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Abstract

Year after year, the demand for ever-better smartphone
photos continues to grow, in particular in the domain of
portrait photography. Manufacturers thus use perceptual
quality criteria throughout the development of smartphone
cameras. This costly procedure can be partially replaced
by automated learning-based methods for image quality as-
sessment (IQA). Due to its subjective nature, it is necessary
to estimate and guarantee the consistency of the IQA pro-
cess, a characteristic lacking in the mean opinion scores
(MOS) widely used for crowdsourcing IQA. In addition,
existing blind IQA (BIQA) datasets pay little attention to
the difficulty of cross-content assessment, which may de-
grade the quality of annotations. This paper introduces
PIQ23, a portrait-specific IQA dataset of 5116 images of
50 predefined scenarios acquired by 100 smartphones, cov-
ering a high variety of brands, models, and use cases. The
dataset includes individuals of various genders and ethnic-
ities who have given explicit and informed consent for their
photographs to be used in public research. It is annotated
by pairwise comparisons (PWC) collected from over 30 im-
age quality experts for three image attributes: face detail
preservation, face target exposure, and overall image qual-
ity. An in-depth statistical analysis of these annotations
allows us to evaluate their consistency over PIQ23. Fi-
nally, we show through an extensive comparison with ex-
isting baselines that semantic information (image context)
can be used to improve IQA predictions. The dataset along
with the proposed statistical analysis and BIQA algorithms
are available: https://github.com/DXOMARK-
Research/PIQ2023

1. Introduction
Social media has made smartphones a vital tool for con-

necting with people worldwide. Visual media, particularly
portrait photography, has become a crucial aspect of sharing
content on these platforms.

Portrait photography serves numerous applications (e.g.,

advertisements, social media) and use cases (e.g., anniver-
saries, weddings). Capturing a high-quality portrait is a
complex exercise that demands careful consideration of
multiple factors, such as scene semantics, compositional
rules, image quality, and other subjective properties [46].

Smartphone manufacturers strive to deliver the best vi-
sual quality while minimizing production costs to rival pro-
fessional photography. Achieving this requires implement-
ing complex tuning and optimization protocols to calibrate
image quality in smartphone cameras. These cameras intro-
duce sophisticated non-linear processing techniques such as
multi-image fusion or deep learning-based image enhance-
ment [55], resulting in a combination of authentic (realistic)
camera distortions.

This makes traditional objective quality assessment [4,
16,32,40] that models digital cameras as linear systems un-
reliable [9]. Therefore, in addition to objective measure-
ments, the tuning process also includes perceptual evalua-
tions where cameras are assessed by image quality experts.
This procedure requires shooting and evaluating thousands
of use cases, which can be costly, time-consuming, and
challenging to reproduce. Automatic image quality assess-
ment (IQA) methods that try to mimic human perception of
quality have been around for many years, in order to help
in the tuning process [14, 36, 37, 39, 48, 57, 60, 64]. Blind
IQA (BIQA), in particular, is a branch of IQA where image
quality is evaluated without the need for undistorted refer-
ence images. Learning-based BIQA methods [15,24,25,27,
52,59,62,67,69] have shown good performance on authen-
tic camera distortion datasets [9,13,21,56,61,70], annotated
by subjective assessment of image quality. Annotating these
datasets is considered an ill-posed problem, as the subjec-
tive opinions are not deterministic, making it challenging
to use BIQA methods as accurate quality measures. There-
fore, there is a need to develop a quantitative and formal
framework to evaluate and compare subjective judgments
in an objective manner. In this paper, we rely on pairwise
comparisons performed by image quality experts along a
fixed and relevant set of attributes. Multiple attributes, in-
cluding target exposure, dynamic range, color, sharpness,

1

https://github.com/DXOMARK-Research/PIQ2023
https://github.com/DXOMARK-Research/PIQ2023


(a) (b)

Figure 1. (a) Scenes from the PIQ23 dataset. (b) Examples of the region of interest (ROI) used for different attribute comparisons. Top:
overall quality; we use a resized version of the full image. Bottom: details & target exposure; we use an upscaled face area.

noise, and artifacts, define image quality [3]. Portrait im-
ages require additional considerations, such as skin tone,
bokeh effect, face detail rendering, and target exposure on
the face, which fall under the scope of portrait quality as-
sessment (PQA) [40].

