
HAL Id: hal-04062404
https://hal.science/hal-04062404v1

Submitted on 7 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bi-Synchronous FIFO for Synchronous Circuit
Communication Well Suited for Network-on-Chip in

GALS Architectures
Ivan Miro-Panades, Alain Greiner

To cite this version:
Ivan Miro-Panades, Alain Greiner. Bi-Synchronous FIFO for Synchronous Circuit Communication
Well Suited for Network-on-Chip in GALS Architectures. First International Symposium on Networks-
on-Chip (NOCS’07), May 2007, Princeton, NJ, United States. pp.83-94, �10.1109/NOCS.2007.14�.
�hal-04062404�

https://hal.science/hal-04062404v1
https://hal.archives-ouvertes.fr

Bi-Synchronous FIFO for Synchronous Circuit Communication Well Suited
for Network-on-Chip in GALS Architectures

Ivan MIRO PANADES
STMicroelectronics

17, avenue des Martyrs
38054 Grenoble, France

ivan.miro-panades@st.com

Alain GREINER
The University of Pierre and Marie Curie

4, Place Jussieu
 75252 Paris, France
alain.greiner@lip6.fr

Abstract

The distribution of a synchronous clock in System-
on-Chip (SoC) has become a problem, because of wire
length and process variation. Novel approaches such
as the Globally Asynchronous, Locally Synchronous try
to solve this issue by partitioning the SoC into isolated
synchronous islands. This paper describes the bi-
synchronous FIFO used on the DSPIN Network-on-
Chip capable to interface systems working with
different clock signals (frequency and/or phase). Its
interfaces are synchronous and its architecture is
scalable and synthesizable in synchronous standard
cells. The metastability situations and its latency are
analyzed. Its throughput, maximum frequency, and
area are evaluated in function of the FIFO depth.

1. Introduction

In deep sub-micron processes, the largest parts of
the delays are related to the wires. In multi-million
gates System-on-chip (SoC), achieving timing closure
is difficult, as place & route tools have difficulty
coping with long wires and balancing the clock tree.

The Globally Asynchronous, Locally Synchronous
(GALS) [18,19] approach attempts to solve this
problem by partitioning the SoC into isolated
synchronous islands that have frequency and phase
clock independency. With this approach, the timing
constraints of the SoC can be bounded to the
isochronous limit of each island. In this case, the
communications between islands should be carried out
by mixed-timing interfaces that adapt the clock
frequency and phase discrepancy. Such interfaces are
not trivial [7] since the synchronization failure
(metastability) of the registers can corrupt the
transferred data. Many architectures have been
proposed to solve this issue, some of them restricted to
study only skew [12, 13, 17], and jitter [17] correction.
Others use pausible or stretchable clocks which pause

[1, 6], or stretch [2, 3] the receiver clock to synchronize
the data in a safe rising edge of the receiver clock.

A number of approaches interface systems with a
rational clock relation [11, 14]. A recent published
paper from The University of Pierre and Marie Curie
proposes a novel synchronous↔asynchronous
converter well suited for Network-on-Chip (NoC) in
GALS architectures [20]. Also in [22] asynchronous to
synchronous and synchronous to asynchronous
interfaces for GALS NoC are implemented using Gray
FIFOs (first-in, first-out). Finally, the most generic
architecture where frequency and phase are unknown is
resolved by robust designs where metastability is well
analyzed. The basic architecture is the “two-flop
synchronizer” [7] where only the request and
acknowledge signals are synchronized. Fastest
architectures use FIFOs [4] or a RAM bank [5], where
write and read pointers are transferred between clock
domains using the Gray code. J. Jex et al. [9] and
Chelcea-Nowick [8] propose optimized architectures
for mixed-timing systems. The J. Jex et al. solution was
originally designed to be used on supercomputer
interfaces. The solution can modify the number of
registers in the synchronizer to increase the robustness
against metastability, and is suited to high bandwidth
communications since the control signals are optimized.
The solution of Chelcea et al. [8] proposes a mixed-
timing interface for mixed synchronous to synchronous,
asynchronous to synchronous, and synchronous to
asynchronous interfaces. Its architecture is modular and
requires low area overhead. However, it requires full
custom cells to implement the Full and Empty detectors,
which becomes less attractive for synchronous standard
cell flows.

