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Abstract

Background: RNA features a highly negatively charged phosphate backbone
that attracts a of cloud counter-ions that reduce the electrostatic repulsion in a
concentration dependent manner. Ion concentrations thus have a large influence
on folding and stability of RNA structures. Despite their well-documented effects,
salt effects are not handled by currently available secondary stucture prediction
algorithms. Combining Debye-Hückel potentials for line charges and Manning’s
counter-ion condensation theory, Einert et al. [Biophys. J. 100: 2745-2753
(2011)] modeled the energetic effects contributions monovalent cations on loops
and helices.

Results: The model of Einert et al. is adapted to match the structure of the
dynamic programming recursion of RNA secondary structure prediction
algorithms. An empirical term describing the dependence salt dependence of the
duplex initiation energy is added to improve co-folding predictions for two or
more RNA strands. The slightly modified model is implemented in the
ViennaRNA package in such way that only the energy parameters but not the
algorithmic structure is affected. A comparison with data from the literature
show that predicted free energies and melting temperatures are in reasonable
agreement with experiments.

Conclusion: The new feature in the ViennaRNA package makes it possible to
study effects of salt concentrations on RNA folding in a systematic manner.
Strictly speaking, the model pertains only to mono-valent cations, and thus
covers the most important parameter, i.e., the NaCl concentration. It remains a
question for future research to what extent unspecific effects of bi- and tri-valent
cations can be approximated in a similar manner.

Availability: Corrections for the concentration of monovalent cations are
available in the ViennaRNA package starting from version 2.6.0.

Keywords: RNA Secondary Structure; Salt concentration; Debye-Hückel
potential

Introduction
Nucleic acids are highly negatively charged molecules since their phosphate back-

bone carries one negative charge per residue. Structure formation brings these

charges into close proximity and thus incurs substantial electrostatic penalties on

the secondary and tertiray structure level. Nucleic acid–ion interactions also pro-

vide large interaction energies and therefore contribute decisively to the folding

RNA and DNA and to their interactions with ligands and macromolecule part-

ners [1]. Counter-ions reduce the electrostatic repulsion of the backbone. Cation

concentrations determine the extent of this “charge screening” and thus strongly
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influence RNA folding. Indeed, many functional RNAs will not fold under low salt

conditions [2], and experimental investigations of the thermodynamics of RNA fold-

ing are mostly confined to high salt conditions. Energy parameters for RNA sec-

ondary predictions likewise pertain to 1M sodium concentrations, more precisely

1.021M while taking all Na+ ions in the buffer into account [3]. Although the im-

portance of counter-ions for the RNA folding is well known, ion concentration, in

contrast to temperature, is not a tunable parameter in currently available RNA sec-

ondary structure prediction tools. While temperature dependence is conceptually

straightforward and can be easy modeled by splitting free energy contributions into

enthalpic and entropic contributions [4], the energetics of ion–nucleic acid interac-

tions are much more difficult to understand.

Cations affect RNA structure in two different ways. The electrostatic stabilization

of the structure due to charge screening is at least conceptually independent of

the chemical nature and charge of the cation. In addition, divalent cations and in

particular Mg2+ can also strongly bind to specific, chelating sites [5, 6]. Quantitative

salt effects on RNA folding have been studied extensively over the last decades,

see [7] for a study that summarized much of the pertinent earlier literature. In the

absence of a well-founded theoretical model, most authors resorted to describing

the salt-dependence of RNA folding by means of simple heuristic function fitting

the effects of changes in the sodium concentration on the free energy of folding or

a melting temperature. Such empirical fits, however, are limited to handling salt

effects close to standard conditions, and an approach that explains the functional

form of salt effects is clearly preferrable.

If three-dimensional structures are known, the nonlinear Poisson-Boltzmann equa-

tion can be solved obtain electrostatic potentials of RNA molecules in solution [8–

10]. This approach, however, appears to be too detailed to derive a practically man-

ageable parametrization of salt effects at the level of secondary structure prediction

algorithms. In order to handle counter-ions in RNA secondary structure prediction

algorithms, the effects must be attributed to individual bases, base pairs, or loops

(including the stacking of two consecutive base pairs). This is necessary because

secondary structure prediction algorithms operate on these combinatorial substruc-

tures [11]. This, in particular, precludes models that explicitly require a detailed

geometric description of three-dimensional structure of an RNA.

