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ABSTRACT
In this paper, we address the challenge of segmenting global
contaminants in large images. The precise delineation of
such structures requires ample global context alongside un-
derstanding of textural patterns. CNNs specialise in the latter,
though their ability to generate global features is limited.
Attention measures long range dependencies in images, cap-
turing global context, though at a large computational cost.
We propose a gridded attention mechanism to address this
limitation, greatly increasing efficiency by processing multi-
scale features into smaller tiles. We also enhance the attention
mechanism for increased sensitivity to texture orientation, by
measuring correlations across features dependent on different
orientations, in addition to channel and positional attention.
We present results on a new dataset of astronomical images,
where the task is segmenting large contaminating dust clouds.

Index Terms— Attention, multi-scale, orientation, seg-
mentation, astronomy

1. INTRODUCTION

Global context is vital in vision: scenes are understood
through key descriptive regions, such as grass or sky, as
well as through objects. This is especially relevant when pro-
cessing contaminants covering large regions, such as clouds
in remote sensing [7] and solar imaging, [5], or dust clouds
in deep sky imaging [16]. Multi-scale (MS) CNNs were pro-
posed to increase global context, e.g. [25], though context in
convolutions remains limited to the final convolutional layers,
and achieving larger receptive fields requires downscaling.

Attention proposes to model long range dependencies be-
tween feature positions and channels [22, 6]. While attention
has been effective in capturing global context, it has a huge
computational footprint. Positional attention has squared
complexity in relation to image size, which is barely man-
ageable on popular datasets with modern GPUs. This cost of
attention can be reduced by downscaling features. Sacrificing
texture for gained context is not a worthwhile compromise for
some vision tasks, as severe downscaling significantly erodes
local textures often to the detriment of model performance.

Fig. 1: Cirrus dust of various strengths (top), with uncertain
annotations (middle) and predictions (bottom).

Orientational information is also a valuable discrimina-
tor in identifying classes of objects. Textures are intrinsically
composed of orientation dependent patterns, and thus under-
standing of orientations has been shown to increase perfor-
mance on a variety of segmentation tasks e.g. [16].

In this paper, we investigate segmentation of cirrus con-
tamination: dust clouds in the foreground of astronomical im-
ages. Cirrus pollution can be difficult to spot, ranging from
a slight change in background intensity to total occlusion of
galaxies, as shown in Fig. 1. This makes cirrus localisation
challenging, leading to frequent disagreements in expert an-
notations. Background intensity levels vary even in clean re-
gions of images, thus it is necessary to consider the entire
image (>5000 px2) to maximise global contextual informa-
tion. Local textural patterns are also necessary discriminating
properties of cirrus, which presents as a wispy texture often
with filamentary structures sharing a common orientation.

We propose a gridded MS architecture (Section 2.2) that
addresses the attention’s high compute. Furthermore, it intro-
duces an MS aspect with no added cost, while MS tends to
be computationally expensive. We divide features of differ-
ent scales into tiles of smaller constant size. Positional and
channel attention is computed on these tiles to assess both lo-
cal and global context in an efficient manner, before reassem-
bling tiles into a final attention map. A closely related work



is [18] where attention is also applied to each scale of MS
features, but using whole feature maps in each attention mod-
ule, resulting in very high computing costs. Additionally, we
present a novel attention operator using orientation (Section
2.3), for improved sensitivity to textures. We utilise Gabor
modulated convolutions [15, 16] to generate features depen-
dent on different angles. Attention is then computed across
these angles, measuring correlations between orientation de-
pendent features. Finally, we propose a loss function to train
on annotations that lack a consensus (Section 2.4), that are a
particularity of fuzzy and partially transparent contaminants.

2. METHODOLOGY

We present enhancements of attention modules for computa-
tionally efficient segmentation of large contaminants. These
enhancements are compatible with various attention modules
(and backbones), and we demonstrate them on [6].

2.1. Background on Multi-scale Attention

Accurate identification of contaminants requires comparison
to surrounding regions. Attention [22] has been proposed
to analyse contextual relations in images through comput-
ing feature correlations. Correlations are scaled based on
the strength of given features, prioritising correlations that
have a larger effect on model classification. This process can
be performed along any internal organisation (axis) of a fea-
ture map, allowing different contextual dependencies to be
measured. Thus, attention can be computed with respect to
position (correlations between regions) and/or with respect
to channels (correlations between learned features) [6]. We
utilise multiple attention operators at different spatial scales
to enhance local and global contextual understanding.