To the best of our knowledge, the problem of assessing
the quality of a portrait image has received limited atten-
tion. Most of the work on face IQA [49] has been directed
towards improving face recognition systems and not as an
independent topic. As far as we know, our paper introduces
the first-of-its-kind, smartphone portrait quality dataset. We
hope to create a new domain of application for IQA and to
push forward smartphone portrait photography. Our contri-
butions are the following:

• A new dataset, PIQ23, consisting of 5116 single por-
trait images, taken using 100 smartphone devices from
14 brands, and distributed across 50 different natural
scenes (scene = fixed visual content). We have ad-
dressed the ethical challenges involved in creating such
a dataset, by obtaining from each individual depicted
in the dataset a signed and informed agreement, mak-
ing it the only IQA dataset with such legal and ethical
characteristics, as far as we know.

• A large IQA experiment controlled in a laboratory en-
vironment with fixed viewing conditions. Using pair-
wise comparisons (PWC) and following carefully de-
signed guidelines, we gather opinions for each scene,
from over 30 image quality experts (professional pho-
tographers and image quality experts) on three at-
tributes related to portrait quality: face detail preser-
vation, face target exposure, and overall portrait image
quality.

• An in-depth statistical analysis method that allows us
to evaluate the precision and consistency of the labels
as well as the difficulty of the IQA task. This is par-
ticularly important given the fact that image quality la-

bels are heavily affected by subjectivity, disagreement
between observers, and the number of annotations.

• An extensive comparison between multiple BIQA
models and a simple new method combining scene se-
mantic information with quality features to strengthen
image quality prediction on PIQ23.

2. Related work

2.1. BIQA

The main goal of blind IQA (BIQA) is to predict image
quality without requiring a pristine reference image. We
review the datasets that already exist in this domain as well
as the BIQA computational algorithms.

BIQA datasets. Early datasets like LIVE [50], CSIQ
[29], TID [44, 45] and BAPPS [66] consist of noise-free
images processed with several artificial distortions. These
distortions aim to describe image compression or transmis-
sion scenarios and most of them fail to capture the com-
plexity of modern smartphone camera systems, with non-
linear processing pipelines. Recent “in-the-wild” datasets
such as CLIVE [13], KonIQ10k [21] and PaQ-2-PiQ [61]
consist of media-gathered images with more complex mix-
tures of distortions closer to real-world images. However,
due to their wild nature and uncontrolled labeling environ-
ment, they do not form a strong background to evaluate the
quality of digital cameras, which we are most interested in.
As an early effort on this topic, Virtanen et al. [56] have
developed a database (CID2013) that spans 8 visual scenes
with 79 digital cameras. In recent work, Zhu et al. [70]
provide a smartphone IQA dataset (SCPQD2020) of 1800
images shot with 15 devices on 120 visual scenes. They an-
notate the database in a well-controlled laboratory, by three
image quality experts. Fang et al. published SPAQ [9], a
smartphone IQA dataset with 11125 images shot with 66
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devices. Both datasets provide multiple attribute evalua-
tions and scene categories. They include generic visual con-
tent and do not deal with PQA. While SCPQD2020 lacks
in the number of observers, SPAQ relies on resized images
which heavily degrades the quality. All previously men-
tioned datasets, except TID2013 [44] and BAPPS [66], rely
on rating systems (MOS), and do not pay close attention to
the difficulty of cross-content observations. In PIQ23, we
provide 50 scenes, each annotated independently. We col-
lect opinions from over 30 image quality experts by pair-
wise comparisons, which has been shown to be more con-
sistent in IQA experiments [34, 43]. We also analyze the
uncertainty and consistency of our annotations through a
new statistical analysis method.