To derive a suitably simple model, Einert and Netz [12] proposed to represent the

RNA backbone as a charged polymer that interacts by means of a Debye-Hückel

potential [13] and treats single-stranded regions as freely jointed chains [14]. The

non-linear screening effect of monovalent cations is incorporated using Manning’s

approach to counter-ion condensation [15]. The formulation for loop contribution

was orginally developed to understand the salt-dependent modulation of nucleoso-

mal structures [16]. The two strands of a helix are modeled as parallel rods that

again interact via a Debye-Hückel potential governed by the screening length. Here,

the theory yields a per-position contribution that is independent of sequence features

and the position within the helix [12]. While the theory makes several approxima-

tions it has been shown by its authors to reproduce experimental data quite well.

It also has the advantage that it has no free parameters other than well known

generic geometric characteristics of RNA 3D structures such as distances between
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nucleotides or the planes of stacked pairs. Of course, the secondary structure based

approach has signficant limitations. In particular, it is by design not suitable to

model the site-specific binding of chelated Mg2+, which in some cases is known to

be crucial for tertiary structure formation and RNA function [17].

Here we implement in the ViennaRNA package [18] the Debye-Hückel/Manning

model, which captures the energetic effects of electrostatic interactions of mono-

valent cations with structured RNA [12]. In the following theory section we briefly

review the features of the energy model and show that it can be brought into a form

where only the energy parameters but not the dynamic programming recursions are

modified. We then evaluate the model on a collection of empirical data from the

literature to show that use of this type of salt corrections has a significant beneficial

effect.

Theory
The model of [12] considers loops a freely jointed charged chains and helices as

parallel rods interacting via Debye-Hückel potentials and uses Manning’s framework

to model counter-ions condensation. This results in distinct types of correction

terms from loops and helices, which we describe separately in the following. In

either case we focus on how the salt correction terms are incorporated into the

dynamic programming schemes for RNA secondary structure prediction. As we

shall see, the salt corrections can phrased in such a way that they exclusively effect

the energy parameters. The folding algorithms therefore remain unchanged. Owing

to the architecture of the ViennaRNA package, it is therefore possible handle salt

effects exclusively as a pre-processing the energy parameter set.

Salt corrections for loops

The electrostatic free energy contribution for a loop comprising L backbone bonds

can be written, at the level of the Debye-Hückel approximation, in the form [16]:

Gu(L) = RT
`B
κ
τ2ssΦ(y) (1)

with y = κlssL where lss = 6.4Å is the length of an RNA backbone bond, `B is

the Bjerrum length and κ−1 is the Debye screening length, which depends on the

ionic strength, and τss = min(1/lss, 1/`Bzc) accounts for the nonlinear electrostatic

effects. For monovalent ions, the ionic strength equals the salt concentration ρ and

thus we have κ = κ(ρ). Following [16], Φ is given by

Φ(y) = y ln y + y (γ − ln(π/2))− y2

2
1F2

(
1/2

1, 3/2

∣∣∣∣ y24π2

)
y3

2π2 2F3

(
1, 1

3/2, 3/2, 2

∣∣∣∣ y24π2

)
+ 1− exp(−y) + yΓ(0, y)

(2)

Here, 1F2 and 2F3 are generalized hypergeometric functions and Γ(0, y) is the in-

complete gamma function. Using 1F2(. . . , 0) = 2F3(. . . , 0) = 1, and y ln y → 0 for

y → 0, we observe that Φ(y) = 0. Equ.(A8) in [16] gives an exapansion for small y
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Figure 1 Loop salt correction gloop(L, ρ) as a function of loop size L = m+ q + 1 (left) and as a
function of temperature (right) for a fixed loop at size L = 10 for different salt concentrations ρ.

of form Φ(y)/y = (1 − ln(π/2)) + O(y2), where the ln y term and the logarithmic

divergence of Γ(0, y) cancel. Thus, Φ(y) increases linearly with y. Since both y and

κ are proportional to
√
ρ, the ρ-dependence cancels and Gu(L) approaches L times

a constant for ρ→ 0.