The FIFO presented in this document is a bi-
synchronous FIFO [10] able to interface two
synchronous systems with independent clock
frequencies and phases. A latency optimization of the
architecture in which both interfaces have the same
clock frequency but different clock phase
(mesochronous) is also proposed. The main features of

the bi-synchronous FIFO are low latency, robustness to
metastability, small area, scalability, maximized
throughput, and synthesizability on synchronous
standard cell flow. This bi-synchronous FIFO is been
used on the DSPIN [21, 23] Network-on-Chip (NoC),
where ten bi-synchronous FIFOs of 34 bits are used per
router: Five have 8 words depth, and five have 4 words
depth. Since a SoC can contain more than 30 routers,
the area of this component have to be careful designed
to minimize the total SoC area. Furthermore, the depth
of the bi-synchronous FIFOs in this kind of NoC is no
deeper than 10 words, therefore a register-base FIFO is
more suited than a RAM-base FIFO due to its lower
area and its simplicity of test. Thus, its test method can
be the scan-chain method. Moreover, the bi-
synchronous FIFO makes the DSPIN NoC well suited
to the GALS approach as the DSPIN router
communicates asynchronously with the local
subsystem, and mesochronously with the neighbor
routers.

The paper is organized as follows. Section 2
presents a novel encoding algorithm well suited to
interface two clock systems. In Section 3, all the bi-
synchronous FIFO modules are detailed. In Section 4,
the analysis of latency, throughput, area, and maximum
frequency are analyzed and compared with existing
solutions.

2. Bubble encoding

In this section, a novel-encoding algorithm based on
a token ring is demonstrated to be useful on the
synchronization of pointers between two independent
clock domains.

2.1. Token ring

A token ring is a succession of nodes
interconnected in a circular manner that contain tokens.
It can be described with N registers (with enable signal)
interconnected in serial, like a cyclic shift-register.
Figure 1 shows an example of a token ring with 5
registers.

Figure 1. Token ring

If the enable signal is true, the content of the
register is shifted (register i is shifted to register i+1, an
register N-1 to register 0) at the rising edge of the clock,
otherwise the register maintains the data. A token is
represented by the logic state 1 of the register. The
number of tokens in a token ring can be from one to N,
where N is the number of registers.

A token ring with one token can be used as a state-
machine. The position of the token defines the state of
the state-machine. The enable signal of the token ring is
equivalent to the next-state of the state-machine. If this
condition is true, the token ring shifts and the state-
machine changes. It is also possible to define a state-
machine when the token ring contains two consecutives
tokens, the state of the state-machine can be defined,
for example, as the position of the first one.

2.2. Synchronizing the Token

Since the position of the tokens defines the state of
the state-machine, the synchronization of the position
can be exploited to interface the two clock domains. To
synchronize the state of the state-machine, a parallel
synchronizer (two registers per bit) can be used, as
shown in Figure 2.

Figure 2. Synchronization of a token ring

However, as described by R. Ginosar, the parallel
synchronizer [7] does not guarantee the correctness of
the result. Figure 3 shows an example of
synchronization. Solution A, B, C and D are all the
possible solutions when the metastability of the register
changes its content. Solution A and B are correct since
the token is well determined. Solution C is exploitable
using some logic but Solution D is useless due to
absence of information. Because the token was moving,
the metastability of the register can be resolved to a
useless result. In that case, one clock cycle should be
waited to attempt to obtain a useful data.

To solve this issue, we propose to use two
consecutive tokens (bubble encoding) in the token ring.
As the metastability affects the changing registers, the
use of two consecutive tokens prevents some registers

EN

EN

EN

EN

EN

Enable
Clk_write

EN

Clk_read

Token ring

Parallel synchronizer

E
N

E
N

E
N

E
N

E
N

Enable

Clk

from changing. Assuming that registers i and i+1 have
the tokens, if the token ring shifts, register i+2 gets a
token, register i loses its token, and register i+1 does
not change (it shifts its token and gets a token). In
terms of logic value, register i and i+2 change state but
register i+1 remains unchanged. Because there always
exists a register that does not change state, it is always
possible to detect a token. Figure 4 shows an example
of synchronization. For example, we can define the
position of the detected token by the position of the
first logic 1 after a logic 0 (starting from the left). In
this case, all solutions A, B, C, and D are correct
because the token can be well defined; it is always
possible to detect a transition between 0 and 1. This
encoding algorithm does not avoid the metastability on
the synchronizer. It just guarantees that the position of
the token will be detected and a useless situation will
never occur.

The token ring and the bubble encoding presented
in this section are used on the definition of the state-
machines of the bi-synchronous FIFO and will be
detailed in next section.

