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Abstract

Year after year, the demand for ever-better smartphone

photos continues to grow, in particular in the domain of

portrait photography. Manufacturers thus use perceptual

quality criteria throughout the development of smartphone

cameras. This costly procedure can be partially replaced

by automated learning-based methods for image quality as-

sessment (IQA). Due to its subjective nature, it is necessary

to estimate and guarantee the consistency of the IQA pro-

cess, a characteristic lacking in the mean opinion scores

(MOS) widely used for crowdsourcing IQA. In addition,

existing blind IQA (BIQA) datasets pay little attention to

the difficulty of cross-content assessment, which may de-

grade the quality of annotations. This paper introduces

PIQ23, a portrait-specific IQA dataset of 5116 images of

50 predefined scenarios acquired by 100 smartphones, cov-

ering a high variety of brands, models, and use cases. The

dataset includes individuals of various genders and ethnic-

ities who have given explicit and informed consent for their

photographs to be used in public research. It is annotated

by pairwise comparisons (PWC) collected from over 30 im-

age quality experts for three image attributes: face detail

preservation, face target exposure, and overall image qual-

ity. An in-depth statistical analysis of these annotations

allows us to evaluate their consistency over PIQ23. Fi-

nally, we show through an extensive comparison with ex-

isting baselines that semantic information (image context)

can be used to improve IQA predictions. The dataset along

with the proposed statistical analysis and BIQA algorithms

are available: https://github.com/DXOMARK-

Research/PIQ2023

1. Introduction

Social media has made smartphones a vital tool for con-

necting with people worldwide. Visual media, particularly

portrait photography, has become a crucial aspect of shar-

ing content on these platforms. Portrait photography serves

numerous applications (e.g., advertisements, social media)

and use cases (e.g., anniversaries, weddings). Capturing

a high-quality portrait is a complex exercise that demands

careful consideration of multiple factors, such as scene se-

mantics, compositional rules, image quality, and other sub-

jective properties [46].

Smartphone manufacturers strive to deliver the best vi-

sual quality while minimizing production costs to rival pro-

fessional photography. Achieving this requires implement-

ing complex tuning and optimization protocols to calibrate

image quality in smartphone cameras. These cameras intro-

duce sophisticated non-linear processing techniques such as

multi-image fusion or deep learning-based image enhance-

ment [55], resulting in a combination of authentic (realis-

tic) camera distortions. This makes traditional objective

quality assessment [4, 16, 32, 40] that models digital cam-

eras as linear systems unreliable [9]. Therefore, in addi-

tion to objective measurements, the tuning process also in-

cludes perceptual evaluations where cameras are assessed

by image quality experts. This procedure requires shoot-

ing and evaluating thousands of use cases, which can be

costly, time-consuming, and challenging to reproduce. Au-

tomatic image quality assessment (IQA) methods that try to

mimic human perception of quality have been around for

many years, in order to help in the tuning process [14, 36,

37, 39, 48, 57, 60, 64]. Blind IQA (BIQA), in particular, is

a branch of IQA where image quality is evaluated without

the need for undistorted reference images. Learning-based

BIQA methods [15,24,25,27,52,59,62,67,69] have shown

good performance on authentic camera distortion datasets

[9, 13, 21, 56, 61, 70], annotated by subjective assessment

of image quality. Annotating these datasets is considered

an ill-posed problem, as the subjective opinions are not de-

terministic, making it challenging to use BIQA methods as

accurate quality measures. Therefore, there is a need to de-

velop a quantitative and formal framework to evaluate and

compare subjective judgments in an objective manner. In

this paper, we rely on pairwise comparisons performed by

image quality experts along a fixed and relevant set of at-

tributes.

Multiple attributes, including target exposure, dynamic
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Figure 1. (a) Scenes from the PIQ23 dataset. (b) Examples of the region of interest (ROI) used for different attribute comparisons. Top:

overall quality; we use a resized version of the full image. Bottom: details & target exposure; we use an upscaled face area.

range, color, sharpness, noise, and artifacts, define image

quality [3]. Portrait images require additional considera-

tions, such as skin tone, bokeh effect, face detail rendering,

and target exposure on the face, which fall under the scope

of portrait quality assessment (PQA) [40].