Since Gu(L) describes the salt-dependent electrostatic effects on loops, this term

is already included in the empirical energy parameters of the RNA standard model

for the standard conditions of T = 37◦C and 1M sodium concentration. Writing

Ĝu(L) for the values on Eq.(1) at standard conditions, allows us to write the salt

correction of a given loop as

gloop(L, ρ) := Gu(L)− Ĝu(L) (3)

The ViennaRNA package quantifies the length of a loop by the number m of unpaired

nucleotides rather than the number of bonds. For hairpin loops we have L = m+ 1,

while L = m+ 2 for interior loops. In multi-loops we have L = m+ q + 1, where q

is the degree (number of branches) of the multiloop. Setting q = 0 for hairpin loops

and q = 1 for interior loops, the appropriate salt correction for a loop is therefore

gloop(m+ q + 1, ρ).

As seen in Fig. 1, the salt correction, as expected, increases while decreasing the

salt concentration contributing to the destabilization of the structure in a low salt

environment. In the usual temperature range, the plot shows that loop correction

is closed to a constance with a slight increase at low concentration.

Linear approximation for multi-branch Loop

Although the conformation energy of a loop asymptotically depends on logarithmi-

cally on the length [19], this behavior is usually approximated for multi-loops by a

linear function

Eml = α+ βq + γm (4)

for the sake of computational efficiency. The parameters α, β, and γ are the energy

cost for having, respectively, the closing pair, branch, and unpaired base in a mul-

tiloop. Without this approximation, the dynamic programming recursions of the
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Figure 2 Loop salt correction (solid) and linear approximation (dashed) in the function of loop
size L at different salt concentration.

folding algorithm become cubic in their memory consumption since loop lengths

need to be tracked explicitly [20]. The linear approximation is further motivated

by the empirical observation that models with logarithmic dependence are outper-

formed by the linear approximation in terms of accuracy of structure prediction [20].

In order to handle multi-loops without abandoning the memory-efficient multi-

loop decomposition, we retain the linear multiloop energies and employ a linear fit

of the form

gloop(m, ρ) ≈ a0(ρ) + a1(ρ)L (5)

to model the salt-corrections. Again using L = m + q + 1, this amounts to adding

a0+a1 to the closing pair term α of the multi-loop and a1 to both each unpaired base

γ and each componentβ of the multi-loop. The salt-dependent multiloop models

thus reads:

Eml = (α+ a0(ρ) + a1(ρ)) + (β + a1(ρ))q + (γ + a1(ρ))m (6)

In order to fit the multi-loop parameters in practise, we first investigated their

size distribution in a sample of 5000 MFE structures for different structure sizes,

see Fig. S1. Although multi-loops with size L = 3 exist, very short multi-loops

are rare. We argue that inaccuracies in these rare cases are likely acceptable. Very

short loops presumable are also subject to specifically contrained three-dimensional

structures and thus follow the model only to a crude approximation in the first

place. In the current implementation, we use the loop size range L ∈ [6, 24] to

obtain linear fits for a0 and a1 from gloop(L, ρ), see Fig. 2 for salt correction and

their linear approximations. In general, the fit over-corrects for very small loops

and, at low salt concentrations, also for very large loops. The maximal fitting errors

are on the order of 1 kcal/mol, which is still within the ball-park of the rather large

inaccuracies expected for multi-loop energies.
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Figure 3 Salt correction for a stacked pair as a function of salt concentration (left) and
temperature (right).

Salt corrections for stacked base pairs

Describing the backbones of stacked pairs as rods with distance of d = 2nm inter-

acting via a Debye-Hückel potential with screening length 1/κ yields the following

electrostatic energy for the interaction of a nucleotide with the other strand [12]:

Gp = 2RTτ2dslds`BK0(κd) (7)

Here the charge density τds = min(1/lds, 1/(`Bzc)) is again estimated according to

Manning’s counterion condensation theory [15]. The length parameter lds = 3.4Å

is the helical rise per base pair and zc = 1 is the charge of the cation. K0 denotes

the zeroth-order modified Bessel function of the 2nd kind, see e.g. [21] and Fig. S2.

Since K0(z) diverges like − ln z for z → 0, and κ ∼ √ρ, the salt corrections Gp
diverges logarithmically for vanishing salt concentrations.

