Angewandte
 -momaneme

Supporting Information

Utilizing Nitroarenes and HCHO to Directly Construct Functional NHeterocycles by Supported Cobalt/Amino Acid Relay Catalysis
J.-L. Sun, C. Ci, H. Jiang, P. H. Dixneuf, M. Zhang*

Table of Contents

1.General Information 3-4
2. Procedure for the Preparation of Various Catalysts 5-7
3. Characterization of the Catalyst 8-13
4. Experimental Procedure $14-20$
4.1. Procedure for Catalyst Recycling
4.2. Poisoning Experiment
4.3. The Procedure for the Synthesis of Imine int-5
4.4. Formaldehyde-adsorption Experiments
4.5. The Crossover Reaction of N-hydroxyaniline and 4 -cyano aniline
4.6. pH-comparison Experiments
4.7. Synthetic Utility
5. Mechanistic studies 21-24
6. References 25
7. Analytical Data of the Obtained Compounds 26-45
8. NMR Spectra of the Obtained Compounds 46-113
9. Cartesian Coordinates and Absolute Energies for All Species 114-129

1. General Information

All chemicals were from commercial and used without further purification. Chemicals used in this work were purchased from the following vendors: nitroarenes (Energy Chemical, Bide Pharmatech Ltd., Accela ChemBio Co., Ltd., Macklin); $37 \mathrm{wt} \% \mathrm{HCHO}$ in $\mathrm{H}_{2} \mathrm{O}$, Cobalt(II) nitrate hexahydrate $\left(\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 99 \%\right)$, $\mathrm{Zinc}(\mathrm{II})$ nitrate hexahydrate $\left(\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 98 \%\right)$, 2methylimidazole ($>98.0 \%$) were provided by Sinopharm Chemical Reagent Co., Ltd. All solvents were purchased from Greagent (Shanghai Titansci incorporated company) and used without further purification. All reactions were heated by metal sand bath (WATTCAS, LAB-500, https://www.wattcas.com.). Column chromatography was performed on silica gel (200-300 mesh). Reactions were monitored by using thin layer chromatography (TLC) (Qingdao Jivida silica gel reagent factory GF254).

All the products were characterized by melting points (m.p.), ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, and mass spectra (MS), the NMR spectra of the known compounds were found to be identical with the ones reported in the literatures. All the new compounds were further characterized by high resolution mass spectra (HRMS). Melting points were measured on an Electrothemal SGW-X4 microscopy digital melting point apparatus and are uncorrected. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}-\mathrm{NMR}$) data were acquired on Bruker Avance 400 (400 MHz), or Bruker Avance 500 (500 MHz). Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; sept, septet; m, multiplet; br, broad; dt, doublet triplet. Proton decoupled Carbon-13 nuclear magnetic resonance ($\left.{ }^{13} \mathrm{C}-\mathrm{NMR}\right)$ data were acquired at 101 MHz on a Bruker Avance 400 spectrometer, or at 125 MHz on a Bruker Avance500. Mass spectra were recorded on Trace DSQ GC/MS, High-resolution mass spectra (HRMS) were recorded on a JEOL JMS-600 spectrometer. TLC was performed using commercially prepared 100-400 mesh silica gel plates (GF254), and visualization was effected at 254 nm .

X-ray photoelectron spectroscopy (XPS) measurements were performed with a Thermo Scientific K-Alpha high-performance electron spectrometer using monochromatized $\mathrm{Al} \mathrm{K} \alpha(.6 \mathrm{eV})$ as the excitation source. The contents of Co in the derived samples were analyzed by an Agilent 5110 inductively coupled plasma atomic emission spectrometer (ICP-AES). Power X-ray diffraction (PXRD) were measured on a D8 ADVANCE diffractometer. Nitrogen sorption measurement was conducted using a Micromeritics ASAP 24603.01 system at 77.15 K .

The transmission electron microscopy (TEM) was acquired on Titan G260-300 with an electron acceleration energy of 200 kV . The high resolution TEM, HAADF-STEM images the corresponding Electron energy-loss spectroscopy were recorded by an EM-ARM300F high-resolution transmission electron microscope working at 200 kV and on a JEOL JEM-2100 TEM with a spherical aberration corrector working at 200 kV .

XAFS measurement and data analysis: XAFS spectra at the Co K-edge (7709 eV) were measured at the beamline 1W1B station of the Beijing Synchrotron Radiation Facility, China. The Co K-edge XANES data were recorded in a fluorescence mode. Co foil, CoO were used as references.
All the calculations were carried out by using the Gaussian 16 C. 01 program package. ${ }^{[1]}$ The geometry optimizations were performed using hybrid B3LYP exchange correlation, ${ }^{[2-4]}$ together with the Grimme D3BJ correction term to the electronic energy. ${ }^{[5,6]}$ The $6-311 G^{* *}$ basis set ${ }^{[7-9]}$ was used for all atoms. Vibrational frequency calculations were performed to characterize the nature of each stationary point and to make the zero-point energy (ZPE) corrections. The minimum energy path (MEP) was constructed by intrinsic reaction coordinate (IRC) theory for each reaction
channel. ${ }^{[10]}$ A tight convergence $\left(10^{-12} \mathrm{au}\right)$ criterion was employed, and the solvent tetrahydrofuran ($\varepsilon=7.43$) was considered using the SMD $^{[11]}$ continuum solvent model (UFF radii).