3. Bi-synchronous FIFO

This section presents the architecture of the bi-
synchronous FIFO and its application in multi-clock
systems. The goal of this FIFO is to interface two
synchronous systems having different clock signals.
Each system is synchronous with its clock signal but
can be asynchronous (frequency and/or phase) to the
others. The challenge of this architecture is to hide all
synchronization issues while respecting the FIFO
protocol on each interface. Furthermore, this

architecture is scalable and synthesizable in a
synchronous standard-flow without using custom cells.

As shown in Figure 5, five modules compose the bi-
synchronous FIFO architecture: Write pointer, Read
pointer, Data buffer, Full detector, and Empty detector.
The Write and Read pointers indicate the position to be
written and to be read in the Data buffer, the Data
buffer contains the buffered data of the FIFO, and the
Full and Empty detectors signal the fullness and the
emptiness of the FIFO.

To better understand the bi-synchronous FIFO, its
interfaces and protocol are detailed.

Figure 5. Bi-Synchronous FIFO architecture

3.1. Bi-synchronous FIFO interface and
protocol

The bi-synchronous FIFO has a sender and a
receiver interface. As shown in Table 1, each interface
has its own clock signal, Clk_write for the sender and
Clk_read for the receiver.

Data_read Data_write

Full

Empty Write

Read

Clk_write Clk_read

Read pointer
Full

detector

Write pointer

Data buffer

Empty
detector

EN

EN

EN

EN

EN

1 EN

0 1 0 0 0

Metastability

Possible solutions:
0 1 0 0 0
0 0 1 0 0
0 1 1 0 0
0 0 0 0 0

Solution A
Solution B
Solution C
Solution D (useless)

Figure 3. Possible solution in the synchronization
of a single token ring containing one token

EN

EN

EN

EN

EN

1 EN

0 1 1 0 0

Metastability

Possible solutions:
0 1 1 0 0
0 0 1 1 0
0 1 1 1 0
0 0 1 0 0

Solution A
Solution B
Solution C
Solution D

Figure 4. Possible solution in the synchronization
of a token ring containing two successive tokens

The FIFO protocol is synchronous; all input and
output signals in the sender and receiver interfaces are
synchronous to their clock signal Clk_write and
Clk_read, respectively.

Table 1. Sender and receiver interface signals

 Signal Description
Data_write Data to be written into the FIFO
Write Input signal requesting a write

into the FIFO
Full Output signal indicating the

fullness of the FIFO

Se
nd

er

in
te

rf
ac

e

Clk_write Sender clock signal
Data_read Output data from the FIFO
Read Input signal requesting a read in

the FIFO
Empty Output signal indicating the

emptiness of the FIFO

R
ec

ei
ve

r
in

te
rf

ac
e

Clk_read Receiver clock signal

The queuing and dequeuing of data elements in the

FIFO follows the next synchronous protocol. The
Data_write is queued into the FIFO, if and only if, the
Write signal is true and the Full signal is false at the
rising edge of Clk_write. Symmetrically, data is
dequeued to Data_read, if and only if, the Read signal
is true and the Empty signal is false at the rising edge of
Clk_read.

The clear partitioning of the sender and receiver
interfaces into synchronous and independent interfaces
simplifies the timing constrains analysis for all the
modules connected to the FIFO ports.

3.2. Write and read pointers

The Write and Read pointers are implemented using
the described token rings with the bubble-encoding
algorithm. The position of the tokens determines the

 position of the pointer. The position of the
Write_pointer is defined by the position of the register
containing the first token (starting from the left) as
shown in Figure 6a. Likewise, the position of the
Read_pointer is defined by the position of the register
after the second token (starting from the left). The Full
and Empty detectors exploit this particular definition of
the pointers and will be explained hereinafter.

The Write_pointer shifts right when the FIFO is not
full and the Write signal is true. Likewise, the
Read_pointer shifts right when the FIFO is not empty
and the Read signal is true.

As the write and read interfaces belong to different
clock domains, the token rings are clocked by their
clock signal, Clk_write and Clk_read respectively.

3.3. Data buffer

The Data buffer module is the storage unit of the
FIFO. Its interfaces are: Data_write, Data_read,
Write_pointer, Read_pointer, and Clk_write. It is
composed by a collection of data-registers, AND gates,
and tri-state buffers as shown in Figure 7.