As in the case of loops, these electrostatic effects are already included in the

empirical energy parameters for standard conditions. The relevant salt correction

thus is given by the difference between the values Gp at the current conditions and

standard conditions.

gp := Gp − Ĝp (8)

Fig. 3 shows the dependence of the position-wise salt correction for stacking energies

as function of salt concentration and temperature. Similar to the loop correction,

the stack correction is closed to a constance in the usual temperature range for a

given salt concentration.

Salt corrections for duplex initialization

The formation of a double strand from two RNA molecules in solution is associated

with an additional initialization energy Einit in the Turner energy model. One ex-

pects that duplex formation becomes more difficult due to electrostatic repulsion at

low salt concentrations. The initialization energy thus should also depend on ρ. In

addition, the distance between two single strands changes during formation, which

was neglected in the theory as discussed in [12]. Indeed, as we will see later in the

result section, the duplex free energies are systematically overestimated compared

to the experimental data.
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Figure 4 Salt correction for duplex initialization fitted (red) from the difference between
experimental and predicted duplex salt correction (blue).

Due to the lack of theoretical support, we propose a salt corrections for duplex

initialization ginit(ρ) derived from the prediction and the experimental data taken

from [7]. Let gw(ρ) and gexpw (ρ) be the predicted and experimental salt correction

at concentration ρ from the standard condition for a give duplex w. Fitting the

difference gexpw (ρ)−gw(ρ) of 18 duplexes at four non-standard sodium concentrations

yields, as plotted in Fig. 4, the salt corrections for duplex initialization

ginit(ρ) = a log(
ρ

ρ0
) (9)

with a = −100.14 kcal/mol.

Implementation in ViennaRNA

The extension of ViennaRNA provides access to four user-defined parameters: the

concentation of the monovalent cation ρ, the bounds L1 and L2 delimiting the

interval of loop length that is used to fit the two multiploop parameters a0 and

a1 for given salt concentration, and the user-provided salt correction g for duplex

initialization. Default values are L1 = 6, L2 = 24, salt concentration ρ = 1.021

M, and g = 0. In ViennaRNA, these parameters are appended in the model object

vrna md s as salt for ρ, saltMLLower and saltMLUpper for L1 and L2, and saltDPXInit

for g. For the salt concentration, ViennaRNA assumes the standard conditions of the

Turner energy model, i.e., ρ = 1.021mol/l. Thus no salt corrections apply by default.

If a different concentration ρ is requested, first the value of gp(ρ) for the stack and

the array of values gloop(L, ρ) for loop of different size L ∈ [1, 31] is computed.

Note that these energy contribution depend on the temperature T and thus are

recomputed if the user sets a different temperature. In addition, the use of duplex

initialization salt correction ginit(ρ) for duplex is turned off if users set saltDPXInit

to zero.

The array gloop is then used to determine a0(ρ) and a1(ρ) by linear regression.

Subsequently, the free energy parameters are set as sums of the default values E(0)
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for the given temperature and the salt corrections:

Ebp = Ebp(0) + gp(ρ)

EHLm = EHLm (0) + gloop(m+ 1, ρ)

EILm = EILm (0) + gloop(m+ 2, ρ)

α = α(0) + a0(ρ) + a1(ρ)

β = β(0) + a1(ρ)

γ = γ(0) + a1(ρ)

Einit = Einit + ginit(ρ)

(10)

Here Ebp, EHLm , EHLm , and Einit refer to all parameters for stacked pairs, hairpin

loops of length m, interior loops of length m, and duplex initialization, respec-

tively. Dangling end and coaxial stacking contributions, on the other hand, remain

unchanged.

The Bessel functions K0 is computed as in scipy, which in turn used the cephes

mathematical function library described in [22]. The function Φ in loop salt cor-

rection can be approximated as given in [12]:

Φ(y) = y ln y + y(γ − ln(π/2)) + y
(2π)6

y6 + (2π)6

(
y4

36π4
− y3

24π2
+

y2

2π2
− y

2

)
+

(
1− (2π)6

y6 + (2π)6

)
(y(log(2π)− 1.96351)− y log y) +

(
1− e−y

)
+ yΓ(0, y)

(11)

Parameters

The key physical parameter containing the salt correction terms are the Debye

screening length κ−1. It is convenient to express κ−1 in terms of Bjerrum length `B

and the ionic strength I:

`B =
e20

4πkBTε0εr(T )
≈
(
167100 ÅK

) 1

Tεr(T )

κ−1 =

√
kBTε0εr(T )

2NAe20I
=

1√
8πNA

1√
`BI

≈
(

8.1284 Å
3/2

l−1/2mol1/2
) 1√

`BI

(12)

The constants appearing in these expressions are the unit charge e0 ≈ 1.602·10−19C,

Avogadro’s constant NA ≈ 6.022 · 1023mol−1, and the vacuum permissivity ε0 ≈
8.854 · 10−22C2/JÅ. The salt concentration enters only through the ionic strength

I := 1
2

∑
i ρiz

2
i , where ρi is the concentration and zi is the charge of ion-species i.

For monovalent ions, as in the case of NaCl, the ionic strength reduces to the salt

concentration, i.e., I = ρ. The salt concentration ρ is expressed as molarity, i.e.,

in units of mol/l, whereas the Debye screening length κ−1 and the Bjerrum length

`B are conveniently expressed in Å. Note that the conversion factor for the length

units (l=dm3 versus Å) is absorbed into the numerical constant.
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The temperature dependence of εr can be fitted from empirical data. In the current

implementation we use the function proposed in [23]:

εr(T ) = 5321T−1 + 233.76− 0.9297T + 1.417 · 10−3T 2 − 0.8292 · 10−6T 3 (13)

with temperature in Kelvin. The temperature-dependence of εr ensures that the

Bjerrum length `B is longer than the backbone bond length lss in the entire tem-

perature range, see Fig. S3. The nonlinear electrostatic effects on unpaired bases

thus become τss = 1/(`B) for the monovalent cations considered here.

Comparison with experimental data
Available data sets

Even though the dependence of RNA structures on salt concentrations is of consid-

erable practical interest, systematic data sets suitable for benchmarking salt cor-

rection models are by no means abundant. Most of the direct evidence for the salt

dependence derives from studies of short duplexes and hairpins. Here, we analyzed

the following three datasets:

1 Melting experiment of 18 RNA self-complementary duplexes of length 6 at

the 8 different sodium concentration, 0.071, 0.121, 0.221, 0.621, and 1.021M,

with different species concentration c were reported in [7, 24]. Both melting

temperatures Tm and free energies at 37◦C were are obtained from 1/Tm

vs. ln c plots. The same data were also used by the same lab [24] to obtain

optimised thermodynamic parameters, entropy and enthalpy, at a given salt

concentration.

2 A different set of 8 self-complementary duplexes of length 10, 12, and 14 was

reported in [25]. The melting temperature Tm is derived from the melting

curve as the temperature at which half of the dimer dissolved. The data set

covers two different species concentration c, 100µM and 2µM and two sodium

concentrations, 1.0002M and 0.0102M .

3 The free energies of forming hairpins at different sodium concentrations were

measured in [26]. The thermodynamics parameters at different salt concen-

tration, different sodium concentration with an additional of 0.011M cations

in the buffer, were obtained from melting experiments. Hairpins consist of a

helix of length 5 and a hairpin loop of size 8 or 10.

Comparison of duplex free energies

Free energies were computed using RNAcofold [28, 29] with a self-complementary

correction of RT ln 2 added for all sequences that coincided with their reverse

complement. Since the predicted free energy at the standard condition differs

from the experimental values, we are interested in comparing the salt correction

gw(ρ) = Ew(ρ) − Ew(ρ0) at concentration ρ from the standard concentration

ρ0 = 1.021M, where Ew(ρ) is the free energy of duplex w at concentration ρ. Let lw

and gcw be the length and the fraction of GC of duplex w. Then the salt correction

for RNAcofold is then given by.

gRNAcofoldw (ρ) = (lw − 1)× gp(ρ) + ginit(ρ) .
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The salt correction proposed by Chen & Znosko [7] is

gC&Z
w (ρ) = (0.324gcw − 0.486) ln(ρ/ρ0) + 0.133(ln(ρ/ρ0))2 .

The computational results are summarized in Fig. 5. Not surprisingly, the Chen &

Znosko salt correction provides a slightly better fit to the data because the empirical

formula for gC&Z
w was obtained by fitting to the same data set. In contrast, only

the duplex initialization ginit(ρ) is fitted in our model. The largest deviations are

observed for GC-only sequences.