2. Procedure for the Preparation of Various Catalysts

2.1. Preparation of $\mathbf{C o} / \mathbf{N - S i O} \mathbf{2}$ - $\mathbf{A C}$: Initially, a mixture of $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and $1,10-$ phenanthroline was added to ethanol, and stirred at $100^{\circ} \mathrm{C}$ for 1 hour to in situ generate the cobalt complex. Then, $\mathrm{Si}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{4}$ was added into the above solution and followed by the hydrolysis of TEOS with aq. ammonia to in situ form the silica. After refluxing for 2 hours, activated carbon as the support was poured into the solvent and refluxed for another 5 h . After cooling down to room temperature, the solvent of the suspension was removed under vacuum and the remaining solid was dried overnight. Then, the powder sample was pyrolyzed at $800{ }^{\circ} \mathrm{C}$ under a constant argon atmosphere for 2 h . Subsequently, the cooled sample was treated with HCl solution to selectively remove the unsupported cobalt particles generated during the pyrolysis process, and the remaining catalyst is named as $\mathrm{Co} / \mathrm{N}-\mathrm{SiO}_{2}-\mathrm{AC} .{ }^{[12]}$
2.2. Preparation of $\mathbf{C o} / \mathbf{N}-\mathrm{ZrO}_{2} @ \mathbf{C}$: First, The UiO-66 was synthesized according to the reported literature. A mixture of $\mathrm{ZrCl}_{4}(156 \mathrm{mg})$ and $\mathrm{H}_{2} \mathrm{BDC}$ (1,4-dicarboxybenzene) (108.8 mg) was dissolved in 60 mL DMF containing 7.2 mL HOAc in 100 mL round bottomed flask. Then, the mixture was transferred to a 100 mL Teflon liner and heated at $120^{\circ} \mathrm{C}$ for 12 h . After hydrothermal treatment, the as-obtained precipitates were centrifugated at 11000 rpm for 5 min and washed with the methanol and DMF mixture ($\mathrm{v} / \mathrm{v}=1: 4$) for three times, and then dried under vacuum at $90^{\circ} \mathrm{C}$. Subsequently, $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(37.4 \mathrm{mg})$ and 1,10 -phenanthroline $(54.1 \mathrm{mg})(\mathrm{Co}:$ phenanthroline $=1: 2$ molar ratio) were added in a 100 mL round bottom flask, and stirred in $\mathrm{EtOH}(50 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 1 hour. Silica was then introduced into the above solution by in situ hydrolysis of the added $\mathrm{Si}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{4}$ (TEOS) with aqueous ammonia by stirring for 2 hours at $80^{\circ} \mathrm{C}$. After that, the UiO-66 powder (260 mg) was added to the solution and refluxed for 4 hours at $80^{\circ} \mathrm{C}$, and the mixture was then cooled to room temperature. The solvent was evaporated under vacuo and the remained solid was dried at $60{ }^{\circ} \mathrm{C}$ for 12 hours. The sample was then grinded to fine particles, which was subsequently pyrolyzed under argon at $800^{\circ} \mathrm{C}$ for 3 hours. After the calcined catalyst was cooled down to room temperature, the obtained as black powder was then treated with 2 M NaOH solution for 12 hours at $120{ }^{\circ} \mathrm{C}$ to remove the SiO_{2} templates, and the $\mathrm{Co} / \mathrm{N}-\mathrm{ZrO}_{2} @ \mathrm{C}$ was afforded after filtering, washing and drying. ${ }^{[13]}$
2.3. Preparation of $\mathbf{C o - Z r O} \mathbf{2} / \mathbf{N}-\mathbf{C}$: In a 50 mL round bottomed flask, $\mathrm{ZrCl}_{4}(2.098 \mathrm{~g}, 9 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{BDC}-\mathrm{NH}_{2}(1.630 \mathrm{~g}, 9 \mathrm{mmol})$ were stirred in 60 mL DMF containing 15 mL HOAc at room temperature until dissolved. The mixture of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and ligand DABCO was stirred for 510 minutes in 10 mL DMF, which was then added into the above mixture and sonicated for 30 min . After that, the reaction mixture was transferred to a 100 mL Teflon liner and heated at $120^{\circ} \mathrm{C}$ for 24 h . Upon a hydrothermal treatment, the product was centrifugated at $11,000 \mathrm{rpm}$ for 5 min and washed with a mixture of methanol and DMF $(\mathrm{v} / \mathrm{v}=1: 4)$ for three times, then dried under vacuum at $90^{\circ} \mathrm{C}$. Subsequently, the powder material was pyrolyzed at the $800^{\circ} \mathrm{C}$ for 3 hours under an argon atmosphere, $\mathrm{Co}-\mathrm{ZrO}_{2} / \mathrm{N}-\mathrm{C}$ was obtained as the black powder. ${ }^{[14]}$
2.4. Preparation of $\mathbf{C o O}_{\mathbf{x}} / \mathbf{M S C C}$: The $\mathrm{CoO}_{\mathbf{x}} / \mathrm{MSCC}$ nanoparticles were prepared by an in-situ hard templates method. (1) The synthesis of $\mathbf{S i O}_{2}$ nanospheres: $\mathrm{The}_{\mathrm{SiO}_{2}}$ nanospheres were synthesized according to the reported work. In brief, $82 \mathrm{mg} L$-arginine was dissolved into the mixture of 62 mL deionized water, then added 4 mL cyclohexane. After the solution was heated to $60{ }^{\circ} \mathrm{C}, 4.9 \mathrm{~mL}$ TEOS was dropwise added to the above mixture and kept stirring at $60^{\circ} \mathrm{C}$ for 20 h to make the SiO_{2} seeds grew into spherical particle. To control the different cavity size of SiO_{2} nanospheres, the secondary growth was necessary. Specifically, 216 mL deionized water and 30 mL cyclohexane
were added to the mother liquor, 21 mL TEOS was dropwise added to the above mixture and kept stirring at $60{ }^{\circ} \mathrm{C}$ for 30 h , and finally SiO_{2} nanospheres were obtained. (2) The synthesis of PVP bridged $\mathbf{C o}-\mathbf{P A} / \mathbf{S i O}_{2}: 1.12 \mathrm{~g}$ PVP-k30 (polyvinylpyrrolidone) was dissolved into 40 mL SiO 2 nanosphere solution and stirred for 2 hours to coat on SiO_{2}. Moreover, $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(352.0 \mathrm{mg}$, $1.4 \mathrm{mmol})$ was stirred in ethanol $(100 \mathrm{~mL})$ for 20 min at room temperature until dissolved. Then, 40 Ml of SiO_{2} nanosphere solution was dropwise added to the above mixture, the whole reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 4 h , then kept stirring at room temperature overnight. After that, 2.62 mL concentrated HCl solution $(12 \mathrm{M})$ and 2.05 mL aniline were poured into the above mixture and kept stirring. Subsequently, 21 mL diluted HCl solution $(0.75 \mathrm{M})$ was dissolved with 5.13 g ammonium persulfate, which was dropwise added to the above solution, and then kept stirring under ice bath for 24 hours. After vaporing the solvent at $90^{\circ} \mathrm{C}$ and grinding the remained bottle-green bulk, the PVP bridged $\mathrm{Co}-\mathrm{PA} / \mathrm{SiO}_{2}$ ((PA: polyaniline)) composite powder was obtained. (3) Pyrolyzing the precursors and removing the $\mathbf{S i O}_{\mathbf{2}}$ template: Subsequently, the $\mathrm{Co}-\mathrm{PA} / \mathrm{SiO}_{2}$ composite was pyrolyzed under argon at $800^{\circ} \mathrm{C}$ for 2 h . The SiO_{2} templates were removed with 2 M NaOH solution for 12 hours at $120^{\circ} \mathrm{C}$, and after filtering, washing and drying, the $\mathrm{CoO}_{\mathrm{x}} / \mathrm{MSCC}$ was obtained. Others' MSCC catalysts $\left(\mathbf{F e O}_{\mathbf{x}} / \mathbf{M S C C}, \mathbf{N i O}_{\mathbf{x}} / \mathbf{M S C C}\right)$ were prepared via the same procedure. ${ }^{[15]}$
2.5. Preparation of $\mathbf{C o}-\mathrm{N}_{\mathbf{x}} / \mathbf{N C - 9 0 0}$: At first, $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with a $\mathrm{Co}^{2+} / \mathrm{Zn}^{2+}$ molar ratio of $1: 20$ was dissolved in 80 mL of methanol. ${ }^{[16]}$ Another solution with 2methylimidazole $(3.70 \mathrm{~g})$ and 80 mL methanol was added into the above solution and stirred at room temperature for 24 h . The total mole of $(\mathrm{Zn}+\mathrm{Co})$ was fixed at 5.65 mmol . The purply material was collected by centrifugation and washed with methanol for three times, dried under vacuum at $75^{\circ} \mathrm{C}$ overnight. Then, the dried $\mathrm{Co}_{1} \mathrm{Zn}_{20}$-BMOF power (500 mg) was heated to $900{ }^{\circ} \mathrm{C}$ for 3 h with a heating rate of $5^{\circ} \mathrm{C} / \mathrm{min}$ under flowing argon, then cooled to room temperature naturally to afford Co-N $\mathrm{N}_{\mathrm{x}} /$ NC-900 porous carbon materials. Similarly, the dried $\mathrm{Co}_{1} \mathrm{Zn}_{20}-\mathrm{BMOF}$ power (500 mg) was calcined at $500{ }^{\circ} \mathrm{C}, 700^{\circ} \mathrm{C}$ and $1100^{\circ} \mathrm{C}$ to afford $\mathbf{C o}-\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-500, \mathbf{C o}-\mathbf{N}_{\mathrm{x}} / \mathrm{NC}-700$ and $\mathbf{C o}-\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-$ 1100, respectively.
2.6. Preparation of NC-900: At first, $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.68 \mathrm{~g})$ dissolved in 80 mL methanol was added to another 80 mL of methanol with 3.70 g of 2-methylimidazole, the mixture was stirred at room temperature for $24 \mathrm{~h} .{ }^{[17]}$ The white power was obtained from solution via centrifugation, washed thoroughly with methanol for three times, and dried under vacuo at $75^{\circ} \mathrm{C}$. Then ZIF-8 power (500 mg) was heated to $900^{\circ} \mathrm{C}$ for 3 h with a heating rate of $5^{\circ} \mathrm{C} / \mathrm{min}$ under flowing argon. After cooling down to room temperature, the NC-900 material was afforded.
2.7. Preparations of $\mathrm{Co}_{1 / 1}-\mathrm{N}_{\mathbf{x}} / \mathbf{N C - 9 0 0}, \mathrm{Co}_{1 / 5}-\mathrm{N}_{\mathbf{x}} / \mathbf{N C - 9 0 0}$, and $\mathrm{Co}_{1 / 40}-\mathbf{N}_{\mathbf{x}} / \mathbf{N C - 9 0 0 : ~ F i r s t , ~}$ $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with a $\mathrm{Co}^{2+} / \mathrm{Zn}^{2+}$ molar ratio of $1: 1$ were dissolved in 80 mL of methanol. ${ }^{[16]}$ Meanwhile, $\mathrm{Co}_{1} \mathrm{Zn}_{5}-\mathrm{BMOF}$, and $\mathrm{Co}_{1} \mathrm{Zn}_{40}$ - BMOF were synthesized by $\mathrm{Co}^{2+} / \mathrm{Zn}^{2+}$ molar ratio of 1:5, and 1:40, respectively. Another solution of 2-methylimidazole (3.70 g) in 80 mL methanol was added into the above solution and stirred at room temperature for 24 h . The total mole of ($\mathrm{Zn}+\mathrm{Co}$) was fixed at 5.65 mmol . The purply material was collected by centrifugation and washed with methanol for three times, dried under vacuum at $75^{\circ} \mathrm{C}$ overnight. Then, the resulting $\mathrm{Co}_{1} \mathrm{Zn}_{1}$-BMOF power (500 mg) was heated to $900{ }^{\circ} \mathrm{C}$ for 3 h with a heating rate of $5{ }^{\circ} \mathrm{C} / \mathrm{min}$ under flowing argon, and then cooled to room temperature naturally to afford the $\mathrm{Co}_{1 / 1}-\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ porous carbon materials. Other Co-NC catalysts $\left(\mathrm{Co}_{1 / 5}-\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900, \mathrm{Co}_{1 / 40}-\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900\right)$ were prepared through the same procedure.
2.8. Preparation of $\mathbf{C o} \mathbf{N P s} / \mathbf{N C}-900$: First, a typical procedure was followed to prepare ZIF-67. ${ }^{[18]}$ 0.45 g of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was dissolved in 3 mL of distilled water and mixed with a solution of 2methylimidazole (5.5 g) in 20 mL of water, was then vigorously stirred for 6 h at room temperature $\left(20^{\circ} \mathrm{C}\right)$. The purple products were collected after centrifugation; the product was adequately washed for three times with water and methanol, and dried under vacuum at $75^{\circ} \mathrm{C}$ for 12 h . Then, the ZIF67 power (500 mg) was heated to $900^{\circ} \mathrm{C}$ for 3 h with a heating rate of $5^{\circ} \mathrm{C} / \mathrm{min}$ under flowing argon, then cooled to room temperature naturally to afford the Co NPs/NC-900 material.
2.9. Preparation of Co-phen/NC: The Co-phen/NC was synthesized similarly to the reported procedure. ${ }^{[19]}$ Cobalt(II) acetate tetrahydrate (Sigma-Aldrich $\geq 98 \%, 126.8 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $1,10-$ phenanthroline (phen, Sigma-Aldrich, $\geq 99 \%, 183.5 \mathrm{mg}, 1.0 \mathrm{mmol}$) (Co : phen $=1: 2$ molar ratio) were stirred in ethanol (50 mL) for 30 minutes at room temperature. Then, carbon powder (689.7 mg) (VULCAN® XC72R, Cabot Corporation Prod. Code XVC72R; CAS No. 1333-86-4) was added and the whole reaction mixture was refluxed for 4 hours. The reaction mixture was then cooled to room temperature and the ethanol was removed under vacuo. The solid sample was dried at $60^{\circ} \mathrm{C}$ for 12 hours, and then grinded to a fine powder. The grinded powder was transferred into a ceramic crucible and placed in the oven. The oven was heated to $800^{\circ} \mathrm{C}$ with a rate of $10^{\circ} \mathrm{C} / \mathrm{min}$, and held at $800^{\circ} \mathrm{C}$ for 2 hours under argon atmosphere. After cooling down to room temperature, the desired Co-phen/NC was afforded.
2.10. Preparation of $\mathbf{C o} \mathbf{N P s} / \mathbf{C}$: Cobalt(II) acetate tetrahydrate ($126.8 \mathrm{mg}, 0.5 \mathrm{mmol}$) and carbon powder (689.7 mg) (VULCAN® XC72R) were stirred in ethanol (50 mL) for 4 hours at $80^{\circ} \mathrm{C}$. The reaction mixture was cooled to room temperature and the ethanol was removed under vacuo. The solid sample obtained was dried at $60^{\circ} \mathrm{C}$ for 12 hours, after which it was grinded to a fine powder. Then, the grinded powder was transferred into a ceramic crucible and placed in the oven. The oven was heated to $800{ }^{\circ} \mathrm{C}$ with a rate of $10^{\circ} \mathrm{C} / \mathrm{min}$, and held at $800^{\circ} \mathrm{C}$ for 2 hours under argon atmosphere. After cooling down to room temperature, the desired $\mathrm{Co} \mathrm{NPs} / \mathrm{C}$ was afforded.

