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Abstract

We construct a criterion to identify the largest homoscedastic region in a data set. This can

be reduced to a one-sided non-parametric break detection, knowing that up to a certain index

the output is governed by a linear homoscedastic model, while after this index it is different

(e.g. a different model, different variables, different volatility, ....). We show the convergence of

the estimator of this index, with asymptotic concentration inequalities that can be exponential.

Monte Carlo experiments will also confirm its very good numerical performance.

Keywords: Change detection; Gaussian linear model; Model selection; Hydrography

1 Introduction

The idea of this work has its roots in a numerical work done in physical geography, but which could

have been done in other fields of application. The aim was to compute the fractal dimension of

networks of ravines and gullies in the French Alps (see Figure 1). For this purpose, we chose to use

the correlation dimension introduced by Grassberger and Proccacia (see [8]), which consists, for a

”small” radius r, in calculating the log proportion log(C(r)) of pairs of points (Xi, Xj) such that the

distance between Xi and Xj is less than r. And it is known that if limr→0 log(C(r))/ log(1/r) = D

then D is the correlation dimension, which is a fractal dimension often equal to the Hausdorff

dimension. To estimate such a fractal dimension, a log-log regression is usually performed by con-

sidering a cloud of points (log(ri), log(C(ri)))1≤i≤n (see Figure 1):

Consider this point cloud. It is clear that if r is too small (typically smaller than the smallest of

the interdistances between the Xi) the fraction C(r) tends to 0 and if r is too large the fraction

C(r) tends to 1 by jumping in steps. The idea to estimate D will be to consider a ”good” linearity

zone, for example the one that at first sight would give for log(r) ∈ [2, 4] (we will find [2.3 , 3.4] after

applying our criterion). The question is: how to find this optimal linearity zone with statistical

criteria?
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Figure 1: Network of ravines and gullies in the French Alps (left) and plot of log(C(ri)) versus

log(ri) where 1 ≤ ri ≤ 250 in meters (right).

This question of the largest linearity zone is, of course, close to the problem of break detection. This

problem can be simplified as follows: the outputs Yi (real-valued) depend linearly on p exogenous

variables Z
(j)
i , j = 1, . . . , p with homoscedastic errors, for an index i ≤ n, where n is unknown,

while for i ≥ n + 1 this linear model is no longer valid. Much has been written about detecting a

break in a linear model. The first thing that comes to mind is a Fisher test or what economists call

a Chow test (see [6] or more generally in [3]). This consists of setting up a first linear model up

to a certain index (e.g. individual or time) and then a second linear model after this index. The

detection of the break index is done by minimizing the double sum of residual squares, which is

also the Gaussian maximum likelihood estimator. This can also be done by minimizing the sum of

the absolute residuals, as in [2].

But this framework is much more restrictive than the one we were considering. We would rather

have a non-parametric breakthrough detection. We can then refer to work such as that of Carlstein

[5] or Ben Hariz et al. [4]. Another method of non-parametric detection is to construct a criterion

based on kernel density estimation, as in Arlot et al. [1]. However, these works assume an identical

distribution before and after the break, which is not at all the case we are interested in (even in

the case of i ≤ t, which is the case of the linear model).

We have therefore constructed an ad hoc criterion for detecting this larger linear region, which

applies both when there is one break (typically something other than the linear model after an n

index) and when there are two breaks (other than the linear model before an n1 index and after an n2

index). The assumptions made outside the linear homoscedastic zone are completely nonparametric

and are equally suited to an abrupt change in the model as a function of the exogenous variables

or an abrupt change in the homoscedasticity of the model.

The criterion, whose precise definition is given in (3.7) in the case of one break and in (3.13) in

the case of two breaks, is constructed from a minimisation of the residual sum of squares, carefully

renormalised so as to choose the largest possible homoscedastic linear region, while increasing

as soon as the linear region is exceeded. Under rather general assumptions, to which is added

that of Gaussianity, asymptotic concentration inequalities at the breakpoint are obtained and the

asymptotic normality of the least squares estimators of the linear model is also proved.
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Finally, Monte Carlo experiments are carried out to demonstrate the accuracy of the new crite-

rion. We first consider the case of a single break and, after optimizing the meta-parameters of the

criterion, we place ourselves in different frameworks of changes in linearity or changes in volatility.

The results are very convincing and the convergence as n increases towards the breakpoint is clear.

By moving to the framework of a zone of homoscedastic linearity between 2 breakpoints n1 and n2,

the results of the simulations show the high quality of the performance of the criterion. Finally, the

application to the data set of Figure 1 allows to identify a very convincing zone of homoscedastic

linearity and to obtain a fractal dimension of 1.74.

The following section 2 is devoted to the assumptions. The definitions of the criteria and the

main results are given in section 3. Numerical experiments are proposed in section 4 and proofs

are established in section 5.

2 Assumptions

Let (εi)i∈N be a sequence of random variables such as E(εi) = 0 and E(ε2i ) = σ2 <∞ for all i ∈ N.

Let p ∈ N∗, known, and (Z
(j)
i )1≤j≤p, i∈N a family of known reals numbers. Let N ∈ N∗, N ≥ p+ 1

such as rank
(
(Z

(j)
i )1≤j≤p, 1≤i≤N

)
= p. Let (Yi)i∈N be a sequence of random variables and assume

that (Y1, · · · , YN ) is observed. In the sequel we will assume:

Assumption A: there exists 1 ≤ n ≤ N − 1, an unknown integer number such as

Yi =

p∑
j=1

θj Z
(j)
i + εi for all i ∈ {1, · · · , n}, (2.1)

where θ = (θ1, · · · , θp)′ ∈ Rp is unknown.

The aim of your study is the estimation of n and θ. For p ≤ t ≤ N , we define the ordinary

least squares estimator (OLSE) θ̂t of θ

θ̂t := (Z(t)′ Z(t))−1Z(t)′ Y (t) (2.2)

where, for p ≤ t ≤ N ,

• Z(t) := (Z
(j)
i )1≤i≤t, 1≤j≤p and we assume that Z(t) is a regular matrix (i.e. its rank is p);

• Y (t) := (Yi)1≤i≤t and ε(t) := (εi)1≤i≤t.

