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Mono-valent salt corrections for RNA 
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package
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Abstract 

Background RNA features a highly negatively charged phosphate backbone that attracts a cloud of counter‑ions 
that reduce the electrostatic repulsion in a concentration dependent manner. Ion concentrations thus have a large 
influence on folding and stability of RNA structures. Despite their well‑documented effects, salt effects are not han‑
dled consistently by currently available secondary structure prediction algorithms. Combining Debye‑Hückel poten‑
tials for line charges and Manning’s counter‑ion condensation theory, Einert et al. (Biophys J 100: 2745‑2753, 2011) 
modeled the energetic contributions of monovalent cations on loops and helices.

Results The model of Einert et al. is adapted to match the structure of the dynamic programming recursion of RNA 
secondary structure prediction algorithms. An empirical term describing the salt dependence of the duplex initiation 
energy is added to improve co‑folding predictions for two or more RNA strands. The slightly modified model is imple‑
mented in the ViennaRNA package in such way that only the energy parameters but not the algorithmic structure 
is affected. A comparison with data from the literature show that predicted free energies and melting temperatures 
are in reasonable agreement with experiments.

Conclusion The new feature in the ViennaRNA package makes it possible to study effects of salt concentrations 
on RNA folding in a systematic manner. Strictly speaking, the model pertains only to mono‑valent cations, and thus 
covers the most important parameter, i.e., the NaCl concentration. It remains a question for future research to what 
extent unspecific effects of bi‑ and tri‑valent cations can be approximated in a similar manner.

Availability Corrections for the concentration of monovalent cations are available in the ViennaRNA package 
starting from version 2.6.0.
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Introduction
Nucleic acids are highly negatively charged molecules 
since their phosphate backbone carries one negative 
charge per nucleotide. Structure formation brings these 
charges into close proximity and thus incurs substan-
tial electrostatic penalties on the secondary and tertiary 
structure level. Nucleic acid–ion interactions also pro-
vide large interaction energies and therefore contribute 
decisively to the folding of RNA and DNA and to their 
interactions with ligands and macromolecule partners 
[1]. Counter-ions reduce the electrostatic repulsion of 
the backbone. Cation concentrations determine the 
extent of this “charge screening” and thus strongly influ-
ence RNA folding. Indeed, many functional RNAs will 
not fold under low salt conditions [2], and experimental 
investigations of the thermodynamics of RNA folding are 
mostly confined to high salt conditions. Energy param-
eters for RNA secondary predictions likewise pertain 
to 1M sodium concentrations, more precisely 1.021 M 
while taking all Na+ ions in the buffer into account [3]. 
Although the importance of counter-ions for the RNA 
folding is well known, ion concentration, in contrast to 
temperature, is not a tunable parameter in most of the 
currently available RNA secondary structure predic-
tion tools. Although NUPACK [4] and UNAfold [5] offer 
a corresponding option, they do not handle salt effects 
in a consistent manner. The empirical salt corrections 
(derived from DNA for Na+ [6] and Mg+ [7]) offered by 
these tools pertain to stacking energies contributions 
only and neglect the loop energies due to insufficient 
empirical data. Loops, however, are subject to salt-
dependent effects in a similar energy range as we shall see 
below. While temperature dependence is conceptually 
straightforward and can be easy modeled by splitting free 
energy contributions into enthalpic and entropic contri-
butions [8], the energetics of ion–nucleic acid interac-
tions are much more difficult to understand.

Cations affect RNA structure in two different ways. 
The electrostatic stabilization of the structure due to 
charge screening is at least conceptually independent of 
the chemical nature and charge of the individual cati-
ons. In addition, divalent cations and in particular Mg+ 
can also strongly bind to specific, chelating sites [9, 10]. 
Quantitative salt effects on RNA folding have been stud-
ied extensively over the last decades, see [11] for a study 
that summarized much of the pertinent earlier literature. 
In the absence of a well-founded theoretical model, most 
authors resorted to describing the salt-dependence of 
RNA folding by means of simple heuristic function fit-
ting the effects of changes in the sodium concentration 
on the free energy of folding or a melting temperature. 
Such empirical fits, however, are limited to handling salt 
effects close to standard conditions, and an approach 

that explains the functional form of salt effects is clearly 
preferable.

If three-dimensional structures are known, the non-
linear Poisson-Boltzmann equation can be solved to 
obtain electrostatic potentials of RNA molecules in solu-
tion [12–14]. This approach, however, appears to be too 
detailed to derive a practically manageable parametri-
zation of salt effects at the level of secondary structure 
prediction algorithms. In order to handle counter-ions 
in RNA secondary structure prediction algorithms, the 
effects must be attributed to individual bases, base pairs, 
or loops (including the stacking of two consecutive base 
pairs). This is necessary because secondary structure 
prediction algorithms operate on these combinatorial 
substructures [15]. This, in particular, precludes models 
that explicitly require a detailed geometric description 
of three-dimensional structure of an RNA. Ensembles of 
3D structure models can be used, however, to estimate 
cation effects on loops and helices empirically as a alter-
native to wet-lab experiments [16, 17]. A coarse grained 
model representing each nucleotide by two virtual bonds 
(C4 -P and P-C4 ) [18] and tightly-bound ion theory [19] 
accounting for strongly correlated multi-valent ions was 
employed to sample loop conformations in the presence 
of both Na+ and Mg+ . Empirical expressions for electro-
static helix [16] and loop [17] energy contributions were 
extracted from these simulations.