BIQA methods. BIQA can be separated into classical and
deep learning approaches. Early learning-based approaches
[14,36,39,48,60] use a combination of hand-crafted statisti-
cal features (natural scene statistics) to train shallow regres-
sors (e.g. SVR). Other approaches try to estimate the qual-
ity without the need for training [37,57,64]. These methods
perform relatively poorly on modern IQA datasets, as they
do not fully reflect the human perception of realistic distor-
tions [13, 67]. Consequently, deep BIQA models have been
surging in the last decade. Multiple convolutional neural
networks (CNN) based methods [24, 27, 67] have demon-
strated solid performance on modern datasets. Zhang et al.
[69] address the problem of uncertainty in IQA and present
a method to simultaneously train on multiple datasets us-
ing image pairs as training samples. Su et al. [52] try to
separate semantic features from image quality features by
training an adaptive hyper network that captures semantic
information. Recent works that adopt transformer architec-
tures [15, 25, 59, 62] to extract global quality information,
have shown impressive performances on IQA datasets. Be-
cause of the per-scene annotation structure of our dataset,
we adopt a semantics-aware multitasking method to adapt
the scale and features to the input scene.

2.2. PQA

Despite the lack of portrait quality assessment (PQA) re-
search, solely focusing on evaluating portrait quality, we
still recognize the importance of face IQA (FIQA). FIQA
aims to assess the quality of face images to boost the per-
formance of face recognition algorithms [1,17,20,31,41,47,
49,58]. The closest FIQA work to PIQ23 is that of Zhang et
al. [65], where they have developed a dataset to objectively
evaluate the illumination quality of a face image. Redi et
al. [46] define a set of attributes to evaluate the “beauty” of
the portrait. Kanafusa et al. [23] propose a method to de-
fine a standard portrait image, which can be later used to
evaluate color rendering and other attributes between cross-
media. In this work, we can see a first attempt to use a stan-

dard portrait as a subject for IQA. Chahine et al. [40] pro-
posed the first approach to evaluate specific face attributes
as a separate metric for PQA on realistic mannequins. Fi-
nally, Liang et al. [30] have developed a large-scale portrait
photo retouching dataset, with multiple use cases and cam-
eras. To the best of our knowledge, PIQ23 is the first smart-
phone PQA dataset, with a variety of visual scenes, legal
validation, and expert annotations.

2.3. Domain shift

The annotation strategies and image content can vary
widely between different IQA datasets. Hence, their re-
spective quality scales are usually relative and independent.
With this characteristic, we encounter a problem known as
domain shift [53, 63, 68, 69]. Since quality scales are rela-
tive, similar scores may not indicate the same level of per-
ceptual quality across different datasets. This can lead to
confusion when attempting to learn from multiple sources.
As a result, understanding image semantics is necessary.
Current BIQA models implicitly try to learn semantics and
quality simultaneously. However, it is extremely difficult to
merge these two problems, as they seem to be contradictory
[9, 26]. Some papers try to solve this problem using multi-
task learning [9, 22, 53, 63]. Explicitly separating semantic
information from quality is not well represented in previous
works. Su et al. [52] propose HyperIQA, a self-adaptive
hyper network that implicitly extracts semantic information
and adapts the quality prediction accordingly. The hyper
network, however, is not trained to predict categories ex-
plicitly. Since PIQ23 consists of multiple relative content-
dependent scales, we propose to combine multitasking with
HyperIQA in order to adapt the quality scale of each scene
based on semantic understanding.

3. PIQ23
3.1. Dataset details

Legal aspects. We believe that unrestricted access to
PIQ23 for public research is crucial. Accordingly, we have
taken steps to address any potential legal obstacles that may
obstruct this access. All individuals in the photos have given
explicit permission for image rights via signed transfer and
received a privacy notice detailing how their images will
be processed. Also, to ensure the effectiveness of people’s
rights, we have tagged each photo with a unique identifier
assigned to each person by using a face clustering algo-
rithm. This pseudonymization technique prevents access to
individuals’ names by dataset users. Finally, we contractu-
ally require all dataset users to comply with relevant data
protection laws, including the GDPR.