3. Characterization of the $\mathrm{Co}-\mathrm{N}_{\mathbf{x}} / \mathrm{NC}-900$ Catalyst

Scheme S1. The synthetic process for the synthesis of Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$.

Figure S1. (a) Powder X-ray diffraction (PXRD) patterns for $\mathrm{Co}_{1} \mathrm{Zn}_{20}$-BMOF. (b) Scanning electron microscopy (SEM) for $\mathrm{Co}_{1} \mathrm{Zn}_{20}-\mathrm{BMOF}$.

XRD patterns and scanning electron microscopy (SEM) image of the as-synthesized $\mathrm{Co}_{1} \mathrm{Zn}_{20}{ }^{-}$ BMOF (Figure S1) matched well with the reported ones. ${ }^{[16-18]}$

Figure S2. (a) XRD pattern of Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$. (b,c) TEM images of Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$. (d) HAADFSTEM images of Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$.

Transmission electron microscopy (TEM) images of the catalyst revealed that, after pyrolysis, the heterozygous polyhedral morphology of $\mathrm{Co}_{1} \mathrm{Zn}_{20}-\mathrm{BMOF}$ was preserved integrally (Figure S2b). The TEM image of $\mathrm{Co}-\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ exhibited clear lattice stripes indexed to the (002) plane of graphic carbons derived from $\mathrm{Co}_{1} \mathrm{Zn}_{20}-\mathrm{BMOF}$, in agreement with a broad peak centered at 25.2° (Figure S2c, Figure S2a). High-angle annular dark-field scanning TEM (HAADF-STEM) and elemental mappings also suggest the cobalt is anchored throughout the Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ with high dispersion (Figure S2d and Figure S6a).

Figure S3. (a) Adsorption-desorption curves and (b) pore diameter distribution of Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$.
Co- $\mathrm{N}_{\mathrm{x}} /$ NC-900 exhibits a typical type-I N_{2} sorption isotherm with a specific surface area of 903 $\mathrm{m}^{2} \mathrm{~g}^{-1}$ (Figure S3a). The remarkable N_{2} uptakes in the low relative pressure range $\left(\mathrm{P} / \mathrm{P}_{0}<0.1\right)$ suggest the dominant existence of micropores, ${ }^{[20,21]}$ as also proved by the pore size distribution (Figure S3b).

Figure S4. X-ray photoelectron spectroscopy (XPS) spectra of Co 2 p. (a) $\mathrm{Co}_{1 / 1}-\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$. (b) $\mathrm{Co}_{1 / 5}-\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$. (c) $\mathrm{Co}-\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$. (d) $\mathrm{Co}_{1 / 40}-\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$.

Figure S5. The X-ray photoelectron spectroscopy (XPS) spectra for N 1s of different Co-loading catalysts.

X-ray photoelectron spectroscopy (XPS) analyses show that the high-resolution N 1 s spectrum can be deconvoluted into graphitic-N $(\mathrm{N} 1,401.1 \pm 0.3 \mathrm{eV})$, pyrrolic- $\mathrm{N}(\mathrm{N} 2,400.5 \pm 0.3 \mathrm{eV})$, pyridinic-N (N3, 398.5 $\pm 0.2 \mathrm{eV}$) and $\mathrm{Co}^{-} \mathrm{N}_{\mathrm{x}}(\mathrm{N} 4,399.2 \pm 0.1 \mathrm{eV})$ (Figure S5, Table S2), and the pyridinic and pyrrolic- N are the major species.

Figure S6. HAADF-STEM image and the corresponding EDX elemental mapping of C (green), N (yellow), and Co (red).

Figure S7. (a) XANES spectra at the Co K-edge of $\mathrm{Co}_{3} \mathrm{O}_{4}, \mathrm{CoO}, \mathrm{CoPc}$, Co foil and $\mathrm{Co}-\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ catalyst. (b) k space EXAFS curves of $\mathrm{Co}_{3} \mathrm{O}_{4}, \mathrm{CoO}, \mathrm{CoPc}, \mathrm{Co}$ foil and $\mathrm{Co}-\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$.

The Co K-edge of Co-N $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ is located between that of Co foil and CoPc, suggesting that Co species possess positive charge with the valence number between 0 and +4 .

Figure S8. Corresponding Co K-edge EXAFS fitting curve of Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$.

Figure S9. Corresponding Co K-edge EXAFS fitting curves of Co foil, $\mathrm{CoPc}, \mathrm{CoO}$, and $\mathrm{Co}_{3} \mathrm{O}_{4}$.