Even if the following definitions of the criteria are valid for any p ≤ n ≤ N , an additional and usual

assumption will be added for obtaining asymptotic results:

Assumption B: there exists 0 < τ < 1, an unknown real numbers such as for any N ∈ N∗,

n = [τ N ].

In the sequel, we will consider a general scenario of change for the time series (Yi)1≤i≤N , which

satisfies Assumption A. Indeed, we assume



4

Assumption C: There exists a sequence of random variables (δt)t∈N, independent to (εt)t∈N and

satisfying

Yi =

p∑
j=1

θj Z
(j)
i + εi + δi for all i ∈ {n+ 1, · · · , N} (2.3)

and there exists C > 0 and a positive random variable k0 such as for any k ≥ k0

∆k :=
n+k∑
i=n+1

δ2i ≥ C k and max
n+1≤i≤n+k

δ2i ≤
C

2p
k almost surely. (2.4)

The framework of (2.3) and more particularly of (2.4) is very general and may correspond to:

• A non-parametric change of the trend of (Yi). A typical non-parametric example is the

following: Yi = θ0 + θ1xi + εi for i = 1, · · · , n and Yi = g(i) + εi for i = n + 1, · · · , N , with∣∣g(n+ k)− (θ0 + θ1xn+k)
∣∣ ≥ C > 0 for k ∈ N∗.

• A non-parametric change of variance of (Yi)1≤i≤N , which corresponds for instance to an

increasing of the volatility. A typical non-parametric example is the following: Yi = θ0 +

θ1xi + εi for i = 1, · · · , n and Yi = θ0 + θ1xi + ξi for i = n + 1, · · · , N , with E(ξi) = 0 and∑n+k
i=n+1 Var(ξi) > k σ2 for k large enough.

3 Detecting change with a criterion of selection of individuals

3.1 Definition of a criterion of individual selection

First, define for k ∈ {p, · · · , N},

• for any u ∈ Rk, ‖u‖2 = u′ u where u′ denotes the transpose of u.

• [Z]k :=
{
Z(k) θ, θ ∈ Rp

}
which is a linear subspace of Rk;

• H(k) := Z(k)
(
Z ′(k)Z(k)

)−1
Z ′(k) which is the orthogonal projection matrix on [Z]k;

For estimating n under the previous assumptions, we consider a new criterion, Ĉra:

Definition of Ĉra: Let a : N 7→]0,∞[ be a decreasing function and for p+ 1 ≤ t ≤ N define

Ĉra(t) =
a(t)

t− p
∥∥Y (t)−H(t)Y (t)

∥∥2. (3.1)

It is well known that under Assumption A and for t ≤ n,

Ĉra(t) = a(t) σ̂2(t) where σ̂2(t) :=
1

t− p
∥∥Y (t)− Ŷ (t)

∥∥2 and Ŷ (t) = H(t)Y (t),

the usual estimated variance and predicted vector obtained from ordinary least square estimation.

From this definition, we define the following estimators:

n̂ := arg min
p+1≤t≤N

Ĉr(t) and τ̂ :=
n̂

N
, (3.2)
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since we chose the criterion to be minimized.

As a consequence the function a(·) should be a decreasing function because we would like to select

the ”largest” acceptable linear zona {1 · · · , t}. Indeed, if t ≤ n, we would like that Ĉra(t + k) <

Ĉra(t) for any k ∈ {1, · · · , n−t} with high probability. But it is well known that under Assumption

A, Ĉra(t) ∼ a(t)σ2 almost surely when n → ∞ and t → ∞ with t ≤ n and this implies that a(·)
has to be a decreasing function.

However we can not chose any decreasing function a(·) since Assumption C holds. Indeed, for

t ≥ n+1, we expect that the probability that Ĉra(t) ≤ Ĉra(n) becomes small when t−n increases.

A first answer to this question can be given by considering the following computation. Indeed, we

have

• for t ≤ n, Ĉra(t) =
a(t)

t− p
∥∥(I(t)−H(t)) ε(t)

∥∥2 (3.3)

• for t ≥ n+ 1, Ĉra(t) =
a(t)

t− p
∥∥(I(t)−H(t)) ε(t) + (I(t)−H(t))D(t)

∥∥2 (3.4)

where I(t) is the identity matrix of size t, and

D(t) =
(
0, · · · , 0, δn+1, · · · , δt

)′
. (3.5)

Lemma 1. Using Assumptions A, B and C, there exists a positive random variable n0 such as for

any t ≥ n+ 1 and n ≥ n0, ∥∥(I(t)−H(t))D(t)
∥∥2 ≥ C

2
(t− n).

A first condition on the function a(·) can be established by considering the expectation of the

criterion. Indeed, for detecting the change, we expect: E
(
Ĉr(n+ k + 1)

)
> E

(
Ĉra(n+ k)

)
for any

k ≥ 0.

Thus, with Fk = E
(∥∥(I(n+ k)−H(n+ k))D(n+ k)

∥∥2), this condition implies:

a(n+ k + 1)
(
σ2 +

Fk+1

n+ k + 1− p

)
> a(n+ k)

(
σ2 +

Fk
n+ k − p

)
=⇒ a(n+ k + 1) > a(n+ k)

(
1 +

Fk
σ2 (n+ k − p)

)(
1 +

Fk+1

σ2 (n+ k − p)

)−1
Using approximations, we deduce that there exists ck a bounded sequence such as

a(n+ k + 1) ≥ a(n+ k)
(

1− ck
(n+ k − p)

)
. (3.6)

Hence we chose a decreasing sequence (a(t))t∈N∗ satisfying (3.6) and our choice is (aα,β(t))t≥p+1

where β > 1, β − 1
2 < α < β defined by

aα,β(t) := 1 +
Nα

(t− p)β
for any t ∈ {p, · · · , N}

=⇒ Ĉrα,β(t) :=
1

t− p

(
1 +

Nα

(t− p)β
)∥∥Y (t)−H(t)Y (t)