Dataset properties. We have constructed PIQ23 with the
intent of reducing annotation biases and covering a variety
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of common real-life scenarios. To achieve this goal, we
have broken down the factors affecting the quality of a por-
trait image. We consider lighting to be a primary element
influencing the quality. Hence, we have separated lighting
conditions into four groups: outdoor, indoor, low light, and
night. Also, we have paid attention to lighting homogene-
ity, which describes the reflection of the light on the subject
(e.g. front light, side light, backlight). The characteristics of
the subject, such as age, skin tone, gender, subject position,
framing, face orientation, movement, and subject-to-lens
distance play an equally important role. Our skin tone ruler
is based on the Fitzpatrick skin type (FST) [12]. We have
tried to cover a sizeable chunk of smartphone devices and
brands utilized over the past decade. Additionally, we have
included diverse smartphone camera lens focal lengths such
as zoom, wide, and selfie along with distinct camera modes
such as night and bokeh. Furthermore, we have contem-
plated the possibility of augmenting our dataset with high-
quality images sourced from DSLR cameras. Nonetheless,
we have found through our experimentation that artificially
distorting DSLR images to ensure comparability with pho-
tos taken by smartphones is a challenging task. As a result,
we have excluded DSLR cameras from our dataset.

To comply with the previous description, we have de-
signed a collection of 50 distinct portrait scenarios (re-
ferred to as “scenes”), captured in predetermined locations
that encompass a diverse range of factors (see Fig. 1 (a)).
The dataset images were taken with about 100 smartphones
(2014- 2022) from 14 brands and different price segments.
We have collected around 5116 images, averaging 100 im-
ages per scene. We note that PIQ23 was subsampled from a
larger dataset that was collected over a long period of time
(a couple of years) and is a result of cumulative efforts in
engineering and photography. We, therefore, believe in its
capacity to cover a broad spectrum of smartphone photogra-
phy. More information about the PIQ23 characteristics can
be found in the supplementary material.

3.2. Portrait quality assessment

Portrait quality attributes. In a portrait, most attention
is given to the person depicted, which is known as the hu-
man region priority (HRP) [30].

Portrait quality may vary significantly depending on the
application. For example, Redi et al. [46] try to define
all the characteristics to capture the ’beauty’ of a portrait.
Quality in this case is strongly correlated with beauty and
aesthetics. In other applications, such as FIQA [49], quality
assessment is a measure of utility, to filter out poor quality
faces from face recognition systems. Neither application
totally aligns with PQA [40]. Thus, we intend to broaden
the research on PQA by studying a preliminary group of
three attributes: face detail preservation, face target expo-
sure, and overall image quality. Additionally, we have con-

ducted a study concerning a fourth attribute, namely global
color quality. However, due to the difficulty in annotat-
ing this attribute through pairwise comparisons on differ-
ent content, we have decided to exclude it from our dataset
(Fig. 3). The annotation guidelines can be found in the sup-
plementary material.

Annotation strategy. Perception-based IQA experiments
present a high degree of difficulty and are usually subjec-
tive. Opinions can vary widely depending on multiple fac-
tors: viewing conditions, the observer’s cultural and pro-
fessional backgrounds, image content, etc. The objective
of PIQ23 is to deliver image quality annotations obtained
(as much as possible) from impartial and unbiased observa-
tions. To maximize objectivity and consistency, we propose
two elementary steps:

• First, we have chosen to annotate each scene separately
using a forced-choice pairwise comparison approach
(PWC). Combined with the active sampling technique
proposed in [35], we have been able to reach good an-
notation consistency with a minimal number of com-
parisons (see Sec. 4).

• Second, we have fixed the region of interest (ROI) for
each attribute, as shown in Fig. 1 (b). For details
preservation and target exposure, we have extracted
the face area using RetinaFace [7]. We have then up-
scaled it using standard bicubic upsampling to a ref-
erence resolution of about 4.5 megapixels with a fixed
aspect ratio. For color and overall attributes, we have
resized the images to an approximate Full HD resolu-
tion (about 2.5 megapixels) while keeping the original
aspect ratio (i.e. portrait or landscape).

