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1 Introduction and summary

Supersymmetric field theories provide a rich playground to explore properties of quantum
field theory in a framework where exact computations are possible. In particular, the high
degree of symmetry often implies the existence of a moduli space of vacua, which can be
seen as a crude observable that partially characterizes the theory under consideration, and
reveals, for instance, certain aspects of its symmetries. In this work, we consider theories
with 8 supercharges in space-time dimension 3 ≤ d ≤ 5. We focus mainly on the Higgs
branch, which is a singular hyper-Kähler space.

For a large class of theories, the Higgs branch is a normal hyper-Kähler cone, with
symplectic singularities [1] — conjecturally, this class contains all 4d N = 2 SCFTs [2, 3].
However, it has been observed that certain theories have a classical Higgs branch made up of
two cones that can intersect at their common tip, or along a sub-cone of positive dimension.
A well known example is the theory with gauge group SU(2) and Nf = 2 fundamental
hypermultiplets in 4d N = 2 [4] and 3d N = 4 [5] whose classical Higgs branch is the union
of two singularities C2/Z2 meeting at the origin. This has been generalized to the theories
with gauge group Sp(k) and 2k fundamental hypermultiplets, for which the Higgs branch is
the closure of the very even nilpotent orbit O[22k]

O (so(4k)) [6]. This is reviewed below in
section 2.1. Another well-known example is SU(k) SQCD with k ≤ Nf ≤ 2k−2 fundamental
hypermultiplets, which exhibits a mesonic branch and a baryonic branch [7, 8]. Multiple
cones in the Higgs branch were also observed for quiver gauge theories with underbalanced
unitary and special unitary nodes [9]. Generically the picture that emerges is that cone
multiplicity can arise for 3d N = 4 bad theories [10], and 4d N = 2 asymptotically free
theories. Note that these theories are not conformal, thus there is no conflict with the
claim above. In all cases which were studied in the literature, the presence of multiple
cones in the classical Higgs branch of a 3d N = 4 or 4d N = 2 theory implies that there
are multiple most singular loci in the quantum Coulomb branch of the theory, where the
individual cones of the classical Higgs branch emanate [4, 5, 7, 11–13], and the cones in the
classical Higgs branch are split along the quantum Coulomb branch. See appendix A for a
more detailed discussion including mixed branches. An excellent tool to study the intricate
singularity structure of moduli spaces is the Hasse diagram [14]. Based on inversion [15] of
the classical Higgs branch Hasse diagram, we conjecture the quantum Coulomb branch and
full moduli space Hasse diagrams for the 3d N = 4 theories studied in this paper.

In the case of 5d N = 1 SCFTs the Higgs branch can consist of multiple intricately
intersecting cones, all emanating from the origin of the Coulomb branch, where the SCFT is
realized [16–19]. It turns out that identifying the different Higgs phases correctly from the
underlying brane web may require one to use the recently introduced concept of decorated
magnetic quiver [20] see especially [21, appendix B]. For those quivers, we only know of a
brane configuration description, while a precise definition of the 3d Coulomb branch, along
with the ability to compute the corresponding Hilbert series, is still missing.

In this paper, we demonstrate that there is no limit to the number of cones that can
make up Higgs branches of theories with 8 supercharges. We do so by explicitly constructing
families of theories labeled by an integer p ∈ N with classical Higgs branch consisting of
exactly p+1 cones. This can be seen equivalently as a 4d N = 2 or as a 3d N = 4 statement.
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1)

2)

a) b) c)

Figure 1. Two supersymmetric brane configurations involving an Op− orientifold plane. a) Double
cover of 3d brane system (NS5 branes in red, D3 branes in black, D5 branes in blue, O5− plane in
green; for clarity the mirror D3 brane is depicted as a dashed line). b) Physical 3d brane system.
c) T-dual (resolved) 5d brane web (NS5 branes in red, other 5-branes in black, D7 branes in blue,
resolved O7− in green; colors do not denote a brane web decomposition). In presence of an O5−

plane a D3 brane cannot end on a D5 brane and its image. One can allow for D3 branes by either
adding an extra D5 brane or adding an extra NS5 brane. While configuration 1) is well known in the
literature, configuration 2) has not been appreciated in the 3d setting, and allows to realize novel
Higgs branch moduli. This should be thought of as an extension of [22] whereby the stable non-BPS
configuration where a D3 connects a D5 and its image becomes BPS in the presence of an NS5 brane.
Configuration 2c) is a known supersymmetric brane web configuration, see for example [23, 24].

A novel ingredient that makes our construction possible is a new brane configuration in
the D3-D5-NS5 system with an O5− plane, see figure 1-2b). An example of such a family is
the quiver theory

U(2) U(4)
· · ·

U(2p− 2) USp(2p) D2
(1.1)

which is directly inspired from the brane construction. Out of the p+ 1 cones in its Higgs
branch, p are realized by the new brane configuration. The Hasse diagrams of its Higgs
branches are represented schematically in figure 3, for values of p = 0, 1, 2, 3. Note that
here we only consider the classical Higgs branch, i.e. the hyper-Kähler quotient, and do not
worry how the Higgs branch actually appears in the full moduli space of the theory. We
also study the Higgs branch of (1.1) with unitary nodes replaced by special unitary ones in
section 3. In this case we may take the quiver to describe an effective 5d N = 1 theory and
also consider the Higgs branch after taking various couplings to infinity.

As is well known, in presence of an O5− plane, a D3 brane suspended between a D5
brane and its image does not lead to a BPS state. However we can have a D3 brane end
on one D5 and the image of a different D5 (figure 1-1). When there is an NS5 brane
right next to the O5− plane a D3 brane spanning from one D5 brane can end on the NS5
and then continue to the image of the same D5 brane (figure 1-2). This way one can
realize different Higgs branch moduli as shown in figure 2 for Sp(1) with 2 fundamental
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USp(2)− [D2]

A1 A1

Figure 2. Left: the brane system for a USp(2) theory with 2 hypermultiplets in the fundamental
representation. Right: the various Higgs phases. At the bottom we depict the origin of the Higgs
branch, going up to the left we depict the cone which was found in [6], going up to the right we
depict the cone which was not identified from the brane system in [6]. In this basic example the two
cones are isomorphic. When more than one NS5 brane is involved we find non-isomorphic cones, and
realizing the various different cones in the brane system is instrumental for computing the various
distinct magnetic quivers.

hypermultiplets. This is T-dual to a brane web with inequivalent maximal decompositions.
In this paper, we show how both brane systems are used to derive the intricate structure
of Higgs branches. The multiple cones correspond to multiple highest leaves in the Hasse
diagram. The correspondence between these maxima and the brane systems is made explicit
using magnetic quivers [8, 13, 18, 19, 25–62]. This allows to compute Hilbert series for the
corresponding varieties, thereby providing a confirmation for our claims.

As observed in [8], it is important to distinguish the Higgs variety HV and the Higgs
scheme HS. The latter is the affine scheme that is associated to the Higgs chiral ring,
which may contain nilpotent operators, while the former is the underlying algebraic variety
(reduced scheme, i.e. containing no nilpotent operators). Nilpotent operators show up promi-
nently in Higgs branches of 5d N = 1 SCFTs [17, 18]. In 4d / 3d however, as far as we know,
these nilpotent operators only show up for asymptotically free / bad theories. The simplest
example of a non-reduced scheme, which does show up as moduli space of supersymmetric
theories, is the spectrum of the ring C[x]/(xn), which contains an operator x of nilpotency
degree n. When combined with the Hasse diagram formalism, the presence of nilpotent
operators in HS can be seen as an additional structure on HV whereby leaves acquire multi-
plicities, which roughly correspond to the order of nilpotency of nilpotent operators on their
closures. There is however more structure than just a number: as the nilpotent operators
carry R-charge, the multiplicity is given by q-analogs of integers and products thereof.1 For
the example (1.1), one gets the series of diagrams shown in figure 3, where on each leaf we
have added the multiplicity of nilpotent elements. We refer the reader to section 2.4 for
more details. It is an open problem to identify nilpotent operators from a brane system [8].

1We use q = t2 for consistency with previous literature using Hilbert series. So the Hilbert series for
Spec(C[x]/(xn)) is 1 + t2 + · · ·+ t2n−2 := [n]t2 .
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)
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1,1,0
)
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)
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2,0,0

)

( 2
1,0,1

)

( 2
0,0,2

)

( 3
0,3,0

)
( 3

1,2,0
)

( 3
0,2,1

)

( 3
2,1,0

)

( 3
1,1,1

)

( 3
0,1,2

)

( 3
3,0,0

)

( 3
2,0,1

)

( 3
1,0,2

)

( 3
0,0,3

)

Figure 3. This figure depicts the Hasse diagrams for the Higgs branches of (1.1) for p = 0, 1, 2, 3
from top to bottom (thick black lines). The bottom leaves of the diagrams are on the left, and the
top leaves are on the right. All the transitions are Klein singularities of type A, see (2.30). The
diagram at floor p has p+ 1 maxima for the p+ 1 cones in the Higgs branch. The number in boxes
give the multiplicities of nilpotent elements on each leaf. The entries

(
j+k+l

j,k,l

)
can be evaluated as

integers, in which case they reproduce Pascal’s pyramid (each entry is the sum of the numbers
above it), or as t2-analogs (2.48), in which case they correspond (up to a factor (−1)ktk(k−1)) to the
multiplicity factor of the leaf closure in the Higgs scheme.