Comparison of duplex melting temperatures

Let A be a self-complementary RNA sequence and AA the corresponding dimer. The

dimerization reaction is 2A 
 AA. The corresponding concentrations are denoted

by [A] and [AA], respectively. In equilibrium, we have

[AA]

[A][A]
=

ZAA
ZAZA

= e(2GA−GAA)/RT (14)

where ZA and ZAA are the partition functions of the monomer and the dimer,

respectively. Here GA = −RT lnZA and GAA = −RT lnZAA are the ensemble free

energies of A and AA, respectively. Note that in a pure two-state system, we can

replace GA and GAA by the corresponding minimum free energies EA and EAA,

respectively. We define the melting temperature Tm as the temperature at which

half of A forms the dimer AA, i.e., where [AA] = c/4 and [A] = c/2. Equ.(14) then

yields

Tm =
2GA(Tm)−GAA(Tm)

−R ln c
, (15)

where we write GA(Tm) and GAA(Tm) to emphasize the temperature dependence of

the ensemble free energies. The ensemble free energy GAA for the pure dimer state

is accessible directly via the function fc.dimer pf() within the ViennaRNA library.

The correction for self-complementary is already taken into account during the
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Figure 6 Comparison of experimental and predicted melting temperature corrections ∆Tm using
the empirical fit by Chen & Znosko [7] (left) and RNAcofold with the salt corrections terms
described in the present contribution (right)

computation of the the partition function [29]. Since the ensemble free energy is also

a function of temperature, we use a binary search to find the melting temperature

Tm.

For the data set comprising 18 short duplexes, experimental melting temperatures

are available for several distinct species concentrations c. Van’t Hoff’s equation

1

Tm
=

R

∆H
ln c+

∆S

∆H

implies a linear relationship between changes in 1/Tm and changes in RNA con-

centration. We compare the predicted and experimental “van’t Hoff” plots, i.e.,

diagrams of 1/Tm versus ln c, see Fig. S4. Overall, we observe an excellent agree-

ment on the slope between RNAcofold prediction and experiment. Predicted and

experimental intercepts are slightly more different for few of the duplexes.

For the second dataset consisting of longer duplexes, we are interested in melting

temperature correction ∆Tm(0.01M) from the standard condition 1M since the

data is only available for two species concentrations. Chen & Znosko [7] proposed

the following fit

∆TC&Z
m (ρ) = (−1.842gcw + 2.675) ln ρ− 0.7348(ln ρ)2

where gcw is the GC fraction of duplex w. Fig. 6 shows the experimental melt-

ing temperature correction compared with ∆TC&Z
m and the one computed by

RNAcofold. Overall, the salt corrections described above show similar agreement

(Pearson correlation r = 0.329) with the experiment as the empirical fit (r = 0.341)

from [7].

Comparison of hairpin free energies

For the hairpins L8 and L10 described in [26], entropy, enthalpy, and free energy were

derived from melting experiments. For comparison, we computed the free energy

using RNAfold at 37◦C for different salt concentrations ρ. Fig. 7 summarizes the

experimental and predicted free energie corrections from 0.211 M. They are in very

good agreement in particular for lower salt concentrations.
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Figure 7 Comparison of experiment free energy correction of hairpin L8 (green) and L10 (blue)
with RNAfold prediction.

Discussion
Salt concentrations significantly influence folding and thermodynamics of nucleic

acids. In this contribution we report on the implementation of an approximate

physical model proposed by Einert and Netz [12] that represent the RNA backbone

as a charged polymer interacting by means of a Debye-Hückel potential. The model

was adapted to preserve the linear multi-loop model required for computational

efficiency and extended by a empirical initiation term for duplex formation. While

not perfect, the model reproduces experimental thermodynamic data on the NaCl

dependence of folding energies and melting temperatures with reasonable accuracy.

We note that the salt-dependent energies for stacks diverge logarithmically for van-

ishing salt concentrations ρ. The model thus cannot be used if cations are virtually

absent.

The approach taken here has the practical advantage that it does not require

any changes in the folding algorithms. The modification of the energy parameters is

sufficient. The ViennaRNA packages handles this step during preprocessing. As a con-

sequence, the compuational performance of the folding routines remain unchanged.