To the best of our knowledge, the problem of assessing

the quality of a portrait image has received limited atten-

tion. Most of the work on face IQA [49] has been directed

towards improving face recognition systems and not as an

independent topic. As far as we know, our paper introduces

the first-of-its-kind, smartphone portrait quality dataset. We

hope to create a new domain of application for IQA and to

push forward smartphone portrait photography. Our contri-

butions are the following:

• A new dataset, PIQ23, consisting of 5116 single por-

trait images, taken using 100 smartphone devices from

14 brands, and distributed across 50 different natural

scenes (scene = fixed visual content). We have ad-

dressed the ethical challenges involved in creating such

a dataset, by obtaining from each individual depicted

in the dataset a signed and informed agreement, mak-

ing it the only IQA dataset with such legal and ethical

characteristics, as far as we know.

• A large IQA experiment controlled in a laboratory en-

vironment with fixed viewing conditions. Using pair-

wise comparisons (PWC) and following carefully de-

signed guidelines, we gather opinions for each scene,

from over 30 image quality experts (professional pho-

tographers and image quality experts) on three at-

tributes related to portrait quality: face detail preser-

vation, face target exposure, and overall portrait image

quality.

• An in-depth statistical analysis method that allows us

to evaluate the precision and consistency of the labels

as well as the difficulty of the IQA task. This is par-

ticularly important given the fact that image quality la-

bels are heavily affected by subjectivity, disagreement

between observers, and the number of annotations.

• An extensive comparison between multiple BIQA

models and a simple new method combining scene se-

mantic information with quality features to strengthen

image quality prediction on PIQ23.

2. Related work

2.1. BIQA

The main goal of blind IQA (BIQA) is to predict image

quality without requiring a pristine reference image. We

review the datasets that already exist in this domain as well

as the BIQA computational algorithms.

BIQA datasets. Early datasets like LIVE [50], CSIQ

[29], TID [44, 45] and BAPPS [66] consist of noise-free

images processed with several artificial distortions. These

distortions aim to describe image compression or transmis-

sion scenarios and most of them fail to capture the com-

plexity of modern smartphone camera systems, with non-

linear processing pipelines. Recent ªin-the-wildº datasets

such as CLIVE [13], KonIQ10k [21] and PaQ-2-PiQ [61]

consist of media-gathered images with more complex mix-

tures of distortions closer to real-world images. However,

due to their wild nature and uncontrolled labeling environ-

ment, they do not form a strong background to evaluate the

quality of digital cameras, which we are most interested in.

As an early effort on this topic, Virtanen et al. [56] have

developed a database (CID2013) that spans 8 visual scenes

with 79 digital cameras. In recent work, Zhu et al. [70]

provide a smartphone IQA dataset (SCPQD2020) of 1800

images shot with 15 devices on 120 visual scenes. They an-

notate the database in a well-controlled laboratory, by three

image quality experts. Fang et al. published SPAQ [9], a

smartphone IQA dataset with 11125 images shot with 66



devices. Both datasets provide multiple attribute evalua-

tions and scene categories. They include generic visual con-

tent and do not deal with PQA. While SCPQD2020 lacks

in the number of observers, SPAQ relies on resized images

which heavily degrades the quality. All previously men-

tioned datasets, except TID2013 [44] and BAPPS [66], rely

on rating systems (MOS), and do not pay close attention to

the difficulty of cross-content observations. In PIQ23, we

provide 50 scenes, each annotated independently. We col-

lect opinions from over 30 image quality experts by pair-

wise comparisons, which has been shown to be more con-

sistent in IQA experiments [34, 43]. We also analyze the

uncertainty and consistency of our annotations through a

new statistical analysis method.

BIQA methods. BIQA can be separated into classical and

deep learning approaches. Early learning-based approaches

[14,36,39,48,60] use a combination of hand-crafted statisti-

cal features (natural scene statistics) to train shallow regres-

sors (e.g. SVR). Other approaches try to estimate the qual-

ity without the need for training [37,57,64]. These methods

perform relatively poorly on modern IQA datasets, as they

do not fully reflect the human perception of realistic distor-

tions [13, 67]. Consequently, deep BIQA models have been

surging in the last decade. Multiple convolutional neural

networks (CNN) based methods [24, 27, 67] have demon-

strated solid performance on modern datasets. Zhang et al.

