NANOMECHANICS OF NATURAL FIBRES: A RAMAN STUDY OF KERATIN AND SILK FIBRES

Gwénaël Gouadec, Philippe Colomban, Hung-Manh Dinh LADIR University Pierre et Marie Curie (Paris 6)/CNRS France

Bernard Mauchamps

UNS (Unité Nat Séricicole) *INRA – La Mulatière France*

Outline

Natural fibres

 Sustainable development ("clean" production, non toxicity, biodegradability, biocompatibility)

Variable mechanical properties

ANR funding (2008-2010) : "Nanosoie" Raman spectroscopy of Silk fibres

Find structural Raman probes in silk

 Use these probes to study the effect of chemical processing and mechanical loading on the mechanical properties

Why is µRS suited to study fibres (mechanics)?

• Sensitivity to bonds vibrations

 \Rightarrow amorphous/low crystallinity solids

Optical microscope

 \Rightarrow probe targeting (spot ~1 μ m < R_{fibre})

 \Rightarrow skin/core discrimination on cross-sections

- Non Contact Technique
 ⇒ in situ analysis through translucent matrices or liquid solutions
- Stress measurements

Macroscopic strain

Colomban, Gouadec, Mathez, Tschiember et Pérès *Composites, PtA* **37** (2006), 646

Bottom-up approach to fibre mechanics !

<u>Bond</u> stress probe

Silk structure

Spidroïn (72 amino acids)

PF-2008 - Manchester

Mechanical Testing

PBO poly(paraphénylène benzobisoxazole) PET poly(ethylènetéréphthalate) PA polyamide PP polypropylène

Load/Strain controlled UFT (0 to 100,00 g ; Δl =0,001 mm)

Gauge length = 30mm

Raman signatures-1

Multiscale materials

- Fluorescence + Acquisition time ~ hours
- High number of bands (superposition)

Raman signatures-2

- Common set of components
 ⇒ Fit validation
 ⇒ Different phase proportions
- Assignments
 G (1650) = alpha
 G (1675) = beta sheets
 L (1665) = intermediate
 ⇒ Random coil

hair

silk

PA66 fibre

Hair (white)

Paquin R. and Colomban Ph.

J. Raman Spectrosc. 38 (2007) 504

Bombyx Mori silk-1

Bombyx Mori silk-2

A. Gruger, A. Novak, A. Régis and Ph. Colomban Journal of Molecular Structure Volume 328, 1 December 1994, Pages 153-167

Bombyx Mori silk-3

----- Conclusion -----

• Multi-scale nano-structural/mechanical Raman probes available

 $\Rightarrow T' \text{ modes}$ $\Rightarrow \text{Amide I}$ $\Rightarrow \text{N-H}$

----- Future work -----

• Statistics on mechanics-governing factors:

- \Rightarrow conservation (age) of the sample
- \Rightarrow straining speed
- \Rightarrow animal species (GM silkworms)

• Analysis of the structural changes and related mechanical effects occurring between silk secretion and its final application (clothing, ligament, silk/silk composite ...)

----- Acknowledgments -----

Pr. Anthony Bunsell (ENSMP) Pr. Gérard Chavancy (UNS-INRA) Raphaël Paquin Salah Moukit

Post-doc funding (Jan 2009 \rightarrow Jan 2010)