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Abstract: Improvement of insulin secretion by pancreatic β-cells and preservation of their mass are
the current challenges that future antidiabetic drugs should meet for achieving efficient and long-term
glycemic control in patients with type 2 diabetes (T2D). The successful development of glucagon-like
peptide 1 (GLP-1) analogues, derived from the saliva of a lizard from the Helodermatidae family, has
provided the proof of concept that antidiabetic drugs directly targeting pancreatic β-cells can emerge
from venomous animals. The literature reporting on the antidiabetic effects of medicinal plants
suggests that they contain some promising active substances such as polyphenols and alkaloids,
which could be active as insulin secretagogues and β-cell protectors. In this review, we discuss the
potential of several polyphenols, alkaloids and venom peptides from snake, frogs, scorpions and cone
snails. These molecules could contribute to the development of new efficient antidiabetic medicines
targeting β-cells, which would tackle the progression of the disease.

Keywords: diabetes; insulin secretagogues; pancreatic beta cell; venom; polyphenols; alkaloids;
peptides

1. Introduction

Humanity has always been inspired and guided by plants and animals for its
healthcare [1], as cited by Hippocrates: “Nature itself is the best physician”. Plants
have been able to offer efficient analgesics (morphine and codeine), anti-cancer (taxol),
antiparasite (artemisinin) as well as anti-inflammatory (salicylic acid) drugs. In addition
to bacteria and fungi, many analgesics, vaccines (hepatitis A, influenza), inflammation
modulators and anti-venom drugs are from the animal origin [2]. Antidiabetic drugs
have also been supplied from plants and animals. For example, dog insulin enabled Sir
Frederik Banting to reveal the therapeutic activity of this hormone, and to treat the first
patient with type 1 diabetes [3]. Before genetic engineering was possible, insulin, used
to treat millions of patients, was from bovine and pig origin. For patients with type 2
diabetes (T2D), the most prominent type of diabetes with 90% of all diagnosed cases,
several current antidiabetic drugs are from plant and animal origins: metformin, sodium
glucose co-transporter type 2 inhibitors (SGLT2is) and glucagon-like peptide 1 receptor
agonists (GLP-1RAs). Metformin is currently the most popular antidiabetic drug and the
first line of medication in T2D. Metformin is a biguanide derivative, whose antidiabetic
activity was originally described in the Middle Age with the use of the Galega officinalis,
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also known as “French lilac”, plant [4]. Metformin acts as an insulin sensitizer, which
together with lifestyle changes, improves glucose uptake of patients, and thereby
reduces hyperglycemia [4]. The antidiabetic effect mostly relies on the inhibition of
hepatic gluconeogenesis [5,6]. With metformin, the SGLT2i antidiabetic class of T2D
is becoming very popular [7]. Besides their glucose-lowering effect, SGLT2is reduce
the risk of cardiovascular diseases and hospitalization caused by heart failure [8,9].
SGLT2is lower glucose blood levels by reducing renal glucose reabsorption and by
promoting urinary glucose excretion [7]. Historically, SGLT2is originate from phlorizin,
a naturally occurring glucoside found in various plants, such as the root bark of apple
and other fruit trees [10]. While phlorizin was initially used for treating fever, infectious
diseases and malaria, the substance could lead to glucosuria and polyuria [11]. Because
phlorizin is poorly absorbed into the gastrointestinal tract and acts in other tissues
by inhibiting SGLT1 (primarily found in the gastrointestinal tract), the molecule has
never been used as a medication for the treatment of T2D. To circumvent these concerns,
analogs of phlorizin have been developed. Another drug used for the treatment of
T2D is GLP-1RA which improves insulin secretion in patients. Indeed, T2D develops
when insulin secretion from pancreatic β-cells of the islet of Langerhans, the only cells
in the body specialized in the production of insulin, is insufficient for coping insulin
resistance [12]. GLP-1RA alleviates hyperglycemia by potentiating nutrient-induced
insulin secretion [13]. Therefore, GLP-1RAs are of high value as they do not cause
hypoglycemia. In addition, they are considered as very promising since they are the
only antidiabetics that could slow and/or prevent the degradation of β-cell mass of
patients, as revealed by preclinical studies [14]. In fact, β-cell mass in a T2D patient
is only 40–60% of that of a body mass index-matched non-diabetic person [15,16].
Progressive reduction of β-cell mass contributes to the poor glycemic control of patients
over time. This reduction is suggested to degenerate, as the remaining β-cells are
functioning at very likely only half their capacity [17]. The first GLP-1RA was originally
discovered by an American team through the search for molecules from arthropod and
reptile venoms that activate G-protein coupled receptors (GPCRs) involved in pancreatic
amylase secretion. The most potent molecule came from the venom of the Gila monster
(Heloderma suspectum), in which resides the GLP-1RA Exendin 4 [18,19]. The half-life
of the GLP-1RA has been extended by chemical modification, leading to exenatide
and many other derived drugs so far [20]. Unfortunately, GLP-1RAs are heterogenous
in terms of efficiency for achieving short- and mid-time glycemic control [21]. Their
efficiency can even be reduced over time [22,23]. In addition, some patients are non-
respondent to GLP-1RAs [24]. A randomized controlled trial, performed in a small
cohort of 40 subjects with early T2D, were treated for 6 months with the GLP-1RA
exenatide, but it had no effect on β-cell mass [25,26].