To derive a suitably simple model, Einert and Netz 
[20] proposed to represent the RNA backbone as a 
charged polymer that interacts by means of a Debye-
Hückel potential [21] and treats single-stranded regions 
as freely jointed chains [22]. The non-linear screen-
ing effect of monovalent cations is incorporated using 
Manning’s approach to counter-ion condensation [23]. 
The formulation for loop contribution was originally 
developed to understand the salt-dependent modula-
tion of nucleosomal structures [24]. The two strands of 
a helix are modeled as parallel rods that again interact 
via a Debye-Hückel potential governed by the screening 
length. Here, the theory yields a per-position contribu-
tion that is independent of sequence features and the 
position within the helix [20]. While the theory makes 
several approximations it has been shown by its authors 
to reproduce experimental data quite well. It also has the 
advantage that it has no free parameters other than well 
known generic geometric characteristics of nucleic acid 
3D structures such as distances between nucleotides or 
the planes of stacked pairs. In contrast to empirical salt 
corrections derived from measurements or simulations, 
the theory has the advantage of behaving reasonably 
also outside the regime of available measurements. Of 
course, the secondary structure based approaches have 
significant limitations. In particular, they are by design 
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not suitable to model the site-specific binding of chelated 
Mg+ , which in some cases is known to be crucial for ter-
tiary structure formation and RNA function [25].

Here we implement in the ViennaRNA package [26] 
the Debye-Hückel/Manning model derived in [20], which 
captures the energetic effects of electrostatic interactions 
of mono-valent cations with structured RNA. In the fol-
lowing theory section we briefly review the features of 
the energy model and show that it can be brought into 
a form where only the energy parameters but not the 
dynamic programming recursions are modified. We then 
evaluate the model on a collection of empirical data from 
the literature to show that use of this type of salt correc-
tion has a significant beneficial effect.

Theory
The model of [20] considers loops as freely jointed 
charged chains and helices as parallel rods interacting via 
Debye-Hückel potentials and uses Manning’s framework 
to model counter-ions condensation. This results in dis-
tinct types of correction terms from loops and helices, 
which we describe separately in the following. In either 
case we focus on how the salt correction terms are incor-
porated into the dynamic programming schemes for 
RNA secondary structure prediction. As we shall see, 
the salt corrections can be phrased in such a way that 
they exclusively effect the energy parameters. The fold-
ing algorithms therefore remain unchanged. Owing to 
the architecture of the ViennaRNA package, it is there-
fore possible to handle salt effects exclusively as a pre-
processing energy parameter set. The presentation below 
focuses on RNA, since secondary structure predictions 
(beyond perfect duplexes) are of practical interest mostly 
for RNA. The theory, however, applies equally to DNA 
secondary structures.

Salt corrections for loops
The electrostatic free energy contribution for a loop com-
prising L backbone bonds can be written, at the level of 
the Debye-Hückel approximation, in the form [24]:

with y = κlssL where lss is the length of a single stranded 
RNA backbone bond (phosphate-to-phosphate dis-
tance), ℓB is the Bjerrum length and κ−1 is the Debye 
screening length, which depends on the ionic strength, 
and τss = min(1/lss, 1/ℓBzc) accounts for the nonlin-
ear electrostatic effects. For monovalent ions, the ionic 
strength equals the salt concentration ρ and thus we have 
κ = κ(ρ) . Following [24], � is given by

(1)Gu(L) = RT
ℓB

κ
τ 2ss�(y)

Here, 1F2 and 2F3 are generalized hypergeometric func-
tions and Ŵ(0, y) is the incomplete gamma function. Using 
1F2(. . . , 0) = 2F3(. . . , 0) = 1 , and y ln y → 0 for y → 0 , 
we observe that �(y) = 0 . Eq. (A8) in [24] gives an expan-
sion for small y of form �(y)/y = (1− ln(π/2))+ O(y2) , 
where the ln y term and the logarithmic divergence of 
Ŵ(0, y) cancel. Thus, �(y) increases linearly with y. Since 
both y and κ are proportional to √ρ , the ρ-dependence 
cancels and Gu(L) approaches L times a constant for 
ρ → 0.