Figure S10. Catalyst recycling experiments at full and half conversions. Reaction condition A: the reaction of $\mathbf{A 1}(0.25 \mathrm{mmol}), \mathrm{HCHO}(0.5 \mathrm{mmol}), \mathrm{HCOOH}(1.25 \mathrm{mmol}), L$-proline $(0.075 \mathrm{mmol})$, and Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900\left(20 \mathrm{mg}, 3.83 \mathrm{~mol} \%\right.$) in THF (2 mL) was performed at $100^{\circ} \mathrm{C}$ for 20 h under N_{2} protection. Reaction condition B: the same as "A" for 8 h .

Figure S11. (a) Evolution of PXRD patterns of different Co-loading catalysts. Evolution of (b,c) PXRD patterns, (d) Co 2p XPS, (e) N 1s XPS and (f) C 1 s XPS of the pyrolysis of $\mathrm{Co}_{1} \mathrm{Zn}_{20}$-BMOF under temperature-dependent measurement.

The results of PXRD and XPS show that the original structure of MOF has been basically retained and there was no Co- N_{x} species formed during the pyrolysis of $\mathrm{Co}_{1} \mathrm{Zn}_{20}-\mathrm{BMOF}$ at $500^{\circ} \mathrm{C}$ (Figures $\mathrm{S} 11 \mathrm{~b}, \mathrm{~d}-\mathrm{f})$. The increase of pyrolysis temperature to $700^{\circ} \mathrm{C}$ led to gradual collapse of the MOF skeleton, and resulted in small amount of $\mathrm{Co}-\mathrm{N}_{\mathrm{x}}$ species and pyridinic-N (Figures S11d-f). The material calcined at $900^{\circ} \mathrm{C}$ contains abundant pyridinic-N, pyrrolic-N, and Co- N_{x} species, which exhibits the best catalytic performance. When the temperature was increased to $1100{ }^{\circ} \mathrm{C}$, a set of well-defined Co-nanoparticle signals appeared and no characteristic peaks of pyridinic-N and pyrrolic-N were detected.

Figure S12. (a) PXRD patterns, (b) HAADF-STEM image and (c,d) XPS spectra of the catalyst after reuse of six runs.

The PXRD, HAADF-STEM and XPS spectra of Co-N N_{x} NC-900 after six consecutive runs did not show significant difference as compared with the fresh catalyst, revealing that the structure of cobalt catalyst was maintained very well.

Table S1. EXAFS data fitting results of $\mathrm{Co}-\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$.

Sample	Path	N	$\Delta \mathrm{E}(\mathrm{eV})$	$100 \times \mathrm{R}(\AA)$	$10^{3} \mathrm{x}^{2}\left(\AA^{2}\right)$	R-factor
Co foil	Co-Co	12	6.54(0.52)	249.0(0.4)	6.02(0.41)	0.003
CoO	$\mathrm{Co}-\mathrm{O}$	6	-6.12(1.94)	211.2(1.3)	8.62(1.61)	0.006
	Co-Co	12	-5.12(1.93)	300.3(1.6)	8.62(2.91)	
$\mathrm{Co}_{3} \mathrm{O}_{4}$	Co-O1	2	2.57(0.96)	193.3(0.7)	3.69(0.18)	0.002
	Co-O2	4	6.13(1.14)	192.8(0.7)	4.26(0.75)	
	Co-Col	4	-2.42(0.93)	289.3(1.3)	4.78(0.57)	
	Co-Co2	2	8.61(1.48)	315.3(1.2)	5.46(1.53)	
CoPc	$\mathrm{Co}-\mathrm{N}$	4	5.46(1.12)	191.9(2.1)	3.92(0.46)	0.005
Co- $\mathrm{N}_{\mathrm{X}} / \mathrm{NC}-900$	$\mathrm{Co}-\mathrm{N}$	4.90(0.81)	-4.69(1.91)	197.1(1.6)	8.16(1.23)	0.006
	Co-Co	1.37(0.22)	1.81(0.36)	253.0(1.1)	7.13(2.03)	

N , coordination number; R, distance between absorber and backscatter atoms; σ^{2}, the Debye-
Waller factor value; $\Delta \mathrm{E}_{0}(\mathrm{eV})$, inner potential correction to account for the difference in the inner potential between the sample and the reference compound.
Table S2. The total-N and relative atomic ratios of different N types based on XPS analyses in series of cobalt catalysts.

	Graphitic-N	Pyridinic-N	Pyrrolic-N	Co- $\mathrm{N}_{\mathbf{x}}$	$\mathrm{C}=\mathrm{N}$	C-N	Total-N
$\mathrm{Co}_{1 / 1}-\mathrm{N}_{\mathbf{x}} / \mathrm{NC}-900$	56.88\%	23.19\%	7.31\%	12.62\%	-	-	7.04\%
$\mathrm{Co}_{1 / 5}-\mathrm{N}_{\mathbf{x}} / \mathrm{NC}-900$	46.31\%	28.39\%	8.22\%	17.08\%	-	-	10.35\%
Co-Nx/NC-900	28.53\%	55.28\%	11.82\%	4.38\%	-	-	13.77\%
$\mathrm{Col}_{1 / 40} \mathrm{~N}_{\mathbf{x}} / \mathrm{NC}-900$	33.87\%	57.28\%	6.04\%	2.81\%	-	-	17.53\%
Co-Nx/NC-500	-	-	-	-	19.73\%	80.27\%	13.15\%
Co- $\mathrm{N}_{\mathbf{x}} / \mathrm{NC}-700$	-	67.1\%	-	2.07\%	27.59\%	3.24\%	11.21\%
Co-N $\mathrm{N}_{\mathbf{x}} / \mathrm{NC}-1100$	71.26\%		-	28.74\%	-	-	2.94\%

4. Experimental Procedure

Table S3. Optimization of reaction conditions for synthesis of $\mathbf{B 1}$ from nitrobenzene $\mathbf{A 1}{ }^{[a]}$

	$\begin{gathered} +\mathrm{HCHO} \\ \text { nmol } \\ 2 \mathrm{eq} \end{gathered}$	Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$, additive hydrogen, solvent, $\mathrm{T} /{ }^{\circ} \mathrm{C}, 20 \mathrm{~h}$ B1		
Entry	Additive	Hydrogen	Solvent	Yield [\%] ${ }^{\text {[b] }}$
1	L-proline	HCOOH	THF	$81^{\text {[c] }}$
2	$\mathrm{CF}_{3} \mathrm{COOH}$	HCOOH	THF	n.d.
3	Pyridine	HCOOH	THF	18
4	L-Prolinamide	HCOOH	THF	60
5	2-Phenylpyrrolidine	HCOOH	THF	40
6	L-proline	HCOOH	MeCN	24
7	L-proline	HCOOH	toluene	5
8	L-proline	HCOOH	MeOH	47
9	L-proline	HCOOH	tert-amyl alcohol	trace
10	L-proline	HCOOH	1,4-dioxane	34
11	L-proline	HCOOH	$\mathrm{H}_{2} \mathrm{O}$	n.d.
12	L-proline	HCOOH	THF	$48^{\text {[d] }}$
13	L-proline	HCOOH	THF	$(21,49)^{[\mathrm{e}]}$

[a] $\overline{\text { Reaction conditions: nitrobenzene (} 0.25 \mathrm{mmol} \text {), HCHO (} 2 \mathrm{eq} \text {), catalyst (} 20 \mathrm{mg}, 3.83 \mathrm{~mol} \% \text {), }, ~} L$ proline ($30 \mathrm{~mol} \%$), HCOOH (5 eq), and THF (2 mL), $100^{\circ} \mathrm{C}, 20 \mathrm{~h}$. [b] Determined by gas chromatography (GC) using n-hexadecane as an internal standard. [c] Isolated yield. [d] THF (1 mL) instead of THF (2 mL). [e] Reaction temperatures are with respect to $80^{\circ} \mathrm{C}$ and $120^{\circ} \mathrm{C}$, respectively.

Table S4. Control experiments of $\mathbf{B 1}$ from nitrobenzene $\mathbf{A} \mathbf{1}^{[2]}$

Entry	Control Experiment	B1 Yield $[\%]^{[b]}$
1	standard conditions	81
2	no HCHO	0
3	no HCOOH	0
4	no Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$	0
6	cobalt acetate instead of $\mathrm{Co}-\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$	0

[a] Reaction conditions: A1 (0.25 mmol), $\mathrm{HCHO}(2 \mathrm{eq}$.$) , catalyst (20 \mathrm{mg}$), L-proline ($30 \mathrm{~mol} \%$), HCOOH (5 eq .), and THF (2 mL), $100^{\circ} \mathrm{C}, 20 \mathrm{~h}$. [b] Determined by gas chromatography (GC) using n -hexadecane as an internal standard.

