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Abstract 
 

Purpose:  

 

Systematic review and network meta-analysis to investigate the efficacy of noninvasive 

respiratory strategies, including noninvasive positive pressure ventilation (NIPPV) and high-

flow nasal cannula (HFNC), in reducing extubation failure among critically ill adults. 

 

Methods:  

 

We searched databases from inception through October 2021 for randomized controlled trials 

(RCTs) evaluating noninvasive respiratory support therapies (NIPPV, HFNC, conventional 

oxygen therapy, or a combination of these) following extubation in critically ill adults. Two 

reviewers performed screening, full text review, and extraction independently. The primary 

outcome of interest was reintubation. We used GRADE to rate the certainty of our findings. 

 

Results:  

 

We included 36 RCTs (6806 patients). Compared to conventional oxygen therapy, NIPPV 

(OR 0.65 [95% CI 0.52–0.82]) and HFNC (OR 0.63 [95% CI 0.45–0.87]) reduced 

reintubation (both moderate certainty). Sensitivity analyses showed that the magnitude of the 

effect was highest in patients with increased baseline risk of reintubation. As compared to 

HFNC, no difference in incidence of reintubation was seen with NIPPV (OR 1.04 [95% CI 

0.78–1.38], low certainty). Compared to conventional oxygen therapy, neither NIPPV (OR 

0.8 [95% CI 0.61–1.04], moderate certainty) or HFNC (OR 0.9 [95% CI 0.66–1.24], low 

certainty) reduced short-term mortality. Consistent findings were demonstrated across 

multiple subgroups, including high- and low-risk patients. These results were replicated when 

evaluating noninvasive strategies for prevention (prophylaxis), but not in rescue (application 

only after evidence of deterioration) situations. 

 

Conclusions:  

 

Our findings suggest that both NIPPV and HFNC reduced reintubation in critically ill adults, 

compared to conventional oxygen therapy. NIPPV did not reduce incidence of reintubation 

when compared to HFNC. These findings support the preventative application of noninvasive 

respiratory support strategies to mitigate extubation failure in critically ill adults, but not in 

rescue conditions. 

 

 

 

Introduction 
 

 

Invasive mechanical ventilation is a widely used lifesaving therapy for many critically ill 

patients [1, 2], but is also associated with important complications, including ventilator-

induced lung injury, nosocomial infections [e.g., ventilator-associated pneumonia (VAP)], 

neuromuscular weakness, and delirium [3–5]. Furthermore, invasive mechanical ventilation 

requires substantial resource utilization, and is one of the most costly therapies provided in the 



intensive care unit (ICU) [6]. For all these reasons, providers seek timely and safe liberation 

of patients from mechanical ventilation [7]. 

 

Extubation failure is associated with important harms [8], including increased mortality [9, 

10], and occurs in approximately 10–15% of extubated patients. Incidence is even higher (25–

40%) in certain patient populations (e.g., patients with heart failure or chronic obstructive 

pulmonary disease) [7, 11]. To mitigate the risk of extubation failure, clinicians have used 

noninvasive respiratory support interventions in the post-extubation period to optimize gas 

exchange and decrease patients’ oxygen cost of breathing [12]. These interventions 

[noninvasive positive pressure ventilation (NIPPV) and high-flow nasal cannula (HFNC)] 

have been shown to be efficacious in preventing initial intubation in patients with hypoxemic 

respiratory failure [13], but their efficacy in preventing post-extubation respiratory failure and 

reintubation is less clear. These support strategies may also be associated with increased 

patient discomfort and healthcare resource utilization [14]. Further to this, survey studies have 

demonstrated provider skepticism regarding the efficacy of these interventions [15]. As such, 

there is substantial practice variation worldwide in the application of such strategies, with 

overall limited use [16, 17]. 

 

We conducted a systematic review and network metaanalysis of randomized controlled trials 

(RCTs) to evaluate the relative efficacy of conventional oxygen therapy, NIPPV, HFNC, and 

the strategy of alternating NIPPV and HFNC during the post-extubation period in reducing 

extubation failure and short-term mortality among critically ill adults. We hypothesized that 

NIPPV, HFNC, and alternating NIPPV and HFNC would reduce extubation failure, as 

compared to conventional oxygen therapy. 