Since Gu(L) describes the salt-dependent electrostatic 
effects on loops, this term is already included in the 
empirical energy parameters of the RNA standard model 
for the standard conditions of T = 37◦C and 1 M sodium 
concentration. Writing Ĝu(L) for the values on Eq. (1) at 
standard conditions, allows us to write the salt correction 
of a given loop as

The ViennaRNA package quantifies the length of a loop 
by the number m of unpaired nucleotides rather than the 
number of bonds. For hairpin loops we have L = m+ 1 , 
while L = m+ 2 for interior loops. In multi-loops we 
have L = m+ q + 1 , where q is the degree (number of 
branches) of the multi-loop. Setting q = 0 for hairpin 
loops and q = 1 for interior loops, the appropriate salt 
correction for a loop is therefore gu(m+ q + 1, ρ).

As seen in Fig.  1, the salt correction, as expected, 
increases while decreasing the salt concentration con-
tributing to the destabilization of the structure in a low 
salt environment. In the usual temperature range, the 
plot shows that loop correction is close to a constance 
with a slight increase at low concentration.

Linear approximation for multi‑branch Loop
The free energy of a loop asymptotically depends on the 
logarithm of its length [27], see also [28] for a recent 
review. For multi-loops, however, this behavior is usually 
approximated by a linear function

for the sake of computational efficiency. The parameters 
α , β , and γ are the energy cost for having, respectively, 
the closing pair, branch, and unpaired base in a multi-
loop. The reason for this linearisation is that recursions 

(2)

�(y) = y ln y+ y(γ − ln(π/2))−
y2

2
1F2

(
1/2

1, 3/2

∣∣∣∣
y2

4π2

)

y3

2π2 2F3

(
1, 1

3/2, 3/2, 2

∣∣∣∣
y2

4π2

)
+ 1− exp(−y)+ yŴ(0, y)

(3)gu(L, ρ) := Gu(L)− Ĝu(L)

(4)Eml = α + βq + γm
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implementing a non-linear dependence of the multi-loop 
contribution on m or m+ q make it necessary to store 
terms pertaining to substructures delimited by the clos-
ing pair of multi-loop of size m. This leads to a cubic-
memory and quartic-time algorithm, which is infeasible 
for larger RNA molecules [29]. The linear approximation 
is further motivated by the empirical observation that 
models with logarithmic dependence are outperformed 
by the linear approximation in terms of accuracy of 
structure prediction [29].

In order to handle multi-loops without abandoning 
the memory-efficient multi-loop decomposition of the 
standard RNA energy model [3], it is necessary to retain 
the linear form of the multi-loop terms also in the pres-
ence of salt corrections. This implies that the salt-cor-
rection itself must also be linear in both q and m. Using 
L = m+ q + 1 this implies that the salt correction must 
be of the form

where a0 and a1 are the parameters of the linear approxi-
mation of gu(L, ρ) . The correction therefore amounts to 
adding a0 + a1 to the closing pair term α of the multi-
loop and a1 to both, each unpaired base γ and each 
component β of the multi-loop. The salt-dependent 
multi-loop model thus reads:

In order to fit the coefficients a0 and a1 appear-
ing in the multi-loop parameters in practice, we first 
investigated their size distribution in samples of mini-
mum free energy (MFE) structures of 5 000 random 
sequences for different RNA sizes, as well as in the 

(5)gu(m, q, ρ) ≈ a0(ρ)+ a1(ρ)L

(6)
Eml = (α + a0(ρ)+ a1(ρ))+ (β + a1(ρ))q + (γ + a1(ρ))m

natural RNA structures recorded in the RNA STRAND 
database [30], see Additional file  1: Fig. S1. Although 
multi-loops with size L = 3 exist, very short multi-
loops are rare. We argue that inaccuracies in these rare 
cases are likely acceptable. Very short loops presumable 
are also subject to specifically constrained three-dimen-
sional structures and thus follow the model only to a 
crude approximation in the first place. In the current 
implementation, we use the loop size range L ∈ [6, 24] 
to obtain linear fits for a0 and a1 from gu(L, ρ) , see Fig. 2 
for salt correction and their linear approximations. In 
general, the fit over-corrects for very small loops and, 
at low salt concentrations, also for very large loops. The 
maximal fitting errors are on the order of 1 kcal/mol , 
which is still within the ball-park of the rather large 
inaccuracies expected for multi-loop energies.

Fig. 1 Loop salt correction gu(L, ρ) as a function of loop size L = m+ q+ 1 (left) and as a function of temperature (right) for a fixed loop at size 
L = 10 for different salt concentrations ρ

Fig. 2 Loop salt correction (solid) and linear approximation (dashed) 
in the function of loop size L at different salt concentration
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Salt corrections for stacked base pairs
Describing the backbones of stacked pairs as rods with 
distance of d = 20 Å interacting via a Debye-Hückel 
potential with screening length 1/κ yields the following 
electrostatic energy for the interaction of a nucleotide 
with the other strand [20]:

Here the charge density τds = min(1/lds, 1/(ℓBzc)) is 
again estimated according to Manning’s counterion 
condensation theory [23]. The length parameter lds is 
the helical rise per base pair and zc = 1 is the charge of 
the cation. K0 denotes the zeroth-order modified Bes-
sel function of the 2nd kind, see e.g. [31] and Additional 
file 1: Fig. S2. Since K0(z) diverges like − ln z for z → 0 , 
and κ ∼ √

ρ , Gp diverges logarithmically for vanishing 
salt concentrations.