Experiment details. We have reached out to professional
photographers and experts with a solid background in pho-
tography and image quality to help us annotate the dataset.
The opinions of more than 30 experts were gathered using
an internal PWC tool. Observers were asked to select the
best out of two images, following the guidelines described
in the supplementary material. We have adapted our set-
tings so that the viewing conditions are aligned with that of
a human eye, with a cutoff frequency νcut = 30cpd. Hence,
we have used a BenQ 32” 4k monitor with a pixel pitch
of 0.185, and we have fixed the eye-to-screen distance at
65cm. We have calibrated the display to standard sRGB set-
tings (D65 white point with luminance ≥ 75cd/m2 with no
direct illumination of the screen and a background illumina-
tion with a lighting panel set to D65 / 15% for reducing eye
stress). We have also converted all images in DCI-P3 color
space to sRGB. We have kept the sessions short, around five
minutes per attribute, in order to reduce fatigue and stress
on the observers. The annotation procedure took around
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eight months. For each scene and each attribute, we have
collected around 4k pairwise comparisons, a total of 600k
data points.

Though, for a limited number of comparisons, given the
subjectivity of the task, noise and outliers are commonly
encountered. In Sec. 4, we present a new statistical analysis
method to rectify this noise.

4. Statistical analysis

We present a new approach to quantifying uncertainty in
IQA experiments. We recall in Sec. 4.1 how quality scores
are extracted from a PWC experiment and how uncertainty
can be estimated using bootstrapped confidence intervals.
We then introduce in Sec. 4.2 a new statistical analysis strat-
egy to go beyond the calculation of confidence intervals.
The complete pipeline is illustrated in Fig. 2

4.1. Psychometric scaling and confidence intervals

Psychometric scaling. Designing a PWC experiment re-
quires modeling the statistical distribution of the image
quality. Commonly, the quality of an image is described by
the Thurstone Case V observer model [5, 54] as a Gaussian
distribution N (µ, σ). The average µ represents the actual
quality and σ2 is its “perceptual” variance across observa-
tions. The latter encompasses the intra-variance and inter-
variance of the perceptual quality. The intra-variance repre-
sents the uncertainty of one observer when the observation
is repeated multiple times. The inter-variance represents the
uncertainty across multiple observers. Based on this formu-
lation, psychometric scaling methods [42,43] transform the
comparison matrixM constructed from a PWC experiment,
into a continuous scale of image scores representing the av-
erage opinions across multiple observers. The results are
typically expressed in Just-Objectionable-Difference (JOD)
units [43]. Two images are 1 JOD apart if 75% of ob-
servers choose one as better than the other. In our work, we
have adopted the psychometric scaling method proposed by
Mikhailiu et al. [35]. The authors propose an efficient ac-
tive pair selection technique via approximate message pass-
ing and information gain maximization, combined with the
TrueSkill scaling algorithm [19] to minimize the PWC ex-
periment cost. Thus, M is typically a very sparse matrix
(so-called incomplete design) with a limited number c of
non-zero elements.

IQA limitations. The choice of image and observer sam-
ples plays a critical role in the accuracy of the JOD scores.
From a statistical point of view, these samples are taken
from infinitely large populations of images and observers
respectively. When sampling images of similar quality, for
example, the comparison becomes harder, requiring a corre-
spondingly larger number of comparisons than a sample of

images with distinguishable quality differences. Similarly,
a sample of inexperienced observers generally leads to nois-
ier annotations, requiring more observers than a sample of
experts. In addition, psychometric scaling algorithms intro-
duce an estimation error that is inversely proportional to the
size of the data. In conclusion, estimating the difficulty of
the comparison task (linked to image sampling), the qual-
ity of the experiment (linked to observer sampling), and the
precision of the psychometric scaling algorithm, contribute
to what we call the experiment error, which is the image
JOD score estimation error.

Estimating the uncertainty in IQA. One way of quanti-
fying the experiment error is by calculating the confidence
interval (CI) of the JOD scores. The original formulation of
the CI does not directly apply to PWC experiments, since it
does not take into account the error introduced by the image
sampling process [38]. A practical alternative for comput-
ing CIs is bootstrapping [8]. We follow the approach pro-
posed in [42] and resort to the percentile method of boot-
strapping [6]. We repeatedly generate JOD scores by sam-
pling, with replacement, the observer comparison matrices,
each of which is a unique opinion on all images. The CI
boundaries for each image are then defined as the 2.5th and
97.5th percentiles of the JOD scores (Fig. 2 (a)).