Plan of the paper. The paper is organized as follows. In section 2, we consider classical
Higgs branches of unitary-orthosymplectic quivers realized on generalizations of the brane
system of figure 2. In section 3, we turn our attention to special unitary-orthosymplectic
quivers, using instead brane web techniques, and in section 4 we analyze how the multiple
cones behave under taking various gauge parameters to infinity.

Two appendices complement the main text. Appendix A collects details on bad Coulomb
branches and inversion of Hasse diagrams. Appendix B contains computational details.
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2 U(n) − U(2n) − · · · − U((p − 1)n) − USp(pn) − [Dn] on HW brane
systems

In this section we study theories living on Hanany-Witten brane systems in the presence of
an O5− plane.

2.1 A tale of two cones

In this section we review a 1-parameter family of quiver gauge theories [6]

USp(2k)

D2k
(2.1)

whose Higgs branch is a union of two cones. The classical Higgs branch of this theory is
straightforward to compute. It is the closure of the maximal height two nilpotent orbit in
so(4k) under the full orthogonal group O(4k), which we denote as O[22k]

O . Nilpotent orbits
and the Hasse diagrams of their closures were analyzed in [63, 64]. The orbit O[22k]

O is a
so called very even orbit, and as such it is a disjoint union of two isomorphic orbits under
the special orthogonal group SO(4k), which we shall call O[22k]I

SO and O[22k]II
SO . Its closure,

denoted O[22k]
O , is a union of two cones, i.e. the closures of the orbits O[22k]I

SO and O[22k]II
SO :

O[22k]
O = O[22k]I

SO ∪ O[22k]II
SO . (2.2)

The intersection of the cones is:

O[22k]I
SO ∩ O[22k]II

SO = O[22k−2,14]
O . (2.3)

The Hasse diagram of O[22k]
O follows from [64]:

d2k

d2k−2

⋮

d4

a1 a1

. (2.4)

The theory (2.1) does not have a well defined notion of a 3d mirror, as there is no
unique interacting SCFT in the IR. In fact, there are two singularities in the Coulomb
branch of (2.1), cf. [12]. Emanating from each singularity is one of the two cones that make

– 5 –
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up the classical Higgs branch.2 One can still find a set of magnetic quivers, one for each cone
in the Higgs branch. This can be thought of as a generalization of the notion of 3d mirror
symmetry. The Coulomb branches of the magnetic quivers correspond to the individual
cones in the Higgs branch of our theory. The Higgs branches of the magnetic quivers
describe the local geometry of the Coulomb branch of the theory close to the different
singularities [12, section 5], as explained in appendix A. The Higgs branches of magnetic
quivers (2.5) and (2.6) are intersections of Slodowy slices with closures of nilpotent orbits,
as discussed in [65, 66]. The full moduli space is discussed in detail in section 2.6.

In [6] a magnetic quiver was derived from a brane construction to represent one of the
cones in the Higgs branch of theory (2.1). The magnetic quiver is:

1 2
· · ·

2k − 2

k

k − 1

2

. (2.5)

It is straightforward to determine from the algebraic fact (2.2) that the magnetic quiver for
the other (isomorphic) cone should be:

1 2
· · ·

2k − 2

k − 1

k

2 . (2.6)

Let us now derive both of these quivers from a brane construction. The 3d N = 4 theory (2.1)
may be realized in a Hanany-Witten brane system through two different constructions:

1. Using an O3+ orientifold plane parallel to the gauge D3 branes.

2. Using an O5− orientifold plane parallel to the flavor D5 branes.

While the former construction yields orthosymplectic magnetic quivers, the latter construc-
tion yields unitary magnetic quivers. As argued in [31, section 4.5], one can employ the
second construction, using an O5− plane, to identify the two cones.3 We are not able to see
the two cones with the O3 plane construction — to date this is still an open question and
we encourage the reader to find the second cone.

2This phenomenon also happens in 4d N = 2 theories [7].
3In [31] 5d N = 1 theories on brane webs are studied, but the discussion about two cones is essentially

the same in the case presented in this paper.
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The brane construction representing (2.1) at the origin4 of its moduli space is:

· · · · · ·

O5−

2k D3

NS5

2k D5

Mirror images

origin
(2.7)

Since we are interested in the Higgs branch, we have to focus on the moduli of the D3
branes moving along the D5 branes. Hence it is enough to depict the brane system in two
dimensions, looking at (2.7) “from above”, and we only focus on the physical relevant space,
without drawing the mirror images:

· · ·

O5−

2k D3

NS5

2k D5

(2.8)

From now on we suppress the labels for the branes and simply write the number of D3
branes. In order to read magnetic quivers in a straightforward manner, we perform a series

4The notion of origin only makes sense for the classical moduli space, as the quantum moduli space has
multiple most singular points.

– 7 –
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of Hanany-Witten transitions to obtain the brane system:

· · ·
1 2

2k
−

2
2k
−

1
2k 2k

(2.9)

Now we can break the D3 branes along the D5 branes and move them along the Higgs
branch, keeping in mind that we are dealing with an O5− plane:

· · ·
1

2 2k
−

2

⋮

k − 1

⋮

k

⋮

. (2.10)

We can identify the magnetic quiver (2.5). This is the analysis presented in [6],5 and
matches (2.5).

2.2 New Higgs phases from old brane systems

In order to identify the second magnetic quiver let us turn to a different type of brane
system, in fact a brane web, which supports the 5d N = 1 version of the theory. The
classical Higgs branch of the theory in dimensions 3− 6 is the same, so the magnetic quivers
read from the brane web apply to the 3d theory just as well. The relevant brane web, after
resolving an O7− plane [67, 68] and suitable Hanany-Witten transitions, is:

· · ·

2k

1 2 2k
−

2
2k
−

1
2k

k

k

(2.11)

5We do not perform an S-duality as it is not necessary for reading magnetic quivers.
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We can use the rules developed in [19] to read off the magnetic quivers from maximal
subdivisions of the web. Keeping in mind the S-rule, one maximal subdivision is:

· · ·
1 2 2k

−
2

k
−

1 1

k 2k

k

k

(2.12a)

Alternatively, we can combine the red NS5 brane with two parallel cyan D5 branes and
obtain the second maximal subdivision:

· · ·
1 2 2k

−
2

k

k
−

1
2k
−

2

1
2

1

1
k − 1

k − 1

(2.12b)

The corresponding magnetic quivers read

1 2
· · ·

2k − 2

k

k − 1

12

(2.13a)

and

1 2
· · ·

2k − 2

k − 1

k

1

2

(2.13b)

Upon ungauging the red U(1) gauge nodes in the two quivers we obtain the expected quivers.
Crucial in obtaining the second magnetic quiver is the involvement of the NS5 brane. Let
us use this knowledge to identify a different Higgs phase in the 3d system.

In presence of an O5− plane, a D3 brane cannot span between a D5 and its image in a
supersymmetric way. However, we can use the presence of the NS5 brane. A D3 brane can
span between a D5 and the NS5 and between the NS5 and the mirror image of the D5, see

– 9 –
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figure 1. This allows us to go to a second maximal Higgs phase in the brane construction:

· · ·
1

2 2k
−

2

⋮

k

⋮

k − 1
⋮

(2.14)

We have therefore identified the second cone. From (2.14) we can read the magnetic quiver:

1 2
· · ·

2k − 2

k − 1

k

2 (2.15)

which is what we already expected to find, see (2.6). The intersection of the two cones is
readily found from the brane set up by aligning D3 branes, thus forming a non maximally
decomposed brane configuration:

· · ·
1

2 2k
−

2

⋮

k − 1

⋮

k − 1
⋮

(2.16)

The magnetic quiver for the intersection reads

1 2
· · ·

2k − 2

k − 1

k − 1

1

, (2.17)

– 10 –
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whose Coulomb branch is indeed O[22k−2,14]
O , as expected from (2.3). Note that using the

quiver subtraction algorithm [14] on the magnetic quivers to obtain the Hasse diagram of
the Higgs branch of (2.1) yields (2.4).

We have seen how the theory (2.1) has a Higgs branch made up of two cones, which
correspond to phases in a brane system. Armed with this new understanding, we now turn
to generalizations to theories where an arbitrary number of cones are involved.

2.3 A tale of N cones

We start by expanding the brane construction (2.7) to

p NS5

n D5

k1 k2 kp−1 kp D3

O5−

Mirror images

· · ·
· · ·

· · ·
· · ·

(2.18)
with k1 ≤ k2 ≤ · · · ≤ kp. The brane system is only consistent for kp even. We read the
following electric quiver:

U(k1) U(k2)
· · ·

U(kp−1) USp(kp) Dn
, kp even . (2.19)

Again, we resort to 2-dimensional drawings, looking at (2.18) “from above”, and depicting
only the physical space:

· · ·

· · ·
k1 k2 kp−1 kp

p NS5

n D5 O5−

(2.20)

We want to go to the Higgs phase of this brane set up and read off magnetic quivers. This
is best done after moving the p NS5 branes past D5 branes, as in section 2.1. In order to

– 11 –
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keep track of the annihilation of D3 branes, let us use a reparameterization:

kj =
j∑
i=1

li (2.21)

for 1 ≤ j ≤ p, and separate the NS5 vertically (in our depiction, not physically)

⋱

k1 = l1

l2

lp−1

lp

· · ·

p NS5

n D5 O5−

. (2.22)

We obtain the bounds for complete Higgsing

l1 ≤ l2 ≤ · · · ≤ lp−1 ≤ lp ≤ n . (2.23)

If this bound is violated, then even in the full Higgs phase of the brane set up some D3 are
free to move along the NS5 branes indicating the Coulomb moduli of the effective theory at
a general point on the Higgs branch.