[69] address the problem of uncertainty in IQA and present

a method to simultaneously train on multiple datasets us-

ing image pairs as training samples. Su et al. [52] try to

separate semantic features from image quality features by

training an adaptive hyper network that captures semantic

information. Recent works that adopt transformer architec-

tures [15, 25, 59, 62] to extract global quality information,

have shown impressive performances on IQA datasets. Be-

cause of the per-scene annotation structure of our dataset,

we adopt a semantics-aware multitasking method to adapt

the scale and features to the input scene.

2.2. PQA

Despite the lack of portrait quality assessment (PQA) re-

search, solely focusing on evaluating portrait quality, we

still recognize the importance of face IQA (FIQA). FIQA

aims to assess the quality of face images to boost the per-

formance of face recognition algorithms [1,17,20,31,41,47,

49,58]. The closest FIQA work to PIQ23 is that of Zhang et

al. [65], where they have developed a dataset to objectively

evaluate the illumination quality of a face image. Redi et

al. [46] define a set of attributes to evaluate the ªbeautyº of

the portrait. Kanafusa et al. [23] propose a method to de-

fine a standard portrait image, which can be later used to

evaluate color rendering and other attributes between cross-

media. In this work, we can see a first attempt to use a stan-

dard portrait as a subject for IQA. Chahine et al. [40] pro-

posed the first approach to evaluate specific face attributes

as a separate metric for PQA on realistic mannequins. Fi-

nally, Liang et al. [30] have developed a large-scale portrait

photo retouching dataset, with multiple use cases and cam-

eras. To the best of our knowledge, PIQ23 is the first smart-

phone PQA dataset, with a variety of visual scenes, legal

validation, and expert annotations.

2.3. Domain shift

The annotation strategies and image content can vary

widely between different IQA datasets. Hence, their re-

spective quality scales are usually relative and independent.

With this characteristic, we encounter a problem known as

domain shift [53, 63, 68, 69]. Since quality scales are rela-

tive, similar scores may not indicate the same level of per-

ceptual quality across different datasets. This can lead to

confusion when attempting to learn from multiple sources.

As a result, understanding image semantics is necessary.

Current BIQA models implicitly try to learn semantics and

quality simultaneously. However, it is extremely difficult to

merge these two problems, as they seem to be contradictory

[9, 26]. Some papers try to solve this problem using multi-

task learning [9, 22, 53, 63]. Explicitly separating semantic

information from quality is not well represented in previous

works. Su et al. [52] propose HyperIQA, a self-adaptive

hyper network that implicitly extracts semantic information

and adapts the quality prediction accordingly. The hyper

network, however, is not trained to predict categories ex-

plicitly. Since PIQ23 consists of multiple relative content-

dependent scales, we propose to combine multitasking with

HyperIQA in order to adapt the quality scale of each scene

based on semantic understanding.

3. PIQ23

3.1. Dataset details

Legal aspects. We believe that unrestricted access to

PIQ23 for public research is crucial. Accordingly, we have

taken steps to address any potential legal obstacles that may

obstruct this access. All individuals in the photos have given

explicit permission for image rights via signed transfer and

received a privacy notice detailing how their images will

be processed. Also, to ensure the effectiveness of people’s

rights, we have tagged each photo with a unique identifier

assigned to each person by using a face clustering algo-

rithm. This pseudonymization technique prevents access to

individuals’ names by dataset users. Finally, we contractu-

ally require all dataset users to comply with relevant data

protection laws, including the GDPR.