4.2. JOD clustering via confidence intervals

CI limitations. Confidence intervals represent well the
sample mean error for independent variables and samples,
but in PWC these conditions are not achieved [42]. The psy-
chometric scaling algorithm calculates all the JOD scores at
the same time. This means that every change in the com-
parison matrix will simultaneously affect the scores of all
images. This behavior makes the image JOD scores some-
what interdependent, which is not apparent in the CIs. To
identify which images have a significant difference in qual-
ity, we need to analyze the overlap of their confidence in-
tervals. But how to quantify this overlap? Do we consider
the overlap of 20%, 30%, or 60% to be significant? What
to do in case of multiple overlaps? We address these issues
by combining two techniques. We first cluster the images
using their CIs, then, we use variance analysis to identify
which images have significant quality differences.

Preliminary clustering. Overlapping CIs may indicate
possible quality similarity, so we can use this information
to group the images. To define the distance between inter-
vals, we consider each CI as a point C(x, y) in the subspace
{(x, y) ∈ R2 | y − x >= 0} where x is the lower bound
of the CI, and y is the upper bound of the CI. In this way,
we can calculate the Euclidian distance betweenC1 andC2.
We then resort to the K-means algorithm [33] to define our
preliminary quality groups (Fig. 2 (a-b)). We estimate the
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Figure 2. Diagram of the statistical analysis strategy used to estimate the uncertainty in a PWC experiment. (a) Given a PWC matrix, we
generate confidence intervals (CIs) using percentile bootstrapping. (a-b) We then apply the K-means algorithm to the “2d representation” of
the CIs to cluster the images into preliminary quality groups (b). (b-c) In each group, we apply RMANOVA to detect significant differences
between the JOD scores. (c) For groups with such differences, we construct a weighted undirected graph, where the weights consist of the
p-value of paired t-tests between the image pairs. (c-d) Finally, we apply Louvain community detection to extract sub-clusters of similar
quality inside each group (d). Figures (b) and (d) represent the boxplots of the bootstrapped image scores generated in (a).

number of preliminary quality groups by dividing the total
JOD range by the median size of the CIs (Fig. 2 (b)).

4.3. JOD clustering via variance analysis

Variance analysis. To estimate the significance of the CI
overlaps, we turn to the analysis of variance (ANOVA)
[10, 11] and particularly repeated measures ANOVA
(RMANOVA) [18]. RMANOVA is a statistical significance
test used to investigate the differences in mean scores of a
given continuous variable (called dependent variable), that
has been “repeatedly tested”, on the same group of subjects,
under three or more different conditions taken from a cate-
gorical variable (called the within-subject factor or the in-
dependent variable). In a PWC experiment, we interpret the
set of images as the independent variable and consider each
bootstrapped matrix (Sec. 4.1) as a subject that was tested
on different conditions (one matrix ≡ one subject). Finally,
since the JOD scores are estimated from the same matrix,
we consider them as measurements of the dependent vari-
able, that is, the image quality.

Statistical hypothesis. Let M be the sparse comparison
matrix defined in Sec. 4.1. Let X = {Xi

1×n, i = 1, . . . , b},
where X

i

1×n =
[
xi1 xi2 . . . xin

]
, be the set of score

vectors inferred from b comparison matrices bootstrapped
from M , and n the number of images. We define the two

hypotheses:{
H0 : x̄1 = x̄2 = · · · = x̄n;

H1 : At least two means are different.
(1)

where xk represents the inferred average score of the image
Ik from the PWC experiment. Refusing the null hypothe-
sis H0 only guarantees that at least two image scores are
different (H1). Accepting H0 means that all images in the
test have indistinguishable quality. We apply the previous
hypothesis testing on each of the preliminary groups and
deduce whether there is a significant difference between the
images or not (Fig. 2 (b-c)). We can identify two cases:

1. No significant difference has been found: we con-
sider in this case that all the images of the group have
the same average score and variance.