∥∥2. (3.7)

The term Nα and the relations β > 1 and 1
2 < β − 1

2 < α < β will be explained with details by

the proof of the forthcoming Theorem 3.1. Roughly speaking, we could say that t 7→ (t − p)−β
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is the decreasing function and Nα with α > 0 insures that the probability to select a ”small” n̂

decreases to 0 when N →∞ while if α = 0 this is possible. Moreover, after applying usual Taylor

expansions, we have for t→∞ such as tβN−α →∞ (which is implied by t ≥ n and n = [τ N ] from

Assumption B),

aα,β(t+ 1)

aα,β(t)
= 1− β Nα

(t− p)β+1

(
1 + o(1)

)
.

and thus (3.6) is satisfied.

Remark 1. Another possible choice of a decreasing sequence (a(t))t∈N∗ satisfying (3.6) could be

a(t) = exp
(
cNα t−β

)
with c > 0. From the proof of Theorem 3.1, such a choice makes quite

impossible a selection of a ”small” n̂. However such a choice could imply some numerical difficulties

since the computation of exp(Nα) with α > 1/2 is explosive when N increases.

3.2 Consistency of the estimators

Now, the consistency of the criterion can be established:

Theorem 3.1. Let n̂, τ̂ obtained in (3.2) from the criterion Ĉrα,β defined in (3.7) with 1 < α <

β < α + α
2β < α + 1

2 . Then, under Assumptions A, B and C and if (εt)t is a Gaussian sequence,

for any 0 < γ < 1− 2(β − α),

P
(
|τ̂ − τ | ≥ N−γ

)
−→
N→∞

0. (3.8)

From this theorem, we deduce that the smaller β − α the larger γ and the more accurate the

estimation n̂. Moreover, intermediate relationships (5.4), (5.7) and (5.8) imply that the larger α

and β the more accurate the estimation n̂. However, simulations in Section 4 will temperate these

purposes.

Corollary 1. Under the assumptions of Theorem 3.1, if we consider ñ = arg minNε≤t≤N Ĉrα,β(t)

with 0 < ε < 1, there exists C > 0 and ρ > 0 such as

P
(
|ñ− n| ≥ N1−γ) ≤ e−C Nρ

. (3.9)

Corollary 2. Define θ̃N = θ̂n̂−Nδ with 1 − 2(β − α) < δ < 1, where θ̂t is defined in (2.2). Under

the assumptions of Theorem 3.1, then:

θ̃N
P−→

N→∞
θ and

(
Z(n̂−N δ)′ Z(n̂−N δ)

)1/2(
θ̃N − θ

) L−→
N→∞

N
(
0 , σ2

)
. (3.10)

The choice of δ when 1 − 2(β − α) < δ < 1 in the previous corollary is asymptotically not crucial

since it does not modify the convergence rate of the estimator of θ which is almost given by(
Z(n)′ Z(n)

)1/2
. A possible choice is δ = 1− (β − α).

3.3 Application to the detection of the largest homoscedastic linear zone in a

sequence of data indexed by time

We now consider the following problem:
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Assumption A’: there exist two unknown change instants n1 and n2 in the law of (Y1, . . . , Yn)

and a known integer number n0 such as n0 ∈ {n1, . . . , n2 − 1} and

Yi =

p∑
j=1

θj Z
(j)
i + εi for all i ∈ {n1, n1 + 1, . . . , n2 − 1},

where θ = (θ1, · · · , θp)′ ∈ Rp is unknown.

Remark: Knowing such n0 is crucial to avoid selecting a potential linear region contained in

{1, . . . , n1 − 1} or in {n2, . . . , N}.

The previous Assumptions B and C can be transform according to this new framework. Thus

we suppose:

Assumption B’: there exists 0 < τ1 < τ2 < 1, two unknown real numbers, and τ0 a known

real number such as τ1 < τ0 < τ2, satisfying for any N ∈ N∗,

n1 = [τ1N ], n0 = [τ1N ] and n2 = [τ2N ].

Assumption C’: there exists two sequences of random variables (δ
(1)
t )t∈N and (δ

(2)
t )t∈N, indepen-

dent to (εt)t∈N and satisfying{
Yi =

∑p
j=1 θj Z

(j)
i + εi + δ

(1)
i for all i ∈ {1, . . . , n1 − 1}

Yi =
∑p

j=1 θj Z
(j)
i + εi + δ

(2)
i for all i ∈ {n2, . . . , N}

(3.11)

and there exists C > 0 and a positive random variable k0 such as for any k ≥ k0

k∑
i=1

(δ
(1)
n1−i)

2 ≥ C k and
k∑
i=1

(δ
(2)
n2+i

)2 ≥ C k almost surely. (3.12)

Then, under those assumptions, it is possible to prove that an appropriated version of the new

criterion Ĉr′α,β is able to determinate the ”largest linear zone” (in time) in {1, · · · , N}.

Theorem 3.2. Under Assumptions A’, B’ and C’, define for 1 ≤ t1 ≤ n0 ≤ t2 − p ≤ N :

Ĉr′(t1, t2) :=
aα,β(t2 − t1)
t2 − t1 − p

∥∥Y (t1, t2)−H(t1, t2)Y (t1, t2)
∥∥2, (3.13)

where Y (t1, t2) := (Yi)t1≤i≤t2, H(t1, t2) := Z(t1, t2)
(
Z ′(t1, t2)Z(t1, t2)

)−1
Z ′(t1, t2) and Z(t1, t2) :=

(Z
(j)
i )t1≤i≤t2, 1≤j≤p (assume that Z(t1, t2) is a regular matrix for any t1 < t2 + p). Then, define

(n̂1 , n̂2) := arg min
1≤t1≤n0≤t2−p≤N

Ĉr′(t1, t2). (3.14)

