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Abstract 

The distribution of a synchronous clock in System-
on-Chip (SoC) has become a problem, because of wire 
length and process variation. Novel approaches such 
as the Globally Asynchronous, Locally Synchronous try 
to solve this issue by partitioning the SoC into isolated 
synchronous islands. This paper describes the bi-
synchronous FIFO used on the DSPIN Network-on-
Chip capable to interface systems working with 
different clock signals (frequency and/or phase). Its 
interfaces are synchronous and its architecture is 
scalable and synthesizable in synchronous standard 
cells. The metastability situations and its latency are 
analyzed. Its throughput, maximum frequency, and 
area are evaluated in function of the FIFO depth. 

1. Introduction 

In deep sub-micron processes, the largest parts of 
the delays are related to the wires. In multi-million 
gates System-on-chip (SoC), achieving timing closure 
is difficult, as place & route tools have difficulty 
coping with long wires and balancing the clock tree.  

The Globally Asynchronous, Locally Synchronous 
(GALS) [18,19] approach attempts to solve this 
problem by partitioning the SoC into isolated 
synchronous islands that have frequency and phase 
clock independency. With this approach, the timing 
constraints of the SoC can be bounded to the 
isochronous limit of each island. In this case, the 
communications between islands should be carried out 
by mixed-timing interfaces that adapt the clock 
frequency and phase discrepancy. Such interfaces are 
not trivial [7] since the synchronization failure 
(metastability) of the registers can corrupt the 
transferred data. Many architectures have been 
proposed to solve this issue, some of them restricted to 
study only skew [12, 13, 17], and jitter [17] correction. 
Others use pausible or stretchable clocks which pause 

[1, 6], or stretch [2, 3] the receiver clock to synchronize 
the data in a safe rising edge of the receiver clock. 

A number of approaches interface systems with a 
rational clock relation [11, 14]. A recent published 
paper from The University of Pierre and Marie Curie 
proposes a novel synchronous↔asynchronous 
converter well suited for Network-on-Chip (NoC) in 
GALS architectures [20]. Also in [22] asynchronous to 
synchronous and synchronous to asynchronous 
interfaces for GALS NoC are implemented using Gray 
FIFOs (first-in, first-out). Finally, the most generic 
architecture where frequency and phase are unknown is 
resolved by robust designs where metastability is well 
analyzed. The basic architecture is the “two-flop 
synchronizer” [7] where only the request and 
acknowledge signals are synchronized. Fastest 
architectures use FIFOs [4] or a RAM bank [5], where 
write and read pointers are transferred between clock 
domains using the Gray code. J. Jex et al. [9] and 
Chelcea-Nowick [8] propose optimized architectures 
for mixed-timing systems. The J. Jex et al. solution was 
originally designed to be used on supercomputer 
interfaces. The solution can modify the number of 
registers in the synchronizer to increase the robustness 
against metastability, and is suited to high bandwidth 
communications since the control signals are optimized. 
The solution of Chelcea et al. [8] proposes a mixed-
timing interface for mixed synchronous to synchronous, 
asynchronous to synchronous, and synchronous to 
asynchronous interfaces. Its architecture is modular and 
requires low area overhead. However, it requires full 
custom cells to implement the Full and Empty detectors, 
which becomes less attractive for synchronous standard 
cell flows. 

The FIFO presented in this document is a bi-
synchronous FIFO [10] able to interface two 
synchronous systems with independent clock 
frequencies and phases. A latency optimization of the 
architecture in which both interfaces have the same 
clock frequency but different clock phase 
(mesochronous) is also proposed. The main features of 



the bi-synchronous FIFO are low latency, robustness to 
metastability, small area, scalability, maximized 
throughput, and synthesizability on synchronous 
standard cell flow. This bi-synchronous FIFO is been 
used on the DSPIN [21, 23] Network-on-Chip (NoC), 
where ten bi-synchronous FIFOs of 34 bits are used per 
router:  Five have 8 words depth, and five have 4 words 
depth. Since a SoC can contain more than 30 routers, 
the area of this component have to be careful designed 
to minimize the total SoC area. Furthermore, the depth 
of the bi-synchronous FIFOs in this kind of NoC is no 
deeper than 10 words, therefore a register-base FIFO is 
more suited than a RAM-base FIFO due to its lower 
area and its simplicity of test. Thus, its test method can 
be the scan-chain method. Moreover, the bi-
synchronous FIFO makes the DSPIN NoC well suited 
to the GALS approach as the DSPIN router 
communicates asynchronously with the local 
subsystem, and mesochronously with the neighbor 
routers. 