If some of the li = n then we have a situation similar to the one in section 2.1: after
performing suitable Hanany-Witten transitions there are NS5 between the rightmost D5
and the O5− plane and the Higgs branch consists of multiple cones. To be precise, if

li < n for 1 ≤ i ≤ x
lj = n for x+ 1 ≤ j ≤ p ,

(2.24)

then there are p− x NS5 branes in the last interval, and therefore p− x+ 1 cones in the
Higgs branch of (2.19). In this work we focus for simplicity on a special 2-parameter (p, n)
family of electric quivers Qe with li = n for all 1 ≤ i ≤ p:

Qe(p, n) =
U(n) U(2n)

· · ·
U((p− 1)n) USp(pn) Dn

, pn even . (2.25)

We now demonstrate, by using the brane configurations discussed in section 2.2, that a
member of this family has a Higgs branch consisting of exactly p+ 1 cones, and we obtain
the magnetic quivers for each of them.
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Magnetic quivers and the Higgs variety. The brane set up for (2.25), after suitable
Hanany-Witten transitions, is given by:

· · ·
· · ·

p 2p (n
−

2)
p

(n
−

1)
p

pn

p

n

. (2.26)

From which we can obtain all p+ 1 maximal Higgs phases Pl, labeled by l = 0, . . . , p:

Pl =

· · ·
⋮

⋮

p
2p

⋮

(n
−

2)
p

⋮

n
p 2
−

(p
−
l)

⋮

np
2 − l

⋮

⋮ l

p
−
l

n

(2.27)

where the NS5 are separated vertically for clarity. From (2.27) we can read the magnetic
quivers Ql

m for each individual cone:

Ql
m(p, n) =

p 2p
· · ·

(n− 2)p

np
2 − l

np
2 − (p− l)

2(p− l)

2l
l = 0, . . . , p. (2.28)

which each have Coulomb branch global symmetry so(2n) as expected.
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The Hasse diagram. Using quiver subtraction on the magnetic quivers (2.28), one
can compute the Hasse diagrams for each Higgs phase. Identifying the intersections is
also possible from the brane system. As an example, for n = 2, i.e. for the theory (1.1),
equation (2.28) reduces to

p− l

l

2(p− l)

2l
l = 0, . . . , p, (2.29)

which shows that every cone is a direct product, giving the Hasse diagram

· · ·

· · ·

· · ·

A1

A1

A1

A1

A1

A1

A1

A1

A2p−3

A2p−3

A2p−3

A2p−3 A2p−1A2p−1

(2.30)

For n > 2, (2.30) is contained as a subdiagram, but the full diagram is very intricate,
although straightforward to compute. Instead of going in this direction, in the next
subsection we keep n = 2, but focus on the comparison with a direct computation of the
classical Higgs branch, which may involve nilpotent operators.

2.4 Hyper-Kähler quotient and the Higgs scheme

In the following we compare the Higgs varieties obtained through magnetic quivers in
section 2.3 with the hyper-Kähler quotient.

2.4.1 Illustrative example

Let us first focus on the case p = n = 2, for which the Hasse diagram reads

A1

A1

A1

A1 A3A3
(2.31)

In the following, we denote a geometric space with its schematic Hasse diagram, as a slight
abuse of notation. The surgery formula states, that the Hilbert series of a space consisting
of several cones Ci (i = 1, . . . , α) is given by

HS =
α∑
i=1

HS(Ci)−
∑

1≤i<j≤α
HS(Ci ∩ Cj) + · · ·+ (−1)α+1HS

(⋂
i

Ci

)
. (2.32)
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Hence the Hilbert series of the Higgs variety of U(2)−USp(4)− [D2] is given by

HS(HV(U(2)−USp(4)− [D2])) = HS
( )

+ HS
( )

+ HS
( )

−HS
( )

−HS ( )−HS
( )

+ HS ( )

= (1− t6)(1− t8)
(1− t2)3(1− t4)3 + (1− t4)2

(1− t2)6 + (1− t6)(1− t8)
(1− t2)3(1− t4)3

− (1− t4)
(1− t2)3 − 1− (1− t4)

(1− t2)3

+ 1 . (2.33)

Where the last expression is the explicit unrefined Hilbert series.
Comparing this to the Hilbert series obtained through the hyper-Kähler quotient we

find a mismatch. This is an indication that there are nilpotent operators in the Higgs
ring [8], and the Higgs branch is a non-reduced scheme, i.e. a Higgs scheme, and we hence
need to modify (2.33) accordingly.6 The Hilbert series of the Higgs scheme can be computed
directly via the hyper-Kähler quotient, however the decomposition into various cones with
multiplicity is not straight forward to obtain in general. After an educated guess for the
pre-factors, we find that the Hilbert series of the Higgs scheme reads

HS(HS(U(2)−USp(4)−[D2])) = HS
( )

+(1+t2)HS
( )

+HS
( )

−(1+t2)HS
( )

−HS( )−(1+t2)HS
( )

+(1+t2)HS( )

= (1−t6)(1−t8)
(1−t2)3(1−t4)3 +(1+t2)(1−t4)2

(1−t2)6 + (1−t6)(1−t8)
(1−t2)3(1−t4)3

−(1+t2) (1−t4)
(1−t2)3−1−(1+t2) (1−t4)

(1−t2)3

+(1+t2)1 , (2.34)

which may be rewriten as

HS(HS(U(2)−USp(4)−[D2])) = HS
( )

+(1+t2)HS
( )

+HS
( )

−(1+t2)HS
( )

−(1+t2)HS
( )

+(t2)HS( )

= (1−t6)(1−t8)
(1−t2)3(1−t4)3 +(1+t2)(1−t4)2

(1−t2)6 + (1−t6)(1−t8)
(1−t2)3(1−t4)3

−(1+t2) (1−t4)
(1−t2)3−(1+t2) (1−t4)

(1−t2)3

+(t2)1 . (2.35)
6As is discussed in detail in [8] magnetic quivers only provide access to the Higgs variety. If there are

nilpotent operators in the full Higgs branch chiral ring, then the Higgs branch is a non-reduced scheme.
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We can read from the Hilbert series (2.35) that the middle cone has a multiplicity of two,
while the outer cones have a multiplicity of one. To be more precise, only the maximal leaf
of the middle cone carries multiplicity two, while all other leaves carry multiplicity one. In
order to simplify notation, we write equations like (2.35) as

HS(HS(U(2)−USp(4)− [D2])) =

t2

−(1 + t2)

1

−(1 + t2)

(1 + t2)1

A1

A1

A1

A1 A3A3
(2.36)

We can compare this to the Higgs variety

HS(HV(U(2)−USp(4)− [D2])) =

0

−1

1

−1

11

A1

A1

A1

A1 A3A3

(2.37)

and see that the reduction is accomplished by setting all higher order prefactors in t to 0,
as one would expect.

Identification of nilpotent operators. The identification of nilpotent operators is
non-trivial. Therefore we only discuss the simplest example. For n = 2 and p = 2 the
electric quiver in 4 supercharges notation becomes

U(2) USp(4) D2

ΦU ΦSA

B

C . (2.38)

It is instructive to compare character expansion of the Hilbert Series and its PL for both
the Higgs scheme

HS(HV) = 1 + ([2, 0] + [0, 2])t2 + ([2, 0] + [0, 2] + [4, 0] + [2, 2] + [0, 4] + 2[0, 0]︸ ︷︷ ︸
Sym2([2,0]+[0,2])

)t4

+ ([6, 0] + [4, 2] + [2, 4] + [0, 6] + [4, 0] + [0, 4] + 2[2, 0] + 2[0, 2])t6

+O(t8)
PL(HV) = ([2, 0] + [0, 2])t2 + ([2, 0] + [0, 2])t4

+ (2[2, 2] + [2, 0] + [0, 2] + 2[0, 0])t6

+O(t8)

(2.39)
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and the Higgs variety

HS(HS) = 1 + ([2, 0] + [0, 2])t2 + ([2, 0] + [0, 2] + [4, 0] + [2, 2] + [0, 4] + 2[0, 0])t4

+ ([6, 0] + [4, 2] + [2, 4] + [0, 6] + [4, 0] + [0, 4] + 2[2, 0] + 2[0, 2]+[2, 2])t6

+ ([8, 0] + [6, 2] + [4, 4] + [2, 6] + [0, 8] + [6, 0] + [0, 6] + 3[4, 0] + 3[0, 4]
+O(t8)

PL(HS) = ([2, 0] + [0, 2])t2 + ([2, 0] + [0, 2])t4

+ (1[2, 2] + [2, 0] + [0, 2] + 2[0, 0])t6

+O(t8) .
(2.40)

We can see that both the Higgs scheme and the Higgs variety have a generator in the adjoint
of so(4) at degree 2 and 4. However for the Higgs variety there is a relation in the [2, 2]
at degree 6 which is not present in the Higgs scheme. The components of this must be
our nilpotent operators, and adding those as relation to the ideal of the Higgs scheme will
make it the radical ideal of the Higgs variety. This is a difficult thing to check, since we
would need to compute a Gröbner Basis which for our rings in question is computationally
expensive and not doable in reasonable time. We can still identify what the predicted
nilpotent operator looks like.