Then for any 0 < γ < 1− 2(β − α),

P
(
|n̂1 − n1|+ |n̂2 − n2| ≥ N1−γ

)
−→
N→∞

0. (3.15)

Now, as in the previous subsection, we could add two corollaries to this theorem:
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Corollary 3. Under the assumptions of Theorem 3.2, if we consider (ñ1 , ñ2) := arg minNε≤t1≤n0≤t2−p≤N−Nε Ĉr′(t1, t2)

with 0 < ε < 1, there exists C > 0 and ρ > 0 such as

P
(
|ñ1 − n1|+ |ñ2 − n2| ≥ N1−γ) ≤ e−C Nρ

. (3.16)

Corollary 4. For any δ such as 1− 2(β − α) < δ < 1, define

θ̃N =
(
Z(n̂1 +N δ, n̂2 −N δ)′ Z(n̂1 +N δ, n̂2 −N δ)

)−1
Z(n̂1 +N δ, n̂2 −N δ)′ Y (n̂1 +N δ, n̂2 −N δ).

Then, under the assumptions of Theorem 3.1, then:

θ̃N
P−→

N→∞
θ and

(
Z(n̂1 +N δ, n̂2 −N δ)′ Z(n̂1 +N δ, n̂2 −N δ)

)1/2(
θ̃N − θ

) L−→
N→∞

N
(
0 , σ2

)
.

4 Numerical applications

4.1 Case of a linear homoscedastic zone with break on one side

In this first subsection, we consider the following framework: (Y1, . . . , YN ) is observed, and there

exists n, unknown integer number, such as

Yi =

{ ∑p
j=1 θj Z

(j)
i + εi for all i ∈ {1, · · · , n};∑p

j=1 θj Z
(j)
i + εi + δi for all i ∈ {n+ 1, · · · , N}.

where θ = (θ1, · · · , θp)′ ∈ Rp is unknown. More precisely, we will consider the following particular

cases:

• The size N of the observed sample is such as: N = 100, 200, 400, 800 and 1600.

• The error (εi) of the homoscedastic linear model is a sequence of Gaussian centered i.i.d.r.v.

with σ2 = Var(ε0) is such as σ = 1 and σ = 2.

• The unknown change date n is such as n = [0.4×N ].

• Three distinct frameworks are considered:

1. (M1) Trend break in a time series:

Yi =

{
3 + 0.1× i+ εi for all i ∈ {1, · · · , n};
3 + 0.1× i+

(
2
√

3 + (i− n)− 4
)

+ εi for all i ∈ {n+ 1, · · · , N}.

2. (M2) Time series volatility break:

Yi =

{
3 + 0.1× i+ εi for all i ∈ {1, · · · , n};
3 + 0.1× i+ 2 ∗ εi for all i ∈ {n+ 1, · · · , N}.

3. (M3) Model change for an homoscedastic linear model:

Yi =

{
−4 + 2Z

(1)
i − 5Z

(2)
i + 3Z

(3)
i + εi for all i ∈ {1, · · · , n};

−8− Z(1)
i + 3 log

(∣∣Z(3)
i

∣∣)+ εi for all i ∈ {n+ 1, · · · , N}.

where (Z
(1)
i ) and (Z

(3)
i ) are observed i.i.d.r.v. following respectively a uniform distribu-

tion U([−1, 1]) and a Student distribution t(4), and Z
(2)
i =

(
Z

(1)
i

)2
.
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N 100 200 400 800 1600

(M1) σ = 1 0.1026 0.0695 0.0472 0.0311 0.0202

σ = 2 0.1851 0.0728 0.0480 0.0313 0.0213

(M2) σ = 1 0.1037 0.0672 0.0515 0.0341 0.0213

σ = 2 0.1018 0.0702 0.0486 0.0325 0.0233

(M3) σ = 1 0.0972 0.0665 0.0456 0.0330 0.0211

σ = 2 0.0975 0.0710 0.0423 0.0308 0.0184

Table 1: Square roots of the MSE for the estimators τ̂ minimizing the criterion Ĉr for the three

different models (M1), (M2) and (M3), and the different values of parameters σ and N .

We applied the Ĉrα,β criterion defined in (3.7). After an important empirical study not reproduced

here, we have decided on the parameters α = 2 and β = 2.1, and we have added a constant to

compensate for the fact that n is not very large (which does not change the asymptotic results of

the previous section). Hence the chosen criterion is:

Ĉr(t) =
1

t− p

(
1 +

N2

10 (t− p)2.1
)∥∥Y (t)−H(t)Y (t)

∥∥2.
After performing 1000 independent replications of the scatterplot for the different models and

parameters, and applying the largest linear area detection criterion Ĉr, we obtained the results

recorded in Table 1:

Conclusions of Monte Carlo experiments: We first observe the consistency of the estimator

τ̂ as N becomes large. And the rate of convergence is close to
√
N . We also note two important

points:

• The variance σ2 of the noise has very little effect on the rate of convergence of the estimator,

except in one case;

• For a fixed N , the square root of the MSE is almost the same whatever model is chosen. And

for all the other different models we tried, we also find almost the same values!

4.2 Case of a linear homoscedastic zone with breaks on both sides

Now we consider the following framework: (Y1, . . . , YN ) is observed, and there exists n1 and n2,

unknown integer numbers, such as

Yi =


∑p

j=1 θj Z
(j)
i + εi for all i ∈ {n1, · · · , n2 − 1};∑p

j=1 θj Z
(j)
i + εi + δ

(1)
i for all i ∈ {1, . . . , n1 − 1}∑p

j=1 θj Z
(j)
i + εi + δ

(2)
i for all i ∈ {n2, . . . , N}.

where θ = (θ1, · · · , θp)′ ∈ Rp is unknown. More precisely, we will consider the following particular

cases:
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N 100 200 400 800

τ̂1 τ̂2 τ̂1 τ̂2 τ̂1 τ̂2 τ̂1 τ̂2

(MM1) σ = 1 0.0696 0.1107 0.0563 0.0930 0.0315 0.0555 0.0220 0.0405

σ = 2 0.0735 0.1463 0.0516 0.1279 0.0382 0.1020 0.0258 0.0775

(MM2) σ = 1 0.0492 0.0671 0.0309 0.0383 0.0146 0.0140 0.0112 0.0057

σ = 2 0.0574 0.1550 0.0362 0.0811 0.0185 0.0183 0.0121 0.0080

Table 2: Square roots of the MSE for the estimators τ̂1 and τ̂2 minimizing the criterion Ĉr
′

for the

two different models (MM1) and (MM2), and the different values of parameters σ and N .