The paper is organized as follows. Section 2 
presents a novel encoding algorithm well suited to 
interface two clock systems. In Section 3, all the bi-
synchronous FIFO modules are detailed. In Section 4, 
the analysis of latency, throughput, area, and maximum 
frequency are analyzed and compared with existing 
solutions. 

2. Bubble encoding 

In this section, a novel-encoding algorithm based on 
a token ring is demonstrated to be useful on the 
synchronization of pointers between two independent 
clock domains.  

2.1. Token ring 

A token ring is a succession of nodes 
interconnected in a circular manner that contain tokens. 
It can be described with N registers (with enable signal) 
interconnected in serial, like a cyclic shift-register. 
Figure 1 shows an example of a token ring with 5 
registers.  

 
Figure 1. Token ring 

If the enable signal is true, the content of the 
register is shifted (register i is shifted to register i+1, an 
register N-1 to register 0) at the rising edge of the clock, 
otherwise the register maintains the data. A token is 
represented by the logic state 1 of the register. The 
number of tokens in a token ring can be from one to N, 
where N is the number of registers. 

A token ring with one token can be used as a state-
machine. The position of the token defines the state of 
the state-machine. The enable signal of the token ring is 
equivalent to the next-state of the state-machine. If this 
condition is true, the token ring shifts and the state-
machine changes. It is also possible to define a state-
machine when the token ring contains two consecutives 
tokens, the state of the state-machine can be defined, 
for example, as the position of the first one.  

2.2. Synchronizing the Token 

Since the position of the tokens defines the state of 
the state-machine, the synchronization of the position 
can be exploited to interface the two clock domains. To 
synchronize the state of the state-machine, a parallel 
synchronizer (two registers per bit) can be used, as 
shown in Figure 2. 

Figure 2. Synchronization of a token ring  

However, as described by R. Ginosar, the parallel 
synchronizer [7] does not guarantee the correctness of 
the result. Figure 3 shows an example of 
synchronization. Solution A, B, C and D are all the 
possible solutions when the metastability of the register 
changes its content. Solution A and B are correct since 
the token is well determined. Solution C is exploitable 
using some logic but Solution D is useless due to 
absence of information. Because the token was moving, 
the metastability of the register can be resolved to a 
useless result. In that case, one clock cycle should be 
waited to attempt to obtain a useful data. 

To solve this issue, we propose to use two 
consecutive tokens (bubble encoding) in the token ring. 
As the metastability affects the changing registers, the 
use of two consecutive tokens prevents some registers 
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from changing. Assuming that registers i and i+1 have 
the tokens, if the token ring shifts, register i+2 gets a 
token, register i loses its token, and register i+1 does 
not change (it shifts its token and gets a token). In 
terms of logic value, register i and i+2 change state but 
register i+1 remains unchanged. Because there always 
exists a register that does not change state, it is always 
possible to detect a token. Figure 4 shows an example 
of synchronization. For example, we can define the 
position of the detected token by the position of the 
first logic 1 after a logic 0 (starting from the left). In 
this case, all solutions A, B, C, and D are correct 
because the token can be well defined; it is always 
possible to detect a transition between 0 and 1. This 
encoding algorithm does not avoid the metastability on 
the synchronizer. It just guarantees that the position of 
the token will be detected and a useless situation will 
never occur. 

The token ring and the bubble encoding presented 
in this section are used on the definition of the state-
machines of the bi-synchronous FIFO and will be 
detailed in next section. 

3.  Bi-synchronous FIFO 

This section presents the architecture of the bi-
synchronous FIFO and its application in multi-clock 
systems. The goal of this FIFO is to interface two 
synchronous systems having different clock signals. 
Each system is synchronous with its clock signal but 
can be asynchronous (frequency and/or phase) to the 
others. The challenge of this architecture is to hide all 
synchronization issues while respecting the FIFO 
protocol on each interface. Furthermore, this 

architecture is scalable and synthesizable in a 
synchronous standard-flow without using custom cells. 

As shown in Figure 5, five modules compose the bi-
synchronous FIFO architecture: Write pointer, Read 
pointer, Data buffer, Full detector, and Empty detector. 
The Write and Read pointers indicate the position to be 
written and to be read in the Data buffer, the Data 
buffer contains the buffered data of the FIFO, and the 
Full and Empty detectors signal the fullness and the 
emptiness of the FIFO. 