Similarly, the sulfonylureas (SUs) and glinides, two popular classes of oral antidiabetics
which directly enhance insulin secretion, are unable to achieve long-term glycemic control,
and thereby cannot be used as therapeutic alternative [27,28]. The concern is that these
drugs do not preserve functional β-cell mass, which continues to deteriorate over time,
worsening insulin deficiency. SUs can even participate in the functional β-cell mass demise
by accelerating β-cell apoptosis and β-cell exhaustion or desensitization [29,30]. In addition,
SUs and glinides stimulate insulin secretion in the absence of glucose or food uptake, which
can cause hypoglycemia, a major side effect that can limit their use for some patients.
Moreover, weight gain, nausea, erythema multiforme, exfoliative dermatitis and also,
more rarely, photosensitivity are some of the secondary effects of these drugs [31,32].
Occasionally, they can cause also cardiac dysfunction, hyponatremia and abnormalities in
liver function [33].

Therefore, it is urgent to develop insulin secretagogue drugs with long duration effi-
ciencies that are capable to preserve functional β-cell mass by protecting them from death
caused by the diabetogenic environment (cytokines, chronic hyperglycemia, chronic
hyperlipidemia and amyloid deposits). To this end, it is essential that future drugs
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not only target the key cellular mechanisms that stimulate insulin secretion, but also
promote β-cell survival in this detrimental environment. With approximately 8.7 mil-
lion plant and animal species worldwide, including 6.5 million species living on earth
and 2.2 million in the seas [34], it is highly possible to tackle this medical challenge.
Indeed, there are accumulating data evidencing that animal venom peptides and plant
substances including polyphenols and alkaloids are potential candidates. This review
reports these molecules and provides an original and consistent presentation of their
potential for targeting the mechanisms of insulin secretion and β-cell protection, the
expected requirement of future antidiabetics.

2. Peptides and Substances Stimulating Insulin Secretion
2.1. Key Pathways Regulating Glucose-Induced Insulin Secretion

Under physiological conditions, in the presence of non-stimulatory concentrations
of glucose, low levels of insulin are secreted by β-cells. Basal insulin secretion results
from the low rate of glucose metabolism, leading the opening of ATP-dependent potas-
sium channels (K+

ATP channels). The potassium efflux counteracts depolarizing currents
which thereby maintains the membrane’s steady-state potential at more negative values
and the closure of the voltage-dependent Ca2+ channels. When the concentration of
glucose increases, it enters into the cell and its metabolization through the glycolysis
pathway and tricarboxylic acid cycle (TCA) is accelerated (Figure 1). This results in
elevated mitochondrial ATP generation and a decrease in ADP concentration, which
induces the closure of K+

ATP channels [35]. The closure of K+
ATP, induced by higher a

ATP/ADP ratio, prevents the K+ efflux and thereby causes membrane depolarization.
Subsequently, the membrane depolarization leads to the opening of voltage-dependent
calcium channels (VDCCs) and the influx of Ca2+. Finally, the rise of intracellular Ca2+

accounts for the insulin export through a soluble N-ethylmaleimide-sensitive factor
attachment protein receptor-mediated (SNAREs) fusion of a readily releasable pool of
insulin-containing vesicles with the plasma membrane [36–38]. This triggering mecha-
nism involving K+

ATP is responsible for the first phase of the insulin secretory response.
This phase occurs during the first 5–10 min. The second phase, termed as the amplifying
pathway, is more sustained and is achieved over a period of 30–60 min. This second
phase relies on a K+

ATP-independent mechanism [39]. This mechanism involves several
metabolites including TCA intermediates, such as NADPH and NADH, and associated
products (anaplerosis), such as glutamate, malonyl-CoA, phospholipase C/protein ki-
nase C (PKC) signaling, alterations in intracellular levels of lipids and/or elevation in
cAMP levels, together enhancing cytosolic Ca2+ concentrations and insulin exocytosis
(Figure 1).
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Figure 1. Triggering and amplifying pathways coupling glucose to insulin secretion. Glucose
enters via glucose transporters (GLUTs) and increases the ATP/ADP ratio by glycolytic and TCA
metabolism. Then, ATP promotes the closure of K+ channels, which stops the K+ efflux. This leads to
membrane depolarization and the opening of voltage-dependent calcium channels (VDCCs). The
entry of Ca+ could activate the mitogen-activated kinases ERK/2, which together fosters the fusion
of insulin-containing granules with the plasma membrane, and finally the release of insulin into
the extracellular compartment. The triggering pathway is followed by the amplifying pathways
which involve GLP-1R and other Gs-protein coupled receptors (GPCRs), and several metabolites
including NADH/NADPH, radical species, H2O2, and lipidic metabolites. All of these can promote
the granule docking, fusion and finally, insulin exocytosis. Granule fusion entails the pairing of
the (v)-SNARE (VAMP2) and t-SNAREs (SNAP-25/23 and Syntaxin) proteins, forming a binary
cognate target membrane receptor complex. After insulin release, the membrane repolarization
involves Kv and Kc channels. GCK: glucokinase, Kv: voltage-dependent potassium channel, Kc:
calcium-activated potassium channel, G6P: glucose-6 phosphate, AC: adenylate cyclase, PKA: Protein
Kinase A, ERK1/2: extracellular signal-regulated kinases 1/2. VAMP2: vesicle-associated membrane
protein 2, SNAP23/25: synaptosome-associated proteins 23/25 kDa.