• The size N of the observed sample is such as: N = 100, 200, 400 and 800.

• The error (εi) of the homoscedastic linear model is a sequence of Gaussian centered i.i.d.r.v.

with σ2 = Var(ε0) is such as σ = 1 and σ = 2.

• The unknown change dates n1 and n2 are such as n1 = [0.4 × N ] and n2 = [0.7 × N ], and

n0 = [0.5×N ] is known.

• Two distinct frameworks are considered:

1. (MM1) Trend and volatility breaks in a time series:

Yi =


3 + 0.1× i+ 2 ∗ εi for all i ∈ {1, · · · , n1 − 1};
3 + 0.1× i+ εi for all i ∈ {n1, · · · , n2 − 1};
3 + 0.1× i+

(
2
√

3 + (i− n)− 4
)

+ εi for all i ∈ {n2, · · · , N}.

2. (MM2) Model changes for homoscedastic linear model:

Yi =


−4 + 2Z

(1)
i − 5Z

(2)
i + 3Z

(3)
i + εi for all i ∈ {1, · · · , n1 − 1};

−8− Z(1)
i + 3 log

(∣∣Z(3)
i

∣∣)+ εi for all i ∈ {n1, · · · , n2 − 1};
−4 + 2Z

(1)
i − 5Z

(2)
i + 3Z

(3)
i + 2 ∗ εi for all i ∈ {n2, · · · , N}.

where (Z
(1)
i ) and (Z

(3)
i ) are observed i.i.d.r.v. following respectively a uniform distribu-

tion U([−1, 1]) and a Student distribution t(4), and Z
(2)
i =

(
Z

(1)
i

)2
.

We applied the Ĉr′(t1, t2) criterion defined in (3.13) with the same data-driven choice of parameters

obtained in the previous one-sided case:

Ĉr′(t1, t2) =
1

t2 − t1 − p

(
1 +

N2

10 (t2 − t1 − p)2.1
)∥∥Y (t2 − t1)−H(t2 − t1)Y (t2 − t1)

∥∥2. (4.1)

Thus, the criterion Ĉr′ is applied and Table 2 is obtained after performing 1000 independent repli-

cations.

Conclusions of Monte Carlo experiments: As in the previous case, the convergence rates of

the estimators seem to be close to
√
N . However, in contrast to the one-sided break detection, the

variance σ2 of the noise has a non-negligible influence on the convergence rate of the estimator as

well as on the chosen model.
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Figure 2: Correlation dimension of a network of ravines and gullies in the French Alps: selection of

the largest homoscedastic linear zone of the log-log plot (Xi, Yi) where Yi = log(C(ri)), Xi = log(ri)

and 1 ≤ ri ≤ 250 in meters (right).

4.3 Application to the estimation of the correlation dimension of a network of

talwegs and gullies

Let us return to the real data that motivated this work and that were presented in the introduction.

It concerns the estimation of a fractal dimension, the correlation dimension, in a network of ravines

and gullies in the French Alps. We then apply the criterion Ĉr
′

defined in (4.1) to this data set

composed of (Xi, Yi)1≤i≤N where Yi = log(C(ri)), Xi = log(ri) and 1 ≤ ri ≤ 250, and N = 73,

the aim being to find the largest zone of homoscedastic linearity to best estimate the slope, which

is the estimator of the correlation dimension of the network. Figure 2 shows the point cloud and

the optimal linear portion obtained by the Ĉr
′

criterion. The results of the log-log regression are

very convincing: the multiple R-squared coefficient is now 0.9998, the p-value of the Fisher test

is 2 10−16 and finally the estimator of the slope, which is also the estimator D̂ of the correlation

dimension, is almost 1.741.

5 Proofs

Proof of Theorem 3.1. For ease of writing, denote now:

np := n− p and tp := t− p.

We are going to study successively the cases t < n and t > n. Indeed, we have the property:

P
(
|τ̂ − τ | ≥ N−γ

)
≤ P

(
max

{
Ĉr(t), t such as |t− n| ≥ N1−γ} < Ĉr(n)

)
≤
n−N1−γ∑
t=p+1

P
(
Ĉr(t) < Ĉr(n)

)
+

N∑
t=n+N1−γ

P
(
Ĉr(t) < Ĉr(n)

)
. (5.1)
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1. Let t < n such as |t− n| ≥ N1−γ , i.e. p+ 1 ≤ t ≤ [τ N ]−N1−γ .

Denote Jt,n the subspace of Rn such as Jt,n = {(x1, · · · , xt, 0, · · · , 0), (x1, · · · , xt) ∈ Rt} and PJt,n
the orthogonal projection on Jt,n in Rn. Since I(n) − H(n) = P[Z]⊥n

, matrix of the orthogonal

projection on [Z]⊥n in Rn, then Vt = (I(t) −H(t))ε(t) = P[Z]⊥n
PJt,nε(n). But we have P[Z]⊥n

ε(n) =

P[Z]⊥n
PJt,nε(n) + P[Z]⊥n

PJ⊥t,n
ε(n), with Wn−t = P[Z]⊥n

PJt,nε(n) = P[Z]⊥n∩Jt,nε(n). Therefore, using

Cochran’ Theorem,
∥∥Vt∥∥2 follows a chi-square distribution with tp = (t−p) degrees of freedom and∥∥Wn−t

∥∥2 follows a chi-square distribution with (n− t) degrees of freedom, where Vt and Wn−t are

independent Gaussian variables.