To better understand the bi-synchronous FIFO, its 
interfaces and protocol are detailed. 

Figure 5. Bi-Synchronous FIFO architecture 

3.1. Bi-synchronous FIFO interface and 
protocol 

The bi-synchronous FIFO has a sender and a 
receiver interface. As shown in Table 1, each interface 
has its own clock signal, Clk_write for the sender and 
Clk_read for the receiver.  
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The FIFO protocol is synchronous; all input and 
output signals in the sender and receiver interfaces are 
synchronous to their clock signal Clk_write and 
Clk_read, respectively. 

Table 1. Sender and receiver interface signals 

 Signal Description 
Data_write Data to be written into the FIFO 
Write Input signal requesting a write 

into the FIFO 
Full Output signal indicating the 

fullness of the FIFO 
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Clk_write Sender clock signal 
Data_read Output data from the FIFO 
Read Input signal requesting a read in 

the FIFO 
Empty Output signal indicating the 

emptiness of the FIFO 
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Clk_read Receiver clock signal 
 
The queuing and dequeuing of data elements in the 

FIFO follows the next synchronous protocol. The 
Data_write is queued into the FIFO, if and only if, the 
Write signal is true and the Full signal is false at the 
rising edge of Clk_write. Symmetrically, data is 
dequeued to Data_read, if and only if, the Read signal 
is true and the Empty signal is false at the rising edge of 
Clk_read. 

The clear partitioning of the sender and receiver 
interfaces into synchronous and independent interfaces 
simplifies the timing constrains analysis for all the 
modules connected to the FIFO ports. 

3.2. Write and read pointers 

The Write and Read pointers are implemented using 
the described token rings with the bubble-encoding 
algorithm. The position of the tokens determines the 

 position of the pointer. The position of the 
Write_pointer is defined by the position of the register 
containing the first token (starting from the left) as 
shown in Figure 6a. Likewise, the position of the 
Read_pointer is defined by the position of the register 
after the second token (starting from the left). The Full 
and Empty detectors exploit this particular definition of 
the pointers and will be explained hereinafter. 

The Write_pointer shifts right when the FIFO is not 
full and the Write signal is true. Likewise, the 
Read_pointer shifts right when the FIFO is not empty 
and the Read signal is true. 

As the write and read interfaces belong to different 
clock domains, the token rings are clocked by their 
clock signal, Clk_write and Clk_read respectively. 

3.3. Data buffer 

The Data buffer module is the storage unit of the 
FIFO. Its interfaces are: Data_write, Data_read, 
Write_pointer, Read_pointer, and Clk_write. It is 
composed by a collection of data-registers, AND gates, 
and tri-state buffers as shown in Figure 7. 

The input data, Data_write, is stored into the data-
register pointed by the Write_pointer at the rising edge 
of Clk_write. AND gates recode the Write_pointer into 
a one-hot encoding which controls the enable signals of 
the data-registers. Likewise, the Read_pointer is 
recoded into one-hot encoding which controls the tri-
state buffer on each data-register. Finally, the 
Data_read signal collects the outputs of the tri-state 
buffers. It is also possible to replace the tri-state buffers 
with multiplexers to simplify the Design for Test (DfT) 
of the FIFO. 

The width and number of data-registers determine 
the width and the depth of the FIFO. The depth also 
determines the range of the Write and Read pointers. 
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3.4. Full detector 

The Full detector computes the Full signal using the 
Write_pointer and Read_pointer contents. No status 
register is used as in the J. Jex et al. [9] or Chelcea-
Nowick [8] solutions. The Full detector requires N two-
input AND gates, one N-input OR gate, and one 
synchronizer, where N is the FIFO depth (Figure 8). 
The detector computes the logic AND operation 
between the Write and Read pointer and then collects it 
with an OR gate, obtaining logic value 1 if the FIFO is 
Full (Figure 6e) or quasi-Full (Figure 6c and 6d) 
otherwise is 0. This value is finally synchronized to the 
Clk_write clock domain into Full_s. Since the 

synchronization has a latency of one clock cycle and 
the situation on Figure 6c can potentially be metastable, 
the detector has to anticipate the detection of the Full 
condition. Is for this reason that the output of the OR 
gate detects the Full and the quasi-Full conditions.  