The input data, Data_write, is stored into the data-
register pointed by the Write_pointer at the rising edge
of Clk_write. AND gates recode the Write_pointer into
a one-hot encoding which controls the enable signals of
the data-registers. Likewise, the Read_pointer is
recoded into one-hot encoding which controls the tri-
state buffer on each data-register. Finally, the
Data_read signal collects the outputs of the tri-state
buffers. It is also possible to replace the tri-state buffers
with multiplexers to simplify the Design for Test (DfT)
of the FIFO.

The width and number of data-registers determine
the width and the depth of the FIFO. The depth also
determines the range of the Write and Read pointers.

0 0 0 1 1 … … 0

0 1 1 0 0 … … 0

0 0 0 0 1 … … 1

0 1 1 0 0 … … 0

1 1 0 0 0 … … 0

0 1 1 0 0 … … 0

0 1 1 0 0 … … 0

0 1 1 0 0 … … 0

0 0 1 1 0 … … 0

0 1 1 0 0 … … 0

Write pointer bits

Read pointer bits

Position of Write pointer

Position of Read pointer

a) FIFO empty b) FIFO contains 1 element c) FIFO quasi-full 3
contains N-3 elements

d) FIFO quasi-full 2
contains N-2 elements

e) FIFO full
contains N-1 elements

Figure 6. Write and Read pointer position definition and Full and Empty conditions in
terms of tokens position

Data elements

3.4. Full detector

The Full detector computes the Full signal using the
Write_pointer and Read_pointer contents. No status
register is used as in the J. Jex et al. [9] or Chelcea-
Nowick [8] solutions. The Full detector requires N two-
input AND gates, one N-input OR gate, and one
synchronizer, where N is the FIFO depth (Figure 8).
The detector computes the logic AND operation
between the Write and Read pointer and then collects it
with an OR gate, obtaining logic value 1 if the FIFO is
Full (Figure 6e) or quasi-Full (Figure 6c and 6d)
otherwise is 0. This value is finally synchronized to the
Clk_write clock domain into Full_s. Since the

synchronization has a latency of one clock cycle and
the situation on Figure 6c can potentially be metastable,
the detector has to anticipate the detection of the Full
condition. Is for this reason that the output of the OR
gate detects the Full and the quasi-Full conditions.

The Full detector in Figure 8 can be optimized since
the synchronization latency inhibits, in some cases, the
FIFO from being completely filled. For example, if the
FIFO is in the situation of Figure 6c, and the sender
does not write any other data, the Full_s will be
asserted even if the FIFO is not filled completely. As
the fullness has to be anticipated, the detector is
dimensioned to stop the sender before overflowing the
FIFO, if the sender was writing continuously.

An improved Full detector implementation would
be more complex (as the Empty detector), and would
therefore require greater die area. However, a non-
optimal Full detector does not penalize the throughput
of the FIFO as much as a non-optimal Empty detector.
For example, assuming an optimal Empty detector and
a non-optimal Full detector, the Full condition occurs
when the receiver is not able to consume all the data. In
this case, even with a non-optimal Full detector, the
receiver limits the throughput of the FIFO. Therefore,
design effort and chip area should be devoted to
improving the performance of the Empty detector.

W0
R0

W1
R1

W2
R2

W3
R3

W(N-1)
R(N-1)

Full_s

Clk_write

Write pointer i
Read pointer i

Wi:
Ri:

Figure 8. Full detector detail

Clk_write

EN D
Q

Clk_read

Data write

Data_read

Write pointer module

Read pointer module

E
N

E
N

E
N

E
N

E
N

E
N

E
N

E
N

E
N

E
N

EN D
Q

EN D
Q

EN D
Q

EN D
Q

EN

EN

W0 W1 W2 W3 W4

R0 R1 R2 R3 R4

Figure 7. Write pointer, Read pointer, and Data buffer detail

Full
Write

Empty
Read

Even when using a non-optimized Full detector, a
low cost optimization can improve its performance.
Figure 9 shows an additional module connected to the
Full_s signal, which improves the Full detector. The
module's operation is as follows: if the writer was not
writing before asserting the Full_s signal, the Full
signal is delayed one clock cycle, giving a second
chance to the writer to fill completely the FIFO.

3.5. Empty detector

The implementation of the Empty detector is similar
to the Full detector because both employ the Write and
Read pointer contents. As seen in the previous
paragraph, the Full detector has to anticipate the
detection of the Full condition to avoid FIFO overflow.
As the Empty detector is correlated to the FIFO
throughput, its detection has to be optimized, and no
anticipation detector should be used.