2.2. Peptides from Animal Venoms That Act as Insulin Secretagogues

Within the animal kingdom, several strategies are used for defense and hunting. One
consists of using poisons and venoms to subdue and/or kill prey or predators. Unlike
poisons that induce their toxicity by ingestion or external contact, venoms have to be
parenterally administrated via specialized apparatus (e.g., fangs, stingers, teeth, nemato-
cysts). Some animals including snake, lizards, frogs, spiders, scorpions and cone snails, for
example, produce and secrete venoms. Venoms contain a mixture of substances mainly
enriched with proteins called “toxins”. In fact, toxins include enzymes (e.g., oxidases,
hydrolases, proteases and phospholipases), non-enzymatic proteins (e.g., disintegrins) and
peptides. Many of venom peptides modulate ion channels and receptors in a broad variety
of species including humans [40]. Thanks to their mode of action, toxins from venoms are
used in a wide-range of pharmaceutical and cosmeceutical activities [41]. Indeed, several
drugs based on peptide toxins, including captopril (hypertension), ziconotide (chronic
pain), eptifibatide (cardiovascular diseases), lepirudin (thrombosis, stroke) and cobratoxin
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(pain), are currently in clinical use [42]. Venoms can contain peptides that stimulate the
production of hormones and growth factors, as illustrated by the venom from the snake
Bothrops jararaca [43]. This venom contains prothrombin and factor X activators that can
elicit the generation of hepatocyte growth factor/scatter factor (HGF/SF), a regenerative
growth factor that is considered a therapeutic target in T2D [44]. Finally, some peptides
from venom can mimic human hormones and thereby can be potentially used as medicines.
This is illustrated by Exendin-4 which has led to the development of new generations of
GLP-1RAs with longer half-lives [45]. The Exendin-4 story has been pivotal for supporting
the idea that other peptides from venoms can be considered for developing antidiabetic
medicines. Two decades of research have enabled the identification of other peptides capa-
ble of triggering insulin secretion. Some of these peptides are GLP-1RA, K+

ATP blockers or
modulators of major channels regulating the triggering and/or amplifying pathways of
glucose-induced insulin secretion (GSIS).

2.2.1. Venom Peptides as New GLP-1RAs

Venom peptides target a wide variety of membrane-bound protein channels and
receptors. GLP-1RA, that elevates cAMP levels by activating the G-protein coupled receptor
(GPCR), supports the concept that molecules capable of modifying the β-cell membrane
depolarization and/or modulating the key intracellular partners of the triggering and
amplifying pathways are good insulin secretagogue candidates [46,47]. The discovery of
Exendin-4 in the venomous saliva of the Gila monster and the multiple health benefits
of GLP-1RAs [13], beyond lowering plasma glucose, have opened up new avenues of
research for analogues from other animal species. The 13-amino-acid peptide (RK-13)
isolated from the skin of Agalychnis calcarifer frogs might act as a GLP-1RA, although the
binding to GLP-1R and the downstream receptor signaling have not yet been directly
demonstrated [48]. Currently, efforts are focused on the identification of analogues with
more selective therapeutic effects than those of Exendin-4 and native GLP-1. In particular,
GLP-1 analogues, also called GLP-1 receptor-biased agonists (GLP-1RBAs), are expected to
be the future drugs of this class. While GLP-1RBAs act through the same GLP-1 receptor, it
improves the durability of the effect on insulin secretion [49]. Two GLP-1RBAs have been
discovered in venoms of platypuses (Ornithorhynchus anatinus) and short-beaked echidnas
(Tachyglossus aculeatus), two mammals of the monotreme order living in Australia and
New Guinea [50]. The two GLP-1RBAs are structurally analogous to Exendin-4, although
they differ by 12 amino acids in their sequence [50]. The affinity of both peptides for the
human GLP-1 receptor is lower than native GLP-1 [50]. Nonetheless, these novel analogues
stimulate insulin secretion in response to glucose through the preferential activation of
one of the MAPK signaling pathways (ERK1/2) [50]. In addition, both peptides are
more resistant to digestion by dipeptidyl peptidase-4 (DPP-4) than Exendin-4 [50], thus
confirming the feasibility for the development of new GLP-1 analogues with longer-lasting
and more specific effects.

2.2.2. K+
ATP Channel Inhibitor Peptides from Venom

The closure and opening of K+
ATP channel are pivotal for controlling insulin secretion.

This channel consists of four sulfonylurea receptors (SURs) surrounding four pore-forming
subunits named Kir6.1 or Kir6.2 [51]. Channel activity involves the interaction of ATP
or ADP with the two nucleotide-binding sites of SUR. When glucose concentration rises
in plasma, it is sensed by the β-cell thanks to its facilitated passage into cytoplasm via
the low Km glucose transporters (GLUT2). The increase in glucose metabolism promotes
ATP synthesis. ATP binding to SUR1 causes K+

ATP channel closure, inhibition of the K+

efflux, β-cell membrane depolarization, calcium influx and finally insulin secretion [51].
SUs can also directly stimulate insulin exocytosis by penetrating into β-cells and triggering
its secretory machinery [52]. SUs cause a maximum channel blocking of ~50–80% [53],
thereby stimulating insulin secretion. The first members of SUs for treating T2D were tolbu-
tamide, chlorpropamide, acetohexamide and tolazamide [54]. Second-generation and third-
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generation SUs were developed later including glyburide, glipizide and glimepiride [55,56].
Another class of oral antidiabetic targeting K+

ATP channels is the glinides [57]. Like SUs,
all glinides promote closure of the K+

ATP channels. However, unlike SUs, glinides bind
directly to the Kir6.1 subunit [57]. Glinides, including repaglinide (RPG), meglitinide, mit-
iglinide and nateglinide, are widely prescribed, because of their good safety and efficacy for
controlling postprandial blood glucose by stimulating insulin secretion. However, glinides
can also provoke hypoglycemia as they elicit insulin secretion in a glucose-independent
manner. Nonetheless, the release of SU and glinides has been instrumental for serving
as models for identifying other therapeutic peptides capable of blocking K+

ATP channels
by activating the Kir6.1 subunit or SUR. At the present time, several insulin secretagogue
peptides from animal venom inducing the closure of the K+

ATP channel have been iden-
tified (Table 1). However, unlike SUs and glinides, for most peptides, their effects on the
K+

ATP channels seem to be indirect. This is the case for mastoparan, tigerinin and secretory
phospholipase 2 [58–60]. Only the protein toxin dubbed SpTx1, isolated from the venom of
desert centipede Scolopendra polymorpha, has been shown to directly interact with the K+

ATP
channel [61]. In addition, SpTx1 inhibits K+

ATP channels by blocking the ion-conduction
pore [62]. However, the usage of this peptide as K+

ATP inhibitor should raise the question
of their safety. Besides the risk of hypoglycemia, the same drawbacks as SUs and glinides,
the K+

ATP channel inhibitor peptides might affect cardiomyocytes, where the channel is
abundantly expressed. This hypothesis is supported by SUs, which might increase the risk
of cardiovascular events by targeting the K+

ATP channel [63]. The search for K+
ATP channel

inhibitor peptides as insulin secretagogues definitely requires further investigations of their
effects in heart function.