But, since t ≤ n:

P
(
Ĉr(t) < Ĉr(n)

)
= P

(aα,β(t)

tp

∥∥(I(t)−H(t))ε(t)
∥∥2 < aα,β(n)

np

∥∥(I(n)−H(n))ε(n)
∥∥2)

= P
(aα,β(t)

tp

∥∥Vt∥∥2 < aα,β(n)

np

(∥∥Vt∥∥2 +
∥∥Wn−t

∥∥2))
= P

(∥∥Wn−t
∥∥2 −A∥∥Vt∥∥2 > 0

)
with A :=

np aα,β(t)

tp aα,β(n)
− 1.

For U a random variable such as there exists ` > 0 satisfying E(e` U ) <∞, we have:

P
(
U > 0

)
≤ exp

[
inf
x≥0

{
log
(
E(exU

)}]
. (5.2)

For ξ a chi-square variable with m freedom degrees, E(ex ξ) = (1 − 2x)−m/2. Therefore, with

U =
∥∥Wn−t

∥∥2 −A∥∥Vt∥∥2 and the independence between Vt and Wn−t, we obtain from (5.2),

P
(
Ĉr(t) > Ĉr(n)

)
≤ exp

(
inf
x≥0

{
log
[ 1

(1 + 2xA)tp/2
× 1

(1− 2x)(np−tp)/2

]})
≤ exp

(
− 1

2
sup

0≤x≤1/2

{
f(x)

})
with f(x) := tp log

(
1 + 2xA

)
+ (np − tp) log

(
1− 2x

)
.

Classical computations show that the supremum of f is obtained for

x0 :=
tpA− (np − tp)

2npA
=

1

2

tp(aα,β(t)− aα,β(n))

(npaα,β(t)− tpaα,β(n))
.

and straightforward computations show that 0 < x0 < 1/2. As a consequence, we obtain:

f(x0) = tp log
( aα,β(t)

aα,β(n)

)
+ (np − tp) log

( (np − tp)aα,β(t)

np aα,β(t)− tp aα,β(n)

)
= np log

(
1 + bα,β(n, t)

)
− (np − tp) log

(
1 +

np
np − tp

bα,β(n, t)
)

with bα,β(n, t) :=
aα,β(t)

aα,β(n)
− 1 ≥ 0.

The function t ∈ {p + 1, · · · , n} 7→ bα,β(n, t) = a−1α,β(n)
(

1 + Nα

(t−p)β

)
− 1 is a decreasing func-

tion. Moreover, since α < β, if t (or tp = t − p) is negligible with respect to Nα/β then with

bα,β(n, t) ∼
N→∞

Nαt−βp −→
N→∞

∞. And ifNα/β is negligible with respect to tp, then bα,β(n, t) −→
N→∞

0.

Thus, we will now consider 3 cases inducing 3 different behaviors of bα,β(n, t) and therefore of x0 and
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f(x0): tp ∈
{

[np/2], [np/2]+1, . . . , np−[N1−γ ]
}

, tp ∈
{[(

3Nα
)1/β]

,
[(

3Nα
)1/β]

+1, . . . , [np/2]−1]
}

and tp ∈
{

1, 2, . . . ,
[(

3Nα
)1/β]− 1

}
.

Since α < β, we will also use a Taylor-Lagrange expansion of bα,β(n, t), which implies that for any

1 ≤ tp ≤ np, there exists θtp,np ∈ [tp, np] such as

bα,β(n, t) ∼
N→∞

Nα
(
t−βp − n−βp

)
∼

N→∞
β
Nαθβ−1tp,np

nβp t
β
p

(np − tp). (5.3)

i. Let tp ∈
{

[np/2], [np/2] + 1, . . . , np− [N1−γ ]
}

. Then bα,β(n, t) ≤ (3β−1)Nα (τN)−β −→
N→∞

0 and

from (5.3), np(np − tp)−1bα,β(n, t) −→
N→∞

0. Therefore with Taylor expansions, for N large enough,

f(x0) ∼
N→∞

1

2

tpnp
np − tp

b2α,β(n, t)

∼
N→∞

β2

2

N2αθ2β−2tp,np

n2β−1p t2β−1p

(np − tp)

≥ β2

2β
N2αn2βp (np − tp)

≥ β2

2β τ2β
N2α−2βN1−γ .

Then for tp ∈
{

[np/2], [np/2] + 1, . . . , np − [N1−γ ]
}

and N large enough, using the assumption

1− γ − 2(β − α) > 0,

P
(
Ĉr(t) > Ĉr(n)

)
≤ exp

(
− β2

2β+1τ2β
N1−γ−2(β−α)

)
. (5.4)

ii. Let tp ∈
{[(

3Nα
)1/β]

,
[(

3Nα
)1/β]

+ 1, . . . , [np/2] − 1]
}

. Simple computations imply that

0 ≤ bα,β(n, t) < 1
2 when N is large enough. From the definition of f(x0), we obtain:

f(x0) = tp log
(
1 + bα,β(n, t)

)
− (np − tp) log

(
1 +

tp
np − tp

bα,β(n, t)

1 + bα,β(n, t)

)
≥ tp

(
log
(
1 + bα,β(n, t)

)
−

bα,β(n, t)

1 + bα,β(n, t)

)
, (5.5)

using log(1 + u) ≤ u for u > −1. Using also log(1 + u) ≥ u− 1
2 u

2 for u ≥ 0, we obtain from (5.5),

f(x0) ≥ tp

(
bα,β(n, t)− 1

2
b2α,β(n, t)−

bα,β(n, t)

1 + bα,β(n, t)

)
≥ 1

2
tp

(1− bα,β(n, t))b2α,β(n, t)

(1 + bα,β(n, t))

≥ 1

6
tp b

2
α,β(n, t). (5.6)

Using (5.3), β > 1 and tp ∈
{[(

3Nα
)1/β]

,
[(

3Nα
)1/β]

+ 1, . . . , [np/2]− 1]
}

, we deduce for N large

enough,

bα,β(n, t) ≥ 1

2
β
Nα

nβp tp
(np − tp) ≥

β

2 τβ
Nα−β.
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Therefore, from (5.6) and always with N large enough:

f(x0) ≥
1

6

(
3Nα

)1/β ( β

2 τβ
Nα−β

)2
≥ 31/β β2

24 τ2β
Nα/β−2(β−α).