Let Ω be the USp(4) invariant tensor. The superpotential is

W = Tr(CΩΦSΩCT )− Tr(AΩΦSΩB) + Tr(ΩBΦUA) , (2.41)

from which we obtain the F-term relations

FS = ∂W

∂ΦS
= ΩCTCΩ− 1

2(ΩBAΩ + ΩATBTΩ) != 0

⇔ CTC = 1
2(BA+ATBT )

FU = ∂W

∂ΦU
= AΩB != 0

(2.42)

The gauge invariant generators of the Higgs scheme are

M = CΩCT

N = CΩ(BA−ATBT )ΩCT
(2.43)

transforming in the adjoint of so(4), i.e. the [2, 0] + [0, 2] representation, at degree 2 and 4
respectively. Let us call ML the part of M which transforms in the [2, 0], MR the part of
M which transforms in the [0, 2], and likewise NL and NR the parts that make N . The two
independent [2, 2] operators at degree 6 are built from ML ⊗NR and MR ⊗NL.

Using F-term relations we find that

MN +NM = 0 . (2.44)

This relation transforms in [2, 2] + [0, 0] at degree 6, and the [2, 2] part is made from a linear
combination of ML ⊗NR and MR ⊗NL. The gauge invariant operator at degree 6 which
transforms in [2, 2], which from the Hilbert series computations above is nilpotent, is an
independent linear combination of ML ⊗NR and MR ⊗NL.
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Generic 3 cone case. We note that (2.36) turns out to be true for all values of n ≥ 2
as well, if we set all other nodes in the Hasse diagram to 0. As an example, consider the
case n = 3. The Hasse diagram is given by

A1

A1

A1

A1 A3A3

a1

a3

(2.45)

and the Higgs scheme reads as follows:

HS(HS(U(3)−USp(6)− [D3])) =

0

0

t2

−(1 + t2)

1

−(1 + t2)

(1 + t2)1

A1

A1

A1

A1 A3A3

a1

a3

(2.46)

2.4.2 General case

To derive the weighted sum over the Coulomb branches of the magnetic quivers Ql
m and

their intersections, for the general case, we need

(i) Expressions for the weighting factors as polynomials in t for each relevant node in the
Hasse diagram;

(ii) The quiver diagrams for each node.

Let us start with (i). It is useful to recall the notion of q-analog. The q-analog of the
positive integer n is

[n]q := 1− qn
1− q = 1 + q + · · ·+ qn−1 . (2.47)

The integer n is recovered when taking the limit q → 1. This notation is standard in
combinatorics and special function literature, but in this paper we trade q for t2 for
consistency with the usual Hilbert series notations. Similarly, there is a t2-analog for the
r-multinomial coefficient,(

n1 + · · ·+ nr
n1, . . . , nr

)
t2

:= (t2; t2)n1+···+nr

(t2; t2)n1 · · · (t2; t2)nr

=
∏n1+···+nr
k=1 (1− t2k)∏r
i=1

∏ni
k=1(1− t2k) (2.48)

where (t2; t2)n = ∏n
k=1(1− t2k) is the t2-Pochhammer symbol.
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Moving on to (ii), the magnetic quivers Ql
m, for l = 0, . . . , p, correspond to the top

row of the Hasse diagram. There are p+ 1 rows in the diagram, that we label from top to
bottom by k = 0, . . . , p. Introducing the notation Qk,l

m to label the quivers according to row,
such that Ql

m ≡ Q0,l
m , each magnetic quiver Qk,l

m can be seen to be located at the intersection
of its dominant quivers Qk−1,l

m and Qk−1,l+1
m . The magnetic quiver at each intersection of

the Hasse diagram is simply the maximal quiver that can be subtracted from its dominant
quivers. Thus, the diagram for each magnetic quiver Qk,l

m follows from (2.28) as:

Qk,l
m

=
p 2p

· · ·
(n− 2)p

np
2 − k − l

np
2 − (p− l)

2(p− k − l)

2lk

(2.49)

for k = 0, . . . , p and l = 0, . . . , p− k.
The relevant Hasse diagram is always of a triangular form, since the nodes associated

with the tail carry zero weight, as illustrated in (2.46). We locate each node within this
triangle using the integer coordinates (j, k, l), where j + k + l = p. The bottom node is
assigned the coordinates (0, p, 0), and the top left/right nodes are assigned (p, 0, 0) and
(0, 0, p) respectively.

We can summarize our conjecture for the construction of the general case Hilbert series
of the Higgs Scheme comprising the magnetic quivers as follows:

HS(HS) =
p∑

k=0
(−1)ktk(k−1)

k∑
l=0

(
p

p− k − l, k, l

)
t2

HS
(
C
(
Qk,l
m

))
. (2.50)

This construction has been tested for various low rank quivers. In all the cases studied,
it yields exactly the Higgs branch Hilbert series (both refined and unrefined) of the cor-
responding electric quivers Qe. The coefficients that appear as multiplicities are up to a
prefactor the multinomial t2-analogs

(j+k+l
j,k,l

)
t2
. When evaluated at t = 1 they reduce to

the usual multinomial coefficients that can be constructed using the Pascal pyramid, see
figure 3. The conjecture (2.50) is based on observations, and one can suspect a deeper
combinatorial explanation should exist. We leave this as an open question.

Example. As an illustration, consider p = 3, n = 2. For the Higgs Variety we have the
usual multiplicities as given by the sieve formula:

HS(HV(U(2)−U(4)−USp(6)− [D2])) =

0

0

−1

1

0

−1

1

−1

11

A1

A1

A1

A1

A1

A1

A3

A3

A3

A3A5 A5

(2.51)
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For the Higgs Scheme, we compute instead the multinomial t2-analogs, which evaluate to

HS(HS(U(2)−U(4)−USp(6)−[D2])) =

−t6

(t2+t4+t6)

−(1+t2+t4)

1

(t2+t4+t6)

−(1+2t2+2t4+t6)

(1+t2+t4)

−(1+t2+t4)

(1+t2+t4)1

A1

A1

A1

A1

A1

A1

A3

A3

A3

A3A5 A5

(2.52)
This can be checked against a direct computation using the Hilbert series for each cone, as
given by the following diagram:

1

1−t4
(1−t2)3

(1−t6)(1−t8)
(1−t2)3(1−t4)3

(1−t8)(1−t10)(1−t12)
(1−t2)3(1−t4)3(1−t6)3

1−t4
(1−t2)3

(1−t4)2

(1−t2)6

(1−t6)(1−t8)
(1−t2)6(1−t4)2

(1−t6)(1−t8)
(1−t2)3(1−t4)3

(1−t6)(1−t8)
(1−t2)6(1−t4)2

(1−t8)(1−t10)(1−t12)
(1−t2)3(1−t4)3(1−t6)3

A1

A1

A1

A1

A1

A1

A3

A3

A3

A3A5 A5

(2.53)

Combining (2.52) and (2.53) one finds the Hilbert series(
1 + 4t2 + 14t4 + 40t6 + 83t8 + 143t10 + 181t12 + 172t14

+98t16 + 21t18 − 35t20 − 31t22 − 10t24 + 4t26 + 4t28 − t30

)
(1− t2)2 (1− t4)2 (1− t6)2 , (2.54)

which precisely agrees with the result from the hyper-Kähler quotient. This was also checked
on the level of refined Hilbert series.

2.5 Global form of flavour symmetry

The global symmetry of the classical Higgs branch of (2.25) is

PSO(2n) o Z2 . (2.55)

The PSO(2n) factor is due to the fact that only representations in the adjoint lattice of
Dn show up in the Higgs branch chiral ring. This can also be seen from the magnetic
quivers (2.28) which are all balanced. The Z2 parity is a symmetry exchanging isomorphic
cones in the Higgs branch. This can be seen from magnetic quivers as exchanging l↔ (p− l)
in (2.28), i.e. exchanging the two spinor Dynkin labels of Dn (outer automorphism of the
Dn algebra).
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For p = 1 the Z2 parity symmetry has been described in [10] and [12], where it has
been pointed out that in addition to acting on the classical Higgs branch, it also acts on
the quantum Coulomb branch. We see that this is the case for all p in the next subsection.

2.6 3d Coulomb branch and full moduli space

The appearance of many cones in the classical Higgs branch is an indication for many singu-
larities in the Coulomb branch. To see this one can use for example the inversion argument
of [15] which is reviewed in appendix A. We can use inversion to conjecture the Hasse
diagram of the quantum Coulomb branch based on the Hasse diagram of the classical Higgs
branch. Since Hasse diagrams become very complicated we focus at the simplest examples.

To check our claims one should in principle do a detailed study of bad Coulomb branches
with several singular points along the lines of [12, 69], which is challenging. We hope to
report on this in future work.

2 cones. Inversion of the classical Higgs branch Hasse diagram of USp(2k)− [D2k] was
already successfully used in [15] to produce the Hasse diagram of the quantum Coulomb
branch, matching the results of [12]. For the simplest case of k = 1 we get

A1 A1 a1 a1
I

(2.56)

and the Hasse diagram for the entire moduli space is given by

a1 a1A1 A1 (2.57)

The physics at the two most singular points in the Coulomb branch is equivalent, and the
local moduli space geometry is that of U(1)− [2]. The two cones, which intersect in the
classical Higgs branch, emanate from different points in the quantum Coulomb branch and
hence are separated in the full moduli space [5]. This is an effect also observed in 4d N = 2
theories [4, 7]. The Z2 symmetry of (2.55) is visible as a vertical reflection of the Hasse
diagram of the full moduli space.