The Full detector in Figure 8 can be optimized since 
the synchronization latency inhibits, in some cases, the 
FIFO from being completely filled. For example, if the 
FIFO is in the situation of Figure 6c, and the sender 
does not write any other data, the Full_s will be 
asserted even if the FIFO is not filled completely. As 
the fullness has to be anticipated, the detector is 
dimensioned to stop the sender before overflowing the 
FIFO, if the sender was writing continuously. 

An improved Full detector implementation would 
be more complex (as the Empty detector), and would 
therefore require greater die area. However, a non-
optimal Full detector does not penalize the throughput 
of the FIFO as much as a non-optimal Empty detector. 
For example, assuming an optimal Empty detector and 
a non-optimal Full detector, the Full condition occurs 
when the receiver is not able to consume all the data. In 
this case, even with a non-optimal Full detector, the 
receiver limits the throughput of the FIFO.  Therefore, 
design effort and chip area should be devoted to 
improving the performance of the Empty detector. 
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Even when using a non-optimized Full detector, a 
low cost optimization can improve its performance. 
Figure 9 shows an additional module connected to the 
Full_s signal, which improves the Full detector. The 
module's operation is as follows: if the writer was not 
writing before asserting the Full_s signal, the Full 
signal is delayed one clock cycle, giving a second 
chance to the writer to fill completely the FIFO. 

3.5. Empty detector 

The implementation of the Empty detector is similar 
to the Full detector because both employ the Write and 
Read pointer contents. As seen in the previous 
paragraph, the Full detector has to anticipate the 
detection of the Full condition to avoid FIFO overflow. 
As the Empty detector is correlated to the FIFO 
throughput, its detection has to be optimized, and no 
anticipation detector should be used.  

Figure 10 shows the Empty detector for a five word 
FIFO. First, the Write_pointer is synchronized with the 
read clock into the Synchronized_Write_pointer (SW) 
using a parallel synchronizer. Next, the Read_pointer is 
recoded into the AND_Read_pointer (AR) using two-
input AND gates, operation also done in the 
Data_buffer module. The output of AR is a one-hot 
encoded version of the Read_pointer. Finally, the 
Empty condition is detected comparing the SW and AR 
values using three-input AND gates. As the 
metastability can perturb some bits of the SW (as seen 
on Figure 4), each pair of consecutive bits is compared 
to find a transition between 0 and 1. Their analysis is as 
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follows, if the values of SWi = 0 and SWi+1 = 1 that 
means that the SW pointer is on position i+1. 
Furthermore, when ARi = 1 that means that the AR 
pointer is on position i+1 (Figure 10). 

The FIFO is considered empty (see Figure 6a) when 
the Write_pointer points the same position of the 
Read_pointer. This can be detected when SWi=0, 
SWi+1=1 and ARi=1 for any i. These comparisons are 
computed by means of the three-input AND gates. 
Finally, a N-input OR gate collects all the values of the 
three-input AND gates to generate the Empty signal. 
This N-input OR gate and the one on the Full detector 
can be decomposed with log2N levels of two-input OR 
gates. 

The latency introduced by the synchronization of 
the Write_pointer cannot corrupt the FIFO, because a 
change in this pointer cannot underflow/overflow the 
FIFO, it just introduces latency into the detector. 

The advantage of the bubble-encoding algorithm in 
this detector relies on the continuous detection of the 
Write_pointer position. Otherwise, as seen on Figure 3 
Solution D, its position cannot be detected and the 
Empty condition should be asserted to avoid a possible 
underflow of the FIFO, thus, introducing one additional 
clock cycle latency to the FIFO. 

3.6. Mesochronous adaptation 

The FIFO architecture was originally designed to 
interface two independent clock domains, but can be 
adapted to interface mesochronous clock domains 
where the sender and the receiver have the same clock 
frequency but different phase. The difference of phase 
can be constant or slowly varying. We find examples 
interfacing mesochronous clock domains that employ 
the predictability of the rising edges to avoid the 
metastability situations [15, 16]. The proposed 
adaptation lowers the FIFO latency by reducing the 
number of registers on the synchronizer module. Since 
metastability can be avoided when the rising edges of 
the clock signals are predictable, the two rows of 
registers on the synchronizer can be reduced to a single 
row of registers as shown in Figure 11b. The remaining 
row of registers is clocked using a delayed version of 
the read clock. This delay must be chosen to exchange 
the data without metastable situations (Figure 11a). The 
delay can be a programmable delay, or any other 
metastability-free solution, as for example the 
Chakraborty-Greenstreet [11] architecture allowing the 
FIFO to work also on plesiochronous (small difference 
of frequency) clocks. Likewise, if the write and read 
clock are out of phase by 180º (clock-inverter), no 