Figure S13. Catalytic performance comparison on the formation of product $\mathbf{B 1}$ from nitrobenzene A1 and formaldehyde. Reaction conditions: nitrobenzene (0.25 mmol), HCHO (2 eq .), catalyst (Co: $3.83 \mathrm{~mol} \%$), L-proline ($30 \mathrm{~mol} \%$), HCOOH (5 eq.), and pure THF (2 mL), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$.

The others heterogeneous base metal catalysts previously employed in transfer hydrogenation reactions ${ }^{[22-25]}$ were tested to compare with $\mathrm{Co}-\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$, and they resulted in either poor selectivity or no product formation (Figure S13). Meanwhile, the N-doped carbon matrix (NC-900), Co nanoparticles (Co NPs/NC-900, Co-phen/NC and Co NPs/C), and several different Co-loading catalysts $\left(\mathrm{Co}_{1 / 40}-\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900, \mathrm{Co}_{1 / 5}-\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900\right.$ and $\mathrm{Co}_{1 / 1}-\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ derived from $\mathrm{Co}_{1} \mathrm{Zn}_{40}-\mathrm{BMOF}$, $\mathrm{Co}_{1} \mathrm{Zn}_{5}$-BMOF and $\mathrm{Co}_{1} \mathrm{Zn}_{1}$-BMOF, respectively) have also been prepared, and then applied for the model reaction. The NC showed no activity for nitro reduction. Nitrogen-doped Co NPs exhibited low selectivity, and complex aniline by-products (aniline, N -methylaniline, N, N-dimethylaniline, N formyl aniline) were detected by GC-MS analysis. Similarly, Co NPs/C gave no product formation. The selectivity of B1 decreased gradually with the increase of Co-loading, revealing that the cobalt loading affects the composition of the active species in the catalysts (Figure S13, Figure S11a). Further, the Co-catalysts pyrolyzed at $500^{\circ} \mathrm{C}, 700^{\circ} \mathrm{C}$ and $1100^{\circ} \mathrm{C}$ exhibited lower activity than Co$\mathrm{N}_{\mathrm{x}} /$ NC-900, indicating that the pyrolysis temperatures affect the chemical environments of the Cospecies and N -species (Figures S11b-f).

A1

A2

A3

A4

A10

A27
A9

A15

A22

A28

7

A5

A11

A20

A26

A29

A14

A6

A7

A12
A13

Scheme S2. Nitroarenes employed for the synthesis of imidazolines

4.1. Procedure for Catalyst Recycling

Catalyst recycling experiments at full conversions: under nitrogen atmosphere, Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ (20 mg), L-proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}$), nitrobenzene ($25.5 \mu \mathrm{~L}, 0.25$ mmol), $37 \mathrm{wt} \% \mathrm{HCHO}$ in $\mathrm{H}_{2} \mathrm{O}(37.2 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ and fresh THF $(2 \mathrm{~mL})$ were added successively to a Schlenk tube $(50 \mathrm{~mL})$ equipped with a magnetic stirrer bar, the Schlenk tube was then closed and the resulting reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 20 h . After cooling down to room temperature, $10 \mathrm{mg} n$-hexadecane was added to the solution and the yield was determined by GCMS analysis. The catalyst was isolated by centrifugation, washed with methanol for three times, then dried under vacuum at $60^{\circ} \mathrm{C}$ for 4 h . Catalyst recycling experiments at half conversions was followed by the same procedure as full conversions for 8 h .

4.2. Poisoning Experiment

Under nitrogen atmosphere, Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}), L$-proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), HCOOH (47 $\mu \mathrm{L}, 1.25 \mathrm{mmol}$), nitrobenzene ($25.5 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$), $37 \mathrm{wt} \% \mathrm{HCHO}$ in $\mathrm{H}_{2} \mathrm{O}(37.2 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$, KSCN (10.0 mg), and fresh THF (2 mL) were added successively to a Schlenk tube (50 mL) equipped with a magnetic stirrer bar, the Schlenk tube was then closed and the resulting reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 20 h . After cooling down to room temperature, 10 mg n hexadecane was added to the solution and the yield was determined by GC-MS analysis.

4.3. The Procedure for the Synthesis of Imine int-5

At room temperature, the mixture of aniline ($23 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$), $37 \mathrm{wt} \% \mathrm{HCHO}$ in $\mathrm{H}_{2} \mathrm{O}(18.6$ $\mu \mathrm{L}, 0.25 \mathrm{mmol}$) and $\mathrm{MeOH}(2 \mathrm{~mL})$ was added successively to a round-bottom flask (50 mL) equipped with a magnetic stirrer bar under air for 1 h . The solvent was evaporated off by rotary evaporator, and the remaining product was put into the reaction directly.

4.4. Formaldehyde-adsorption Experiments

The formaldehyde concentrations in solution were detected by acetylacetone spectrophotometric method. The method is based on the reaction of formaldehyde with the acetylacetone and its read by a spectrophotometer. First, in a 10 mL glass beaker, $\mathrm{CH}_{3} \mathrm{COONH}_{4}(12.5 \mathrm{~g})$ was dissolved in 5 mL distilled water at room temperature. Then, $\mathrm{CH}_{3} \mathrm{COOH}(1.5 \mathrm{~mL})$ and acetylacetone $(0.125 \mathrm{~mL})$ were added into the above solution and diluted to 50 mL to prepare the acetylacetone reagent. Secondly, four identical glass bottles to mark as A, B, C, D. The vial "A" was added $38 \mu \mathrm{LHCHO}$ ($37 \mathrm{wt} \%$) and 2 mL purified water. The vial " B " was added 1 mL acetylacetone and 2 mL purified water. The vial "C" was added $38 \mu \mathrm{~L}$ HCHO ($37 \mathrm{wt} \%$), 1 mL acetylacetone and 2 mL purified water to get a yellow liquid. The vial "D" was added $38 \mu \mathrm{~L}$ HCHO ($37 \mathrm{wt} \%$), 1 mL acetylacetone, 2 mL purified water and 20 mg catalyst equipped with a magnetic stirrer bar under air for 1 h to get the colorless solution. Finally, the amount of adsorbed formaldehyde was determined by a spectrophotometer at 412 nm wavelength.

Figure S14. Formaldehyde-adsorption experiments.

4.5. The Crossover Reaction of \mathbf{N}-hydroxyaniline and 4 -cyano aniline

At room temperature, the mixture of N -hydroxyaniline (0.25 mmol), 4-cyano aniline (0.5 mmol), HCHO (1.5 mmol) and THF (2 mL) was added successively to a Schlenk tube (50 mL) equipped with a magnetic stirrer bar. Under N_{2} atmosphere, Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}), L$-proline (0.2 mmol) and $\mathrm{HCOOH}(1.25 \mathrm{mmol})$ were then added into the system, successively. Then, the Schlenk tube was closed and the resulting mixture was stirred at $100^{\circ} \mathrm{C}$ (metal bath temperature) for 10 h . After cooling down to room temperature, $10 \mathrm{mg} n$-hexadecane was added to the solution and the yield was determined by GC-MS analysis.

4.6. pH-comparison Experiments

Under nitrogen atmosphere, Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}), L$-proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), hydrogen source ($\mathrm{HCOOH} / \mathrm{HCOONa}$ in molar ratio, 1.25 mmol), nitrobenzene ($25.5 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$), $37 \mathrm{wt} \%$ HCHO in $\mathrm{H}_{2} \mathrm{O}(37.2 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ and fresh THF (2 mL) were added successively to a Schlenk tube $(50 \mathrm{~mL})$ equipped with a magnetic stirrer bar, the Schlenk tube was then closed and the resulting reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 20 h . After cooling down to room temperature, $10 \mathrm{mg} n$ hexadecane was added to the solution and the yield was determined by GC-MS analysis. The pH of the reaction system was determined using the pH meter.

Figure S15. pH-comparison experiments.