Table 1. K+
ATP inhibitor peptides that stimulate insulin secretion.

Compounds Specie In Vitro Models In Vivo Models Reference(s)

SpTx1 Scolopendra polymorpha Isolated mouse islets Wild type mice [62]

Mastoparan Vespula lewisii

Rat RINm5F, hamster
HIT-T15, mouse αTC3 cells,
rat INS-1 cells isolated rat

and human islets

ND [58,64–66]

Secretory
phospholipase 2 Naja mossambica Isolated mouse islets and

single β-cells ND [60]

Tigerinin-1R and
analogs

Indian frog
Hoplobatrachus tigerinus BRIN-BD11 cells HFD-induced Swiss

obese mice [59,67,68]

ND: Not Done, High Fat Diet: HFD.

2.2.3. Venom Peptides Inhibiting Voltage-Dependent (Kv) and Calcium-Activated (Kc)
Potassium Channels

Another strategy for stimulating GSIS is to inhibit β-cell membrane repolarization
controlled by voltage-dependent (Kv) and calcium-activated (Kc) high conductance K+

channels. Kv and Kc open upon membrane depolarization and mediate outwardly rec-
tifying K+ currents, which act to repolarize action potentials [69]. Kv and Kc channels
are a homo- or heterotetrameric complex of α-subunits of the same family. Kv2.1 is the
major β-cell Kv channel isoform. Some peptides from venoms of striated cones, taran-
tulas and scorpions have been identified to be capable of inhibiting Kv channel activity
(Table 2). These peptides are supposed to maintain the β-cell in a depolarized state, which
would prolong insulin secretion only in the presence of glucose. However, Kv and Kc
are also expressed in bladder and other excitable cells of the neuronal and cardiovascular
systems [70,71]. Therefore, further investigations are required for controlling the side effect
of peptides in clinical applications.
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Table 2. Calcium-dependent potassium (KC) or voltage-dependent potassium channels (KV) inhibitor
peptides that stimulate insulin secretion.

Compounds Specie Class of the Active
Substance In Vitro Models In Vivo Models Reference(s)

Conkunitzin-S1 Striated Cone (Conus striatus) Inhibitor of KV1.7 Isolated rat islets ND [72]

Guangxitoxin-1
(GxTX-1)

Chinese Fawn Tarentula
(Chilobrachys Guangxiensis)

Inhibitor of KV2.1
and KV2.2

Isolated mouse islets ND [67]

Hanatoxin (HaTX) Chilean Rose Tarentula
(Grammostola rosea) Inhibitor of KV2.1 Isolated human islets ND [73]

Iberiotoxin Eastern Indian Scorpion
(Hottentotta tamulus) Inhibitor of KC

Isolated human islets,
mouse MIN6 cells ND [74,75]

ND: Not Done.

2.2.4. Peptides That Stimulate Insulin Secretion in a Not Yet Identified Mechanisms

A large number of toxins are ion channel modulators that can inhibit or activate
metabolic enzymes. If the venom peptides act as ligands of ion channels, they also
possess other favorable characteristic features such as small size with high stability,
cationicity and hydrophobicity. For example, cationicity promotes peptide–cell mem-
brane interactions and subsequent internalization. These physicochemical characteristics
provide peptides some key advantages as antimicrobial agents [76,77]. Some of these
peptides have led to Captopril, an angiotensin converting enzyme inhibitor, which is
derived from the venom of the Bothrops jararaca viper [78]. Captopril is prescribed for the
treatment of hypertension, diabetic nephropathy and heart failure [79]. Several cationic
venom peptides with insulin secretagogue activity have been identified (Table 3). How-
ever, the mechanisms through which they stimulate insulin secretion are not elucidated.
Thanks to their cationicity, it is suggested that these peptides penetrate membranes
and enter into cells to stimulate insulin secretion via mechanisms that do not require
K+

ATP. These peptides that can enter into cells include bombesin [80]; crotamine [81]
members from Pipidae and Ranidae families isolated from the skin of amphibians [82];
Brevinin-2-related peptide (B2RP), a peptide of the northern frog (Lithobates septentri-
onalis); Alyteserin-2a of the midwife toad (Alytes obstetricans); Hymenochirin-1b of the
African dwarf frog (Hymenochirus boettgeri); Magainin-AM1 and AM2 of xenopus ami-
eti; and Esculentin-2Cha of the Chiricahua leopard frog (Lithobates chiricahuensis). The
peptides enter into the cells, depolarize the β-cell membrane and stimulate insulin se-
cretion [83]. These peptides could pave the way for the development of a new class of
antidiabetic drugs, although they may also lead to hypoglycemia.

Table 3. Peptides stimulating insulin secretion with unknown mechanisms.

Compounds Specie In Vitro Models In Vivo Models Reference(s)

Agelaia MP-I (AMP-I) Vespid wasp
(Agelaia pallipes pallipes) Isolated mouse islets ND [84]

Alyteserin-2a Midwife toad
(Alytes obstetricans) BRIN-BD11 cells High-fat-diet-induced

obese Swiss mice [85]

Amolopin Frog
(Amolops loloensis) Rat INS-1 cells ND [86]

Bombesin Frog
(Bombina bombina)

HIT-T15 cells, isolated
rat islets

Wild type baboon, wild
type rats [87–92]

Brevinin-2-related
peptide (B2RP)

Mink frog
(Lithobates septentrionalis) BRIN-BD11 cells HFD-induced obese

Swiss mice [93]

Caerulein-related
peptides

Frog
(Xenopus borealis and

Xenopus amieti)
BRIN-BD11 cells ND [94]
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Table 3. Cont.