programmable delay is needed because, by-
construction, the communication is free of metastability. 
The interface is free of metastability also if the 
difference of phase varies between 90° and 270°. This 
type of implementation is done on the DSPIN NoC 
routers. The clock-tree of each DSPIN router is 
balanced with a 5% skew. Then, in the routers placed 
on the Y row and X colon position, where (Y+X) is an 
odd number, the first clock-buffer of the clock-tree 
have been replaced by a clock-inverter. Finally, the top 
pins of the clock-trees routers are balanced with a 50% 
skew, which is easier to design and less power 
consuming than a fully synchronous clock tree balance. 
With this procedure, neighbor routers are 180° out of 
phase with a tolerance of 50% skew. 

This mesochronous adaptation of the bi-
synchronous FIFO is simple and allows switching 
between mesochronous and asynchronous modes. This 
adaptation is interesting in the design of a multi-million 
gate SoC in deep sub-micron technology, where the 
delay of long wires can drastically vary with 
temperature, voltage, and process. In such a system, the 
mesochronous clock distribution could fluctuate to an 
undesirable metastable situation, making the FIFO data 
useless. By switching the bi-synchronous FIFO into the 
asynchronous mode, robustness against metastability is 
improved, preventing the SoC from requiring redesign. 

4.  Simulation and analysis 

Both synthesizable VHDL models and cycle 
accurate SystemC models of the bi-synchronous have 
been designed. We have simulated the bi-synchronous 
FIFO to characterize its latency, throughput, frequency, 
and area. 
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Figure 11. Mesochronous adaptation



4.1. Latency analysis 

As the sender and the receiver have different clock 
signals, the latency of the FIFO depend on the relation 
between these two signals. 

The latency of the FIFO can be decomposed in two 
parts: the state machine latency and the synchronization 
latency. As the state-machines are designed using 
Moore automates, its latency is one clock cycle. Two 
registers compose the synchronizers and its latency is 
∆T plus one clock cycle. Where ∆T is the difference, in 
time, between the rising edges of sender and receiver 
clock. As this difference is between zero and one 
Clk_read clock cycle, the latency of the bi-synchronous 
FIFO is between two and three Clk_read clock cycles. 
Figure 12 shows the detail of the latency. Sync_1 and 
Sync_2 are the synchronization registers. The latency 
of the bi-synchronous FIFO is equivalent to the latency 
of the J. Jex et al. [9] solution. This latency can be 
lower, but the robustness to the metastability would be 
penalized [24, 7]. 

When the bi-synchronous FIFO is adapted to a 
mesochronous clock distribution, the latency of the 
FIFO is reduced, because a single register replaces the 
two-register synchronizer. In addition, the ∆T is 
constant as the difference of phase is constant. In that 
case, the latency of the FIFO is one clock cycle plus ∆T, 
as shown in Figure 13. 

4.2. Throughput Analysis 

The throughput of the bi-synchronous FIFO was 
analyzed in function of the FIFO depth. As the 
synchronizers add latency, the flow control of the FIFO 
is penalized and its performances are influenced. In 
case of deep FIFO, those latencies do not decrease the 
FIFO throughput since the buffered data compensate 
the latency of the flow control. Table 2 shows the 

minimum FIFO depth for 50% and 100% throughput in 
function of the clock relation. For FIFO depth of 6 or 
above, the synchronization latency has no influence on 
the flow control and the FIFO is able to deliver one 
word per cycle (100% throughput) even on 
asynchronous clock relation. For the asynchronous 
analysis, the write and read clock signals frequencies 
are similar, otherwise it is not possible to obtain 100% 
throughput.  

Table 2. Minimum FIFO depth in function of the clock 
relation and required throughput  

 Minimum depth 
for 50 % 

throughput 

Minimum depth 
for 100 % 
throughput 

Asynchronous 5 6 
Mesochronous 4 5 

 

4.3. Area and frequency estimation 

The area and frequency estimation of the FIFO was 
computed once synthesized on CMOS 90nm GPLVT 
STMicroelectronics standard cells. Different FIFO 
depths are used to illustrate the scalability of the 
architecture and its performances in terms of maximum 
frequency. To minimize the power consumption, a 
clock gating technique is used. Two architectures were 
synthesized, one with the tri-state buffers and another 
with multiplexers.  