4.7. Synthetic Utility

(1) Amplified synthesis of compound B1

Under N_{2} atmosphere, $\mathrm{Co}-\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900100 \mathrm{mg}$, L-proline ($30 \mathrm{~mol} \%$), nitrobenzene $\mathbf{A 1}$ (2.5 mmol), HCHO (5 mmol), $\mathrm{HCOOH}(12.5 \mathrm{mmol})$, and fresh THF (30 mL) were introduced in a Schlenk tube $(200 \mathrm{~mL})$, successively. Then, the Schlenk tube was closed and the resulting mixture was stirred at $100^{\circ} \mathrm{C}$ (metal bath temperature) for 48 h . After cooling down to room temperature, the reaction was quenched with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, extracted with ethyl acetate ($3 \times 15 \mathrm{~mL}$), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The reaction mixture was concentrated by removing the solvent under vacuum, and the residue was purified by column chromatography on silica gel, eluting with petroleum ether/ethyl acetate (40:1) to give the product B1.
(2) Gram-scale synthesis of compound B6 and B8

Under N_{2} atmosphere, Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ (300 mg), L-proline ($30 \mathrm{~mol} \%$), nitrobenzene $\mathbf{A 6}$ or A8 (10 mmol), HCHO (20 mmol), $\mathrm{HCOOH}(50 \mathrm{mmol})$, and fresh THF $(80 \mathrm{~mL})$ were introduced in a Schlenk tube (200 mL), successively. Then, the Schlenk tube was closed and the resulting mixture was stirred at $100{ }^{\circ} \mathrm{C}$ (metal bath temperature) for 48 h . After cooling down to room temperature, the reaction was quenched with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The reaction mixture was concentrated by removing the solvent under vacuum, and the residue was purified by column chromatography on silica gel, eluting with petroleum ether/ethyl acetate $(40: 1)$ or petroleum ether/ethyl acetate $(5: 1)$ to give the product B6 and B8, respectively.
(3) Preparation of cyclic thiourea B45 (CAS: 1687-58-7) from B1

Under argon atmosphere, sulfur ($240.5 \mathrm{mg}, 7.5 \mathrm{mmol}$) and B1 ($336 \mathrm{mg}, 1.5 \mathrm{mmol}$) were introduced in a Schlenk tube (50 mL), sealed and standed at $150^{\circ} \mathrm{C}$ (metal bath temperature) for 12 h. After cooling down to room temperature, the reaction was quenched with ethyl acetate (2 mL) and then was filtered through a Buchner funnel. The filtrated mixture was concentrated by removing the solvent under vacuum, and the residue was purified by column chromatography on silica gel, eluting with petroleum ether to give the product thioureas $\mathbf{B 4 5}$ ($298 \mathrm{mg}, 78 \%$ yield).
(4) Synthesis of imidazolinium salts (C1-C13)

To a stirred solution of imidazolines (0.1 mmol) in 1,2-dimethoxyethane $(1 \mathrm{~mL})$, the corresponding dehydrogenating agent $(0.1-0.5 \mathrm{mmol})$ was added in two portions at 10 minutes
intervals. Stirring was continued at room temperature for 30 minutes- 2 hours. The products were collected, washed with 1,2-dimethoxyethane and recrystallized from anhydrous methanol.
(5) Synthesis of Ibuprofen derivatives B46

A flame-dried round-bottom flask was charged with (R)-2-(4-isobutylphenyl)propanoic acid (7.0 mmol $)$, DCC $(1.90 \mathrm{~g}, 12.0 \mathrm{mmol})$, and DMAP $(74.0 \mathrm{mg}, 0.6 \mathrm{mmol})$. The contents of the flask were suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20.0 \mathrm{~mL})$ and allowed to stir for $\sim 5 \mathrm{~min}$ before alcohol ($612.2 \mathrm{mg}, 4.0 \mathrm{mmol}$) was added. The reaction was stirred for overnight and was then filtered through a cotton plug. The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30.0 \mathrm{~mL})$. The resulting organic layers were combined, dried over sodium sulfate, and filtered. The solvent was removed under reduced pressure to afford the crude material A46, which was purified by column chromatography.

Under N_{2} atmosphere, $\mathrm{Co}-\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}), L$-proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), A46 ($85.3 \mathrm{mg}, 0.25$ mmol), $\mathrm{HCHO}(38 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$, $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol})$, and fresh THF (2 mL) were introduced in a Schlenk tube (50 mL), successively. Then, the Schlenk tube was closed and the resulting mixture was stirred at $100^{\circ} \mathrm{C}$ (metal bath temperature) for 20 h . After cooling down to room temperature, the reaction was quenched with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, extracted with ethyl acetate $(3 \times 15 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The reaction mixture was concentrated by removing the solvent under vacuum, and the residue was purified by column chromatography on silica gel, eluting with petroleum ether/ethyl acetate (5:1) to give the product B46 (35.5 mg, 43\% yield).
(6) Synthesis of Adapalene derivatives B47

A flame-dried round-bottom flask was charged with Adapalene (7.0 mmol), DCC ($1.90 \mathrm{~g}, 12.0$ mmol), and DMAP ($74.0 \mathrm{mg}, 0.6 \mathrm{mmol}$). The contents of the flask were suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20.0$ $\mathrm{mL})$ and allowed to stir for $\sim 5 \mathrm{~min}$ before alcohol $(612.2 \mathrm{mg}, 4.0 \mathrm{mmol})$ was added. The reaction was stirred for overnight and was then filtered through a cotton plug. The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30.0 \mathrm{~mL})$. The resulting organic layers were combined, dried over sodium sulfate, and filtered. The solvent was removed under reduced pressure to afford the crude material A47, which was purified by column chromatography.

Under N_{2} atmosphere, $\mathrm{Co}^{2} \mathrm{~N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}), L$-proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), A47 (137 mg, 0.25 mmol), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}$), and fresh THF (2 mL) were introduced in a Schlenk tube (50 mL), successively. Then, the Schlenk tube was closed and the resulting mixture was stirred at $100^{\circ} \mathrm{C}$ (metal bath temperature) for 20 h . After cooling down to room temperature, the reaction was quenched with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, extracted with ethyl
acetate $(3 \times 15 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The reaction mixture was concentrated by removing the solvent under vacuum, and the residue was purified by column chromatography on silica gel, eluting with petroleum ether/ethyl acetate (5:1) to give the product $\mathbf{B 4 7}(53.6 \mathrm{mg}, 40 \%$ yield).

5. Mechanistic studies

Figure S16. HR-MS of the intermediates by interruption of the model reaction after 20 min : (a) int-3, (b) int-5 and (c) int-6.

Figure S17. HR-MS of the product B37 generated from imine int-5 and m-chloronitrobenzene.

Figure S18. The FT-IR spectra of L-proline and the mixture of L-proline and Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$.

Figure S19. The ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ spectra of L-proline, $\mathrm{Co}-\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$, and the mixture of L-proline and Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$.

Figure S20. The ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) spectra of L-proline, $\mathrm{Co}-\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$, and the mixture of L-proline and Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$.

6. References

1. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, et al. Gaussian 16 Rev. C. 012016.
2. A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100.
3. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789.
4. A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
5. S. Grimme, J. Anthony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
6. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
7. M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654-3665.
8. W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257-2261.
9. P. C. Hariharan, J. A. Pople, Theor. Chim. Acta. 1973, 28, 213-222.
10. H. P. Hratchian, H. B. Schlegel, J. Chem. Phys. 2004, 120, 9918-9924.
11. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
12. C. Zhou, Z. Tan, H. Jiang, M. Zhang, Green Chem. 2018, 20, 1992-1997.
13. R. Xie, G.-P. Lu, H.-F. Jiang, M. Zhang, J. Catal. 2020, 383, 239-243.
14. F. Xie, Q.-H. Chen, R. Xie, H.-F. Jiang, M. Zhang, ACS Catal. 2018, 8, 5869-5874.
15. F. Xie, R. Xie, J.-X. Zhang, H.-F. Jiang, L. Du, M. Zhang, ACS Catal. 2017, 7, 4780-4785
16. Y.-Z. Chen, C. Wang, Z.-Y. Wu, Y. Xiong, Q. Xu, S.-H. Yu, H.-L. Jiang, Adv. Mater. 2015, 27, 5009-5009
17. S. R. Venna, J. B. Jasinski, M. A. Carreon, J. Am. Chem. Soc. 2010, 132, 18030-18033.
18. J. Qian, F. Sun, L. Qin, Mater. Lett. 2012, 82, 220-223.
19. F. A. Westerhaus, R. V. Jagadeesh, G. Wienhofer, M. M. Pohl, J. Radnik, A. E. Surkus, J. Rabeah, K. Junge, H. Junge, M. Nielsen, A. Bruckner, M. Beller, Nat. Chem. 2013, 5, 537-543.
20. R. Zhao, Z. Liang, S. Gao, C. Yang, B. Zhu, J. Zhao, C. Qu, R. Zou, Q. Xu, Angew. Chem., Int. Ed. 2019, 58, 1975-1979.
21. Q.-L. Zhu, W. Xia, T. Akita, R. Zou, Q. Xu, Adv. Mater. 2016, 28, 6391-639.
22. R. Xie, W. Mao, H. Jia, J. Sun, G. Lu, H. Jiang, M. Zhang, Chem. Sci. 2021, 12, 13802-13808.
23. C. Zhou, Z. Tan, H. Jiang, M. Zhang, Green Chem. 2018, 20, 1992-1997.
24. R. Xie, G.-P. Lu, H.-F. Jiang, M. Zhang, J. Catal. 2020, 383, 239-243.
25. F. Xie, Q.-H. Chen, R. Xie, H.-F. Jiang, M. Zhang, ACS Catal. 2018, 8, 5869-5874.