Compounds Specie In Vitro Models In Vivo Models Reference(s)

Crotamine Rattlesnake
(Crotalus durrisus terrificus) Isolated rat islets ND [95]

Dermaseptin B-IV Frog
(Phyllomedusa trinitatis) BRIN-BD11 cells ND [96]

Esculentin-2CHa Chiricahua leopard frog
(Lithobates chiricahuensis) BRIN-BD11 cells

Wild type and
HFD-induced obese

Swiss mice
[97,98]

Hymenochirin-1b Frog
Hymennochirus boettgeri BRIN-BD11 cells Wild type Swiss mice [99,100]

Magainin–AM1 Volcano clawed frog
(Xenopus amieti) BRIN-BD11 cells

Wild type and
HFD-induced obese

Swiss mice
[101]

Magainin–AM2 Volcano clawed frog
(Xenopus amieti) BRIN-BD11 cells

Wild type and
HFD-induced obese

Swiss mice
[101]

Melittin Honeybee
(Apis mellifera)

Isolated mouse and
rat islets ND [102,103]

Ocellatin-L2 Bullfrog
(Lithobates catesbeianus) BRIN-BD11 cells ND [104]

Palustrin-2CBa Bullfrog
(Lithobates catesbeianus) BRIN-BD11 cells ND [105]

Peptide Glycine-
Leucine-Amide

(PGLa)-AM1

Frog
(Xenopus amieti)

BRIN-BD11 cells and
isolated mouse islets ND [106,107]

Plasticin-L1 Frog
(Leptodactylus laticeps) BRIN-BD11 cells ND [82]

Pseudin-2 frog
(Pseudis paradoxa) BRIN-BD11 cells ND [108]

Ranatuerin-2CBd Bullfrog
(Lithobates catesbeianus) BRIN-BD11 cells ND [105]

Temporin-1OE, -1Va,
-1Vb

1-Vc; -1DRb, -1TGb

Frog
(Rana Ornativentris, Rana
virgatipes, Rana draytonii,

Rana Tagoi)

BRIN-BD11 cells ND [109]

Xenopsin and
Xenopsin-AM2

Frog
(Xenopus borealis and

Xenopus amieti)
BRIN-BD11 cells ND [94]

HFD: High Fat Diet; ND: Not Done.

2.3. Polyphenols and Alkaloids from Plants Stimulating Insulin Secretion

Medicinal plants have been a major focus of research due to the presence of bioactive
compounds that may provide the foundation for drug design. The World Health Organi-
zation lists almost 21,000 plants used for medicinal purposes worldwide [110]. Bioactive
substances include mostly polyphenols and alkaloids. Polyphenols are secondary polyhy-
droxy phytochemicals metabolites resulting from the shikimic acid and phenylpropanoid
pathways of plants. These metabolites mediate plant defenses against pathogenic aggres-
sion and ultraviolet radiation [111]. They are also key for plant adaptation against stressful
environments and cues [112]. These phenolic substances share a common phenolic ring
structure, with one or more phenolic rings linked to more than one hydroxyl group [113].
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Polyphenols are classified into several subgroups (Figure 2) with flavonoids being the
largest one [114].
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Alkaloids are nitrogenous compounds derived from the metabolism of amino acids,
such as tyrosine, lysine, ornithine, phenylalanine and tryptophan. They contain at least one
nitrogen atom in a heterocyclic ring. In addition, most alkaloids contain oxygen. The term
alkaloid refers to the basic (alkaline) nature of the structure. There are several groups of
alkaloids (Figure 3), which are mainly found as salts or as N oxides in seed-bearing plants,
in berries, bark, fruits, roots and leaves. They are also found in marine algae [115] and in
the skin of amphibians along with other toxins [116]. Among more than twenty thousand
alkaloids, several dozen are currently used as medical drugs as exemplified by morphine
and codeine [117]. An application of alkaloids and polyphenols for the treatment of diabetes
is possible. The literature reports a plethora of studies confirming some direct effects of
polyphenols and alkaloids on insulin secretion. Some of them inhibit insulin secretion, as
exemplified by colchicine [118], scopolamine [119,120], melatonin [121,122], atropine [123],
cystisine [124] and serotonine [125]. For some others, there are still some debates and
conflicting results. For example, according to the concentration, nicotine [124,126,127], some
quinoline members (e.g., quinine and quinidine) [128,129] and some isoquinoline members
(e.g., berberine) [130–132] can either stimulate or inhibit insulin secretion. Nonetheless,
numerous polyphenols and alkaloids have been identified as direct insulin secretagogues.
However, the molecular mechanisms of their effects are different. While some polyphenols,
such as resveratrol, cyanidin and rutin, stimulate insulin secretion via an increase in glucose
metabolism or a direct augmentation of Ca2+ influx [133–135], other polyphenol substances
and alkaloids enhance insulin secretion via other pathways. Some molecules can directly
trigger the closure of K+

ATP (Table 4), although it is unclear if they directly close the K+
ATP

channels by binding to SUR or Kir6.2 and/or indirectly induce the closure through an
increase in ATP production. Other molecules promote the rise of cAMP levels similar to
GLP-1RAs (Table 5). Unlike myricetin, the mechanism through which compounds such as
vanillic acid stimulate the rise of cAMP is not well understood. Curcumin could also induce
the rise of cAMP via the inhibition of phosphodiesterase activity [136], whereas genistein
and daidzein seem to directly stimulate adenylate cyclase activity similar to forskolin [137].
Quercetin may activate β-adrenergic receptors [138], whereas the alkaloid morphine could
involve opioid receptors [139].
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Table 4. Polyphenols and alkaloids that stimulate insulin secretion in a mechanism that requires the
closure of K+

ATP channels.