Moreover, the salt corrections are consistently applied to all variants of the folding

algorithms, e.g. minimum energy and partition function computations, consensus

computations from alignments, and co-folding of two or more components.

Changes in salt concentration also affect the predicted secondary structures, see

Fig. 8 for an example. To our knowledge, there are no detailed experimental data

that document structural changes as a function of NaCl concentration so that a

directed validation of structures predicted for low salt concentrations remains a

topic for future research.

The proposed salt correction diverges when the salt concentration becomes close

to 0. The same behavior is also observed in our linear fitted correction for duplex

initialization. To address it, we fitted a correction function with one parameter

more comparing to Equ.(9) that converges at low concentration. Fig. S5 plots the

predicted melting temperature correction versus the experiments of longer duplex,

which shows a better agreement with Pearson correction r = 0.54. Due to the lack
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Figure 8 Examples of structural transitions. MFE structures of a tRNA sequence at different salt
concentrations are predicted with RNAfold. Within the concentration range from 0.02 to 6.3M,
the MFE structure is same as the one at the standard condition. The denaturation is observed at
low concentration (A, B), while at high concentration (> 6.3M , corresponding to a saturated
saline solution), both D and E can be the MFE. The tRNA sequence used is
GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA.
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Figure 9 Free energy correction of an 1×1 interior loop (blue) and a helix of two stackings
(green) at different salt concentration.

of data to validate the hypothesis of convergence at low concentration, we propose

the simpler Equ.(9) as the main correction for duplex initialization.

In the current model, a basepair mismatch in a helix is treated as an 1×1 interior

loop and thus is associated with the salt correction for loops at non-standard salt

concentrations. However, such a mismatch is likely to result in a slighlty distorted

helix that could still be seen as two parallel charged rods. One could therefore argue,

that the salt correction for 2 stacked pairs rather than for a loop should be applied.

Fig. 9 shows the difference of these two cases as a function of salt concentration. To

our knowledge, there are no experimental data that could be used to decide which

approach is more appropriate.

The approach taken here does not account for all effects of ions on RNA folding.

Most importantly, it covers only unspecific interactions and thus does not describe

specific interactions e.g. of Mg2+ with specific binding sites. Even for unspecific

interactions, the validity of the model can be argued stringently only for mono-

valent ions [12]. At present, available data, e.g. [30], are not sufficient to test whether

replacing ρ by the ionic strength is sufficient to reasonably account for mixtures of

mono-valent and di-valent cations.

The model described here does not account for salt effects of RNA structures

that are neither loops nor stacked base pairs. In particular it does not apply to G

quadruplexes [31], which optionally can be included in secondary structure predic-
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tions [32]. Separate models for the ion dependencies of such features will need to be

derived that account e.g. for the K+-dependent stabilization of RNA quadruplexes.
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Additional File 1 — List of supplementary figures

Figure S1 — Length distribution of multiloops

Distribution of multiloop size L, number of backbones, among MFE structures of 5 000 uniformly selected

sequences at varied length.

Figure S2 — Approximation Error for K0

In [12] an approximation for the difference of K0 at a given concentration and 1M was proposed. However, we

noticed that this approximation yields a non-vanishing salt correction at 1M . We therefore used the Cephes library

to compute K0 directly. The panel shows the salt correction of base pair stack at 37◦C in the function of salt

concentration using the approximation (blue) and the precise computation implemented in ViennaRNA (orange).

Figure S3 — Nonlinear electrostatic effects τss
In [12], the permittivity (relative dielectric constant) εr of water εr ≈ 80 is assumed to be temperature

independent. This assumption results in a discontinuity of τss at around 53.3 ◦C. Incorporating the empirical

temperature dependence of εr in equ.(13) [23] results in 1/`B < 1/lss.

Figure S4 — Van t’Hoff plots for 18 duplexes.

Plotting 1/Tm versus ln c shows a generally good agreement of between predictions and the experimental data

from from [7].

Figure S5 — Converged salt correction for duplex initialization.

Converged correction function fitted (left) to the difference gexp
w (ρ) − gw(ρ) of 18 duplexes data [7], The plot

(right) of the predicted melting temperature correction versus the experiments of longer duplexes [25] shows a

better agreement with Pearson correction r = 0.54.
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