 

 
 

Methods 
 

We followed the Preferred Reporting Items for Systematic Review and Meta-Analysis 

(PRISMA) statement extension for network meta-analysis [18, 19], and registered our 

protocol with the Open Science Framework (https:// www. osf. Io/ 49xgd). 

 

Data sources and search strategy 

 



We searched six databases (Medline, PubMed, EMBASE, Scopus, Web of Science, and the 

Cochrane Database of Systematic Reviews) from inception to October 11, 2021. An 

experienced health sciences librarian helped develop the search strategy (Supplemental Fig. 

1). We conducted further surveillance searches using the ‘related articles’ feature [20], and 

performed a grey literature search, including screening the reference lists of all included 

studies, and subsequent guidelines on non-invasive ventilation. 

 

Study selection 

 

Two reviewers (SMF and AT) independently screened titles and abstracts identified through 

the searches using Covidence (Melbourne, Australia), and then independently assessed full 

texts of the selected articles from phase one. Reviewers resolved disagreements by discussion. 

We included English-language RCTs (parallel, cluster, or cross-over) meeting the following 

criteria: (1) enrolled adult patients (≥ 16 years of age); (2) conducted primarily (≥ 70% of 

patients) in an ICU setting; (3) randomized patients to receive NIPPV, HFNC, conventional 

oxygen therapy, or a combination of the above; (4) conducted in the post-extubation period, 

and evaluated these treatments for prevention (i.e. prophylactic application immediately post-

extubation) or rescue (i.e. application only in patients developing symptoms and signs of 

respiratory failure post-extubation); and (5) reported at least one of the outcomes of interest. 

We excluded trials that: (1) were conducted in the emergency department, operating room, or 

post-anesthetic care unit; (2) evaluated the effect of these interventions on “weaning” (e.g. 

passing a spontaneous breathing trial) but did not provide data on extubation failure; (3) 

exclusively evaluated patients with self-extubation; (4) evaluated these interventions for 

transitioning to palliative care; and (5) randomized patients to liberation or post-extubation 

protocols, rather than treatments [21]. 

 
The primary outcome of interest was extubation failure, defined as reintubation using an endotracheal 

tube and recurrent invasive mechanical ventilation. In the absence of a widely accepted time-based 

definition of “extubation failure” [11], we included trials that evaluated this outcome at any point 

during the index ICU admission. Other important outcomes included short-term mortality (28-day, 30-

day, or in-hospital), incidence of VAP, patient discomfort (described as a binary outcome in the 

included trials), incidence of tracheostomy, time to re-intubation, ICU length of stay, and total hospital 

length of stay. For studies reporting length of stay as a median (with interquartile range), this was 

converted to a mean (with standard deviation), using appropriate methods [22]. 

 

Data extraction 

 

One investigator (SMF) used a pre-designed data extraction form to collect the following variables: 

author information, publication year, eligibility criteria, and number of patients (Supplemental Table 

1). Two investigators (SMF and AT) independently collected data related to descriptions of 

interventions and outcomes. Disagreements were resolved through discussion. 

 

Risk of bias assessment 

 

Two reviewers (SMF and AT) independently assessed the risk of bias of the studies, using a modified 

Cochrane Collaboration tool [23], that included sequence generation, allocation sequence 

concealment, blinding, missing outcome data, and other biases. Reviewers resolved disagreement 

through discussion. 

 

 

 

 



 

Data synthesis and analysis 

 

For each outcome and each pair of interventions, we calculated odds ratios (OR) and corresponding 

95% confidence intervals (CIs). Initially, we performed conventional pairwise meta-analysis using a 

DerSimonian and Laird random-effects model for all comparisons with two RCTs or more [24]. We 

assessed heterogeneity for each direct comparison using visual inspection of forest plots, the I2 

statistic and the Chi-squared test. We evaluated the feasibility of conducting network meta-analysis by 

evaluating the: (1) availability of evidence (e.g. number of trials, number of interventions); (2) 

homogeneity of study designs, patients, and characteristics of interventions across the body of 

evidence (transitivity assumption); (3) structural properties of the network of evidence (e.g. 

connectivity); and (4) coherence in network (using the ‘design-by-treatment’ model), and in each 

closed loop of the network. 

