 2.82) and (ω, θ) ∼ (0.08, 4.60) and associated to the same value of % ∼ 0.633. In
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Figure 30: Space-time plot of cos(ωt + θj) for values of (ω, θ) which correspond to the orange and dark red points

of Figure 29 lying respectively on the blue and light blue curves, time t is in ms. In (a), the temporal frequency is

ω/2π ∼ 19Hz while in (b) it is ω/2π ∼ 13.3Hz. In (a), since θ ∈ (0, π), we observe a backward propagation of the

wave while in (b) we have a forward propagation since θ ∈ (π, 2π).

the first panel of Figure 30(a), which corresponds to the point on the branch of solution defined for all

% ∈ [0, %0], since the corresponding value of the spatial frequency is θ ∈ (0, π), we observe an apparent

backward propagation, while in the second panel of Figure 30(b), we observe a forward propagation.

This corresponds to the point on the lower branch of the solutions defined for values of % ∈ (%c, %0] with

associated spatial frequency θ ∈ (π, 2π). From a biological point of view, this indicates that the more

interesting range of the parameters is the one with % ∈ (%c, %0] and the corresponding branch of solutions

which emerges at % = %c from the trivial solution (ω, θ) ∼ (0, 0) since in this case we obtain an oscillatory

traveling wave with forward propagation into the network.

In Figure 31, we show the global structure of the branches for a second example, with fixed values of the

time delay τ = 12ms and 1/α̃ = 12ms, which are still biologically relevant values. We observe that the

two branches terminate at a value of % = %0 ∼ 3.03 with a crossing at % = 1. For % ∈ [1, %0], the primary

branch (blue curve) has a temporal frequency below the secondary branch (light blue curve), the difference

in frequencies is almost 5Hz for values of % ∼ 2. Even more interestingly, we see that the corresponding

spatial frequencies along the secondary branch are decreasing from 2π to a final value below π at %0

indicating that by increasing the value of % we can reverse the direction of propagation from forward to

backward oscillatory traveling waves. The transition occurs for % ∼ 1.65, that is for values of 1/λ̃ ∼ 7−8ms.

It is further noticed that the associated temporal frequencies in the backward regime are around 25Hz (β-

frequency regime) much higher than for forward traveling waves whose temporal frequencies range from

0Hz to 20Hz (and include the α-frequency regime).

Summary In this section, we saw that including temporal delays in the time-continuous version of the

system produces non-trivial dynamics that can be characterized analytically. Contrary to the discrete

version of the system, which can only be analyzed for a few discrete time delays k = 1, 2, ..., the continuous

version is informative for a wide range of biologically plausible delays, and the resulting frequencies are very

diverse. In particular, we observed homogenous synchronized oscillations in the gamma band (30− 60Hz)
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Figure 31: Representation of the temporal frequency ω/2π (in Hz) and the spatial frequency θ ∈ [0, 2π) (panel (a)

and (b) respectively) as a function of % ∈ [0, 1] for fixed values of the time delay τ = 12ms and 1/α̃ = 12ms.

that emerged when the feed-forward error correction term α̃ was strong enough (roughly, with 1/α̃ < 8ms).

But we also found situations in which the oscillatory activity was not homogenous, but propagated as a

travelling wave through the network. With biologically plausible values for the various parameters, the

waves could propagate forward in the alpha-band (7−15Hz) frequency range, and when the feedback error

correction term λ̃ was strong enough (e.g. 1/λ̃ < 8ms while 1/α̃ = 12ms), they started moving backward

at a faster frequency in the beta-band (15− 30Hz). Altogether, this pattern of results is compatible with

various (sometimes conflicting) observations from the Neuroscience literature [1, 4], and informs us about

the conditions in which the corresponding dynamic behaviors might emerge in the brain.

6 Discussion

6.1 Contributions

We proposed a mathematical framework to explore the properties and stability of neural network models

of the visual system comprising a hierarchy of visual processing areas (or “layers”), mutually connected

according to the principles of predictive coding. Using a discrete model, as is typically done in the recent

deep learning literature, we introduced the amplification factor function, which serves to characterize

the interesting (i.e., “marginally stable”) regions as a function of the model hyperparameters. When

considered on an infinite domain, we showed that the response of our linear neural network to a Dirac

delta initialization presents a universal behavior given by a Gaussian profile with fixed variance and which

spreads at a given speed. Both speed and variance could be explicitly characterized in terms of the model

hyperparameters. This universal Gaussian profile was then the key to understand the long-time dynamics

of the linear neural network set on a semi-infinite domain with a fixed constant source term at the left

boundary of the network.