Compounds Class Group of the
Active Substance In Vitro Models In Vivo Models Reference(s)

Astragalin Flavonol Polyphenol Isolated rat islets ND [140]

Caffeine Purine Alkaloid ND
NMRI and BALB/c
mice transplanted
with mouse islets

[141–143]

Ellagic acid Tannin Polyphenol Isolated mouse
islets ND [144,145]

Kaempferol Flavonol Polyphenol ND ND [146]

Lupanine Quinolizidine Alkaloid Isolated rat islets ND [147]

Nuciferin Aporphine Alkaloid
Isolated mouse
CD1 islets and

INS-1 cells
ND [148]

Quercetin Flavonol Polyphenol Rat INS-1 cells ND [149]

Resveratrol Stilbene Polyphenol
MIN6 cells,

HIT-T15, and
RIN-m5F cells

Wistar Rats [150]

Schisandrol A,
schisandrol B and

schisandrin C
Lignan Polyphenol Rat INS-1 cells ND [151]

Sparteine Quinolizidine Alkaloid HIT-T15 cells ND [152]

2R, 3R taxifolin
3-O-rhamnoside Flavanonol Polyphenol ND Wild type mice [153]

Vindoline Indole Alkaloid
Mouse MIN6 cells

and isolated
mouse islets

db/db mice and
STZ/HFD-induced
type 2 diabetic rats

[154]

ND: Not Done.
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Table 5. Polyphenols and alkaloids that stimulate insulin secretion via a rise in cAMP levels.

Compounds Subclass Class of the
Active Substance In Vitro Models In Vivo Models Reference(s)

Curcumin Curcuminoid Polyphenol Mouse MIN6 cells and
isolated human islets ND [136]

Daidzein Isoflavone Polyphenol Rat INS-1 cells and isolated
mouse islets ND [155,156]

Genistein Isoflavone Polyphenol
Rat INS-1 cells, mouse MIN6

cells and isolated mouse
islets, isolated human islets

Streptozotocin-induced
diabetic mice [137,157,158]

Morphine Isoquinoline Alkaloid Isolated rat islets ND [139,159]

Myricetin Flavonol Polyphenol Isolated rat islets Wistar Rats [160]

Vanillic acid Benzoic acid Polyphenol Rat INS-1 cells and isolated
rat islets ND [161]

ND: Not done.

3. Venom Peptides, Polyphenols and Alkaloids Protecting β-Cells against Death
Induced by Diabetogenic Environments
3.1. Preserving β-Cell Mass in T2D by Antagonizing ER Stress, Oxidative Stress and Autophagy
as the Paradigm for Achieving Long-Term Glycemic Control in T2D

In T2D, β-cell death is the leading cause in the reduction of β-cell mass [16,162]
although the increase of β-cell senescence [163] and dedifferentiation [164] are also
involved. Nowadays, there is evidence that β-cell death results from activation of
several pathways including Endoplasmic Reticulum (ER) stress [165], oxidative stress
(OS) [166] and autophagy [167,168], which intersect with one another. Amyloid deposits,
pro-inflammatory cytokines, hyperlipidemia (cholesterol and saturated fatty acids) and
hyperglycemia are, individually and in combination, involved in the induction of ER
stress, OS and autophagy [169,170]. When compared to SUs, glinides and gliptines, the
GLP-1RAs are the only antidiabetic drugs that can antagonize the deleterious effects
of ER stress [14], oxidative stress [171] and autophagy in β-cells [172]. Although the
preclinical data are exciting, in clinical setting, the long-term benefits of some GLP-1RAs
are debated as many patients are non-responders to GLP-1RAs and switch to insulin
therapy [173]. One explanation is that the expression of GLP-1 receptor (GLP-1R) is
decreased in patients with T2D [174,175]. The insufficient GLP-1R levels in β-cells could
reduce the biological effects of GLP-1RAs and thereby limit their use in some patients.
Therefore, there is an urgent need that the next generation of antidiabetics that targets
β-cells not only improve insulin secretion, but also protect them against death caused by
stress-induced pathways.

3.2. Survival Proteins of β-Cells Revealed by GLP-1RAs

Intensive studies have tried to unravel the mechanism through which GLP-1RAs an-
tagonize the deleterious effects of ER stress [14], oxidative stress [171] and autophagy [172].
These mechanisms have been instrumental for identifying the key targets required for
β-cell protection. These proteins are listed in the Table 6 and are considered as key play-
ers in the β-cell protection elicited by GLP-1RAs when they meet the following criteria:
(1) they are activated and/or their expression induced by GLP-1RAs in β-cells and (2) their
inhibition and/or suppression attenuate the protective effect of GLP-1RAs on cell death
induced by pro-apoptotic stressors. All these proteins belong to the GLP-1RA signaling
cascade and are therefore connected with each other, as exemplified by the IB1/JIP1/JNK3
pathway [176]. Therefore, targeting these proteins using GLP-1RAs represents a relevant
therapeutic strategy for improving β-cell mass in T2D.
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Table 6. β-cell survival proteins induced by GLP-1RAs.