Dataset properties. We have constructed PIQ23 with the

intent of reducing annotation biases and covering a variety



of common real-life scenarios. To achieve this goal, we

have broken down the factors affecting the quality of a por-

trait image. We consider lighting to be a primary element

influencing the quality. Hence, we have separated lighting

conditions into four groups: outdoor, indoor, low light, and

night. Also, we have paid attention to lighting homogene-

ity, which describes the reflection of the light on the subject

(e.g. front light, side light, backlight). The characteristics of

the subject, such as age, skin tone, gender, subject position,

framing, face orientation, movement, and subject-to-lens

distance play an equally important role. Our skin tone ruler

is based on the Fitzpatrick skin type (FST) [12]. We have

tried to cover a sizeable chunk of smartphone devices and

brands utilized over the past decade. Additionally, we have

included diverse smartphone camera lens focal lengths such

as zoom, wide, and selfie along with distinct camera modes

such as night and bokeh. Furthermore, we have contem-

plated the possibility of augmenting our dataset with high-

quality images sourced from DSLR cameras. Nonetheless,

we have found through our experimentation that artificially

distorting DSLR images to ensure comparability with pho-

tos taken by smartphones is a challenging task. As a result,

we have excluded DSLR cameras from our dataset.

To comply with the previous description, we have de-

signed a collection of 50 distinct portrait scenarios (re-

ferred to as ªscenesº), captured in predetermined locations

that encompass a diverse range of factors (see Fig. 1 (a)).

The dataset images were taken with about 100 smartphones

(2014- 2022) from 14 brands and different price segments.

We have collected around 5116 images, averaging 100 im-

ages per scene. We note that PIQ23 was subsampled from a

larger dataset that was collected over a long period of time

(a couple of years) and is a result of cumulative efforts in

engineering and photography. We, therefore, believe in its

capacity to cover a broad spectrum of smartphone photogra-

phy. More information about the PIQ23 characteristics can

be found in the supplementary material.

3.2. Portrait quality assessment

Portrait quality attributes. In a portrait, most attention

is given to the person depicted, which is known as the

human region priority (HRP) [30]. Portrait quality may

vary significantly depending on the application. For ex-

ample, Redi et al. [46] try to define all the characteristics

to capture the ’beauty’ of a portrait. Quality in this case

is strongly correlated with beauty and aesthetics. In other

applications, such as FIQA [49], quality assessment is a

measure of utility, to filter out poor quality faces from face

recognition systems. Neither application totally aligns with

PQA [40]. Thus, we intend to broaden the research on PQA

by studying a preliminary group of three attributes: face

detail preservation, face target exposure, and overall image

quality. Additionally, we have conducted a study concern-

ing a fourth attribute, namely global color quality. However,

due to the difficulty in annotating this attribute through pair-

wise comparisons on different content, we have decided to

exclude it from our dataset (Fig. 3). The annotation guide-

lines can be found in the supplementary material.

Annotation strategy. Perception-based IQA experiments

present a high degree of difficulty and are usually subjec-

tive. Opinions can vary widely depending on multiple fac-

tors: viewing conditions, the observer’s cultural and pro-

fessional backgrounds, image content, etc. The objective

of PIQ23 is to deliver image quality annotations obtained

(as much as possible) from impartial and unbiased observa-

tions. To maximize objectivity and consistency, we propose

two elementary steps:

• First, we have chosen to annotate each scene separately

using a forced-choice pairwise comparison approach

(PWC). Combined with the active sampling technique

proposed in [35], we have been able to reach good an-

notation consistency with a minimal number of com-

parisons (see Sec. 4).

• Second, we have fixed the region of interest (ROI) for

each attribute, as shown in Fig. 1 (b). For details

preservation and target exposure, we have extracted

the face area using RetinaFace [7]. We have then up-

scaled it using standard bicubic upsampling to a ref-

erence resolution of about 4.5 megapixels with a fixed

aspect ratio. For color and overall attributes, we have

resized the images to an approximate Full HD resolu-

tion (about 2.5 megapixels) while keeping the original

aspect ratio (i.e. portrait or landscape).

Experiment details. We have reached out to professional

photographers and experts with a solid background in pho-

tography and image quality to help us annotate the dataset.