Figure 10 shows the Empty detector for a five word
FIFO. First, the Write_pointer is synchronized with the
read clock into the Synchronized_Write_pointer (SW)
using a parallel synchronizer. Next, the Read_pointer is
recoded into the AND_Read_pointer (AR) using two-
input AND gates, operation also done in the
Data_buffer module. The output of AR is a one-hot
encoded version of the Read_pointer. Finally, the
Empty condition is detected comparing the SW and AR
values using three-input AND gates. As the
metastability can perturb some bits of the SW (as seen
on Figure 4), each pair of consecutive bits is compared
to find a transition between 0 and 1. Their analysis is as

SW0 = 0
SW1 = 0

AR0 = 0

SW1 = 0
SW2 = 0

AR1 = 0

SW2 = 0

SW3 = 1

AR2 = 1

SW3 = 1

SW4 = 1
AR3 = 0

SW4 = 1

SW0 = 0

AR4 = 0

Empty = 1

Write pointer i
Synchronized Write pointer i
AND Read pointer i

Wi:
SWi:
ARi:

Figure 10. Empty detector detail

E
N

EN

E
N

E
N

E
N

E
N

W0 W1 W2 W3 W4

AR0 = 0 AR1 = 0 AR2 = 1 AR3 = 0 AR4 = 0

E
N

EN

E
N

E
N

E
N

E
N

SW0 = 0 SW1 = 0 SW2 = 0 SW3 = 1 SW4 = 1

Write pointer module

Read pointer module

From Data Buffer

Synchronizer

Enable_write
Clk_write

Enable_read

Clk_read

Clk_read

0 1 1 0 0

0 0 0 1 1

0

0

1

0

0

Clk_write

Write

Full_s
Full

Figure 9. Full detector optimization

follows, if the values of SWi = 0 and SWi+1 = 1 that
means that the SW pointer is on position i+1.
Furthermore, when ARi = 1 that means that the AR
pointer is on position i+1 (Figure 10).

The FIFO is considered empty (see Figure 6a) when
the Write_pointer points the same position of the
Read_pointer. This can be detected when SWi=0,
SWi+1=1 and ARi=1 for any i. These comparisons are
computed by means of the three-input AND gates.
Finally, a N-input OR gate collects all the values of the
three-input AND gates to generate the Empty signal.
This N-input OR gate and the one on the Full detector
can be decomposed with log2N levels of two-input OR
gates.

The latency introduced by the synchronization of
the Write_pointer cannot corrupt the FIFO, because a
change in this pointer cannot underflow/overflow the
FIFO, it just introduces latency into the detector.

The advantage of the bubble-encoding algorithm in
this detector relies on the continuous detection of the
Write_pointer position. Otherwise, as seen on Figure 3
Solution D, its position cannot be detected and the
Empty condition should be asserted to avoid a possible
underflow of the FIFO, thus, introducing one additional
clock cycle latency to the FIFO.

3.6. Mesochronous adaptation

The FIFO architecture was originally designed to
interface two independent clock domains, but can be
adapted to interface mesochronous clock domains
where the sender and the receiver have the same clock
frequency but different phase. The difference of phase
can be constant or slowly varying. We find examples
interfacing mesochronous clock domains that employ
the predictability of the rising edges to avoid the
metastability situations [15, 16]. The proposed
adaptation lowers the FIFO latency by reducing the
number of registers on the synchronizer module. Since
metastability can be avoided when the rising edges of
the clock signals are predictable, the two rows of
registers on the synchronizer can be reduced to a single
row of registers as shown in Figure 11b. The remaining
row of registers is clocked using a delayed version of
the read clock. This delay must be chosen to exchange
the data without metastable situations (Figure 11a). The
delay can be a programmable delay, or any other
metastability-free solution, as for example the
Chakraborty-Greenstreet [11] architecture allowing the
FIFO to work also on plesiochronous (small difference
of frequency) clocks. Likewise, if the write and read
clock are out of phase by 180º (clock-inverter), no

programmable delay is needed because, by-
construction, the communication is free of metastability.
The interface is free of metastability also if the
difference of phase varies between 90° and 270°. This
type of implementation is done on the DSPIN NoC
routers. The clock-tree of each DSPIN router is
balanced with a 5% skew. Then, in the routers placed
on the Y row and X colon position, where (Y+X) is an
odd number, the first clock-buffer of the clock-tree
have been replaced by a clock-inverter. Finally, the top
pins of the clock-trees routers are balanced with a 50%
skew, which is easier to design and less power
consuming than a fully synchronous clock tree balance.
With this procedure, neighbor routers are 180° out of
phase with a tolerance of 50% skew.