3 cones. Inversion of the classical Higgs branch Hasse diagram of U(2)−USp(4)− [D2]
gives the conjectured quantum Coulomb branch Hasse diagram. See the appendix A for
details on inversion, and a discussion on lowest leaf with non-zero dimension.

A1 A1

A1 A1A3 A3
2

a1 a1

a1 a1

a3 a3

I

(2.58)
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We observe that the dimension of the Coulomb branch read from the Hasse diagram is
4, which fits the rank of the theory. The Coulomb branch consists of 6 leaves. The two
most singular points (the bottom left and right leaves) are equivalent, and exchanged by
the Z2 symmetry discussed in section 2.5. A further lowest leaf is of dimension two (see
appendix A). An artistic depiction of the Coulomb branch is given in figure 4. The massless
degrees of freedom present at each leaf may be indicated by transverse slices as follows:

2

a1 a1

a1 a1

a3 a3 1 2 1

2
1

2

1

2

1

2

(2.59)

We notice that nowhere on the Coulomb branch are all the fields in U(2)−USp(4)− [D2]
massless. For example, at one of the two most singular points the massless states are

1 2 1

2
. (2.60)

The effect is similar to the case of SU(2)− [2], where the massless states at one of the most
singular points in the Coulomb branch are U(1)− [2].

The Hasse diagram of the full moduli space can be obtained from further local inver-
sions [15]:

2

a1 a1

a1 a1

a1 a1

a3 a3

a3a3

A1

A3

A1

A3

A1 A1

A1 A1

A1
A1

C

H1

H2

H3

M− M+

(2.61)

We can see that the three cones, H1, H2 and H3, which make up the classical Higgs branch
are still present in the quantum moduli space. However, the three cones do not intersect as
they do in the classical Higgs branch. The classical intersections appear as Higgs directions
on less singular Coulomb branch loci, leading to mixed branchesM− andM+. The fate of
nilpotent operators in the quantum moduli space is unclear.
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a3 a3

a1

a1

a1 a1

a1 a1

a1 a1

a3 a3

Figure 4. Artist’s impression of the Coulomb branch of (2.25) with p = n = 2 (left). The nodes of
the Hasse diagram (right) are colored in accordance with the depiction on the left. Note that on the
drawing every elementary transverse slice is shown with real dimension 1, instead of quaternionic
dimension 1 and 3 for a1 and a3.

General case, physics at the most singular point. For the general case, with p+ 1
cones, inversion indicates that there are exactly two most singular points in the Coulomb
branch, and that the local moduli space geometry at these two points is the same.7 The set
of massless states at either of the two most singular points in the Coulomb branch of

U(n) U(2n)
· · ·

U((p− 1)n) USp(pn) Dn

(2.62)

is described by the 3d mirror of the magnetic quiver (l = 0 in (2.28)):

p 2p
· · ·

(n− 2)p

np
2

np
2 − p

2p
. (2.63)

We only know such a 3d mirror for 2 ≤ n ≤ 4, since we can exploit D2 = A1A1 and D3 = A3,
as well as triality of D4 to compute the 3d mirror of the magnetic quivers in question.

The massless states at the most singular Coulomb branch points are:
For n = 2:

U(2) U(4)
· · ·

U((p− 1)2) USp(2p) D2
→

1
· · ·

p− 1 p

2

p− 1
· · ·

1

. (2.64)

7This is not the case for the linear quiver wherein all U(ni)→ SU(ni), see section 3. Another example is
SU(k)− [2k − 2] for k > 2: there are two most singular points which have non-isomorphic Higgs branches
(mesonic & baryonic). See appendix A and in particular (A.24) for an explicit example.
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For n = 3, p = 2x:

U(3) U(6)
· · ·
U((2x− 1)3) USp(6x) D3

→
1

· · ·
3x− 1 3x

4

3x− 3
· · ·

3

. (2.65)

For n = 4:

U(4) U(8)
· · ·

U((p− 1)4) USp(4p) D4
→

U(1)
· · ·

U(2p− 2) U(2p− 1) USp(2p) D4
.

(2.66)

3 SU(n)−SU(2n)−· · ·−SU((p−1)n)−USp(pn)− [Dn] on brane webs

We now turn to constructions of 5-brane webs with 7-branes and an O7− orientifold plane.
The O7− is quantum mechanically resolved into a pair of mutually non-local 7 branes, such
that their combined monodromy equals that of the O7− [67, 68]. We pick the resolution
into a [1, 1]7 and a [1,−1]7 brane.

3.1 General family

We study the classical Higgs branch of the following theory, which is obtained by changing
all U nodes in (2.25) to SU nodes:

SU(n) SU(2n)
· · ·
SU((p− 1)n) USp(pn) Dn

, pn even . (3.1)

After resolving the O7− and suitable Hanany-Witten transitions, we can read the magnetic
quivers from the brane web

· · ·
· · ·

n

p

p 2p (n
−

2)p

(n
−

1)p
np

np
2

np
2

. (3.2)

While this essentially looks like a 5d version of the brane system (2.26) (they are T-dual
after all) there is a crucial difference in reading the magnetic quiver: the NS5 branes in (3.2)
contribute to the magnetic quiver as gauge nodes rather than flavor nodes (as was the case
in (2.26)). In (2.27) and (2.28) the number l of NS5 branes attached to D3 branes is used
to label the inequivalent maximal Higgs phases and their magnetic quiver representations.
We can use the same label l in the present construction; however, since the p NS5 branes
contribute as gauge nodes to the magnetic quiver, it is of crucial importance which one
of them combines with D5 branes. Hence for every value of l ∈ {0, . . . , p} there are

(p
l

)
different cones. The total number of cones in the Higgs branch is:

#(cones) =
p∑
l=0

(
p

l

)
= 2p . (3.3)
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Each one of the p NS5 branes can either connect with a D5 brane or not, hence the
2p options.

In the next subsection, we study the case p = 2 where four cones show up. When p > 2,
the combinatorial complexity grows very fast, as illustrated with a quick survey of the p = 3
case in appendix B.

3.2 Four cone example

Let us study the simplest case involving more than 2 cones, p = 2 in (3.1):

SU(n) USp(2n) Dn
(3.4)

The relevant brane system for finite coupling is (3.2) with p = 2. There are 4 different
maximal subdivisions, and 4 corresponding magnetic quivers.

· · ·
2 4 2n

−
4

n
−

2 1 1

n 2n

n

n

2 4
· · ·

2n− 4

n

n− 2

1

1

(3.5a)

· · ·
2 4 2n

−
4

n
−

1

n
−

1
2n
−

2

1
2

1

1

1
n− 1

n− 1

2 4
· · ·

2n− 4

n− 1

n− 1

1

1

(3.5b)

· · ·
2 4 2n

−
4

n
−

1

n
−

1
2n
−

2

1
2

1

1

1
n− 1

n− 1

2 4
· · ·

2n− 4

n− 1

n− 1

1

1

(3.5c)

· · ·
2 4 2n

−
4

n

n
−

2
2n
−

4

1
2 1

1
2

1

1

1
n− 2

n− 2

2 4
· · ·

2n− 4

n− 2

n

1

1

(3.5d)
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The four cones intersect in non-trivial ways, as indicated on the following Hasse diagram:

(3.6)

where all lines in the top part are A1 transitions. The magnetic quivers for the various
leaf closures can be obtained by quiver subtraction. The bottom gray blob represents the
complicated Coulomb branch Hasse diagram of the quiver

2 4
· · ·

2n− 4

n− 2

n− 2

1 . (3.7)

In order to check that this is correct, one can extract the Hilbert series for the Higgs
variety HV of (3.4) as before. We apply the sieve formula (2.32), taking into account all
possible intersections, giving (in the following equations, we represent only the top part
of (3.6), as the bottom part is identical in all cases). We denote

Ca = C(3.5a), Cb = C(3.5b), Cc = C(3.5c), and Cd = C(3.5d) . (3.8)
HS(HV(3.4)) = HS(Ca)+HS(Cb)+HS(Cc)+HS(Cd)

−HS(Ca∩Cb)−HS(Ca∩Cc)−HS(Ca∩Cd)
−HS(Cb∩Cc)−HS(Cb∩Cd)−HS(Cc∩Cd)
+HS(Ca∩Cb∩Cc)+HS(Ca∩Cb∩Cd)+HS(Ca∩Cc∩Cd)+HS(Cb∩Cc∩Cd)
−HS(Ca∩Cb∩Cc∩Cd)

= HS

 +HS

 +HS

 +HS

 
−HS

 −HS

 −HS

 
−HS

 −HS

 −HS
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+HS

 +HS

 +HS

 +HS

 
−HS

  (3.9)

In this equation, the first line contains the four cones, the next two lines contain the
(4

2
)

= 6
pairwise intersections, the fourth line contains the

(4
3
)

= 4 threefold intersections, and the
last line is the intersection of all four cones — which is not a point. In each case, the Hilbert
series (HS) can be obtained as the Coulomb branch HS for the magnetic quiver corresponding
to the highest painted vertex, if there is one, see table 1. Interestingly, the intersections
of certain cones are themselves unions of several cones, and we can write for instance

HS(Cb ∩ Cc) = HS

  = HS

 + HS

 −HS

 
(3.10)

for the intersection of (3.5b) and (3.5c). Expanding similarly all the cones, we finally get
HS(HV(3.4))

= HS

 + HS

 + HS

 + HS

 
−HS

 −HS

 −HS

 −HS

 −HS

 
+ HS

 + HS

 + HS

 
−HS

  (3.11)