At first, we ignored the influence of neuronal selectivity and used feed-forward and feedback connection
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matrices set to the identity matrix. When β = 0 (no feedforward update after the network initialization),

we observed that hyperparameters α and λ compete for forward and backward propagation, respectively.

When β > 0, the constant feedforward input makes things more complex, with λ (feedback error correction)

now competing with β + α (feedforward drive and feedforward error correction). In the special case when

α + λ = 1, a second (but spurious) mode of propagation with rapidly alternating activity can emerge,

whose direction is determined by the competition between α and β + λ.

Next, to evaluate the influence of a more complex and functionally relevant connectivity matrix, we defined

neural assemblies reflecting the eigenvectors of the matrix. Each of these neural assemblies can be analyzed

separately, and its behavior depends on the corresponding eigenvalue (in addition to the hyperparameters

α, β and λ, as explained above). Different assemblies can simultaneously support different dynamics, so

that some may propagate information forward, others may not propagate at all (acting as a filter on the

inputs), while yet others might propagate backward (e.g. carrying “priors” set by preceding activations).

We again saw a number of cases where “fringe” or spurious behavior arose, e.g. rapid alternations in

activity, and understood that this could be caused by the discrete nature of our model, when the time

steps defining the model’s temporal resolution are too coarse.

The time-continuous version of the model helped us overcome this issue, and characterize dynamics in the

limit of infinitely small time steps. The amplification factor function is still crucial in this situation, but it

produces more robust results, without fringe behavior or spurious oscillations. In particular, the analysis

of stability and propagation direction/speed was greatly simplified in this continuous case.

The same time-continuous model also allowed us to investigate the inclusion of biologically plausible com-

munication delays between layers. In this case, we demonstrated the emergence of genuine oscillatory

dynamics and travelling waves in various frequency bands compatible with neuroscientific observations

(alpha-band from 7 to 15Hz, beta-band from 15 to 30Hz and gamma-band from 30 to 60Hz).

Finally, we considered fully continuous versions of the model, not only in time but also in space, both across

network depth (across neuronal layers) and width (across neurons in the same layer). This mathematical

abstraction revealed that our model could be understood as a transport equation, and that it produced

diffusion dynamics.

6.2 Biological interpretations

The mathematical framework that we proposed naturally lends itself to interpretation in biological terms.

The model’s hyperparameters reflect the strength of feedforward and feedback signalling in the brain. These

are determined not only by axonal density and synaptic strength (that vary slowly throughout development

and learning), but can also be gated by other brain regions and control systems, e.g. through the influence

of neurotransmitters, and thus vary much more dynamically. For instance, the feedforward drive β could be

more active to capture sensory information immediately after each eye movement, and decrease over time

until the next eye movement [21]; similarly, feedback error correction λ could dominate over the feedforward

error correction α for one given second (e.g. because top-down attention drives expectation signals) and

decrease in the next second (e.g. because unexpected sensory inputs have been detected) [31]. In this

dynamic context, it is fundamental to be able to characterize the dependence of the system’s behavior on

the exact hyperparameter values. Fortunately, our framework reveals that when the hyperparameters vary,

the stability of the system, and its ability to propagate signals and maintain activity, change in predictable
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ways. Some hyperparameter combinations would not support signal propagation at all; others would render

the system unstable, e.g. because of runaway excitation. Under the (reasonable) assumption that the brain

behaves as a predictive coding system, our equations inform us about the plausible parameter regimes for

the brain.

Using our time-continuous model, we found that predictive coding dynamics associated with inter-areal

communication delays result in oscillatory activity. This finding resonates with both experimental obser-

vations and neuroscientific theories [1, 4].

Bastos and colleagues [4, 5] suggested that feedforward error correction could be accompanied by gamma-

band oscillations; this suggestion was verified in our model, with synchronized gamma rhythms appearing

when the corresponding hyperparameter α̃ was strong enough (and with a frequency that monotonically

increased from 30 to 60Hz when the value of 1/α̃ decreased from 10ms to 5ms). However, considering

that the communication delay τ between two adjacent brain regions is a fixed property of the system (a

reasonable first approximation), our analysis shows that this oscillatory mode will only happen for a narrow

range and a very precise combination of hyperparameter values α̃ and λ̃ (see Figure 27). This could explain

why gamma-band oscillations are not always found during electrophysiological recording experiments [28].