As in the case of loops, these electrostatic effects are 
already included in the empirical energy parameters for 
standard conditions. The relevant salt correction thus is 
given by the difference between the values Gp at the cur-
rent conditions and standard conditions.

Figure 3 shows the dependence of the position-wise salt 
correction for stacking energies as function of salt con-
centration and temperature. Similar to the loop correc-
tion, the stack correction is close to a constant in the 
usual temperature range for a given salt concentration.

Salt corrections for duplex initialization
The formation of a double strand from two RNA mol-
ecules in solution is associated with an additional ini-
tialization energy Einit in the Turner energy model. One 
expects that duplex formation becomes more difficult 

(7)Gp = 2RTτ 2dsldsℓBK0(κd)

(8)gp := Gp − Ĝp

due to electrostatic repulsion at low salt concentrations. 
The initialization energy thus should also depend on 
ρ . In addition, the distance between two single strands 
changes during formation, which was neglected in the 
theory as discussed in [20]. Indeed, as we will see later 
in the experimental data comparison section, the duplex 
free energies are systematically overestimated compared 
to the experimental data.

Due to the lack of theoretical support, we propose a 
salt correction for duplex initialization ginit(ρ) derived 
from the prediction and the experimental data taken 
from [11]. Let gw(ρ) and gexpw (ρ) be the predicted and 
experimental salt correction at concentration ρ from the 
standard condition for a give duplex w . Fitting the differ-
ence gexpw (ρ)− gw(ρ) of 18 duplexes at four non-standard 
sodium concentrations yields, as plotted in Fig. 4, the salt 
corrections for duplex initialization

Fig. 3 Salt correction for a stacked pair as a function of salt concentration (left) and temperature (right)

Fig. 4 Salt correction for duplex initialization fitted (red) 
from the difference between experimental and predicted duplex salt 
correction (blue)
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with a = −0.45324 kcal/mol for RNA and a = −0.58389 
kcal/mol for DNA.

The nature of the initialization term a is not quite clear 
from the literature. On the one hand, it is argued as an 
entropic contribution in [32]. On the other hand, it is 
included with a large enthalpic contribution in recent ver-
sions of the standard energy model [3]. Given that the 
temperature dependence of the salt corrections for both 
stacking and loop is small, we feel justified in assuming a to 
be temperature-independent. At present, there are no data 
to test this assumption.

Implementation in ViennaRNA
The extension of ViennaRNA provides access to four user-
defined parameters: the concentration of the monovalent 
cation ρ , the bounds L1 and L2 delimiting the interval of 
loop length that is used to fit the two multiloop param-
eters a0 and a1 for given salt concentration, and the user-
provided salt correction g for duplex initialization. Default 
values are L1 = 6 , L2 = 24 , salt concentration ρ = 1.021 
M, and g = 99999 , indicating no value is provided.

On the command line, a new option –salt provides 
access to the salt corrections in all interactive programs of 
the ViennaRNA package. Internally, the relevant param-
eters are appended in the model object vrna_md_s as 
salt for ρ , saltMLLower and saltMLUpper for L1 
and L2 , and saltDPXInit for g . For the salt concentra-
tion, ViennaRNA assumes the standard conditions of the 
Turner energy model, i.e., ρ = 1.021 M. Thus no salt cor-
rections apply by default. A detailed description of the API 
in the ViennaRNA library is available at https:// www. tbi. 
univie. ac. at/ RNA/ Vienn aRNA/ refman/ index. html.

If a different concentration ρ is requested, first the value 
of gp(ρ) for the stack and the array of values gu(L, ρ) for 
loop of different size L ∈ [1, 31] is computed. Note that 
these energy contributions depend on the temperature 
T and thus are recomputed if the user sets a different 

(9)ginit(ρ) = a ln(
ρ

ρ0
)

temperature. In addition, the use of duplex initialization 
salt correction ginit(ρ) for duplex is turned off if users set 
saltDPXInit to zero.

The array gu is then used to determine a0(ρ) and a1(ρ) by 
linear regression. Subsequently, the free energy parameters 
are set as sums of the default values E(0) for the given tem-
perature and the salt corrections:

Here Ebp , EHL
m  , EHL

m  , and Einit refer to all parameters for 
stacked pairs, hairpin loops of length m, interior loops 
of length m, and duplex initialization, respectively. Dan-
gling end and coaxial stacking contributions, on the other 
hand, remain unchanged.