2. A significant difference exists: we don’t know how
many images are significantly different. In this case,
we conduct a post hoc analysis, using paired t-tests
[51], at a confidence level of 0.95, on all the possible
pairs in the given cluster.

Significance graph. For the groups where the significant
difference exists, we create a weighted undirected graph by
weighting the connections between pairs with the p-value
of their corresponding paired t-tests (Fig. 2 (c)). Then, we
apply the Louvain community detection algorithm [2] to
group dense regions of nodes into the same “community”
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or cluster (Fig. 2 (c-d)). With this method, we separate the
graph into sub-clusters, then assign their average score and
variance to the corresponding images (Fig. 2 (d)).

4.4. Results and discussion

We show the results of our statistical analysis on 20
scenes for the four attributes in Fig. 3, from which we can
make several interesting observations. First, we note that
the number of clusters and groups is correlated with the
JOD range and the median CI size (rows 1, 2). A wider JOD
interval indicates a wider quality coverage, which implies a
higher number of quality levels. Similarly, a smaller confi-
dence interval indicates that the images can be more easily
separated, which in turn implies a higher number of qual-
ity levels. Second, we observe that the median CI size de-
creases with the JOD range (row 3, left). This confirms our
hypothesis in Sec. 4.1 that sampling images of close qual-
ity makes the task more difficult. Finally, we note that detail
preservation and exposure have smaller CIs, while color has
the largest, indicating a greater difficulty in annotating this
attribute (row 3, right), thus justifying its omission.

5. Blind image quality assessment with a tweak
Based on the PIQ23 dataset, we introduce a deep BIQA

method (SEM-HyperIQA) that adapts to the specific struc-
ture of the dataset, where each scene has a separate quality
scale. We retrain several existing BIQA methods from the
literature and compare them to our proposed approach.

5.1. Semantics aware IQA

The PIQ23 dataset contains individually annotated
scenes, each with its own quality scale and unique con-
tent. This characteristic introduces a problem known as do-
main shift (Sec. 2.3), involving both content-dependent and
annotation-dependent factors. This emphasizes the need to
understand the scene’s semantics and align the predicted
quality with its corresponding scale. In order to address
the challenges of domain shift in PIQ23, we propose SEM-
HyperIQA, a solution that involves combining the Hyper-
IQA architecture, which integrates semantic information,
with multitasking, which allows scene-specific rescaling.
Based on the HyperIQA architecture, we concatenate the
semantic features of multiple random crops and feed them
to a multi-layer perceptron (MLP) that predicts the scene
category for the respective image. We then feed the pre-
dicted category to a smaller MLP that predicts a multiplier
ai and offset bi to adapt the predicted quality score of each
patch to its respective scene scale, such as q̂i = aiqi + bi,
where qi is the predicted quality score of patch i (Fig. 4).
The loss is the sum of the `1-norm loss and the cross en-
tropy.

We also propose two other variants, SEM-HyperIQA-SO
and SEM-HyperIQA-CO. In the first variant, we omit the

Figure 3. Statistical analysis on 20 scenes for the four attributes.
From top to bottom row (shared x-axis): distribution of the number
of clusters (row 1) and preliminary groups (row 2) in terms of the
JOD range (left) and the median CI size (right). Row 3 displays
the distribution of the median CI in terms of the JOD range (left),
as well as the median CI distribution per attribute (right).

scene category prediction and instead feed the scene infor-
mation directly to the MLP that rescales the predicted score.
In the second variant, we omit the rescaling part and only
keep the scene prediction. The two variants will help us ex-
plore the individual importance of scene-specific rescaling
and semantic prediction, respectively.

5.2. Performance evaluation

Training strategy. We test different training configura-
tions for all the proposed methods and report the best re-
sults. Specifically, we randomly sample 70% of the images
in PIQ23 for training and leave the rest for testing. We ran-
domly crop the images to patches of one of the three follow-
ing sizes: 672, 448, and 224. We use Adam stochastic op-
timization [28] with different learning rates between 10−6

and 10−4. We fix the training for 300 epochs and adopt
a learning rate decay factor of 0.05 for every 10 epochs.
The final image quality score is computed by averaging the
individual patch scores. To evaluate the performance, we
compute Spearman’s rank correlation coefficient (SRCC)
between the model outputs and the JOD scores. Since each
scene is annotated separately, we compute the correlation
over the scores for each individual scene and evaluate the
performance as C = 1

s

∑s
i=1 Ci, where s = number of

scenes, Ci = correlation for scene i.
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Figure 4. The SEM-HyperIQA architecture. We combine the semantic representation acquired by HyperIQA [52] for multiple patches to
predict the scene category. We then use the predicted category to rescale the patch quality. The image score is averaged across patches.