7. Analytical Data of the Obtained Compounds

1,3-diphenylimidazolidine (B1)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}, 3.83 \mathrm{~mol} \%$), nitrobenzene ($30.8 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$.), $\mathrm{HCHO}(38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}),$.$L -proline (9 \mathrm{mg}, 30$ $\mathrm{mol} \%$), $\mathrm{HCOOH}\left(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}\right.$.), and THF (2 mL), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=40 / 1$) afforded the title compound as a yellow solid ($23 \mathrm{mg}, 81 \%$ yield, m.p.: $120.9-121.9^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.83(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 4 \mathrm{H}$), $4.68(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) δ 146.40, 129.39, $117.65,112.45,65.87,46.48 ;$ MS (EI, m/z): $224.14[\mathrm{M}]^{+}$.

1,3-di-p-tolylimidazolidine (B2)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 3.83 \mathrm{~mol} \%$), 1-methyl-4-nitrobenzene ($34.3 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$.), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}$.$) , and THF (2 \mathrm{~mL}$), $100{ }^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=40 / 1$) afforded the title compound as a white solid ($23 \mathrm{mg}, 73 \%$ yield, m.p.: $184.2-185.2^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.61(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 4.62(\mathrm{~s}$, 2H), $3.62(\mathrm{~s}, 4 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 143.44, 128.79, 125.72, 111.48, 65.41, 45.77, 19.34; MS (EI, m/z): $252.15[\mathrm{M}]^{+}$.

1,3-di-m-tolylimidazolidine (B3)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 3.83 \mathrm{~mol} \%$), 1-methyl-3-nitrobenzene ($34.3 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$.), $\mathrm{HCHO}(38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), $\mathrm{HCOOH}\left(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}\right.$), and THF (2 mL), $100{ }^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=40 / 1$) afforded the title compound as a yellow crystal ($19.5 \mathrm{mg}, 61 \%$ yield, m.p.: $101-102{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.20(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, 4 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 4 \mathrm{H}), 2.37(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) $\delta 146.52$, 139.14, 129.21, 118.57, 113.19, 109.67, 65.91, 46.50, 21.82; MS (EI, m/z): $252.18[\mathrm{M}]^{+}$.

1,3-bis(4-fluorophenyl)imidazolidine (B4)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}, 3.83 \mathrm{~mol} \%$), 1-fluoro-4-nitrobenzene ($35.3 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$), , L-proline (9 $\mathrm{mg}, 30 \mathrm{~mol} \%)$, $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}$.$) , and THF (2 \mathrm{~mL}$), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=45 / 1$) afforded the title compound as a brown solid ($25.1 \mathrm{mg}, 77 \%$ yield, m.p.: $149.8-151^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.01(\mathrm{t}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.61-6.57(\mathrm{~m}, 4 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H})$, 3.61 ($\mathrm{s}, 4 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 156.98$, 155.11, 143.06, 115.94, 115.76, 113.21, 113.16, 66.88, 47.15; ${ }^{19}$ F NMR (471 MHz, Chloroform- d) δ-127.70; MS (EI, m/z): $260.11[\mathrm{M}]^{+}$.

1,3-bis(3-chlorophenyl)imidazolidine (B5)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 3.83 \mathrm{~mol} \%$), 1 -chloro-3-nitrobenzene ($39.3 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$.), $\mathrm{HCHO}(38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}$.$) , and THF (2 \mathrm{~mL}$), $100{ }^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=40 / 1$) afforded the title compound as a yellow solid ($22.3 \mathrm{mg}, 61 \%$ yield, m.p.: $107.9-109^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.20(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~s}, 2 \mathrm{H})$, $6.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) $\delta 147.05$, $135.23,130.36,117.73,112.41,110.64,65.45,46.30$; MS (EI, m/z): $292.05[\mathrm{M}]^{+}$.

1,3-bis(4-bromophenyl)imidazolidine (B6)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 3.83 \mathrm{~mol} \%$), 1-bromo-4-nitrobenzene ($50.3 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$.), $\mathrm{HCHO}(38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}$.$) , and \mathrm{THF}(2 \mathrm{~mL}), 100{ }^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=40 / 1$) afforded the title compound as a brown acicular crystal ($34.2 \mathrm{mg}, 72 \%$ yield, m.p.: $199-200{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.37(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 4.57$ (s, 2H), 3.62 (s, 4H); ${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 144.08$, 131.05, 112.99, 108.86, 64.71, 45.47; MS (EI, m/z): $379.89[\mathrm{M}]^{+}$.

1,3-bis(3-iodophenyl)imidazolidine (B7)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 3.83 \mathrm{~mol} \%$), 1-iodo-3-nitrobenzene ($62.3 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$.), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$), , L-proline (9 $\mathrm{mg}, 30 \mathrm{~mol} \%$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}$.$) , and THF (2 \mathrm{~mL}$), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=40 / 1$) afforded the title compound as a white crystal ($28 \mathrm{mg}, 47 \%$ yield, m.p.: $174.1-175^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform-d) $\delta 7.14$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.99 (dd, $\left.J=13.8,5.4 \mathrm{~Hz}, 4 \mathrm{H}\right), 6.64$ $-6.57(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) δ 147.12, 130.76, 126.74, 121.16, 111.73, 95.50, 65.24, 46.21; HRMS (ESI): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{I}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 476.9319$; found: 476.9314 .

3,3'-(imidazolidine-1,3-diyl)dibenzonitrile (B8)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 3.83 \mathrm{~mol} \%$), 3 -nitrobenzonitrile ($37 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$.), L-proline (9 mg , $30 \mathrm{~mol} \%$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}$.$) , and THF (2 \mathrm{~mL}$), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=5 / 1$) afforded the title compound as a yellow crystal ($28.1 \mathrm{mg}, 82 \%$ yield, m.p.: $208-209^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.38(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 4 \mathrm{H}$), 4.68 (s, 2H), 3.72 (s, 4H); ${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) $\delta 146.30,130.59$, $121.74,119.60,116.98,115.55,113.67,65.58,46.54$; HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 275.1291; found: 275.1287.

3,3'-(imidazolidine-1,3-diyl)dibenzaldehyde (B9)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}, 3.83 \mathrm{~mol} \%)$, 3-nitrobenzaldehyde ($37.8 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$.), $\mathrm{HCHO}(38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$.), L-proline (9 mg , $30 \mathrm{~mol} \%$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}$.$) , and THF (2 \mathrm{~mL}$), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=10 / 1$) afforded the title compound as a yellow solid ($15.4 \mathrm{mg}, 44 \%$ yield, m.p.: $157-158{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 10.00(\mathrm{~s}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H}), 6.94(\mathrm{dd}, J=8.2,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz,

Chloroform- d) $\delta 187.52,141.18,132.14,124.71,115.39,113.18,106.04,60.39,41.15 ;$ HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 281.1284; found: 281.1282.

1,1'-(imidazolidine-1,3-diylbis(3,1-phenylene))bis(ethan-1-one) (B10)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 3.83 \mathrm{~mol} \%$), 1-(3-nitrophenyl)ethan-1-one ($41.3 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$.$) , HCHO (38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$.), L proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}$.$) , and THF (2 \mathrm{~mL}$), $100{ }^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=5 / 1$) afforded the title compound as a brown crystal ($21.2 \mathrm{mg}, 55 \%$ yield, m.p.: $149-150{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.38(\mathrm{dd}, J=4.4,2.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.87$ (dt, $J=6.2,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 4 \mathrm{H}), 2.62(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 198.70, 146.33, 138.14, 129.52, 118.34, 117.16, 111.15, 65.74, 46.49, 26.87; HRMS (ESI): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 309.1597$; found: 309.1595 .
dimethyl 3,3'-(imidazolidine-1,3-diyl)dibenzoate (B11)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 3.83 \mathrm{~mol} \%$), methyl 3-nitrobenzoate ($45.3 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$), $\mathrm{HCHO}(38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$.), L-proline (9 $\mathrm{mg}, 30 \mathrm{~mol} \%)$, $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}$.$) , and THF (2 \mathrm{~mL}$), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=20 / 1$) afforded the title compound as a yellow solid ($32.8 \mathrm{mg}, 77 \%$ yield, m.p.: $157.8-159{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.49(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 4 \mathrm{H}), 6.86(\mathrm{dd}$, $J=8.2,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 6 \mathrm{H}), 3.72(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 167.49, 146.15, 131.15, 129.36, 118.88, 116.78, 113.21, 65.78, 52.17, 46.51; HRMS (ESI): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 341.1496$; found: 341.1495 .