The Bessel functions K0 is computed as in scipy, 
which in turn used the cephes mathematical function 
library described in [33]. The function � in loop salt 
correction can be approximated as given in [20]:

Parameters
The key physical parameter containing the salt cor-
rection terms are the Debye screening length κ−1 . It is 
convenient to express κ−1 in terms of Bjerrum length ℓB 
and the ionic strength I:

(10)

Ebp = Ebp(0)+ gp(ρ)

EHL
m = EHL

m (0)+ gu(m+ 1, ρ)

EIL
m = EIL

m (0)+ gu(m+ 2, ρ)

α = α(0)+ a0(ρ)+ a1(ρ)

β = β(0)+ a1(ρ)

γ = γ (0)+ a1(ρ)

Einit = Einit + ginit(ρ)

(11)

�(y) = y ln y+ y(γ − ln(π/2))

+ y
(2π)6

y6 + (2π)6

(
y4

36π4 −
y3

24π2 +
y2

2π2 −
y

2

)

+
(
1−

(2π)6

y6 + (2π)6

)(
y(log(2π)− 1.96351)− y log y

)

+
(
1− e−y

)
+ yŴ(0, y)

(12)
ℓB =

e2

4πkBTǫ0ǫr(T )
≈

(
167092.53ÅK

) 1

Tǫr(T )

κ−1 =

√
kBTǫ0ǫr(T )

2NAe2I
=

1
√
8πNA

1
√
ℓBI

≈
(
8.1285Å

3
2mol

1
2 L−

1
2

)
1

√
ℓBI

https://www.tbi.univie.ac.at/RNA/ViennaRNA/refman/index.html
https://www.tbi.univie.ac.at/RNA/ViennaRNA/refman/index.html
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The values of physical constants appearing in these 
expressions are taken from CODATA [34] and listed 
in  Additional file  1: Table  S1. The salt concentration 
enters only through the ionic strength I := 1

2

∑
i ρiz

2
i  , 

where ρi is the concentration and zi is the charge of ion-
species i. For monovalent ions, as in the case of NaCl, 
the ionic strength reduces to the salt concentration, i.e., 
I = ρ . The salt concentration ρ is expressed as molarity 
M, i.e., in units of mol/L, whereas the Debye screening 
length κ−1 and the Bjerrum length ℓB are conveniently 
expressed in Å. Note that the conversion factor for the 
length units L, in liters (0.001 m 3 ) versus Å, is absorbed 
into the numerical constant.

The temperature dependence of ǫr can be fitted from 
empirical data. In the current implementation we use the 
function proposed in [35]:

with temperature in Kelvin. The temperature-depend-
ence of ǫr ensures that the Bjerrum length ℓB is longer 
than the backbone bond length lss in the entire temper-
ature range, see  Additional file  1: Fig. S3. The nonlin-
ear electrostatic effects on unpaired bases thus become 
τss = 1/ℓB for the monovalent cations considered here.

The model of Einert et al. [20] is equally applicable to 
RNA and DNA. The only difference are the two geomet-
ric parameters and the empirically determined slope for 
the salt correction of the duplex initialization energy, 
which are summarized in Table 1. The values of two geo-
metric parameters, helical rise per base and backbone 
bond length (phosphate-to-phosphate distance), are 
obtained from [17, 36–38]. Fitting data reported in [39] 
yields the slope for the salt correction for DNA duplex 
initialization, see Additional file 1: Fig. S4 for more detail. 
Our implementations allow for adapting the values of the 
two geometry parameters lss and lds.

Comparison with experimental data
Available data sets
Even though the dependence of RNA structures on salt 
concentrations is of considerable practical interest, sys-
tematic data sets suitable for benchmarking salt cor-
rection models are by no means abundant. Most of the 

(13)
ǫr(T ) =5321T−1 + 233.76− 0.9297T

+ 1.417× 10
−3T 2 − 0.8292× 10

−6T 3

direct evidence for the salt dependence derives from 
studies of short duplexes and hairpins. Here, we analyzed 
datasets of melting experiments from four publications 
that reported melting temperature Tm and/or free energy 
as well as corresponding enthalpy and entropy. The melt-
ing temperature is defined as the temperature at which 
half of the RNA molecules form duplexes or hairpins, 
respectively. 

1 18 RNA self-complementary perfect duplexes of 
length 6 or 8 at the 5 different sodium concentrations, 
0.071, 0.121, 0.221, 0.621, and 1.021 M, with differ-
ent species concentration c were reported in [11, 40]. 
Free energies at 37◦C were obtained from 1/Tm vs. 
ln c plots. The data were also used by the same lab 
[40] to obtain optimised thermodynamic parameters, 
entropy and enthalpy, at a given salt concentration.

2 A different set of 8 self-complementary duplexes, 
including two imperfect duplexes, of length 10 , 12 , 
and 14 was reported in [41]. The data set covers two 
different species concentration c , 100 µ M and 2 µ M 
and two sodium concentrations, 1.0002 M and 0.0102 
M.

3 Two hairpins at sodium concentrations of 0.021 , 
0.036 , 0.061 , 0.111 , 0.211 , and 1.011 M were reported 
in [42]. The hairpins consisted of a helix of length 5 
enclosing a hairpin loop of size m = 8 or 10.