We check explicitly our prediction (3.11) in the case n = 2. In this case the quiver (3.7)
is trivial, so the Hasse diagram reduces to the top part of (3.6). The Hilbert series for the
intersections are computed using the monopole formula, and the result is shown in table 1.
Plugging in the values into (3.11), one finds

1 + 6t2 + 35t4 + 77t6 + 101t8 + 19t10 − 31t12 − 5t14 + 6t16 − t18

(1− t2)3(1− t4)3 . (3.12)

This is the correct value for the Higgs branch Hilbert series of the electric quiver, computed
via the hyper-Kähler quotient. Similarly, for p = 2 and n = 3 the values are also recorded
in table 1. The resulting Hilbert series is

1 + 12t2 + 99t4 + 619t6 + 2975t8 + 11260t10 + 33860t12

+81771t14 + 159921t16 + 254762t18 + 331011t20 + 349336t22 + 295316t24

+193898t26 + 91901t28 + 24715t30 − 2435t32 − 5540t34 − 2080t36

−t38 + 247t40 + 56t42 − 15t44 − 8t46 − t48


(1− t2)4(1− t4)6(1− t6)4 . (3.13)

Again, this is in agreement with a direct computation from the quiver (3.4).
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This implies in particular that for these Higgs branches, the Higgs variety and the Higgs
scheme coincide, i.e. there are no nilpotent operators. One can conjecture this remains true
for p = 2 and higher values of n. However, for p > 2, nilpotent operators do show up, as
shown in the last paragraph of appendix B. Our techniques, based on the knowledge of
the Hilbert series (but not the geometry) of the Higgs scheme on the one hand, and of the
geometry of the Higgs variety from magnetic quivers on the other hand, do not allow us to
determine unambiguously the structure of the nilpotent operators.

3.3 3d Coulomb branch and full moduli space

Consider the simplest non-trivial example, (3.4) with n = 2. Inversion gives the following

I
(3.14)

where all elementary transitions are A1. This indicates that there are 4 most singular points
in the Coulomb branch. The physics at these 4 points, however, is not the same, as the
magnetic quivers encoding the local Higgs directions have different Higgs and Coulomb
branches.

4 5d infinite coupling

We may interpret the gauge theories (3.1) as 5d N = 1 theories, and ask how their
Higgs branches change when tuning specific couplings to infinity. Generically this is quite
a complicated question, we therefore only study two examples to highlight the present
phenomena. Furthermore we only study the Higgs branches as varieties, through their
magnetic quivers and derived Hasse diagrams, and ignore any nilpotent operators (which
arise for example classically or in the form of gaugino bilinears [17]).

Comparing the finite and infinite coupling, we observe three phenomena:

• Cone enhancement: a cone in the classical Higgs branch grows in dimension, due to
the contribution of instanton operators at infinite coupling [17].

• Cone fusion: two (or more) cones in the classical Higgs branch fuse into a single,
bigger cone at infinite coupling. We observe this in combination with decoration.

• Decoration: some cones in the infinite coupling Higgs branch have decorated [20, 21]
magnetic quivers. We observe this in combination with cone fusion.
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1
g2

USp
→ 0

Figure 5. Brane webs for various choices of gauge coupling for the low energy theory (4.1).

4.1 Tale of two cones revisited – cone enhancement

It is again helpful to go back to the ‘tale of two cones’. For simplicity we consider the rank
one case, i.e. the theory

USp(2) D2
, (4.1)

viewed as an effective 5d N = 1 theory. There is a single coupling, gUSp, which we may keep
finite or take to infinity. The corresponding brane webs are depicted in figure 5. When gUSp
is finite, the Higgs branch is classical and as described in section 2.1. When 1

gUSp
→ 0, the

brane web has two maximal decompositions, shown below with the corresponding magnetic
quivers:

1
1

(4.2a)

1 1
1

(4.2b)

The dashed line is supposed to indicate the D2 Dynkin diagram, and has no meaning in
the quivers.

Comparing these magnetic quivers to (2.13a) and (2.13b) with k = 1, we find that one
cone is modified and changes in dimension. The Higgs branch Hasse diagram becomes

1
g2

USp
→ 0 (4.3)

where black lines denote A1 transitions and the blue line denotes an a2 transition. The
height of a dot is proportional to the dimension of the corresponding leaf.
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1
g2

SU
→ 0 1

g2
USp
→ 0

1
g2

SU
→ 01

g2
USp
→ 0

Figure 6. Brane webs for various choices of gauge coupling for the low energy theory (4.4). In the
top line both couplings are finite, in the middle line only one of the couplings is infinite, at the
bottom both couplings are infinite.

4.2 Cone fusion and decorations

Let us consider the theory

SU(2) USp(4) D2
(4.4)

as a 5d N = 1 theory. We have two gauge couplings, gSU and gUSp, and can send either
of them, or both to infinity. The relevant brane webs are depicted in figure 6. The Higgs
branch Hasse diagrams are summarized in figure 7, and we derive them individually in the
following.
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1
g2

SU
→ 0 1

g2
USp
→ 0

1
g2

SU
→ 0

1
g2

USp
→ 0

Figure 7. Hasse diagrams for various choices of gauge coupling for the low energy theory (4.4).
The black lines are a1 transitions, the blue lines are a2 transitions, the double blue lines are a2 ∪ a2
transitions, the green line is a a3 transition, the orange lines are a4 transitions, and the yellow line is
a c2 transition. As can be seen from the Hasse diagrams: when sending a coupling to infinity there
is always cone enhancement. When gSU is sent to infinity there is also cone fusion (accompanied
by decoration in the magnetic quiver).
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4.2.1 1
g2

USp
→ 0

The brane web has four maximal decompositions with associated magnetic quivers:

2
1

1 (4.5a)

1
1

1
1

(4.5b)

1
1

1 1
1

(4.5c)

2
1

1
1

. (4.5d)

Comparing these magnetic quivers to the ones for n = 2 in (3.5a)–(3.5d) we find that
two cones are modified, and change in dimension (cone enhancement). The Hasse diagram
becomes

1
g2

USp
→ 0 , (4.6)

where the black lines are A1 transitions and the blue lines are a2 transitions. The height of
a dot is proportional to the dimension of the corresponding leaf.
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4.2.2 1
g2

SU
→ 0

The brane web has only three maximal decompositions (cone fusion):

2
2

1 1
(4.7a)

1
1

1 1

1
1

(4.7b)

1 1

2
2

. (4.7c)

Comparing these magnetic quivers to the ones for n = 2 in (3.5a)–(3.5d) we see that
all cones are modified and grow in dimension, and that the two middle cones are fused into
one larger cone. Note also that the middle quiver comes with a decoration8 in the sense

8See [21, appendix B] for explanation of a brane web decomposition corresponding to a decorated quiver.
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of [20, 21]. The Hasse diagram becomes

1
g2

SU
→ 0 , (4.8)

where the black lines are A1 transitions, the double black lines are a1 ∪ a1 transitions,9 the
green lines are a3 transitions and the yellow line is a c2 transition. The height of a dot
is proportional to the dimension of the corresponding leaf. We refer to [21, section 2] for
details about how the diagram is obtained from quiver subtraction.

4.2.3 1
g2

USp
→ 0 and 1

g2
SU
→ 0

The brane web has three maximal decompositions and associated magnetic quivers:

2
2

1 1
(4.9a)

1
1

1 1

1 1
1

(4.9b)

9Elementary transitions which are unions of cones show up e.g. in the nilcone of SO(2r + 1) for
r > 2 [64, 70], as well as in symmetric products of Kleinian singularities and in the moduli space of
instantons [21, sections 2&3].
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1 1

2 2
2

. (4.9c)

Comparing these magnetic quivers to the ones for n = 2 in (3.5a)–(3.5d) we see that
all cones are modified and grow in dimension, and that the two middle cones are fused
into one larger cone whose magnetic quiver is decorated in the sense of [20, 21]. The Hasse
diagram becomes

1
g2

USp
, 1
g2

SU
→ 0 , (4.10)

where the black lines are A1 transitions, the double black lines are a1 ∪ a1 transitions, the
blue lines are a2 transitions, the double blue lines are a2 ∪ a2 transitions, the green line is a
a3 transition, the orange lines are a4 transitions, and the yellow line is a c2 transition. The
height of a dot is proportional to the dimension of the corresponding leaf.

5 Outlook

In this paper we show the importance of a novel brane configuration of NS5-D3-D5-O5−
setups. This leads us to explore theories whose Higgs branches consist of many cones using
magnetic quivers. The double T-dual brane web hosts theories whose Higgs branches consist
of many more cones, which are modified by taking gauge couplings to infinity.

Based on the principle of inversion, Coulomb branch Hasse diagrams can be conjectured
from the Higgs branch Hasse diagrams which are computable from the magnetic quivers.
The theories we study are bad, and hence a direct computation of their Coulomb branches
is difficult. It remains a challenge to test our conjectures with explicit computations.
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One feature of the present theories is that their Higgs branch chiral ring may contain
nilpotent operators which are difficult to study. We leave several questions about them for
future work:

• How can we identify nilpotent operators from the brane system?

• What is the fate of nilpotent operators in the quantum moduli space?