 

We performed frequentist random-effects network meta-analysis using multivariate meta-analysis 

assuming a common heterogeneity parameter [25, 26]. We confirmed the coherence assumption in the 

entire network using ‘design-by-treatment’ model (global test), as described by Higgins et al. [27]. We 

also used the side splitting method to assess the presence of incoherence between direct and indirect 

estimates of the effect [28,29]. For each outcome, we estimated ranking probabilities, the Surface 

Under the Cumulative RAnking Curve (SUCRA), and generated mean treatment rankings. For all 

direct comparisons, we assessed the small-study effect using Harbord’s test for binary outcomes and 

Egger’s test for continuous outcomes when 10 or more RCTs were available [30]. We conducted all 

analyses using STATA 16 (StataCorp, College Station, TX, USA). 

 

Subgroups and sensitivity analyses 

 

While most trials included mixed populations of critically ill patients, we expected that some trials had 

exclusively recruited particular patient populations. To explore these between-trial comparisons, we 

performed network meta-regression among pre-specified subgroups (mixed ICU patients, surgical 

patients, patients at “high risk” for extubation failure, patients with hypercapnic respiratory failure, 

and study continent) to assess for effect modification by subgroup. For any subgroup effect that was 

found to be statistically significant, we used the Instrument to assess the Credibility of Effect 

Modification Analyses (ICEMAN) to evaluate credibility [31]. Finally, to further assess these 

therapies across various conditions, we performed network meta-regression to adjust for baseline risk 

of reintubation among the included trials. The baseline risk for reintubation was generated using the 

incidence of reintubation among patients receiving conventional oxygen therapy in the included trials. 

Additionally, we performed a sensitivity analysis using a possible range of baseline risks for 

reintubation (range from 5 to 40%, supported by evidence and confirmed by our clinical experts) to 

estimate absolute risk reductions and number need to treat (NNT) for the outcome of reintubation. 

 

Trials may also differ in timing of patient recruitment and application of noninvasive ventilation. 

Although we expected that most trials would test the efficacy of prophylactic or preventative 

noninvasive ventilation in the immediate post-extubation period, some trials may exclusively recruit 

patients with evidence of clinical deterioration prior to rescue application of noninvasive ventilation. 

Consequently, we performed sensitivity analyses only including trials evaluating the efficacy of 

noninvasive ventilation for prevention of reintubation following extubation. We additionally 

performed conventional meta-analysis among the trials that used noninvasive ventilation for 

rescue in patients with evidence of respiratory distress prior to application. 

 

 

 

 

 

 



Assessment of certainty of evidence 

 

We used the Grading of Recommendations, Assessment, Development, and Evaluation 

(GRADE) approach to assess the certainty of evidence for each comparison [32]. The 

certainty assessment addresses the domains of risk of bias, imprecision, inconsistency, 

indirectness, intransitivity, publication bias, and incoherence [32]. Imprecision for each 

comparison was assessed at the network level, and not at the level of the direct or indirect 

estimate. Given our presumption that blinding clinicians to noninvasive treatments would not 

be possible in the included trials, and that a lack of blinding might lead to potential 

differences in adjunctive therapies (e.g., suctioning, positioning) that might affect the 

outcome, we decided to rate down our GRADE certainty for subjective outcomes (e.g., 

extubation failure), but not objective outcomes (e.g., mortality). We applied a minimally 

contextualized approach to evaluate certainty in effect estimates and draw conclusions from 

network meta-analyses [33]. 

 

 

 

Results 
 

Search results, study characteristics, and risk‑of‑bias Of 6899 citations (Supplemental Fig. 2) 

identified in the search, we screened 6605 following removal of duplicates, and 58 underwent 

full-text review. We included 36 RCTs [34–69], examining 6806 patients (all ICU patients). 