4 14 hairpins at two salt concentrations, 1.02 and 0.03 
M Na+ , measured in [43]. One of the hairpins con-
sists of a helix of length 8 and a hairpin loop of size 
m = 4 , while in the remaining 13 hairpins the helix is 
interrupted by a 1 nt bulge.

The values of melting temperatures, enthalpies, and 
entropies for datasets 2 , 3 , and 4 were obtained by means 
of fitting melting curves in the respective publications.

Comparison of duplex free energies
Free energies were computed using RNAcofold [45, 
46] with a self-complementary correction of RT ln 2 
added for all sequences that coincided with their reverse 
complement. Since the predicted free energy at the 
standard condition differs from the experimental val-
ues, we are interested in comparing the salt correction 
gw(ρ) = Ew(ρ)− Ew(ρ0) at concentration ρ from the 
standard concentration ρ0 = 1.021 M, where Ew(ρ) is the 
free energy of duplex w at concentration ρ . Let lw and gcw 
be the length and the fraction of GC of duplex w . Then 
the salt correction for RNAcofold is then given by

The salt correction proposed by Chen & Znosko [11] is

(14)gRNAcofoldw (ρ) = (lw − 1)gp(ρ)+ ginit(ρ).

Table 1 RNA and DNA specific parameters

Parameter Symbol [units] RNA DNA

Helical rise length lds [Å] 2.8 3.4

Backbone bond length lss [Å] 6 6.76

Slope of duplex init a [kcal/mol] −0.45324 −0.58389
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The computational results are summarized in Fig. 5. Not 
surprisingly, the Chen & Znosko salt correction provides 
a slightly better fit to the data because the empirical for-
mula for gC&Zw  was obtained by fitting to the same data 
set. In contrast, only the duplex initialization ginit(ρ) is 
fitted in our model. The largest deviations are observed 
for GC-only sequences.

Comparison of duplex melting temperatures
Let A be a self-complementary RNA sequence and AA 
the corresponding dimer. The dimerization reaction 
is 2A ⇋ AA . The corresponding concentrations are 
denoted by [A] and [AA], respectively. In equilibrium, 
we have

where ZA and ZAA are the partition functions of the mon-
omer and the dimer, respectively. Here GA = −RT lnZA 
and GAA = −RT lnZAA are the ensemble free energies 
of A and AA, respectively. Note that in a pure two-state 
system, we can replace GA and GAA by the correspond-
ing minimum free energies EA and EAA , respectively. 
We define the melting temperature Tm as the tempera-
ture at which half of A forms the dimer AA, i.e., where 
[AA] = c/4 and [A] = c/2 . Eq. (16) then yields

where we write GA(Tm) and GAA(Tm) to emphasize the 
temperature dependence of the ensemble free energies. 

(15)
gCwZ(ρ) = (0.324gcw − 0.486) ln(ρ/ρ0)+ 0.133(ln(ρ/ρ0))

2.

(16)
[AA]
[A][A]

=
ZAA

ZAZA
= e(2GA−GAA)/RT

(17)Tm =
2GA(Tm)− GAA(Tm)

−R ln c
,

The ensemble free energy GAA for the pure dimer state is 
accessible directly via the function vrna_pf_dimer() 
within the ViennaRNA library. The correction for self-
complementary is already taken into account during the 
computation of the partition function [46]. Since the 
ensemble free energy is also a function of temperature, 
we use a binary search to find the melting temperature 
Tm.

For the data set comprising 18 short duplexes, experi-
mental melting temperatures are available for several 
distinct species concentrations c . Van ’t Hoff ’s equation

implies a linear relationship between changes in 1/Tm 
and changes in RNA concentration. We compare the 
predicted and experimental “van ’t Hoff” plots, i.e., dia-
grams of 1/Tm versus ln c , see Additional file  1: Fig. S5. 
Overall, we observe an excellent agreement on the slope 
between RNAcofold prediction and experiment. Pre-
dicted and experimental intercepts are slightly more dif-
ferent for a few of the duplexes. To further investigate, we 
performed linear regression on each van ’t Hoff plot and 
obtained the entropy and the enthalpy of each duplex at 
different salt concentration using Eq. 18. Figure 6 shows 
the difference of these thermodynamic values per base 
pair stack computed from the predictions and from the 
experiments. For both enthalpy and entropy, the pre-
dicted values are in general larger than the experimental 
one, but are in the same order of magnitude. The differ-
ences in enthalpy and entropy largely compensate in the 
free energy �G = �H − T�S.