Protein Name Protein Role Reference(s)

AKT, also called PKB

AKT is a serine/threonine kinase which activates CREB, PDX1 and
mammalian target of rapamycin (mTOR) complex 1. It inhibits glycogen
synthase kinase 3 (GSK3β), caspase-9, FoxO1 and Bcl-2-associated death

promoter (Bad)

[177,178]

MAK8IP1 also called Islet
Brain 1/JIP1

Scaffold protein that tethers MAP3K/MAP2K/JNK.MAPK8IP1 is involved in
the anti-apoptotic JNK signaling pathway [179–181]

MAPK10/JNK3 Anti-apoptotic with unidentified targets. JNK3 is regulated by
MAP8IP1/JIP-1/IB1 [176]

CREB
Transcription factor that positively regulates the expression of insulin receptor
substrate 2, a key component of IGF-1 and insulin receptor signaling leading to

AKT activation
[182]

ERK1/2 Ras-dependent extracellular signal-regulated kinase 1 (ERK1)/2
mitogen-activated protein (MAP) kinase pathway regulates cell survival [183–185]

SERCA2b P-type ATPase that regulates endoplasmic reticulum (ER) Ca2+ stores. [186,187]

PDX-1 Transcription factor that determines endocrine cell fate and controls
β-cell differentiation [188]

PKA Protein kinase A that phosphorylates transcription factor CREB [14,185]

NKX6.1 Transcription factor that determines the specification of progenitor cells into
mature functional β-cells. It maintains the function of adult pancreatic β-cells. [189,190]

FoxO1 Forkhead transcription factor (Fox) of the O subclass. FoxO1 is a
transcriptional effector of IGF signaling that controls β-cell mass through Pdx1 [191,192]

NRF2 The nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) is a leucine zipper
(bZip) transcription factor that regulates oxidant levels [193,194]

MAFA
While v-Maf musculoaponeurotic fibrosarcoma transcription factor A (MAFA)
controls β-cell differentiation, it maintains the mature phenotype and viability

of β-cells
[195]

XBP-1
X-box binding protein 1 (XBP1) is leucine zipper (bZIP) transcription factor

that promotes ER biogenesis and activates the expression of ER
chaperone genes

[196,197]

ERα Estrogen receptor α (ERα) is a nuclear receptor that maintains the
mitochondrial fission/fusion–mitophagy dynamics [198,199]

Glucokinase Transferase that phosphorylates glucose [200]

PPARγ Nuclear factor that regulates components of β-cell function and survival [201,202]

AMPK AMP-activated protein kinase that regulates β-cell survival via the
mTOR pathway [203,204]

Bcl2 Mitochondrial membrane protein that inhibits apoptosis [205]

3.3. Peptides from Venoms That Protect β-Cells against Death by Targeting β-Cell
Survival Proteins

Despite the identification of venom peptides that can act as insulin secretagogues, there
are few in vitro and preclinical studies stating a direct protective effect of these peptides
in β-cell death. In addition, most studies did not validate the direct role of the peptides
in β-cell viability and/or β-cell mass, although plasma glucose, insulin level and blood
biomarkers have been investigated [82]. In fact, only considering the in vitro and in vivo
studies that have directly investigated β-cell viability, very few peptides from venoms have
been tested among those exhibiting an insulin secretagogue activity. Temporins A and
F protect BRIN-BD11 cells against death [206]. However, the mechanism through which
temporins trigger β-cell protection has not been elucidated thus far. A protective role of
esculentin-2Cha and PGLa-AM1 in an in vitro model of β-cells, possibly via the induction



Cells 2023, 12, 940 13 of 26

of PDX1, has been described [106,207]. Nonetheless, these results still need to be confirmed
in human islets and islets of animal models of T2D.

3.4. Polyphenols and Alkaloids That Protect β-Cells against Death by Targeting the β-Cell
Survival Proteins

Unlike the peptides from venom, the literature is more substantial regarding studies
investigating the protective effect of polyphenols and alkaloids on β-cell death. Dozens
of these plant substances (Table 7), mostly polyphenols, have been directly tested for
their capacity to counteract the toxicity induced by diabetogenic factors and exploring
the underlying mechanisms. Besides stimulating insulin secretion (see Section 2.3),
curcumin, cyanidin, kaempferol, quercetin, myricetin, genistein, silibilin and resveratrol,
seem to directly protect β-cells similar to GLP-1RAs. It is noteworthy that the protective
effect of flavonol, curcuminoid, flavone, isoflavone, flavinolignan and stilbenes on β-
cells could also rely on their phytoestrogen activity in a mechanism involving estrogen
receptors (ER). Indeed, as phytoestrogens, the members of the six polyphenol subclasses
can bind to both types of ERα receptors and ERβ receptors, mimicking the effect of
estradiol [208–210]. Estradiol prevents β-cells death induced by OS [211]. However,
the estradiol-mimicking effect of these polyphenols in β-cell protection remains to be
confirmed. In addition, at the present time, evidence supporting the role of polyphenols
and alkaloids for reducing hyperglycemia and improving β-cell mass and function
in human are missing. Resveratrol fails to restore glycemia and to improve insulin
secretion in a clinical trial of diet-controlled patients with T2D treated for 5 weeks with
stilbene [212]. In other clinical trials, although promising, the data are incomplete as
only mixtures of polyphenol-enriched extracts were used. Using either polyphenol-
rich drinks [213] or polyphenol-enriched plant extracts, the clinical studies showed an
improvement in fasting and/or postprandial glycemia in healthy individuals or people
with metabolic syndrome or with T2D [214–216]. In a 3-month period trial, curcumin
administrated in patients with T2D improved glycemia and plasma insulin levels [217].
Among alkaloids, berberine is one of the most intensively studied [218]. Besides the
improvement of insulin sensitivity, hepatic lipid metabolism and adipose fibrosis, this
isoquinoline might also alleviate hyperglycemia by protecting β-cells against death
induced by lipotoxicity in a mechanism involving SIRT1 [219]. Although berberine seems
convincing as a promising antidiabetic, the temporary adverse gastrointestinal events
observed in one third of patients treated with the alkaloid in a trial of 59 patients [220],
has restrained the medical community from using it for clinical purposes. This worry is
further supported by the inconsistent bioavailability of berberine after oral ingestion,
as shown by a randomized, double-blind, placebo-controlled investigation [221]. In
addition, as mentioned above (see Section 2.3), there are conflicting results of the effect
of berberine on insulin secretion [130,132]. Therefore, future experimental and clinical
studies are required for confirming the effectiveness of berberine on insulin secretion
and its long-term safety in a consistent cohort of patients.
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Table 7. Polyphenols and alkaloids targeting β-cell survival proteins.