An approach for generating MS features is to pool initial
features into different sizes and pass them through parallel
convolutional layers e.g. [25]. Feature pyramid approaches
[12] offer compute savings of constant factor by combining
intermediate features at different scales generated by various
convolutional layers. They have been used in attention works
[1, 18], with attention applied to each scale apart. Tao et al.
[21] generate features for each image scale separately, and ob-
served a performance gain which outweighed computational
cost, therefore we use a similar approach although our pro-
posed attentions are compatible with MS features of [1, 18].

2.2. Multi-scale Gridded Attention

We propose a cost effective method for computing atten-
tion over multiple scales. Attention is costly, generally with
squared complexity with respect to image size. While this
effect can be managed through downscaling and cropping, the
former compromises key local texture and the latter compro-
mises key global context. It is therefore desirable to minimise
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Fig. 2: Proposed MS gridded attention.
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Fig. 3: Proposed Gabor attention operator. G is number of
modulating Gabor filters, N is the product of other axes.
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the use of both while introducing a multi-scale analysis.
We illustrate gridded attention in Fig. 2. Our gridded at-

tention module receives input MS feature maps, which we
generate as in [21]. Each feature map is concatenated with a
fused version of feature maps at all scales, similarly to [18],
with the difference that the fused map is produced with same
size as the largest feature map (before appropriate rescaling).
We divide the feature maps into tiles of consistent smaller size
but with multiple underlying spatial scales. Our architecture
consists of multiple branches, each handling a spatial scale
and comprising of a separate attention module, similar to the
multi-branch architecture of [18]. In the example of Fig. 2, at-
tention is computed on 21 tiles with size N

42 , decreasing mem-
ory usage by 21

256 . Due to the massive saving on computational
resources, the model can inspect both local texture and global
context even on large images (e.g. >5000px2 in our case).

We use spatial scales with a common factor so that rescal-
ing operations can be composed by chaining smaller rescal-
ings. After computing attention on smaller scales, tiles are
upscaled to realign resolutions. During upscaling, one up-
scaling convolutional block is used per scale transition, tying
weights across scale branches, increasing parallelisation and
inducing overlap between different scales. This is a key dif-
ference with other gridded attention methods [10] where lack
of tile overlap can cause boundary artefacts.

2.3. Gabor Attention

We propose a novel attention operator for studying orien-
tational context. Gabor modulated convolutions have been
shown to increase performance on oriented textures and
rotated samples e.g. [15, 16]. Such layers multiply con-
volutional weights by Gabor filters with different rotation
parameters to generate orientation dependent features.



As illustrated in Fig. 3, we compute Gabor attention by
placing independent Gabor modulations before each reshap-
ing operation and calculate correlations across the axis rep-
resenting orientations. This Gabor attention operator may be
used in combination with channel and positional operators,
creating an attention module with three separate attentions
each measuring different dependencies among features. The
three attention maps are combined with element-wise summa-
tion. We refer to this new attention module, combining posi-
tional, channel and Gabor attention, as tri-attention. By mea-
suring correlations across the additional Gabor axis, we are
able to study relationships among orientation rich features.

2.4. Super-Majority Loss function

We propose a super-majority loss (SML) function to train on
probabilistic annotations. In this study, targets are generated
by four (expert and non-expert) annotators [19]. We create
probabilistic targets using a weighted average, where expert
annotators are weighted higher. We choose not to use ap-
proaches that propose probabilistic networks, such as [9, 23],
due to our comparatively small number of expert annotators.

Inspired by works on edge detection with CNNs [14, 24],
we separate consensus values into quartiles and conditionally
adjust the loss function per quartile. By coarsely dividing
probabilities into ranges of confidence, we mitigate against
any uncertainty associated with our probabilistic consensuses.
We also use focal loss [13] Lf to encourage the model to fo-
cus on difficult examples rather than easy negatives or ‘clean’
pixels which dominate the class balance. Target pixels y with
uncertain labels (0.25 < y < 0.5) are ignored, whereas super-
majority consensuses (y ≥ 0.75) are prioritised by multiply-
ing with a boosting coefficient β = 1.25. For output x:

LSML =


β · Lf (x, y) if y ≥ 0.75.