This mesochronous adaptation of the bi-
synchronous FIFO is simple and allows switching
between mesochronous and asynchronous modes. This
adaptation is interesting in the design of a multi-million
gate SoC in deep sub-micron technology, where the
delay of long wires can drastically vary with
temperature, voltage, and process. In such a system, the
mesochronous clock distribution could fluctuate to an
undesirable metastable situation, making the FIFO data
useless. By switching the bi-synchronous FIFO into the
asynchronous mode, robustness against metastability is
improved, preventing the SoC from requiring redesign.

4. Simulation and analysis

Both synthesizable VHDL models and cycle
accurate SystemC models of the bi-synchronous have
been designed. We have simulated the bi-synchronous
FIFO to characterize its latency, throughput, frequency,
and area.

delay

IN

Clk_read Clk_write

OUT

Clk_write

Clk_read
delay

Write pointer

Read pointer

a)

b)

Figure 11. Mesochronous adaptation

4.1. Latency analysis

As the sender and the receiver have different clock
signals, the latency of the FIFO depend on the relation
between these two signals.

The latency of the FIFO can be decomposed in two
parts: the state machine latency and the synchronization
latency. As the state-machines are designed using
Moore automates, its latency is one clock cycle. Two
registers compose the synchronizers and its latency is
∆T plus one clock cycle. Where ∆T is the difference, in
time, between the rising edges of sender and receiver
clock. As this difference is between zero and one
Clk_read clock cycle, the latency of the bi-synchronous
FIFO is between two and three Clk_read clock cycles.
Figure 12 shows the detail of the latency. Sync_1 and
Sync_2 are the synchronization registers. The latency
of the bi-synchronous FIFO is equivalent to the latency
of the J. Jex et al. [9] solution. This latency can be
lower, but the robustness to the metastability would be
penalized [24, 7].

When the bi-synchronous FIFO is adapted to a
mesochronous clock distribution, the latency of the
FIFO is reduced, because a single register replaces the
two-register synchronizer. In addition, the ∆T is
constant as the difference of phase is constant. In that
case, the latency of the FIFO is one clock cycle plus ∆T,
as shown in Figure 13.

4.2. Throughput Analysis

The throughput of the bi-synchronous FIFO was
analyzed in function of the FIFO depth. As the
synchronizers add latency, the flow control of the FIFO
is penalized and its performances are influenced. In
case of deep FIFO, those latencies do not decrease the
FIFO throughput since the buffered data compensate
the latency of the flow control. Table 2 shows the

minimum FIFO depth for 50% and 100% throughput in
function of the clock relation. For FIFO depth of 6 or
above, the synchronization latency has no influence on
the flow control and the FIFO is able to deliver one
word per cycle (100% throughput) even on
asynchronous clock relation. For the asynchronous
analysis, the write and read clock signals frequencies
are similar, otherwise it is not possible to obtain 100%
throughput.

Table 2. Minimum FIFO depth in function of the clock
relation and required throughput

 Minimum depth
for 50 %

throughput

Minimum depth
for 100 %
throughput

Asynchronous 5 6
Mesochronous 4 5

4.3. Area and frequency estimation

The area and frequency estimation of the FIFO was
computed once synthesized on CMOS 90nm GPLVT
STMicroelectronics standard cells. Different FIFO
depths are used to illustrate the scalability of the
architecture and its performances in terms of maximum
frequency. To minimize the power consumption, a
clock gating technique is used. Two architectures were
synthesized, one with the tri-state buffers and another
with multiplexers.

Table 3 shows the area and frequency estimation of
a 32-bit bi-synchronous FIFO in function of the FIFO
depth and type of output port. Note that the maximum
frequency of the write clock is greater than the one of
the read clock. The limitation of the read clock is due
to the Empty detector.

The architecture with tri-state buffers has greater
area than the one with multiplexers. This phenomenon

Clk_write

Data_write

Write

Clk_read

Sync_1

Sync_2

Full

Data_read

TClk_read TClk_read ∆T

Figure 12. Latency analysis

Clk_write

Data_write

Write

Clk_read

Sync_1

Full

Data_read

TClk ∆T

Delayed
Clk_read

Figure 13. Latency analysis with mesochronous
adaptation

is due to the large area of the tri-state buffers.
Moreover, the maximum clock frequency of the read
part with tri-states is greater than the one with
multiplexers, since the multiplexers are decoded in a
log2N manner rather than in parallel.