The opinions of more than 30 experts were gathered using

an internal PWC tool. Observers were asked to select the

best out of two images, following the guidelines described

in the supplementary material. We have adapted our set-

tings so that the viewing conditions are aligned with that of

a human eye, with a cutoff frequency νcut = 30cpd. Hence,

we have used a BenQ 32º 4k monitor with a pixel pitch

of 0.185, and we have fixed the eye-to-screen distance at

65cm. We have calibrated the display to standard sRGB set-

tings (D65 white point with luminance ≥ 75cd/m2 with no

direct illumination of the screen and a background illumina-

tion with a lighting panel set to D65 / 15% for reducing eye

stress). We have also converted all images in DCI-P3 color

space to sRGB. We have kept the sessions short, around five

minutes per attribute, in order to reduce fatigue and stress on

the observers. The annotation procedure took around eight



months. For each scene and each attribute, we have col-

lected around 4k pairwise comparisons, a total of 600k data

points. Though, for a limited number of comparisons, given

the subjectivity of the task, noise and outliers are commonly

encountered. In Sec. 4, we present a new statistical analysis

method to rectify this noise.

4. Statistical analysis

We present a new approach to quantifying uncertainty in

IQA experiments. We recall in Sec. 4.1 how quality scores

are extracted from a PWC experiment and how uncertainty

can be estimated using bootstrapped confidence intervals.

We then introduce in Sec. 4.2 a new statistical analysis strat-

egy to go beyond the calculation of confidence intervals.

The complete pipeline is illustrated in Fig. 2

4.1. Psychometric scaling and confidence intervals

Psychometric scaling. Designing a PWC experiment re-

quires modeling the statistical distribution of the image

quality. Commonly, the quality of an image is described by

the Thurstone Case V observer model [5, 54] as a Gaussian

distribution N (µ, σ). The average µ represents the actual

quality and σ2 is its ªperceptualº variance across observa-

tions. The latter encompasses the intra-variance and inter-

variance of the perceptual quality. The intra-variance repre-

sents the uncertainty of one observer when the observation

is repeated multiple times. The inter-variance represents the

uncertainty across multiple observers. Based on this formu-

lation, psychometric scaling methods [42,43] transform the

comparison matrix M constructed from a PWC experiment,

into a continuous scale of image scores representing the av-

erage opinions across multiple observers. The results are

typically expressed in Just-Objectionable-Difference (JOD)

units [43]. Two images are 1 JOD apart if 75% of ob-

servers choose one as better than the other. In our work, we

have adopted the psychometric scaling method proposed by

Mikhailiu et al. [35]. The authors propose an efficient ac-

tive pair selection technique via approximate message pass-

ing and information gain maximization, combined with the

TrueSkill scaling algorithm [19] to minimize the PWC ex-

periment cost. Thus, M is typically a very sparse matrix

(so-called incomplete design) with a limited number c of

non-zero elements.

IQA limitations. The choice of image and observer sam-

ples plays a critical role in the accuracy of the JOD scores.

From a statistical point of view, these samples are taken

from infinitely large populations of images and observers

respectively. When sampling images of similar quality, for

example, the comparison becomes harder, requiring a corre-

spondingly larger number of comparisons than a sample of

images with distinguishable quality differences. Similarly,

a sample of inexperienced observers generally leads to nois-

ier annotations, requiring more observers than a sample of

experts. In addition, psychometric scaling algorithms intro-

duce an estimation error that is inversely proportional to the

size of the data. In conclusion, estimating the difficulty of

the comparison task (linked to image sampling), the qual-

ity of the experiment (linked to observer sampling), and the

precision of the psychometric scaling algorithm, contribute

to what we call the experiment error, which is the image

JOD score estimation error.

Estimating the uncertainty in IQA. One way of quanti-

fying the experiment error is by calculating the confidence

interval (CI) of the JOD scores. The original formulation of

the CI does not directly apply to PWC experiments, since it

does not take into account the error introduced by the image

sampling process [38]. A practical alternative for comput-

ing CIs is bootstrapping [8]. We follow the approach pro-

posed in [42] and resort to the percentile method of boot-

strapping [6]. We repeatedly generate JOD scores by sam-

pling, with replacement, the observer comparison matrices,

each of which is a unique opinion on all images. The CI

boundaries for each image are then defined as the 2.5th and

97.5th percentiles of the JOD scores (Fig. 2 (a)).