By relaxing the phase delay between brain areas, our equations also revealed the potential emergence of

oscillatory travelling waves across brain regions, similar to those observed in human EEG experiments [1–

3, 24]. Again, for a fixed communication delay τ , these waves may only happen for specific values and

combinations of the hyperparameters α̃ and λ̃. In certain regimes (see e.g. Figure 31 with 1/α̃ = 1/λ̃ =

12ms), two waves might coexist at the same frequency, but going in opposite directions. This matches

experimental reports of co-occurring feedforward and feedback waves in the brain [2, 3]. Upon increasing

the feedback strength λ̃, we saw that an initial alpha-band (7-15Hz) feed-forward wave could accelerate

(towards the beta-band, 15-30Hz) and eventually reverse its direction, producing a feedback wave. Similar

reversal phenomena have also been reported for oscillatory waves in the human brain [2, 3, 24].

6.3 Limitations and future extensions

“All models are wrong, but some are useful” [7]. Our model, like all mathematical models, is based on

simplifications, approximations and assumptions, and can only be valid under those assumptions. Some

(if not all) of these assumptions are questionable, and future work will need to determine the robustness

of the model, or its potential modifications, when relaxing these assumptions.

Even tough we assumed that the brain follows the general principles of predictive coding [27], our system’s

hyperparameters can in fact be modulated to accommodate many variants of this framework [9, 19, 31, 32].

One other important assumption that we made was to simplify the connectivity matrices between neuronal

layers—which determines the selectivity of each neuron, and thus the functionality of the entire system.

Even when we moved past the “identity” assumption, the connection matrices that we adopted were

constrained to be symmetric, and most importantly, were assumed to be similar from one layer to the

next. This made our equations tractable, but it constitutes a clear restriction, and a departure from

biological plausibility that will need to be addressed in future extensions. Another important limitation

that we wish to relax in future works is the fact that we have considered a linear model although real

biological networks or deep neural networks are intrinsically nonlinear. Going beyond the linear analysis

that we have presented here would need the development of new theoretical techniques which constitutes
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Figure 32: Illustration of the network structure of model (6.1) where blue arrows indicate the new long-range inter-

actions coming from layer j ± 2.

a major open problem to be addressed in forthcoming works.

Aside from exploring richer patterns of connectivity between adjacent layers, another natural extension

of the model could be to incorporate long-range interactions, beyond the immediately adjacent layers.

For instance, one could explore a simple second-order layer model (illustrated in Figure 32), whose scalar

version reads:

en+1
j − β1e

n+1
j−1 − β2e

n+1
j−2 = α1e

n
j−1 + α2e

n
j−2 + (1− β∗ − λ∗ − α∗)enj + λ1e

n
j+1 + λ2e

n
j+2, j ∈ Z, (6.1)

where we have set β∗ := β1 + β2, α∗ := α1 + α2 and λ∗ := λ1 + λ2. Once again the fate of such a system

(6.1) would be dictated by the amplification factor function

ρ(θ) =
α1e
−iθ + α2e

−2iθ + 1− β∗ − λ∗ − α∗ + λ1e
iθ + λ2e

2iθ

1− β1e−iθ − β2e−2iθ
, θ ∈ [−π, π].

This as well as higher-order interaction models, possibly including “hub” regions like the thalamus that

would be mutually interconnected with all layers in the hierarchy [20], are promising directions for follow-up

studies.

6.4 Conclusion

The mathematical framework proposed here, guided by both computational considerations and neurosci-

entific inspiration, can be of use to both fields. In machine learning, the framework may serve to provide

guarantees about the stability of a predictive coding system given its chosen hyperparameters, or to choose

a valid range for these hyperparameters. For neuroscientists, our equations can be used directly to under-

stand biological vision and to make predictions about biological behavior in various situations compatible

with predictive coding. But this general mathematical framework (a number of hierarchically connected

layers with source terms, boundary conditions, feedforward and feedback connectivity matrices, analyzed

via its amplification factor function) may also be adapted to fit other models of biological perception and

cognition beyond predictive coding. We hope that the various derivations made in the present work can

serve as a template for future applications in this direction. And more generally, that this study may be

helpful to the larger computational neuroscience community.
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