Table 3. Area and frequency in function of FIFO depth
and type of output port

Type FIFO
Depth

Area
(µm²)

Max. Write
Freq. (MHz)

Max. Read
Freq. (MHz)

 4 3304 2000 1110
 8 6581 2000 1000 M

ux

 16 13384 2000 769
 4 4082 2000 1428
 8 8032 2000 1250 Tr

i-
st

at
e

 16 16101 2000 1110

4.4. Comparison with other existing designs

This architecture has been compared with similar
architectures to analyze its area and latency. As its
architecture is synthesizable with standard cells, the
comparison with the others is done after Synopsys
synthesis with the same timing constraints.

The selected architectures are a register-base Gray
FIFO and the J. Jex et al. [9]. Their VHDL description
has been written for different FIFO depths: 4, 8 and 16
words of 32bits. A clock-gating technique is applied
but no tri-state buffer is used. Table 4 shows the
estimated area and the area overhead percentage of
these architectures compared to the presented solution.

Table 4. Area and overhead comparison between other
existing designs

FIFO
Depth

This
Design

µm2

Register-base
Gray FIFO
µm2 (%)

J. Jex et al. [9]

µm2 (%)
4 3304 5113 (+54%) 3364 (+1.8%)
8 6581 9702 (+47%) 6858 (+4.2%)
16 13384 20364 (+52%) 14362 (+7.3%)

The register-base Gray FIFO has a 50% bigger area

than the presented architecture. Even if the number of
registers and synchronizers is lower than our
architecture, the Gray code algorithm adds complexity
to the read and write state machines. Nevertheless, the
Full and Empty detectors are fully optimized, as the
write and read sides know the exact position of the read
and write pointer (after synchronization).

The J. Jex et al. [9] architecture has similar
complexity as ours, but its area increases more than
ours when the FIFO depth increases. Moreover, its Full

detector is not optimized and suffers the same problem
of the non-optimized Full detector presented in Figure
9. To correct this issue, the optimization of Section 3.4
could be used, regardless the increase of the total area.

In terms of FIFO latency, all three have the same
latency, 2-3 clock cycles, since all of them use Moore
state-machines and two flip-flops synchronizers.

5. Conclusions

A new bi-synchronous FIFO has been presented and
analyzed. It is well suited to interface different systems
working with independent frequency and/or phase
clock signals.

It uses a novel encoding algorithm combined with
an astute definition of the FIFO pointers that avoids the
utilization of status registers. Its write and read pointers
are directly combined to obtain the Full and Empty
detectors.

Both of its interfaces are synchronous to its relative
clock signals. Moreover, its architecture is designed to
be synthesized using a synchronous standard cell
design flow. None of its modules requires custom cells.

A simple mesochronous adaptation is proposed
which reduces the latency of the FIFO. Its latency is 2-
3 clock cycles in asynchronous mode, and 1-2 clock
cycles in mesochronous mode.

Both SystemC cycle accurate and VHDL models of
the bi-synchronous FIFO has been designed. The FIFO
throughput depends on the FIFO depth. Throughput is
100% when the FIFO depth is six or above.

Using CMOS 90nm GPLVT STMicroelectronics
standard cells, we have synthesized and analyzed the
FIFO area and maximum frequency for different FIFO
depths. Two architectures are analyzed, one with tri-
state buffers and another with multiplexers. A 32-bit bi-
synchronous FIFO with eight words depth requires
6581µm2 and its maximum clock frequency is 1GHz.

The comparison with existent synthesizable
asynchronous FIFOs shows a better integration density
at the same data latency.

 References

[1] A. E. Sjogren and C. J. Myers, “Interfacing synchronous
and asynchronous modules within a high-speed
pipeline,” in IEEE Trans. VLSI Syst., Vol 8, no. 5, pp
573-583, Oct. 2000.

[2] S.W. Moore, G.S. Taylor, P. A. Cunningham, R.D.
Mullins, and P. Robinson, “Self calibrating clocks for
globally asynchronous locally synchronous systems,” in
IEEE Proc. Int. Conf. on Computer Design, 2000.

[3] P. Zipf, H. Hinkelmann, A. Ashraf, and M. Glesner, “A
switch architecture and signal synchronization for
GALS System-on-Chip,” in Proc. of 17th Symposium

on Integrated Circuits and Systems Design
(SBCCI2004), pages 210-215, 2004.

[4] N. Rougnon Glasson, “Device for transferring data
between two asynchronous subsystems having a buffer
memory,” Patent US2004230723, Nov. 2004.