4.2. JOD clustering via confidence intervals

CI limitations. Confidence intervals represent well the

sample mean error for independent variables and samples,

but in PWC these conditions are not achieved [42]. The psy-

chometric scaling algorithm calculates all the JOD scores at

the same time. This means that every change in the com-

parison matrix will simultaneously affect the scores of all

images. This behavior makes the image JOD scores some-

what interdependent, which is not apparent in the CIs. To

identify which images have a significant difference in qual-

ity, we need to analyze the overlap of their confidence in-

tervals. But how to quantify this overlap? Do we consider

the overlap of 20%, 30%, or 60% to be significant? What

to do in case of multiple overlaps? We address these issues

by combining two techniques. We first cluster the images

using their CIs, then, we use variance analysis to identify

which images have significant quality differences.

Preliminary clustering. Overlapping CIs may indicate

possible quality similarity, so we can use this information

to group the images. To define the distance between inter-

vals, we consider each CI as a point C(x, y) in the subspace

{(x, y) ∈ R
2 | y − x >= 0} where x is the lower bound

of the CI, and y is the upper bound of the CI. In this way,

we can calculate the Euclidian distance between C1 and C2.

We then resort to the K-means algorithm [33] to define our

preliminary quality groups (Fig. 2 (a-b)). We estimate the



Figure 2. Diagram of the statistical analysis strategy used to estimate the uncertainty in a PWC experiment. (a) Given a PWC matrix, we

generate confidence intervals (CIs) using percentile bootstrapping. (a-b) We then apply the K-means algorithm to the ª2d representationº of

the CIs to cluster the images into preliminary quality groups (b). (b-c) In each group, we apply RMANOVA to detect significant differences

between the JOD scores. (c) For groups with such differences, we construct a weighted undirected graph, where the weights consist of the

p-value of paired t-tests between the image pairs. (c-d) Finally, we apply Louvain community detection to extract sub-clusters of similar

quality inside each group (d). Figures (b) and (d) represent the boxplots of the bootstrapped image scores generated in (a).

number of preliminary quality groups by dividing the total

JOD range by the median size of the CIs (Fig. 2 (b)).

4.3. JOD clustering via variance analysis

Variance analysis. To estimate the significance of the CI

overlaps, we turn to the analysis of variance (ANOVA)

[10, 11] and particularly repeated measures ANOVA

(RMANOVA) [18]. RMANOVA is a statistical significance

test used to investigate the differences in mean scores of a

given continuous variable (called dependent variable), that

has been ªrepeatedly testedº, on the same group of subjects,

under three or more different conditions taken from a cate-

gorical variable (called the within-subject factor or the in-

dependent variable). In a PWC experiment, we interpret the

set of images as the independent variable and consider each

bootstrapped matrix (Sec. 4.1) as a subject that was tested

on different conditions (one matrix ≡ one subject). Finally,

since the JOD scores are estimated from the same matrix,

we consider them as measurements of the dependent vari-

able, that is, the image quality.

Statistical hypothesis. Let M be the sparse comparison

matrix defined in Sec. 4.1. Let X = {X
i

1×n
, i = 1, . . . , b},

where X
i

1×n
=

[

xi

1
xi

2
. . . xi

n

]

, be the set of score

vectors inferred from b comparison matrices bootstrapped

from M , and n the number of images. We define the two

hypotheses:

{

H0 : x̄1 = x̄2 = · · · = x̄n;

H1 : At least two means are different.
(1)

where xk represents the inferred average score of the image

Ik from the PWC experiment. Refusing the null hypothe-

sis H0 only guarantees that at least two image scores are

different (H1). Accepting H0 means that all images in the

test have indistinguishable quality. We apply the previous

hypothesis testing on each of the preliminary groups and

deduce whether there is a significant difference between the

images or not (Fig. 2 (b-c)). We can identify two cases:

1. No significant difference has been found: we con-

sider in this case that all the images of the group have

the same average score and variance.

2. A significant difference exists: we don’t know how

many images are significantly different. In this case,

we conduct a post hoc analysis, using paired t-tests

[51], at a confidence level of 0.95, on all the possible

pairs in the given cluster.