For the second dataset consisting of longer duplexes, 
we are interested in melting temperature correction 

(18)
1

Tm
=

R

�H
ln c +

�S

�H

Fig. 5 Duplex salt correction at different salt concentration from experiment (blue), Chen & Znosko (red), and ViennaRNA prediction with (green) 
and without (orange) salt correction for duplex initialization. The experimental free energy is derived from van ’t Hoff plots of 1/Tm versus ln c . Most 
of the experimental values at 1 M are taken from [44]
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�Tm(0.01M) from the standard condition 1 M since the 
data is only available for two species concentrations. 
Chen & Znosko [11] proposed the following fit

where gcw is the GC fraction of duplex w . Figure 7 shows 
the experimental melting temperature correction com-
pared with �TC&Z

m  and the one computed by RNAco-
fold. Overall, the salt corrections described above 
show similar agreement (Root mean squared devia-
tion r = 5.638 ) with the experiment as the empirical fit 
( r = 5.862 ) from [11].

(19)
�TC&Z

m (ρ) = (−1.842gcw + 2.675) ln ρ − 0.7348(ln ρ)2

Comparison of hairpin free energies
For the hairpins HP8 and HP10 described in [42], 
entropy, enthalpy, and free energy were derived from 
melting experiments. For comparison, we computed the 
free energy using RNAfold at 37◦C for different salt con-
centrations ρ . Figure 8 summarizes the experimental and 
predicted free energy corrections from 0.211 M. They 
are in very good agreement in particular for lower salt 
concentrations.

For the 14 hairpins measured in [43] we used RNA-
fold to compute the free energy difference between 
salt concentration 0.03 M and 1.02 M at 37◦C . For the 
hairpin with helix length 8, the free energy difference is 

Fig. 6 Boxplot of differences between experimental and predicted salt effects for 18 short duplexes measured in [11]. Enthalpies and entropies 
were estimated from linear regression according to van ’t Hoff’s Eq. (18) from the data plotted in Additional file 1: Fig. S5

Fig. 7 Comparison of experimental and predicted melting temperature corrections �Tm using the empirical fit by Chen & Znosko [11] (left) 
and RNAcofold with the salt corrections terms described in the present contribution (right). The data of perfect duplex is plotted in blue 
while the one of imperfect duplex is in orange. The red dashed line draws x = y meaning the predicted value matches the experimental one



Page 10 of 13Yao et al. Algorithms for Molecular Biology            (2023) 18:8 

2.9 kcal/mol from experiment and 1.94 kcal/mol from 
computation. For the remaining 13, structurally identi-
cal, hairpins, the average experimental free energy dif-
ference is 3.68± 0.30 kcal/mol compared to a predicted 
value at 2.15 kcal/mol. In general, the model under-
estimates the salt correction by 1.5 kcal/mol.

Discussion
Salt concentrations significantly influence folding and 
thermodynamics of nucleic acids. In this contribution 
we report on the implementation of an approximate 
physical model proposed by Einert and Netz [20] that 
represent the RNA backbone as a charged polymer inter-
acting by means of a Debye-Hückel potential. It is worth 
noting that model has no parameter that captures indi-
vidual properties of the monovalent cation. It therefore 
applies equally to Na+ , for which experimental data were 
available for comparison, and other monovalent cati-
ons. The model was adapted here to preserve the linear 
multi-loop model required for computational efficiency 
and extended by a empirical initiation term for duplex 

formation. While not perfect, the model reproduces 
experimental thermodynamic data on the NaCl depend-
ence of folding energies and melting temperatures with 
reasonable accuracy. We note that the salt-dependent 
energies for stacks diverge logarithmically for vanishing 
salt concentrations ρ . The model thus cannot be used if 
cations are virtually absent.

The approach taken here has the practical advantage 
that it does not require any changes in the folding algo-
rithms. The modification of the energy parameters is 
sufficient. The ViennaRNA packages handles this step 
during preprocessing. As a consequence, the compu-
tational performance of the folding routines remain 
unchanged. Moreover, the salt corrections are consist-
ently applied to all variants of the folding algorithms, e.g. 
minimum energy and partition function computations, 
consensus computations from alignments, and co-folding 
of two or more components. 

Changes in salt concentration also affect the predicted 
secondary structures, see Fig. 9 for an example. A quan-
titative analysis, Fig.  10, confirms that the number of 
base pairs increases with salt concentration. Interest-
ingly, the number of hairpin loops as measure for the 
overall “branched-ness” of the secondary structure, 
also increases. To our knowledge, there are no detailed 
experimental data that document structural changes as 
a function of NaCl concentration so that a directed vali-
dation of structures predicted for low salt concentrations 
remains a topic for future research.

Additional file 1: Fig. S6 shows the salt correction com-
parison with the coarse grained model of Tan & Chen for 
duplex [16] and hairpin loops [17]. Both models give sim-
ilar predictions for duplexes of length 6 to 10. However, 
the Tan & Chen correction is not linear in length mak-
ing it hard to be integrated into the current folding gram-
mar. On the other hand, salt corrections for hairpin loops 
computed using two models have different behaviors, 
where the Tan & Chen correction diverges with increas-
ing loop size.