Compounds Class Group of the
Active Substance Target Protein In Vitro Models In Vivo Models Reference(s)

Curcumin Curcuminoid Polyphenol AKT, FoxO1,
SIRT1 Mouse MIN6 cells ND [222,223]

Epigallocatchin
(EGCG) Flavonol Polyphenol

AKT, PDX1
FoxO1, Bcl2,

AMPK
Rat RINm5F ND [224]

Anthocyanins Anthocyanidins Polyphenol AMPK, Bcl2,
PDX1 ND

KKAy diabetic mice
STZ-induced
diabetic rats

[225,226]

Dephinidin Anthocyanidins Polyphenol AMPK Rat RINm5F ND [227]

Cyanidin
(Cyanidin-3-
glucoside)

Anthocyanidins Polyphenol PPARγ, AKT,
Bcl2

Mouse MIN6 and rat
INS-1 cells ND [228–230]

Apigenin Flavone Polyphenol AKT Hamster HIT-T15
and rat RINm5F cells ND [231–233]

Luteolin Flavone Polyphenol AKT, MAFA
Rat INS-1 cells,
MIN6 cells and

isolated mouse islets

Alloxan-induced
diabetic rats [234–236]

Kaempferol Flavonol Polyphenol AKT, Bcl2, PKA,
PDX1

Isolated human islets
and INS-1 cells ND [146]

Quercetin Flavonol Polyphenol ERK1/2, AKT Rat RINm5F and
INS-1 cells ND [232,237]

Myricetin Flavonol Polyphenol PDX1, AKT Rat RINm5F and
INS-1 cells ND [238,239]

Naringenin Flavonol Polyphenol AKT INS-1 cells ND [237]

Genistein Isoflavone Polyphenol ERK1/2, cAMP Isolated human islets
and INS-1 cells

STZ-induced
diabetic rats [240]

Silibinin Flavinolignan Polyphenol PKA, PDX1 ND STZ-induced
diabetic rats [241–243]

Resveratrol Stilbene Polyphenol PDX1, FoxO1
Isolated human

islets, isolated rat
islets and INS-1 cells

HFD-induced
diabetic mice [244–246]

Berberine Isoquinoline Alkaloid Nrf2 Rat INS-1 cells,
MIN6 cells ND [131,219]

ND: Not Done, STZ: Streptozotocin.

4. Conclusions

The fight against diabetes epidemic worldwide requires efficient drugs that not only
improve β-cell function, but also preserve their mass [247]. This review underlines that only
polyphenols and one alkaloid, berberine, have been clearly studied as insulin secretagogues
and β-cell protectors, whereas the effects of animal venom peptides in the preservation
of β-cell are largely under investigated. Flavonols, curcuminoids, flavones, isoflavones,
flavinolignans and stilbenes can be considered as the most promising drugs, as exemplified
by curcumin, resveratrol, silibilin, genistein, myricetin, quercetin, EGCG and apigenin. In
addition, as phytoestrogens, all these polyphenols could provide several additional benefits
for patients. Phytoestrogens are reported to lower the risk of menopausal symptoms,
cardiovascular diseases, brain function disorders and several cancers such as breast, bowel,
uterine and prostate cancers [248]. Nonetheless, the interest in these polyphenols for clinical
use will only be approved if future studies at least confirm their safety in terms of infertility
risks and increased risks of cancer in estrogen-sensitive organs. The careful attention to
their safety is further supported by the fact that polyphenols also target a large number
of receptors and non-receptor tyrosine kinases and serine–threonine kinases, which play
key pleiotropic roles in cellular signaling and physiology [249,250]. Besides their safety,
there is still a need for additional preclinical studies to confirming their bioavailability,
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pharmacokinetics and efficiency upon delivery by an oral route. Successful delivery of
polyphenols and alkaloids via this route could offer some metabolic advantages as these
compounds might directly stimulate GLP-1 secretion in the gut. Curcumin, delphinidin,
EGCG and genistein, for example, are able to stimulate GLP-1 secretion in in vitro and
rodent diabetic models [251]. In the gut, the polyphenols could also be beneficial by acting
as prebiotics for stimulating the production of Akkermansia muciniphila, a bacteria that
improves the glucose metabolism of patients with T2D [252], as shown by a previous
study using polyphenol-rich extracts [253]. However, oral administration of polyphenols is
challenging as it compromises the stability of the substances in the gastrointestinal tract and
their proper absorption. Polyphenols are not well assimilated by the gut if they are delivered
as glycosides, esters or polymers [254]. In addition, they can be modified by intestinal
bacteria and trigger some side effects including nausea, headache and nasopharyngitis,
even though the available data from clinical studies are rather optimistic, showing that
polyphenols are overall safe and cause marginal side effects [255].

Encapsulation of peptides, polyphenols and alkaloids into biocompatible nanopar-
ticles/nanocapsules will increase their apparent solubility, bioavailability and intestinal
permeability and reduce their side effects [256–258]. Optimal formulation of these sub-
stances with nanoparticles and their preclinical validation are required before proceeding
to clinical trials. The latter should be randomized and performed in large cohorts of
patients receiving the therapeutic substances for periods of over 6 months. In addition,
for validating the properties of the substances on β-cell mass and function, it is essential
that trials include the current methods for monitoring β-cell function and mass such as
arginine-induced insulin secretion, mixed meal tolerance tests, oral glucose tolerance tests
and/or intravenous glucose tolerance tests [259].
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