Characteristics of the included trials are shown in Table 1, and detailed characteristics are 

shown in Supplemental Table 2. Of these, 29 studies (2129 patients, 31.3% of patients) 

investigated conventional oxygenation therapy (delivered via nasal prongs or facemask) [34– 

43, 45–47, 49–58, 60, 62, 63, 67–69], 24 studies (2149 patients, 31.3%) investigated NIPPV 

(using facemask interface) [34, 38, 40, 41, 43, 44, 46–51, 54–56, 59–61, 63, 64, 66–69], 18 

studies (2189 patients, 32.2%) investigated HFNC [35–37, 39, 42, 44, 45, 48, 52, 53, 57–59, 

61, 62, 64–66], and 1 study (339 patients, 5.0%) evaluated the combination of alternating 

NIPPV and HFNC [65]. Riskof-bias assessments are shown in Supplemental Table 3. While 

the majority of trials were considered low risk-of bias in most domains, all trials were 

considered to have probable high risk-of-bias with regard to blinding, given the practical 

inability to blind treating providers to noninvasive respiratory strategies. 

 

Reintubation 

 

The network plot for reintubation is displayed in Fig. 1, and the summary of findings, 

including network estimates, is shown in Table 2. We found that, compared to conventional 

oxygen therapy, both NIPPV (OR 0.65 [95% CI 0.52–0.82]; absolute risk difference − 5.18 

[95% CI − 8.09 to − 2.26]) and HFNC (OR 0.63 [95% CI 0.45– 0.87]; absolute risk 

difference, − 3.84 [95% CI − 6.7 to − 0.98]) reduced the incidence of reintubation (moderate 

certainty). NIPPV had no effect on reintubation compared to HFNC (OR 1.04 [95% CI 0.78–

1.38]; absolute risk difference − 1.34 [95% CI − 4.40 to 1.72], low certainty). The 

combination of alternating HFNC and NIPPV did not decrease the incidence of reintubation, 

as compared to NIPPV alone (OR 0.58 [95% CI 0.3–1.11]; absolute risk difference − 5.07 

[95% CI − 13.38 to 3.24]), or HFNC alone (OR 0.6 [95% CI 0.33–1.08]; absolute risk 

difference − 6.41 [95% CI − 14.13 to 1.31]), based on low certainty evidence. Direct 

estimates, indirect estimates, and SUCRA table are shown in Supplemental Table 4. 

 

 



 

 
 

 

 

 



 
 

 

 
 

Mortality 

 

The efficacy of these treatments in preventing shortterm all-cause mortality is depicted in the 

network plot (Fig. 2b), with summary findings displayed in Table 3. Compared to 

conventional oxygen therapy, neither NIPPV (OR 0.8 [95% CI 0.61–1.04]; absolute risk 

difference − 1.65 [95% CI − 3.81 to 0.5], moderate certainty), nor HFNC (OR 0.9 [95% CI 

0.66–1.24]; absolute risk difference − 0.29 [95% CI − 1.58 to 1.01]), were associated with 

reduced short-term mortality, based on low certainty evidence. NIPPV did not reduce 

mortality compared to HFNC (OR 0.89 [95% CI 0.69–1.13]; absolute risk difference − 1.37 

[95% CI − 3.47 to 0.72], moderate certainty). Direct estimates, indirect estimates, and 

SUCRA table are shown in Supplemental Table 4. 

 

 

 

 



 
Ventilator‑associated pneumonia, discomfort, and other outcomes 

 

Compared to conventional oxygen therapy, both NIPPV (OR 0.39 [95% CI 0.25–0.61]) and 

HFNC (OR 0.35 [95% CI 0.21–0.59]) were associated with a reduced incidence of VAP 

(moderate certainty) (Supplemental Table 5). As documented by clinician ratings or patient-

reported experience, NIPPV was associated with increased patient discomfort (OR 30.89 

[95% CI 1.48–645.7], low certainty), compared to conventional oxygen therapy 

(Supplemental Table 6). Finally, comparison between the treatments and outcomes including 

ICU length of stay (Supplemental Table 7) and incidence of tracheostomy (Supplemental Fig. 

3) were uncertain, due to very low certainty of evidence. 