Then if tp ∈
{[(

3Nα
)1/β]

,
[(

3Nα
)1/β]

+ 1, . . . , [np/2]− 1]
}

and for N large enough,

P
(
Ĉr(t) > Ĉr(n)

)
≤ exp

(
− 31/β β2

48 τ2β
Nα/β−2(β−α)

)
, (5.7)

which explains the condition α
2β > β − α.

iii. Let tp ∈
{

1, 2, . . . ,
[(

3Nα
)1/β] − 1

}
. Simple computations imply that bα,β(n, t) > 1

4 when

N is large enough. But it can be easily proved that log(1 + u)− u(1 + u)−1 ≥ 1
10 log(1 + u) for all

u > 1/4. Therefore, from (5.5),

f(x0) ≥
1

10
tp log

(
1 + bα,β(n, t)

)
.

But for tp ∈
{

1, 2, . . . ,
[(

3Nα
)1/β]− 1

}
and when N is large enough, bα,β(n, t) ≥ 1

2
Nα

tβp
and thus

f(x0) ≥
1

10
tp log

(
1 +

1

2

Nα

tβp

)
.

As a consequence, tp ∈
{

1, 2, . . . ,
[(

3Nα
)1/β]− 1

}
and when N is large enough,

P
(
Ĉr(t) > Ĉr(n)

)
≤

(
1 +

1

2

Nα

tβp

)−tp/20
. (5.8)

2. Let t > n such as |t− n| > N1−γ , i.e. [τ N ] +N1−γ ≤ t ≤ N . Then:

P
(
Ĉr(t) < Ĉr(n)

)
= P

(aα,β(t)

tp

∥∥(I(t)−H(t))
(
ε(t) +D(t)

)∥∥2 < aα,β(n)

np

∥∥(I(n)−H(n))ε(n)
∥∥2)

= P
(aα,β(t)

tp

∥∥(Vn +Wt−n
)

+ P[Z]⊥t
D(t)

∥∥2 < aα,β(n)

np

∥∥Vn∥∥2)
= P

(aα,β(t)

tp

(∥∥Vn + P[Z]⊥t
D(t)

∥∥2 +
∥∥Wt−n

∥∥2) < aα,β(n)

np

∥∥Vn∥∥2)
= P

((∥∥Vn −B P[Z]⊥t
D(t)

∥∥2 −B(B + 1)
∥∥P[Z]⊥t

D(t)
∥∥2 −B ∥∥Wt−n

∥∥2) > 0
)
,

where B = npaα,β(t)
(
tpaα,β(n)− npaα,β(t)

)−1
, and Vn and Wt−n defined as in the first part of the

proof and D(t) defined in (3.5). The conditional probability given D(t) can be bounded using again

(5.2). Indeed, given D(t), σ−2
∥∥Vn − B P[Z]⊥t

D(t)
∥∥2 follows a noncentral chi-squared distribution

with np degrees of freedom, independent to σ−2
∥∥Wt−n

∥∥2 which follows a chi-squared distribution

with (tp − np) degrees of freedom. Moreover, given D(t), the moment generating function of

σ−2
∥∥Vn−B P[Z]⊥t

D(t)
∥∥2 is given by (1−2x)np/2 exp

(
λx (1−2x)−1

)
where λ = σ−2B2

∥∥P[Z]⊥t
D(t)

∥∥2.
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Thus,

P
(
Ĉr(t) < Ĉr(n) | D(t)

)
≤ exp

(
inf
x≥0

{
log
[exp

(B2‖P
[Z]⊥t

D(t)‖2x

σ2(1−2x)
)

(1− 2x)np/2
×

exp
(
− x

B(B+1)‖P
[Z]⊥t

D(t)‖2

σ2

)
(1 + 2B x)(tp−np)/2

]})
≤ exp

(
− 1

2
sup

0≤x≤1/2

{
g(x)

})
with g(x) := np log

(
1− 2x

)
+ (tp − np) log

(
1 + 2B x

)
+

2B ‖P[Z]⊥t
D(t)‖2 x

σ2

(
1− 2(B + 1)x

)
1− 2x

.

Using np ∼ τ N and tp > np, we obtain the following expansion:

B =
np

tp − np

(
1− β N

α

nβp

(
1 + o(1)

))
.

As a consequence we have B ∼ np
tp−np and also B ≥ τ

2(1−τ) for N large enough. Moreover, for any

u ∈ [−1/2, 1], log(1 + u) ≥ u − u2. Therefore, for x such as x ∈ [0,max(1/4 ; 1/2B)] and N large

enough,

g(x) ≥ np
(
− 2x− 4x2

)
+ (tp − np)

(
2B x− 4B2 x2

)
+

2B ‖P[Z]⊥t
D(t)‖2 x

σ2
(
1− 2(B + 1)x

)
≥ −4β

Nα

nβp
(tp − np)x− 4

tpnp
tp − np

x2 +
C

σ2
(tp − np)B x

(
1− 2(B + 1)x

)
,

using Assumption C and Lemma 1, implying ‖P[Z]⊥t
D(t)‖2 ≥ 1

2 C (tp−np) for N large enough. For

a given ε > 0 such as ε ≤ max
(

τ
8(1−τ) ; 1

2

)
, for N large enough,

g(ε/B) ≥ −4β
Nα

nβp

(tp − np)2

np
ε− 4

tp
np

(tp − np)ε2 +
C

σ2
(
1− 2ε− 4

1− τ
τ

ε
)

(tp − np) ε

≥ −4β
1− τ
τ

Nα

nβp
(tp − np) ε−

4

τ
(tp − np)ε2 +

C

σ2
(
1− 4

τ
ε
)

(tp − np) ε

≥ (tp − np) ε
(
− 5

τ
ε+

C

σ2
(
1− 4

τ
ε
))
.