Lf (x, y) if 0.5 ≤ y < 0.75.

0 if 0.25 < y < 0.5.

Lf (x, y) otherwise.

(1)

2.5. Final Segmentation Model

We use the proposed MS gridded and Gabor attention mech-
anisms in combination, by using the Gabor tri-attention mod-
ule in the MS gridded framework. We implement an MS at-
tention with three spatial scales. The original feature maps
and resulting attention maps are then passed through a fully
connected layer to generate segmentation predictions.

As in [18], we generate six segmentation predictions.
During training, we consider each segmentation separately
and compute six loss terms for all predictions before sum-
ming them. The backbone is then explicitly forced to preserve
spatial locations of features, relieving the attention module of
any realigning effort. For inference, we take the average of
the three segmentation computed from the attention maps.

3. RESULTS

3.1. Data

We produced a dataset of 186 images from the MATLAS sur-
vey [4] (avg. image size 7000 px2). 25% of images have cir-
rus contamination, and in contaminated images, 60% of pix-
els contain cirrus. We use 70% of samples for training, 15%
for validation and testing. We also run experiments on the
subset of contaminated images, and on an additional dataset
of 300 synthesised cirrus images (size 512 px2) generated
similarly to [16] with some added simulated imaging artefacts
for greater realism. In these two additional datasets, class
imbalance is eased, allowing the model to focus further on
discriminative cirrus features and thus more clearly revealing
findings during ablation studies. We augment images with ge-
ometric transformations: flips, rotations and translations, and
apply element-wise Gaussian noise with zero mean and vari-
ance of 0.1. We also pretrain on synthetised cirrus images.

3.2. Comparative Analyses on Proposed Techniques

We verify the effectiveness of the proposed methods individ-
ually. For control model, we use non-gridded MS dual at-
tention similar to [18] in our MS architecture, though with a
simple backbone with four convolutional layers. All networks
are trained for 200 epochs with the Adam optimiser [11] with
learning rate 10−3 and L2 weight regularisation 10−7. Learn-
ing rate is decreased every epoch by a factor of 0.98. We score
models using the intersection over union (IoU) averaged over
five splits, and also report standard error across splits. We fix
batch size and overall parameter size across modifications to
be roughly equal and downscale images to the maximum size
our GPUs could accommodate for each network.

We perform an ablation study on proposed attention tech-
niques, shown in Table 1. The effectiveness of the proposed
loss is first compared against a focal loss with rounded prob-
abilistic labels 1. On our dataset of real images containing
probabilistic annotations, ignoring pixels with uncertain an-
notation and prioritising very certain pixels is helpful, with
the proposed super-majority loss increasing performance. On
the synthetic dataset, the probabilities of simulated labels do
not correlate well with actual prediction difficulty, and the

All images Cirrus only Synth.
Control 0.469(0.005) 0.814(0.013) 0.831(0.001)
SML 0.483(0.006) 0.822(0.013) 0.830(0.001)
SML+Gabor 0.497(0.007) 0.861(0.015) 0.867(0.002)
SML+Grid 0.542(0.003) 0.886(0.016) 0.844(0.003)
All 0.548(0.003) 0.892(0.013) 0.871(0.002)

U-Net [17] 0.381(0.128) 0.685(0.096) 0.794(0.001)
LGCN [16] 0.414(0.049) 0.741(0.033) 0.891(0.001)

Table 1: Segmentation IoU in format mean(std).



Single Ensemble
IoU 0.745 0.790
Dice 0.766 0.814

Table 2: Proposed cirrus segmentation results

Ours Dev et al. [2] Dev et al. [3] Song et al. [20]
IoU 0.90 0.69 0.80 0.86
Dice 0.95 0.82 0.89 0.92

Table 3: Segmentation scores on the SWIMSEG sky/cloud
segmentation dataset.

proposed loss was not able to provide an improvement. We
see that the control MS attention model offers a sizeable ben-
efit on real data, indicating that dual attention is well suited to
large contaminant segmentation. The proposed MS gridded
attention significantly compounds this positive effect, show-
ing that the ability to study long range dependencies across
multiple scales is beneficial. The proposed tri-attention in-
creases accuracy on all cirrus segmentation scenarios, indi-
cating that sensitivity to texture orientation is helpful in local-
ising the fuzzy and textured contaminants.