Significance graph. For the groups where the significant

difference exists, we create a weighted undirected graph by

weighting the connections between pairs with the p-value

of their corresponding paired t-tests (Fig. 2 (c)). Then, we

apply the Louvain community detection algorithm [2] to

group dense regions of nodes into the same ªcommunityº



or cluster (Fig. 2 (c-d)). With this method, we separate the

graph into sub-clusters, then assign their average score and

variance to the corresponding images (Fig. 2 (d)).

4.4. Results and discussion

We show the results of our statistical analysis on 20

scenes for the four attributes in Fig. 3, from which we can

make several interesting observations. First, we note that

the number of clusters and groups is correlated with the

JOD range and the median CI size (rows 1, 2). A wider JOD

interval indicates a wider quality coverage, which implies a

higher number of quality levels. Similarly, a smaller confi-

dence interval indicates that the images can be more easily

separated, which in turn implies a higher number of qual-

ity levels. Second, we observe that the median CI size de-

creases with the JOD range (row 3, left). This confirms our

hypothesis in Sec. 4.1 that sampling images of close qual-

ity makes the task more difficult. Finally, we note that detail

preservation and exposure have smaller CIs, while color has

the largest, indicating a greater difficulty in annotating this

attribute (row 3, right), thus justifying its omission.

5. Blind image quality assessment with a tweak

Based on the PIQ23 dataset, we introduce a deep BIQA

method (SEM-HyperIQA) that adapts to the specific struc-

ture of the dataset, where each scene has a separate quality

scale. We retrain several existing BIQA methods from the

literature and compare them to our proposed approach.

5.1. Semantics aware IQA

The PIQ23 dataset contains individually annotated

scenes, each with its own quality scale and unique con-

tent. This characteristic introduces a problem known as do-

main shift (Sec. 2.3), involving both content-dependent and

annotation-dependent factors. This emphasizes the need to

understand the scene’s semantics and align the predicted

quality with its corresponding scale.

In order to address the challenges of domain shift in

PIQ23, we propose SEM-HyperIQA, a solution that in-

volves combining the HyperIQA architecture, which inte-

grates semantic information, with multitasking, which al-

lows scene-specific rescaling. Based on the HyperIQA ar-

chitecture, we concatenate the semantic features of multi-

ple random crops and feed them to a multi-layer perceptron

(MLP) that predicts the scene category for the respective

image. We then feed the predicted category to a smaller

MLP that predicts a multiplier ai and offset bi to adapt the

predicted quality score of each patch to its respective scene

scale, such as q̂i = aiqi + bi, where qi is the predicted

quality score of patch i (Fig. 4). The loss is the sum of the

ℓ1-norm loss and the cross entropy.

We also propose two other variants, SEM-HyperIQA-SO

and SEM-HyperIQA-CO. In the first variant, we omit the

Figure 3. Statistical analysis on 20 scenes for the four attributes.

From top to bottom row (shared x-axis): distribution of the number

of clusters (row 1) and preliminary groups (row 2) in terms of the

JOD range (left) and the median CI size (right). Row 3 displays

the distribution of the median CI in terms of the JOD range (left),

as well as the median CI distribution per attribute (right).

scene category prediction and instead feed the scene infor-

mation directly to the MLP that rescales the predicted score.

In the second variant, we omit the rescaling part and only

keep the scene prediction. The two variants will help us ex-

plore the individual importance of scene-specific rescaling

and semantic prediction, respectively.

5.2. Performance evaluation

Training strategy. We test different training configura-

tions for all the proposed methods and report the best re-

sults. Specifically, we randomly sample 70% of the images

in PIQ23 for training and leave the rest for testing. We ran-

domly crop the images to patches of one of the three follow-

ing sizes: 672, 448, and 224. We use Adam stochastic op-

timization [28] with different learning rates between 10−6

and 10−4. We fix the training for 300 epochs and adopt

a learning rate decay factor of 0.05 for every 10 epochs.