 

Subgroup and sensitivity analyses 

 

The results of network meta-regression among the subgroups of interest (proportion of 

surgical patients, proportion of “high risk” patients, proportion of hypercapnic patients, and 

by continent) for the outcomes of reintubation and short-term mortality are shown in 

Supplemental Tables 8–9. We did not find evidence of an effect modification among 

subgroups of patient populations, but did find evidence for statistically significant effect 

modification by continent of study publication, with trials conducted in Europe demonstrating 

greater efficacy of NIPPV and HFNC, as compared to conventional oxygen therapy. 

However, the credibility of this subgroup finding was judged to be low. Table 4 shows that 

compared to conventional oxygen, the predicted absolute effect of NIPPV, HFNC, and 

alternating HFNC and NIPPV for prevention of reintubation are highest in patients at 

increased baseline risk of reintubation. 

 

The sensitivity analyses that only included studies testing the efficacy of noninvasive 

respiratory support for prevention or prophylaxis are shown in Supplemental Tables 10–12, 

and are consistent with the primary analyses. Conversely, pairwise meta-analyses did not 

demonstrate benefit of noninvasive ventilation in reducing reintubation or death when 

provided as rescue therapy (Supplemental Figs. 4–5). 



 

 

 

Discussion 
 

 

 

Extubation failure is a critical outcome that is prognostically important (i.e., associated with 

mortality) and is patient-important [9, 10]. Therefore, treatments that may mitigate the risk of 

reintubation are of value to a variety of stakeholders [70]. Although noninvasive respiratory 

support in the post-extubation period has been studied, there is variation in its use in this 

setting [71], and providers have expressed skepticism in its efficacy [15]. In this context, we 

found evidence suggesting that both NIPPV and HFNC reduced reintubation in the post-

extubation period compared to conventional oxygen therapy, with increased effect size in 

patients with the highest baseline risk for reintubation. These effects were present when 

noninvasive respiratory support was used prophylactically following extubation, but not when 

it was applied for rescue in patients who were deteriorating post-extubation. Finally, no 

difference between NIPPV and HFNC was detected in prevention of reintubation. These data 

have important implications for providers, patients, and clinical practice guidelines. 

 

The most recent iteration of the European Respiratory Society and American Thoracic Society 

clinical practice guidelines on the use of NIPPV, published in 2017, provided a conditional 

recommendation (low certainty) for its use in high-risk patients post-extubation, and a 

conditional recommendation (low certainty) against the use of NIPPV in low-risk patients 

post-extubation [72]. These recommendations were based on evidence existing at the time of 

guideline development, which showed benefit of NIPPV only in selected populations. Use of 

post-extubation HFNC was addressed in the more recent European Society of Intensive Care 

Medicine guideline, which provided a conditional recommendation (low certainty) for its use 

in high-risk patients who had received invasive ventilation for more than 24 h [73]. 

 

 

 



Our work has important implications in this regard. Here, we found evidence suggesting that 

both NIPPV and HFNC reduced the incidence of extubation failure in heterogeneous cohorts 

of ICU patients, without effect modification in higher risk patients, as demonstrated in our 

subgroup analyses. This reduction in reintubation likely contributed to the lower incidence of 

VAP among patients receiving noninvasive ventilation. Previous work comparing the use 

NIPPV during weaning against invasive ventilation has demonstrated its superiority in 

reducing mortality, while preventing weaning failure and reducing ICU length of stay [74]. 

Our review builds upon this existing work, and shows that NIPPV is likely superior to 

conventional oxygen therapy in reducing reintubation in the post-extubation period. 

Compared to the existing guideline recommendations, our results are aligned with and 

reinforced by more recent randomized data, supporting more widespread use of noninvasive 

ventilation in the post-extubation period. In light of these new trials and findings, updated 

guidelines are warranted. 

 

Further to this, our review evaluated heterogeneity of treatment effect, which has implications 

for the application of our findings. Of note, the effect size of these interventions was greatest 

for patients at highest baseline risk of reintubation. For example, as compared to conventional 

oxygen, NIPPV had a NNT for prevention of reintubation of 60 among patients with a 5% 

baseline risk of reintubation, but a NNT of 11 in patients with a 40% baseline risk. This is 

important in evaluating the use of these therapies relative to their resource use and individual 

costs. That is, routine use of noninvasive ventilation may be considered in high-risk patient 

populations, but the purported benefits may not outweigh associated resource use and costs in 

low-risk populations. 