• What is the physics of a nilpotent operator?
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A Bad Coulomb branches from inversion, and the full moduli space

Coulomb branches of bad [10] 3d N = 4 theories are difficult to study. The monopole
formula [71], for example, diverges due to the non-conical nature of these Coulomb branches.
In some special cases one can use the Hall-Littlewood formula [72] to obtain a Hilbert series
which captures aspects of, but does not completely describe the Coulomb branch of the bad
theory in question. Framed unitary Dynkin quivers were described as generalized affine
Grassmannian slices in [73] via the BFN construction [74–76], but no description for more
general theories was given so far.10 In principle one can use abelianisation [78] to study
bad Coulomb branches of any gauge theory, as was successfully done in [12, 69] for theories
with a single gauge node, but this is difficult to do for more complicated theories.

It is therefore desirable to find indirect ways to describe the structure of Coulomb
branches of bad theories. Magnetic quivers have proven a useful tool to study Higgs branches
of good, ugly, and bad theories, as is demonstrated for example in the present paper. Let Qe

be a (good, ugly, or bad) 3d N = 4 ‘electric’ theory and {Qi
m} its set of magnetic quivers,

which we assume to be good.11 The Coulomb branches of Qi
m describe the different cones

which make up the Higgs branch of Qe.
We can view an individual magnetic quiver Qi

m as a theory in its own right. This
theory has a Higgs branch, which by 3d mirror symmetry12 is the Coulomb branch of some
(possibly non-Lagrangian) SCFT T ∨im. It is natural to conjecture that this SCFT T ∨im is
realized as a low energy theory on a point (or symplectic leaf) in the Coulomb branch of our
original electric theory Qe, and that the Higgs branch of a magnetic quiver Qi

m describes
the local singular geometry to a specific locus in the Coulomb branch of our original electric
theory Qe.

Furthermore, if all elementary slices in the Coulomb and Higgs branch of our electric
theory Qe are either Kleinian singularities or ADE minimal nilpotent orbit closures, then
we propose that the Hasse diagram of the Coulomb branch of Qe can be obtained through
inversion13 [15] from the Hasse diagram of the classical Higgs branch of Qe, which in turn
can be obtained from the Hasse diagrams of the Coulomb branches of the magnetic quivers
Qi
m, computed e.g. via quiver subtraction.

We test these conjectures on two examples which were studied in detail in the literature,
namely U(k) SQCD in section A.1 and USp(2k) SQCD in section A.2. We then make
new predictions about the Coulomb branch and full moduli space of bad SU(k) SQCD in
section A.3.

10Coulomb branches of orthosymplectic quivers for example have only been given a BFN type description
fairly recently [77].

11It sometimes happens that one finds a magnetic quiver which is bad, and in such cases it is not clear
whether one could find a good magnetic theory, which may not be a quiver, instead.

12Since the magnetic quiver is good there is a point (origin) in its moduli space where it flows to a fully
interacting SCFT. For SCFTs there is a notion of 3d mirror symmetry [79].

13If H is a Hasse diagram where all elementary slices are Kleinian singularities or ADE minimal nilpotent
orbit closures, then the inversion I(H) is obtained by reversing the partial order and exchanging Kleinian
singularities and minimal nilpotent orbit closures associated to the same ADE algebra [15].
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A.1 U(k) SQCD

Consider the electric theory

Qe =
U(k)

N
(A.1)

which is good for N ≥ 2k, ugly for N = 2k − 1, and bad for N ≤ 2k − 2. We discuss the
good and non-good cases separately.

N ≥ 2k. The theory is good and there is complete Higgsing. The magnetic quiver for
good (A.1) is its 3d mirror

Qm =

1 2
· · ·

k

1

· · ·
k

1

· · ·
2 1

N − 1

. (A.2)

It is straightforward to obtain the Coulomb branch Hasse diagram of (A.2) from quiver
subtraction, which is the Higgs branch Hasse diagram of (A.1). As discussed in [15] the
inversion of the Coulomb branch Hasse diagram of (A.2) is the Higgs branch Hasse diagram
of (A.2) and hence the Coulomb branch Hasse diagram of (A.1).

H(C(A.2)) =H(H(A.1)) = ⋮

aN−1

aN−3

aN−2k+3

aN−2k+1

I ⋮

AN−1

AN−3

AN−2k+3

AN−2k+1

=H(H(A.2)) =H(C(A.1)) .

(A.3)
Applying quiver subtraction directly to (A.1) yields the right hand side, confirming the
inversion conjecture.

N < 2k. The theory (A.1) is not good and there is incomplete Higgsing. On a generic
point of the Higgs branch of (A.1) there is an unbroken

U(k − N−ε
2 )

ε

with ε =

1 , N odd
0 , N even

(A.4)

remaining. This is easy to see e.g. from the brane system.
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The magnetic quiver for (A.1) is (independent of k < 2N)14

Qm =



1 2
· · ·

N−1
2

1

N−1
2

1

· · ·
2 1

N − 1

, N odd

1 2
· · ·

N
2

2

· · ·
2 1

N − 1

, N even

. (A.5)

Applying quiver subtraction to (A.5) we obtain its Coulomb branch Hasse diagram, and
hence the Higgs branch Hasse diagram of (A.1). The inversion of this Hasse diagram is the
Higgs branch Hasse diagram of (A.5), as discussed in the previous case. We can conjecture
that it is also the Coulomb branch Hasse diagram of (A.1). This is a non-trivial statement,
as (A.5) is only a magnetic quiver for (A.1) and not its 3d mirror.15

H (C(A.5)) = H (H(A.1)) = ⋮

aN−1

aN−3

a3+ε

a1+ε

I ⋮

AN−1

AN−3

A3+ε

A1+ε

= H (H(A.5)) conjecture= H (C(A.1)) .

(A.6)
Naively applying the quiver subtraction algorithm to (A.1) indeed yields the Hasse diagram
on the right hand side of (A.6). When the quiver subtraction algorithm terminates one is
left with (A.4), the theory which remains on a generic point of the Higgs branch of (A.1).

This has a simple interpretation: a symplectic singularity described by the Hasse diagram
on the right hand side of (A.6) has quaternionic co-dimension16 N−ε

2 . The Coulomb branch
14Here we only consider the case of zero FI parameter. For N ≥ k one may turn on an FI parameter,

which changes the magnetic quiver as discussed e.g. in [9, appendix B].
153d mirror symmetry is a duality of SCFTs. We are currently studying gauge theories which do not

flow to a fully interacting SCFT in the IR (i.e. they are ugly or bad). While the Coulomb branch of the
magnetic quiver is the Higgs branch of the electric quiver, the Higgs branch of the magnetic quiver is not
the Coulomb branch of the electric quiver.

16The dimension of the transverse slice from the bottom to the top leaf. All dimensions given in what
follows are quaternionic dimensions.
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of (A.1) has dimension k. If the right hand side of (A.6) is the Hasse diagram of the
Coulomb branch of (A.1), then the bottom leaf should have dimension k − N−ε

2 , which is
non-zero as for bottom leaves of cones. A natural candidate for this leaf is the Coulomb
branch of (A.4), which is a smooth space with precisely this dimension. We will henceforth
label bottom leaves of non-zero dimension pink in the Coulomb branch Hasse diagram,
denoting the dimension of the leaf. We can propose the following Hasse diagram for the
Coulomb branch of (A.1):

k − N−ε
2

⋮

AN−1

AN−3

A3+ε

A1+ε

(A.7)

This is consistent with the description of the Coulomb branch of (A.1) computed in [73]
via the BFN construction and given in terms of generalized affine Grassmannian slices, and
computed in [69] via abelianisation.

The Hasse diagram of the full moduli space can also be obtained from inversion, as
explained in [15]. For k ≥ 2 and N = 4 in (A.1) we propose the following Hasse diagram of
the full moduli spaceM:

H(M(U(k ≥ 2)− [4])) =

k − 2
A1

A3

a3

a1A1a3

. (A.8)

A.2 USp(2k) SQCD

Consider the electric theory

Qe =
USp(2k)

DN

(A.9)

which is good if N > 2k, it is bad if N ≤ 2k. The good case works completely analogously
to the discussion for the unitary gauge theory. Let us turn to the more interesting case
where (A.9) is bad, i.e. N ≤ 2k. This theory was studied extensively in [12].
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N odd. If N is odd, there is one magnetic quiver

Qm =
1 2

· · ·
N − 2

N−1
2

N−1
2

1

1
. (A.10)

Applying quiver subtraction to (A.10) gives its Coulomb branch Hasse diagram, which we
can identify with the Higgs branch Hasse diagram of (A.9). We can use inversion to obtain
the Higgs branch Hasse diagram of (A.10).

H (C(A.10)) = H (H(A.9)) = ⋮

dN

dN−2

d5

d3

⋮

D3

D5

DN−2

DN

I
= H (H(A.10)) . (A.11)

Following the reasoning of before, we can conjecture the Coulomb branch Hasse diagram
of (A.9):

H (C(A.9)) =

k − N−1
2

⋮

D3

D5

DN−2

DN

(A.12)
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where the bottom smooth leaf is the Coulomb branch of the theory

USp(2k −N − 1)

D1

.

