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A short ODE proof of the Fundamental Theorem of Algebra

Ramona Anton1, Nicolae Mihalache2 and François Vigneron3

Abstract

We propose a short proof of the Fundamental Theorem of Algebra based on the
ODE that describes the Newton flow and the fact that the value |P (z)| is a Lyapunov
function. It clarifies an idea that goes back to Cauchy.

Given a polynomial P ∈ C[z] of degree d ≥ 1, we denote by Z(P ) = P−1(0) the set of
its zeros and by Crit(P ) = Z(P ′) the set of its critical points, a finite set (by Euclidean
division). Let also V(P ) = P (Crit(P )) the set of critical values of P .

The Newton flow of P is defined by the ODE

ϕz(0) = z and ϕ′
z(t) = −

P (ϕz(t))

P ′(ϕz(t))
· (1)

The set Z(P ) is composed of stationary solutions of (1). Thanks to the Cauchy-Lipschitz
theorem, the Newton flow is locally well defined starting from any point z /∈ Crit(P ) and
can be extended locally as long as ϕz(t) /∈ Crit(P ). For z /∈ Crit(P ), let us denote by
T (z) ∈ (0,+∞] the maximal forward time of existence of ϕz. One has

∀z /∈ Crit(P ), ∀t ∈ [0, T (z)) P (ϕz(t)) = e−tP (z) (2)

because Leibniz’s rule and (1) imply

d

dt

[

etP (ϕz(t))
]

= etP (ϕz(t)) + etP ′(ϕz(t))ϕ
′
z(t) = 0,

thus the Fundamental Theorem of Calculus gives etP (ϕz(t)) = etP (ϕz(t))
∣

∣

t=0
= P (z). In

particular, Newton’s flow is iso-angle i.e. argP (ϕz(t)) = argP (z) if P (z) 6= 0. Moreover,
for t ∈ (0, T (z)), ϕz(t) ∈ B(z) = {y ∈ C ; |P (y)| ≤ |P (z)|}, which is a compact set
because lim

|z|→∞
|P (z)| = +∞.

Theorem 1. Every non-constant polynomial P ∈ C[z] has at least one root in C.

Proof. Our strategy to find a root of P is to choose a starting point z0 with T (z0) = +∞
and then pass to the limit in (2). We will see that it is enough that arg(P (z0)) avoids
the finite set arg(V(P )). Observe that 0 /∈ V(P ), otherwise P has a root in Crit(P ) and
we stop here.

If T (z) < ∞ for some z ∈ C \ Crit(P ), then P (z) 6= 0. As t → T (z), the orbit
ϕz(t) leaves any compact subset of C\Crit(P ). As ϕz(t) ∈ B(z), a compact set, there
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is a sequence tn → T (z) such that ϕz(tn) converges to some point c ∈ Crit(P ). The
continuity of P at c implies that argP (z) = argP (ϕz(tn)) = arg(P (c)) ∈ arg(V(P )).

Let us find z0 with argP (z0) /∈ arg(V(P )). As lim
|z|→∞

z−dP (z) = α ∈ C
∗, tak-

ing z0 = reiϑ with dϑ + argα /∈ arg(V(P )) mod 2π and r > 0 large enough en-
sures that arg(P (z0)) /∈ arg(V(P )). Therefore T (z0) = +∞ and the bounded sequence
(ϕz0(n))n∈N ⊂ B(z0) admits an accumulation point z∗. The continuity of P at z∗ and (2)
imply that P (z∗) = lim

n→∞
e−nP (z0) = 0.

For a historical review on the Fundamental Theorem of Algebra see e.g. [6], [2,
Chap. II] or [5] and, for a general survey of Newton’s method, see [1]. The idea of
the proof presented in this note can also be found, at a higher level of generality, in
Hirsch-Smale [3].

However, the proof above is also of great practical importance. For example, (2)
implies that, away from roots and critical points, each step of Newton’s method divides
approximately the value of the polynomial by e. In [4] we use this idea to split a non-
trivial polynomial of record degree 1012. We believe it is important to highlight it.

Acknowledgement. The second author would like to thank Dierk Schleicher for sev-
eral insightful discussions about the Newton method and the Newton flow.
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