 

We performed further sensitivity analyses comparing the use of noninvasive respiratory 

support therapies for prevention/prophylaxis, or rescue of symptomatic patients. Our findings 

were replicated among trials evaluating use of noninvasive ventilation for prevention or 

prophylaxis, supporting the efficacy of these therapies in this context. However, we did not 

find similar efficacy of noninvasive ventilation in the rescue of symptomatic patients post-

extubation. We found only one ICU trial demonstrating benefit of NIPPV in the rescue setting 

[46], and this trial was conducted in post-operative patients where post-extubation hypoxemia 

is most likely secondary to atelectasis, and where NIPPV has been shown to have some 

evidence of benefit in ward patients [75, 76]. In mixed ICU populations, rescue use of NIPPV 

post-extubation was not beneficial, and indeed may be associated with harm [38]. Together, 

our work importantly differentiates between these two clinical indications, and identifies 

disparate conclusions favouring use in prophylactic application, but not rescue. 

 

Our findings were less conclusive when examining the differences in effect between NIPPV 

and HFNC. Although HFNC does have some theoretical benefits compared to NIPPV (e.g., 

improved patient comfort, and fewer hemodynamic consequences), we found no difference in 

terms of reintubation or mortality for NIPPV compared to HFNC. HFNC generally consumes 

fewer healthcare resources and is more suitable for use outside the ICU setting, while NIPPV 

is typically applied in an ICU or step-down unit [52]. Whether NIPPV is superior to HFNC in 

this context remains unclear, underscoring the need for further trials. Finally, we evaluated the 

alternating combination of HFNC and NIPPV, and found that it did not reduce the incidence 

of reintubation, compared to either alone (low certainty evidence). For now, the use of this 

combination could be considered efficacious in patients at high risk of extubation failure (as 

shown in the HIGH-WEAN trial [65]), and if tolerated, could be considered over either 

NIPPV or HFNC alone. 

 



 

 

This review has several strengths, including a broad search, and a pre-registered protocol. We 

included 36 RCTs with over 6800 patients. We conducted rigorous subgroup and sensitivity 

analyses to test the robustness of our findings across populations and indications, and applied 

GRADE to rate the certainty of estimates. There are also important limitations. First, all 

included trials were judged to be at potentially high risk-of-bias for blinding, as blinding of 

treating clinicians to treatment allocation among noninvasive respiratory support interventions 

is difficult. However, we accounted for this through GRADE ratings, down rating confidence 

for subjective outcomes (e.g., reintubation). The results of network meta-analyses may 

potentially be influenced by indirect evidence, which may have issues related to transitivity. 

However, in this review, we did not find issues with intransitivity, and the network estimates 

were largely driven by direct data, with coherent indirect data. Second, the included trials 

enrolled heterogeneous subgroups, as well as combined studies evaluating various indications 

for noninvasive ventilation (prevention vs. rescue). However, we mitigated concerns related 

to this through important subgroup and sensitivity analyses, which indicate the scenarios 

where noninvasive respiratory support may be of greatest benefit. Unfortunately, there were 

some sources of heterogeneity (such as definition of “extubation failure”, definition of 

“VAP”, or proportion of patients with obesity) that could not be accounted for by secondary 

analyses, and must be taken into consideration. Third, we included only English-language 

RCTs. Finally, trials did not report costs such as consumables, clinician time, and other 

aspects of resource utilization, which may influence practice or policy decisions. 
 

Conclusion 
 

Our results suggest that both NIPPV and HFNC are efficacious in reducing the incidence of 

reintubation, compared to conventional oxygen therapy. The magnitude of treatment effect of these 

interventions is highest in patients at increased baseline risk of reintubation. Finally, these therapies 

appear efficacious in prophylactic application, but not for rescue in symptomatic patients following 

extubation. Taken together, our study has important implications for clinicians caring for mechanically 

ventilated adults, and should prompt re-evaluation of guidelines for the use of noninvasive respiratory 

support for the treatment of critically ill patients post-extubation. 
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