(A.13)

This Hasse diagram is consistent with the analysis of [12].
For k ≥ 2 and N = 5 in (A.9) the proposed Hasse diagram of the full moduli space is

H(M(USp(k ≥ 2)− [D5])) =

k − 2
D3

D5

d5

D3D3d5
. (A.14)

N even. If N is even, there are two magnetic quivers (see section 2)

Q1
m =

1 2
· · ·

N − 2

N
2

N
2 − 1

2
, (A.15a)

Q2
m =

1 2
· · ·

N − 2

N
2 − 1

N
2

2
. (A.15b)

One for each cone in the classical Higgs branch of (A.9). The intersection of the two cones
in the classical Higgs branch is given by

Q12
m =

1 2
· · ·

N − 2

N
2 − 1

N
2 − 11

. (A.16)

Applying quiver subtraction to (A.15a) and (A.15b), with (A.16) their intersection, we get
the Hasse diagram for the classical Higgs branch of (A.9). Following [15] we can conjecture
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its inversion to be the Hasse diagram of the quantum Coulomb branch of (A.9):

H(Hclassical(A.9)) =

dN

dN−2

⋮

d4

a1 a1

I

DN

DN−2

⋮

D4

k − N
2

a1

k − N
2

a1

conjecture= H(C(A.9)) .

(A.17)
In this case, there are two most singular leaves in the quantum Coulomb branch of (A.9)).
Each leaf is the Coulomb branch of pure USp(2k−N). From one lowest leaf there is an em-
anating Higgs branch which is described by the Coulomb branch of the first magnetic quiver.
From the other leaf there is an emanating Higgs branch which is described by the Coulomb
branch of the second magnetic quiver. This is also consistent with the analysis of [12].

For k ≥ 2 and N = 4 in (A.9) the proposed Hasse diagram of the full moduli space is

H(M(USp(k ≥ 2)− [D4])) =

k − 2 k − 2
A1 A1

D4A1

d4

a1

a3

a1A1d4 A1

. (A.18)

A.3 SU(k) SQCD

Let us now consider the electric theory

Qe =
SU(k)

N
(A.19)

which is good for N ≥ 2k − 1 and bad for N < 2k − 1. The classical Higgs branch of this
theory was studied in detail in [7, 8]. We only discuss k ≤ N ≤ 2k − 2, as this is the most
interesting case. There are two cones in the classical Higgs branch, the baryonic cone and
the mesonic cone. At a generic point on the baryonic cone there is complete Higgsing (this
can be seen e.g. from the brane web construction). At a generic point on the mesonic cone
there is incomplete Higgsing. The magnetic quivers are [8]

QB
m =

1 2
· · ·

N − k

1

· · ·
N − k

1

· · ·
2 1

2k −N

N − 1

, (A.20a)
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QM
m =



1 2
· · ·

N−1
2

1

N−1
2

1

· · ·
2 1

N − 1

, if N odd,

1 2
· · ·

N
2

2

· · ·
2 1

N − 1

, if N even.

(A.20b)

The intersection of the two cones in the classical Higgs branch is given by

QBM
m =

1 2
· · ·

N − k

1

· · ·
N − k

· · ·
2 1

N − 1

. (A.21)

Applying quiver subtraction to (A.20a) and (A.20b) with (A.21) their intersection yields
the Hasse diagram of the classical Higgs branch of (A.19) [8]:

H(Hclassical(A.19)) =

⋮

⋰

aN−1

aN−3

a2k−N+1

a2k−N−1

a1+ε

M

A2k−N−1

B

with ε =

1 , if N odd
0 , if N even

,

(A.22)
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which we can invert to obtain the Hasse diagram of the quantum Coulomb branch:

(A.22) I

⋮

⋱

k − N−ε
2 − 1

0

AN−1

AN−3

A2k−N+1

A2k−N−1

A1+ε

M∨

a2k−N−1

B∨

conjecture= H(C(A.19)) .

(A.23)
The leaf in the Coulomb branch of (A.19) denoted B∨ is where the baryonic Higgs branch
(the Coulomb branch of (A.20a)) emanates. It has co-dimension k−1, which is the dimension
of the Coulomb branch, and hence this leaf is of zero dimension. This is consistent with the
fact, that the theory is completely Higgsed on the baryonic branch. The local geometry at
this point B∨ in the Coulomb branch of (A.19) is the Higgs branch of (A.20a).

The leaf in the Coulomb branch of (A.19) denoted M∨ is where the mesonic Higgs
branch (the Coulomb branch of (A.20b)) emanates. It has co-dimension N−ε

2 , and hence
this leaf is of dimension k − N−ε

2 − 1. This is consistent with the fact, that the theory is
incompletely Higgsed on the mesonic branch. The local geometry transverse to a point on
M∨ in the Coulomb branch of (A.19) is the Higgs branch of (A.20b).

The quantum moduli space of (A.19) as a 4d N = 2 theory was explored in [7]. Their
description is consistent with our results.

For k = 3 and N = 4 in (A.19) the proposed Hasse diagram of the full moduli space is

H(M(SU(3)− [4])) =

0 0
a1 A1

A3a1

a3

A1

a3

a1d4

. (A.24)

Since A1 = a1 this Hasse diagram has a Z2 symmetry. However there is no such Z2 symmetry
in the moduli space. The two most singular points (co-dimension 2) in the Coulomb branch
do not have the same local geometry, which is easily seen from the corresponding magnetic
quivers (A.20a) and (A.20b).
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For k = 6 and N = 7 in (A.19) the proposed Hasse diagram of the full moduli space is

H(M(SU(6)− [7])) =

2

0
B∨

M∨

B

C

M

mixed

mixed

a6

A4

a4

a4

A2

A4

A6

a6

a4

a2

a6

a4

a6

A2

A4

A2

.

(A.25)
Here B (M) denotes the baryonic (mesonic) branch in the classical Higgs branch, emanating
from the leaf B∨ (M∨) in the quantum Coulomb branch. C denotes the Coulomb branch,
and mixed stands for either mixed branch.

B Details on the eight cones of SU(2)− SU(4)−USp(6)− [D2]

In this appendix, we consider the quiver (3.1) with n = 2 and p = 3. For this case, there
are 2p = 8 cones to consider. This study is relegated to the appendix as it becomes very
technical, and at first sight does not contain new conceptual difficulties. However it is
a good illustration of the fact that new technical tools and notations become necessary
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to keep track of the combinatorial complexity. In addition, we make an important point
regarding multiplicities in the corresponding Higgs scheme.

The brane system is as follows:

β1 β2 β3
α1,2,3

γ1,2,3

(B.1)

We have decomposed the brane web into nine pieces that individually satisfy charge
conservation, but not the s-rule: α1,2,3, β1,2,3, γ1,2,3. In order to satisfy the s-rule, one can
pair up an γ piece with either an α piece or with a β piece.

In a given phase of the theory, certain subsets of these nine pieces lie at the same
position in the directions transverse to the drawing above, and we can read a magnetic
quiver for this phase. Maximally Higgsed phases correspond to maximal decompositions,
while partially Higgsed phases correspond to non-maximal decompositions. It is important
to keep track of which pieces contributes to each phase, so we adopt a somewhat exotic
notation for the resulting quivers. For instance, the maximal decomposition

β1 β2 β3
α1,2,3

γ1,2,3

(B.2)

has magnetic quiver
1 3 1

1

(B.3)

which will be denoted
α1γ1α2γ2α3γ3β1

β2

β3

(B.4)

The central node α1γ1α2γ2α3γ3 is three copies of the same subweb, and as such it gives rise
to a U(3) gauge node. For better readability, the dark shaded vertices mark U(3) gauge
nodes, light shaded vertices mark U(2) gauge nodes while unshaded vertices are U(1) gauge
nodes. The edge multiplicities are denoted by parallel lines as usual. In our examples the
edge multiplicity is either 2 or 4.
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Using this coding system, it is possible to draw the full Higgs branch Hasse diagram
shown in figure 8. In this figure, each box represents a certain number of phases / leaves,
according to the index structure: 1 for the white boxes, 3 for the orange boxes and 6 for
the red boxes. For instance the 8 cones of the Higgs branch, which are represented in the
top row of figure 8, divide into two singlets and two triplets of the S3 permutation group
(permuting the βi=1,2,3 in (B.1)), as shown by the two white boxes and the two orange boxes.

Higgs scheme. The Higgs Scheme Hilbert series can be computed from the hyper-Kähler
quotient, and one finds

H =

 1 + 4t2 + 20t4 + 98t6 + 315t8 + 865t10 + 1860t12 + 3124t14 + 3918t16

+3671t18 + 1996t20 + 264t22 − 819t24 − 510t26 − 106t28

+280t30 + 29t32 + 3t34 − 50t36 + 10t38 + 4t40 − t42


(1− t2)4(1− t4)2(1− t6)4 . (B.5)

In order to reproduce this from figure 8, one needs to evaluate the Coulomb branch Hilbert
series for all the quivers, and then to find the multiplicities, if they are non-trivial polynomials
in t2. We don’t know of a general method for identifying these polynomials, so we look for
solutions that match with the result (B.5). Namely, there are 17 inequivalent quivers in
figure 8, that form a collection Q, and we look for a coefficient cQ ∈ Z[t2] for each Q ∈ Q
such that ∑

Q∈Q
cQHS(C(Q)) = H . (B.6)

Expanding this equation in t and limiting the search for coefficients of degrees ≤ d gives
infinitely many equations for finitely many unknowns. For d = 0 we find no solution,
meaning that there are nilpotent operators in the scheme. For d = 1 we do find solutions.
Perhaps surprisingly, there is a 12-dimensional space of solutions: this simply echoes the
non-uniqueness of primary decomposition of ideals. The multiplicities of the top two rows
of figure 8 are however uniquely fixed, and the cQ for these rows are degree 0 polynomials.
This suggests that there are no nilpotent operators on the top leaves, but that they do
appear on the lower leaves. It remains a challenge to give an explicit description of the
nilpotent operators.
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