Fig. 8 Comparison of free energy correction from experiment 
for hairpin HP8 (green) and HP10 (blue) with RNAfold prediction

Fig. 9 Examples of structural transitions. MFE structures of a tRNA sequence at different salt concentrations are predicted with RNAfold. Within 
the concentration range from 0.011 to 6.6 M, the MFE structure is same as the one at the standard condition (C, D). The denaturation is observed 
at low concentration (A, B), while at high concentration ( > 6.6 M, corresponding to a saturated saline solution), E become the MFE structure. The 
tRNA sequence used is GCG GAU UUA GCU CAG UUG GGA GAG CGC CAG ACU GAA GAU CUG GAG GUC CUG UGU UCG AUC CAC AGA AUU CGC ACCA  



Page 11 of 13Yao et al. Algorithms for Molecular Biology            (2023) 18:8  

In the current model, a basepair mismatch in a helix 
is treated as an 1 × 1 interior loop and thus is associ-
ated with the salt correction for loops at non-standard 
salt concentrations. However, such a mismatch is likely 
to result in a slightly distorted helix that could still be 
seen as two parallel charged rods. One could therefore 
argue, that the salt correction for 2 stacked pairs rather 
than for a loop should be applied. Figure 11 shows the 
difference of these two cases as a function of salt con-
centration. To our knowledge, there are no experimen-
tal data that could be used to decide which approach is 
more appropriate.

The approach taken here does not account for all 
effects of ions on RNA folding. Most importantly, it 
covers only unspecific interactions and thus does not 

describe specific interactions e.g. of Mg+ with spe-
cific binding sites. Even for unspecific interactions, the 
validity of the model can be argued stringently only for 
mono-valent ions [20].

We note that the empirical salt-correction formula 
for stacking energies proposed in [7] incorporates the 
combined salt concentrations as a linear combination 
[Na+] + 3.3[Mg2+] . In essence this term expresses the 
cationic contribution to the ionic strength (up to the 
empirically determined coefficient 3.3 instead of the 
theoretical value 4). This may be taken as a hint that 
the model implemented here may also serve as reason-
able approximation for more mixtures ions. At pre-
sent, available data, e.g. [47], are not sufficient to test 
whether replacing ρ by the ionic strength is sufficient 
to reasonably account for mixtures of mono-valent and 
di-valent cations.

The model described here does not account for salt 
effects of RNA structures that are neither loops nor 
stacked base pairs. In particular it does not apply to G 
quadruplexes [48], which optionally can be included in 
secondary structure predictions [49]. Separate models 
for the ion dependencies of such features will need to be 
derived that account e.g. for the K+-dependent stabiliza-
tion of RNA quadruplexes.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13015‑ 023‑ 00236‑0.

Additional file 1: Figure S1. Length distribution of multi‑loops. Distribu‑
tion of multi‑loop size L, number of backbone bonds, among MFE struc‑
tures of 5000 uniformly selectedsequences at varied length. Figure S2. 

Fig. 10 Average number of base pairs (left) and hairpin loops (right) per nucleotides in MFE structures at different salt concentrations. For each 
length n , 5 000 RNA sequences are uniformly and randomly selected from {A, C ,G,U}n . Each sequence is then folded using RNAfold at different 
salt concentrations

Fig. 11 Free energy correction of an 1 × 1 interior loop (blue) 
and a helix of two stackings (green) at different salt concentration

https://doi.org/10.1186/s13015-023-00236-0
https://doi.org/10.1186/s13015-023-00236-0
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Approximation Error for K0. In [20] an approximation for the difference of 
K0 at a given concentration and 1 M was proposed. However, wenoticed 
that this approximation yields a non‑vanishing salt correction at 1 M. We 
therefore used the Cephes libraryto compute K0 directly. The panel shows 
the salt correction of base pair stack at 37 °C in the function of saltcon‑
centration using the approximation (blue) and the precise computation 
implemented in ViennaRNA (orange). Figure S3. Nonlinear electrostatic 
effects τss. In [20], the permittivity (relative dielectric constant) εr of 
water εr ≈ 80 is assumed to be temperatureindependent. This assump‑
tion results in a discontinuity of τss at around 53.3 °C. Incorporating the 
empiricaltemperature dependence of εr in eq. (13) [35] results in 1/ℓB < 1/
lss. Figure S4. Comparison of experimental and predicted melting tem‑
perature corrections ΔTm of DNA duplexes. In [39], the authors performed 
melting experiment of DNA duplexes at different salt concentrations 
(Table 2) andcollected an independent set of DNA melting temperatures 
(Table 5). The former one is used to fit the saltcorrection for DNA duplex 
initialization and the later one is used for validation. Only the duplexes 
with lengthsmaller than 11 are used in both datasets. Figure S5. Van t’Hoff 
plots for 18 duplexes. Plotting 1/Tm versus ln c shows a generally good 
agreement of between predictions and the experimental datafrom from 
[11]. Figure S6. Salt correction comparison with Tan & Chen model.Com‑
parison of salt correction predicted with ViennaRNA for hairpin loop and 
duplex of different size with the onespredicted with Tan & Chen model 
[16, 17]. Table S1. Numeric values of physical constants.
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