The final image quality score is computed by averaging the

individual patch scores. To evaluate the performance, we

compute Spearman’s rank correlation coefficient (SRCC)

between the model outputs and the JOD scores. Since each

scene is annotated separately, we compute the correlation

over the scores for each individual scene and evaluate the

performance as C = 1

s

∑

s

i=1
Ci, where s = number of

scenes, Ci = correlation for scene i.



Figure 4. The SEM-HyperIQA architecture. We combine the semantic representation acquired by HyperIQA [52] for multiple patches to

predict the scene category. We then use the predicted category to rescale the patch quality. The image score is averaged across patches.

# Method Details Exposure Overall

1 BRISQUE [36] 0.323 0.307 0.192

2 NIQE [37] 0.378 0.265 0.298

3 ILNIQE [64] 0.353 0.312 0.214

4 DB-CNN [67] 0.628 ±0.07 0.635 ±0.06 0.555 ±0.07
5 HyperIQA [52] 0.649 ±0.08 0.706 ±0.04 0.611 ±0.06
6 MUSIQ [25] 0.671 ±0.07 0.725 ±0.04 0.589 ±0.07
7 SEM-HyperIQA 0.671 ±0.07 0.71 ±0.04 0.621 ±0.06
8 SEM-HyperIQA-SO 0.722 ±0.06 0.721 ±0.06 0.642 ±0.08
9 SEM-HyperIQA-CO 0.664 ±0.07 0.71 ±0.06 0.621 ±0.07

Table 1. Comparison of the baselines according to their average

scene Spearman’s rank correlation coefficient with the measured

JOD scores and their error margin across the scenes. As shown by

the table, the deep learning methods tested perform significantly

better than their classical counterparts on PIQ23.

Baseline methods. We compare SEM-HyperIQA with

existing BIQA models, including BRISQUE [36], NIQE

[37], ILNIQE [64], DB-CNN [67], HyperIQA [52] and

MUSIQ [25]. We train these models on PIQ23 using their

official implementations. NIQE and ILNIQE do not re-

quire any training. DB-CNN and MUSIQ are pre-trained on

LIVE Challenge and PaQ-2-PiQ, respectively. HyperIQA is

pre-trained on ImageNet. Results are shown in Table 1.

Discussion. From Table 1 we can make the following ob-

servations. First, the deep learning methods tested (4-9) per-

form better than their classical counterparts (1-3), indicat-

ing a difficulty to adapt to high-resolution images, scene-

specific scales, and attribute-specific annotations. Zhu et

al. [70] have demonstrated the ineffectiveness of such meth-

ods when the annotations do not represent an overall sub-

jective evaluation of the quality, Second, the proposed

SEM-HyperIQA method improves upon the original Hyper-

IQA, which indicates the effectiveness of scene semantics

and multitasking in quality prediction, especially for sepa-

rate scene scales. Third, SEM-HyperIQA-SO with scene-

specific rescaling achieves the best performance. It notably

enhances the detail preservation attribute, possibly due to

the limited information available in face crops for scene

analysis. Therefore, semantic information cannot be fully

utilized and we are better off using scene-specific rescaling

only. Fourth, we note that deep BIQA models perform sig-

nificantly better for detail preservation and exposure than

overall, which directly reflects this task’s difficulty and the

uncertainty of the annotations, as discussed in Sec. 4.4.

6. Conclusion

We have presented PIQ23, a new dataset for portrait

quality assessment with a wide variety of smartphone cam-

eras and use cases, which has been annotated by image qual-

ity experts using pairwise comparisons. We have shown the

importance of identifying the uncertainty in the annotations

by providing a new statistical analysis method to cluster the

quality scale into consistent levels of quality. Finally, we

adopt a training strategy and a deep neural network archi-

tecture that adapts to the high-resolution images of PIQ23

and profits from semantic information and multitasking, in

order to adjust to the per-scene quality scaling of the dataset.

Our results have shown the necessity and effectiveness of

quality scale quantification and clustering of similar quality

images to contain annotation uncertainty, as well as the im-

portance of semantic information in training IQA models.

We believe that this work will be the foundation for a new

area of application of IQA for portrait images, as well as for

a higher caliber of annotations in IQA datasets.
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