Table 3 shows the area and frequency estimation of 
a 32-bit bi-synchronous FIFO in function of the FIFO 
depth and type of output port. Note that the maximum 
frequency of the write clock is greater than the one of 
the read clock. The limitation of the read clock is due 
to the Empty detector. 

The architecture with tri-state buffers has greater 
area than the one with multiplexers. This phenomenon 
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is due to the large area of the tri-state buffers. 
Moreover, the maximum clock frequency of the read 
part with tri-states is greater than the one with 
multiplexers, since the multiplexers are decoded in a 
log2N manner rather than in parallel. 

Table 3. Area and frequency in function of FIFO depth  
and type of output port 

Type FIFO 
Depth 

Area 
(µm²) 

Max. Write 
Freq. (MHz) 

Max. Read 
Freq. (MHz) 

 4  3304 2000  1110 
 8  6581 2000  1000 M

ux
 

 16  13384 2000  769 
 4  4082 2000  1428 
 8  8032 2000  1250 Tr

i-
st

at
e 

 16  16101 2000  1110 
 

4.4. Comparison with other existing designs 

This architecture has been compared with similar 
architectures to analyze its area and latency. As its 
architecture is synthesizable with standard cells, the 
comparison with the others is done after Synopsys 
synthesis with the same timing constraints. 

The selected architectures are a register-base Gray 
FIFO and the J. Jex et al. [9]. Their VHDL description 
has been written for different FIFO depths: 4, 8 and 16 
words of 32bits. A clock-gating technique is applied 
but no tri-state buffer is used. Table 4 shows the 
estimated area and the area overhead percentage of 
these architectures compared to the presented solution. 

Table 4. Area and overhead comparison between other  
existing designs 

FIFO 
Depth 

This 
Design 

µm2 

Register-base 
Gray FIFO 
µm2 (%) 

J. Jex et al. [9]  
 

µm2 (%) 
4  3304  5113 (+54%)  3364 (+1.8%) 
8  6581  9702 (+47%)  6858 (+4.2%) 
16  13384  20364 (+52%)  14362 (+7.3%) 
 
 
The register-base Gray FIFO has a 50% bigger area 

than the presented architecture. Even if the number of 
registers and synchronizers is lower than our 
architecture, the Gray code algorithm adds complexity 
to the read and write state machines. Nevertheless, the 
Full and Empty detectors are fully optimized, as the 
write and read sides know the exact position of the read 
and write pointer (after synchronization).  

The J. Jex et al. [9] architecture has similar 
complexity as ours, but its area increases more than 
ours when the FIFO depth increases. Moreover, its Full 

detector is not optimized and suffers the same problem 
of the non-optimized Full detector presented in Figure 
9. To correct this issue, the optimization of Section 3.4 
could be used, regardless the increase of the total area. 

In terms of FIFO latency, all three have the same 
latency, 2-3 clock cycles, since all of them use Moore 
state-machines and two flip-flops synchronizers. 

5. Conclusions 

A new bi-synchronous FIFO has been presented and 
analyzed. It is well suited to interface different systems 
working with independent frequency and/or phase 
clock signals. 

It uses a novel encoding algorithm combined with 
an astute definition of the FIFO pointers that avoids the 
utilization of status registers. Its write and read pointers 
are directly combined to obtain the Full and Empty 
detectors.  

Both of its interfaces are synchronous to its relative 
clock signals. Moreover, its architecture is designed to 
be synthesized using a synchronous standard cell 
design flow. None of its modules requires custom cells. 

A simple mesochronous adaptation is proposed 
which reduces the latency of the FIFO. Its latency is 2-
3 clock cycles in asynchronous mode, and 1-2 clock 
cycles in mesochronous mode. 

Both SystemC cycle accurate and VHDL models of 
the bi-synchronous FIFO has been designed. The FIFO 
throughput depends on the FIFO depth. Throughput is 
100% when the FIFO depth is six or above. 

Using CMOS 90nm GPLVT STMicroelectronics 
standard cells, we have synthesized and analyzed the 
FIFO area and maximum frequency for different FIFO 
depths. Two architectures are analyzed, one with tri-
state buffers and another with multiplexers. A 32-bit bi-
synchronous FIFO with eight words depth requires 
6581µm2 and its maximum clock frequency is 1GHz. 

The comparison with existent synthesizable 
asynchronous FIFOs shows a better integration density 
at the same data latency.  
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