# Method Details Exposure Overall

1 BRISQUE [36] 0.323 0.307 0.192
2 NIQE [37] 0.378 0.265 0.298
3 ILNIQE [64] 0.353 0.312 0.214
4 DB-CNN [67] 0.628 ±0.07 0.635 ±0.06 0.555 ±0.07
5 HyperIQA [52] 0.649 ±0.08 0.706 ±0.04 0.611 ±0.06
6 MUSIQ [25] 0.671 ±0.07 0.725 ±0.04 0.589 ±0.07
7 SEM-HyperIQA 0.671 ±0.07 0.71 ±0.04 0.621 ±0.06
8 SEM-HyperIQA-SO 0.722 ±0.06 0.721 ±0.06 0.642 ±0.08
9 SEM-HyperIQA-CO 0.664 ±0.07 0.71 ±0.06 0.621 ±0.07

Table 1. Comparison of the baselines according to their average
scene Spearman’s rank correlation coefficient with the measured
JOD scores and their error margin across the scenes. As shown by
the table, the deep learning methods tested perform significantly
better than their classical counterparts on PIQ23.

Baseline methods. We compare SEM-HyperIQA with
existing BIQA models, including BRISQUE [36], NIQE
[37], ILNIQE [64], DB-CNN [67], HyperIQA [52] and
MUSIQ [25]. We train these models on PIQ23 using their
official implementations. NIQE and ILNIQE do not re-
quire any training. DB-CNN and MUSIQ are pre-trained on
LIVE Challenge and PaQ-2-PiQ, respectively. HyperIQA is
pre-trained on ImageNet. Results are shown in Table 1.

Discussion. From Table 1 we can make the following ob-
servations. First, the deep learning methods tested (4-9) per-
form better than their classical counterparts (1-3), indicat-
ing a difficulty to adapt to high-resolution images, scene-
specific scales, and attribute-specific annotations. Zhu et
al. [70] have demonstrated the ineffectiveness of such meth-
ods when the annotations do not represent an overall sub-
jective evaluation of the quality, Second, the proposed
SEM-HyperIQA method improves upon the original Hyper-
IQA, which indicates the effectiveness of scene semantics
and multitasking in quality prediction, especially for sepa-
rate scene scales. Third, SEM-HyperIQA-SO with scene-
specific rescaling achieves the best performance. It notably
enhances the detail preservation attribute, possibly due to

the limited information available in face crops for scene
analysis. Therefore, semantic information cannot be fully
utilized and we are better off using scene-specific rescaling
only. Fourth, we note that deep BIQA models perform sig-
nificantly better for detail preservation and exposure than
overall, which directly reflects this task’s difficulty and the
uncertainty of the annotations, as discussed in Sec. 4.4.

6. Conclusion
We have presented PIQ23, a new dataset for portrait

quality assessment with a wide variety of smartphone cam-
eras and use cases, which has been annotated by image qual-
ity experts using pairwise comparisons. We have shown the
importance of identifying the uncertainty in the annotations
by providing a new statistical analysis method to cluster the
quality scale into consistent levels of quality. Finally, we
adopt a training strategy and a deep neural network archi-
tecture that adapts to the high-resolution images of PIQ23
and profits from semantic information and multitasking, in
order to adjust to the per-scene quality scaling of the dataset.
Our results have shown the necessity and effectiveness of
quality scale quantification and clustering of similar quality
images to contain annotation uncertainty, as well as the im-
portance of semantic information in training IQA models.
We believe that this work will be the foundation for a new
area of application of IQA for portrait images, as well as for
a higher caliber of annotations in IQA datasets.
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