The two attention techniques benefit from being com-
bined, with further improved results. On real images, when
compared against a popular U-Net [17] baseline and the
state-of-the-art cirrus segmentation method LGCN [16], it
outperforms both by a large margin. On synthetic images,
LGCN outperforms attention models due to no long range
correlations existing within the small images.

3.3. Proposed Cirrus Segmentation

We construct a final model from the best performing com-
ponents of the previous section and analyse the predictions.
We significantly increase the parameter size of our segmen-
tation model and swap the simple backbone network out for
a ResNet-50 [8] network. To account for this larger network,
we increase training epochs to 400. We also increase the size
of both the training and testing sets by dividing the validation
samples between them. Cirrus dust is faint in comparison to
bright stars. To compensate for this we add an initial layer to
the network implementing arcsinh scaling, popular in astro-
nomical image processing: Xs = arcsinh (aX + b), where
a, b are learned. We also use ensemble predictions, where 5
models are trained, and predictions from each model are av-
eraged over to give the final segmentation. Inference takes an
average time of ∼ 0.4s per sample on a single GTX 1080 Ti,
which could be significantly reduced with optimisation efforts
such as model compilation, pruning or half precision weights.

In Table 2 we report both IoU and Dice scores, with Dice
being more biased to precision. We observe that there is a
very large performance increase from models in the compar-

ative analysis, owing to the larger parameter space, additional
training samples and longer training period. We see that a
single model is outperformed by the model ensemble by a
significant margin. Aggregating predictions also appears to
handle the class imbalance issue better than the single model,
when comparing the predicted distributions of cloud cov-
erage across images against target groundtruth distribution,
with Kullback-Leibler divergences being respectively 0.40
and 0.07 for the single and ensemble models. Prediction ag-
gregation appears to also increase the gap between IoU and
Dice scores, indicating that precision is increased through
averaging over predictions. This may be due to the aggre-
gation smoothing over-eager positive predictions from single
models within the ensemble. Fig. 1 shows some examples of
predictions by the best performing ensemble model.

3.4. Cloud segmentation in natural images

We evaluate the proposed methodology on cloud segmenta-
tion in natural images from the Singapore Whole sky IMaging
SEGmentation database [2] (SWIMSEG). This task is highly
relevant to the proposed methodology: both local and global
features are key to good performance on this dataset, as diffi-
cult positive regions of light cloud can only be correctly iden-
tified based on subtle textural patterns and comparison with
surrounding regions. SWIMSEG contains 1013 600px2 im-
ages of sky patches and corresponding cloud segmentations.
Training, validation and testing sets each contain 861, 101
and 51 samples, respectively. The model and training setup
used is identical to those of Section 3.3. Results are detailed
in Table 3, where we report the segmentation IoU and Dice
score on the testing set as in [2, 20, 3]. The tri-attention model
achieves respective IoU and Dice scores of 0.90 and 0.95, rep-
resenting a significant improvement over state of the art.

4. CONCLUSION

We presented a computationally efficient multi-scale atten-
tion architecture that is sensitive to texture orientation for seg-
mentation of global contaminants in large images. Efficiency
is achieved through a gridded architecture, and orientation
sensitivity is provided by a new Gabor attention operator.
To address the challenge of uncertain groundtruth labelling,
we proposed a simple consensus loss. These contributions
are combined into a new state-of-the-art model for the seg-
mentation of cirrus contaminants from astronomical images.
Reliable performance was achieved with only a small training
dataset of images. Our model can process an entire image in
one pass with minimal downscaling, meaning that the pro-
posed method can be easily integrated into data processing
pipelines for imaging instruments to obtain contamination
masks. In future work it would be interesting, using the
methodologies presented in this work, to craft a deep genera-
tive model capable of removing global contaminants.
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