[5] G. N. Pham and K. C. Schmitt, “A high throughput,
asynchronous, dual port FIFO memory implemented in
ASIC technology,” in Proc. Annual IEEE Int. ASIC
Conf. and Exhibition, 1989.

[6] R. R. Dobkin, R. Ginosar, and C. P. Sotiriou, “Data
synchronization issues in GALS SoCs,” in IEEE Proc.
Int. Symp. on Asynchronous Circuits and Systems
(ASYNC’04), 2004.

[7] R. Ginosar, “Fourteen ways to fool your synchronizer,”
in Proc. 9th IEEE Int. Symp. on Asynchronous Circuits
and Systems (ASYNC’03), pp. 89-97, 2003.

[8] T. Chelcea and S. M. Nowick, “Robust interfaces for
mixed-timing systems,” in IEEE Trans. on VLSI
Systems, Vol. 12, No. 8, Aug. 2004.

[9] J. Jex, C. Dike, and K. Self, “Fully asynchronous
interface with programmable metastability settling time
synchronizer,” Patent 5 598 113, Jan. 1997.

[10] I. Miro Panades, “Buffer memory control device”
(Dispositif de commande d’une memoire tampon),
Patent pending.

[11] A. Chakraborty and M. R. Greenstreet, “Efficient self-
timed interfaces for crossing clock domains,” in Proc.
9th IEEE Int. Symp. Asynchronous Circuits Systems
(ASYNC’03), pp. 78-88, 2003.

[12] A. Chakraborty and M. R. Greenstreet, “A minimal
source-synchronous interface,” Proc. 15th IEEE
ASIC/SOC Conference, pp. 443-447, Sept.2002.

[13] Y. Elboim, A. Kolodny, and R. Ginosar, “A clock
tuning circuit for System-on-Chip,” in Proc. 28th
European Solid-State Circuits Conference (ESSCIRC
2002), 2002.

[14] L.F.G. Sarmenta, G.A. Pratt, and S.A. Ward, “Rational
clocking,” in Proc. ICCD, pp. 217-228, 1995.

[15] F. Mu and C. Svensson, “Self-tested self-
synchronization circuit for mesochronous clocking,” in
IEEE Transactions on Circuits and Systems-II, vol. 48,
no. 2, pp. 129-140, Febr. 2001.

[16] B. Mesgarzadeh, C. Svensson, and A. Alvandpour, “A
new mesochronous clocking scheme for
synchronization in SoC,” in IEEE Int. Symp. on Circuits
and Systems, May 2004.

[17] R. Kol and R. Ginosar, “Adaptive synchronization for
multi-synchronous systems,” in IEEE Int. Conf.
Computer Design (ICCD’98), pp. 188-189, Oct. 1998.

[18] D. M. Chapiro “Globally-Asynchronous Locally-
Synchronous systems,” PhD thesis, Stanford University,
1984.

[19] J. Muttersbach, T. Villiger, K. Kaeslin, N. Felber, and
W. Fichtner “Globally-Asynchronous Locally-
Synchronous Architectures to Simplify the Design of
On-CHIP Systems,” in Proc. 12th Int. ASIC/SOC
Conference, pp. 317-321, Sept. 1999.

[20] A. Sheibanyrad and A. Greiner, “Two efficient
synchronous↔asynchronous converters well-suited for
network on chip in GALS architectures,” in Int.
workshop on Power and Timing Modeling,
Optimization and Simulation (PATMOS 2006), pp. 191-
202, 2006.

[21] I. Miro Panades, A. Greiner, and A. Sheibanyrad, “A
low cost Network-on-Chip with guaranteed service well
suited to the GALS approach,” in IEEE 1st Int. Conf. on
Nano-Networks, 2006.

[22] E. Beigné and P. Vivet, “Design of On-chip and Off-
chip interfaces for a GALS NoC architecture,” in Proc.
12th IEEE Int. Symp. on Asynchronous Circuits and
Systems (ASYNC’06), pp. 172-181, March 2006.

[23] A. Sheibanyrad, I. Miro Panades, and A. Greiner,
“Systematic comparison between the asynchronous and
the multi-synchronous implementations of a Network on
Chip architecture,” in Proc. IEEE Design, Automation
and Test in Europe (DATE’07), April 2007.

[24] C. Dike and E. T. Burton, “Miller and noise effect in a
synchronizing flip-flop,” in IEEE Journal of Solid-State
Circuits, vol. 34, no. 6, June 1999.