Therefore, for ε < C τ (4C + 5σ2)−1, for instance ε = C
2 τ (4C + 5σ2)−1, we obtain:

sup
0≤x≤1/2

{
g(x)

}
≥ g(ε/B) ≥ C2 τ

4σ2 (4C + 5σ2)
(tp − np).

Then, for [τ N ] +N1−γ ≤ t ≤ N and N large enough,

P
(
Ĉr(t) < Ĉr(n) | D(t)

)
≤ exp

(
− C2 τ

8σ2 (4C + 5σ2)
(tp − np)

)
=⇒ P

(
Ĉr(t) < Ĉr(n)

)
≤ exp

(
− C2 τ

8σ2 (4C + 5σ2)
N1−γ

)
. (5.9)

Finally, using (5.1), (5.4), (5.7), (5.8) and (5.9) we deduce

P
(
|τ̂ − τ | ≥ N−γ

)
≤

[(3Nα)1/β ]−1∑
tp=1

(
1 +

1

2

Nα

tβp

)−tp/20
+

[np/2]−1]∑
tp=[(3Nα)1/β ]

exp
(
− 31/β β2

48 τ2β
Nα/β−2(β−α)

)

+

np−[N1−γ ]∑
tp=[np/2]

exp
(
− β2

8τ2β
N1−γ−2(β−α)

)
+

N−p∑
tp=np+[N1−γ ]

exp
(
− C2 τ

8σ2 (4C + 5σ2)
N1−γ

)
≤ C N−α/20 −→

N→∞
0, (5.10)
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with C > 0.

Proof of Corollary 1. If 0 < ε < α/β, then using the previous proof we have for N large enough,

P
(
|ñ− n| ≥ N1−γ) ≤ [(3Nα)1/β ]−1∑

tp=Nε

(
1 +

1

2

Nα

tβp

)−tp/20
+

[np/2]−1]∑
tp=[(3Nα)1/β ]

exp
(
− 31/β β2

48 τ2β
Nα/β−2(β−α)

)

+

np−[N1−γ ]∑
tp=[np/2]

exp
(
− β2

8τ2β
N1−γ−2(β−α)

)
+

N−p∑
tp=np+[N1−γ ]

exp
(
− C2 τ

8σ2 (4C + 5σ2)
N1−γ

)
≤ N

[
e−C1Nε

+ e−C2Nα/β−2(β−α)
+ e−C3N1−γ−2(β−α)

+ e−C4N1−γ
]

≤ e−C N
ρ
,

where C1, C2, C3, C4 and C are positive real numbers and 0 < ρ < min(ε , 1− γ − 2(β − α)).

The case ε ≥ α/β can be studied identically except that the first sum is omitted.

Proof of Corollary 2. Let x ∈ R and denote WN =
(
Z ′(n̂−N δ)Z(n̂−N δ)

)1/2(
θ̃N − θ

)
. Then:

P
(
WN ≤ x

)
= P

(
WN ≤ x | n̂−N δ ≤ n

)
P
(
n̂−N δ ≤ n

)
+ P

(
WN ≤ x ∩ n̂−N δ ≤ n

)
.

But given n̂−N δ ≤ n, under Assumption D, it is well known (see for instance Huber, 1981) that

θ̃N is asymptotically Gaussian and therefore WN
L−→

N→∞
N (0, σ2). Moreover, from the proof of

Theorem 3.1, P(n̂ ≥ n+N1−γ) ≤ N exp(−C4N
1−γ) with C4 > 0 and therefore

P
(
n̂−N δ ≤ n

)
= 1− P

(
n̂ ≤ n+N δ

)
−→
N→∞

1.

Moreover P
(
WN ≤ x ∩ n̂ −N δ ≤ n

)
≤ P

(
n̂ −N δ ≤ n

)
−→
N→∞

0. Thus, with FW the cumulative

distribution function of W ∼ N ′0, σ2), we have

P
(
WN ≤ x

)
−→
N→∞

FW (x),

and the asymptotic normality of θ̃N can be deduced. The convergence θ̃N
P−→

N→∞
θ is just a conse-

quence of the asymptotic normality with Assumption D.

Proof of Theorem 3.2. From Assumption B’, we deduce that we can consider N large enough, such

as n0 ≥ n1 + N1−γ and n0 + p ≤ n2 − N1−γ . Now, using the notation c(t1, t2) = P
(
Ĉr
′
(t1, t2) <

Ĉr
′
(n1, n2)

)
and as it was already established in the proof of Theorem (3.1), we have

P
(
|n̂1 − n1|+ |n̂2 − n2| ≥ N1−γ)
≤ P

(
max

{
Ĉr
′
(t1, t2), t1 ≤ n0 ≤ t2 − p, |t1 − n1| ≥ N1−γ and |t2 − n2| ≥ N1−γ} < Ĉr

′
(n1, n2)

)
≤

n1−p−N1−γ∑
t1=p

{ n2−N1−γ∑
t2=n0+p

c(t1, t2) +

N∑
t2=n2+N1−γ

c(t1, t2)
}

+

n0∑
t1=n1+N1−γ

{ n2−N1−γ∑
t2=n0+p

c(t1, t2) +
N∑

t2=n2+N1−γ

c(t1, t2)
}

≤ I11 + I12 + I21 + I22.
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From a time translation, the cases of t1 and t2 defined in I11, I12, I21 and I22 are similar to the one

described in Theorem 3.1, i.e. at least t1 or t2 are in the ”linear” zone. Therefore, these sums all

satisfy I·· −→
N→∞

0.

We deduce that:

P
(
|n̂1 − n1|+ |n̂2 − n2| ≥ N1−γ) −→

N→∞
0.

Proofs of Corollaries 3 and 4. See the proofs of Corollaries 1 and 2.
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