1,3-bis(4-ethylphenyl)imidazolidine (B12)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 3.83 \mathrm{~mol} \%$), 1-ethyl-4-nitrobenzene ($37.8 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$), $\mathrm{HCHO}(38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$.), L-proline (9 $\mathrm{mg}, 30 \mathrm{~mol} \%), \mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}$.$) , and THF (2 \mathrm{~mL}$), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=40 / 1$) afforded the title compound as a yellow solid ($31.2 \mathrm{mg}, 89 \%$ yield, m.p.: $171.6-172.6^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.15$ (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}$), 6.64 (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}$), 4.64 (s, $2 \mathrm{H}), 3.63(\mathrm{~s}, 4 \mathrm{H}), 2.61(\mathrm{q}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 144.68, 133.42, 128.69, 112.55, 66.39, 46.80, 27.96, 16.02; MS (EI, m/z): 280.16 $[\mathrm{M}]^{+}$.

1,3-bis(4-methoxyphenyl)imidazolidine (B13)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{8} / \mathrm{NC}-900(20 \mathrm{mg}, 3.83 \mathrm{~mol} \%)$, 1-methoxy-4-nitrobenzene ($38.3 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$.), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), $\mathrm{HCOOH}\left(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}\right.$), and THF (2 mL), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=40 / 1$) afforded the title compound as a white solid ($7.5 \mathrm{mg}, 21 \%$ yield, m.p.: $143.1-144.1^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 6.89(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.63(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.57$ (s, 2H), 3.78 (s, 6 H), $3.58(\mathrm{~s}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 150.26, 133.78, 126.46, 112.64, 70.16, 40.71, 24.69; MS (EI, m/z): $284.15[\mathrm{M}]^{+}$.

1,3-bis(3-(trifluoromethyl)phenyl)imidazolidine (B14)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}, 3.83 \mathrm{~mol} \%)$, 1-nitro-3-(trifluoromethyl)benzene ($47.8 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$.), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), $\mathrm{HCOOH}\left(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}\right.$.), and THF (2 mL), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20$ h. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=40 / 1$) afforded the title compound as a white crystal ($34.2 \mathrm{mg}, 76 \%$ yield, m.p.: $158.4-159.4^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.40(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07$ (d, $\left.J=7.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.86(\mathrm{~s}, 2 \mathrm{H})$, 6.82 (dd, $J=8.2,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 146.10, 131.88, 131.62, 129.84, 123.24, 115.46, 114.36, 114.33, 114.30, 114.27, 108.79, 108.76, 108.73, 108.70, $65.48,46.33$; ${ }^{19} \mathrm{~F}$ NMR (471 MHz , Chloroform- d) δ-62.69; HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 361.1133$; found: 361.1132.

1,3-bis(4-chlorophenyl)imidazolidine (B15)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}, 3.83 \mathrm{~mol} \%)$, 1 -chloro-4-nitrobenzene ($39.3 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2$ eq.), L-proline $(9 \mathrm{mg}, 30 \mathrm{~mol} \%)$, $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}$.$) , and THF (2 \mathrm{~mL}$), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=40 / 1$) afforded the title compound as a white solid ($27.1 \mathrm{mg}, 74 \%$ yield, m.p.: $159-160^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.26-7.22(\mathrm{~m}, 4 \mathrm{H}), 6.59-6.55(\mathrm{~m}, 4 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 3.63$ (s, 4H); ${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 144.77, 129.22, 122.76, 113.52, 65.93, 46.61; MS (EI, m/z): $292.07[\mathrm{M}]^{+}$.

2,2'-(imidazolidine-1,3-diylbis(4,1-phenylene))bis(2-methylpropanenitrile) (B16)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}, 3.83 \mathrm{~mol} \%$), 2-methyl-2-(4-nitrophenyl)propanenitrile ($47.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$), $\mathrm{HCHO}(38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2$ eq.), L-proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), $\mathrm{HCOOH}\left(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}\right.$.), and THF (2 mL), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}$, 20 h . Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=10 / 1$) afforded the title compound as a orange liquid ($31.8 \mathrm{mg}, 71 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.31(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 2 \mathrm{H})$, 6.63 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 4 \mathrm{H}), 1.76(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroformd) $\delta 146.55,142.80,129.96,124.76,114.05,111.93,109.21,65.58,46.42,37.48,29.25$; HRMS (ESI): Calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 359.2230 ; found: 359.2226.

di-tert-butyl 4,4'-(imidazolidine-1,3-diyl)dibenzoate (B17)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 3.83 \mathrm{~mol} \%$), tert-butyl 4-nitrobenzoate ($55.8 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$.), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2$ eq.), L-proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), $\mathrm{HCOOH}\left(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}\right.$), and THF (2 mL), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=5 / 1$) afforded the title compound as a white solid ($44 \mathrm{mg}, 83 \%$ yield, m.p.: $164.4-165.5^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.93$ (d, $J=8.6 \mathrm{~Hz}, 4 \mathrm{H}$), $6.60(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 4.73$ (s, 2 H), $3.72(\mathrm{~s}, 4 \mathrm{H}), 1.59(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 166.10,148.73,131.32$, 121.02, 111.35, 80.17, 64.78, 45.97, 28.35; HRMS (ESI): Calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 425.2435$; found: 425.2427.

1,3-bis(3-fluoro-4-methylphenyl)imidazolidine (B18)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}, 3.83 \mathrm{~mol} \%)$, 2-fluoro-1-methyl-4-nitrobenzene ($38.8 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$.), L proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), $\mathrm{HCOOH}\left(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}\right.$), and THF (2 mL), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=40 / 1$) afforded the title compound as a white crystal ($21.3 \mathrm{mg}, 59 \%$ yield, m.p.: $178-179^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.07(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{~s}, 2 \mathrm{H}), 6.33$ (dd, $J=4.4,2.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 4.56 ($\mathrm{s}, 2 \mathrm{H}$), $3.60(\mathrm{~s}, 4 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) 161.99, 160.06, $144.94,144.86,130.81,130.76,112.35,112.21,106.94,106.91,98.75,98.54,65.03,45.62,12.59$, 12.56; ${ }^{19}$ F NMR (471 MHz , Chloroform- d) $\delta-116.28$; HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 289.1511; found: 289.1506 .

1,3-bis(3-bromo-4-methoxyphenyl)imidazolidine (B19)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}, 3.83 \mathrm{~mol} \%)$, 2-bromo-1-methoxy-4-nitrobenzene ($57.8 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$.$) , \mathrm{HCHO}(38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}$.$) , and THF (2 \mathrm{~mL}$), $100{ }^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20$ h. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=10 / 1$) afforded the title compound as a brown solid ($10.5 \mathrm{mg}, 19 \%$ yield, m.p.: $147.1-148{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 6.90-6.87(\mathrm{~m}, 4 \mathrm{H}), 6.57(\mathrm{dd}, J=8.8,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{~s}$, 2H), $3.85(\mathrm{~s}, 6 \mathrm{H}), 3.57(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) $\delta 148.57,141.84,117.49$, 113.94, 112.97, 112.24, 66.79, 57.10, 47.12; HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 440.9808; found: 440.9802 .

5,5'-(imidazolidine-1,3-diyl)bis(2-methylbenzaldehyde) (B20)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}, 3.83 \mathrm{~mol} \%$), 2-methyl-5-nitrobenzaldehyde ($41.3 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$.), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$.), $L-$ proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}$.$) , and THF (2 \mathrm{~mL}$), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=10 / 1$) afforded the title compound as a yellow crystal ($17 \mathrm{mg}, 44 \%$ yield, m.p.: $189.5-190^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 10.33(\mathrm{~s}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.83(\mathrm{dd}, J=8.2,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 4 \mathrm{H}), 2.60(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 192.63,144.81,134.52,132.71,129.86,118.11,113.60,66.10,46.69,17.94$; HRMS (ESI): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 309.1597$; found: 309.1596.

1,3-bis(3,5-dimethylphenyl)imidazolidine (B21)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}, 3.83 \mathrm{~mol} \%)$, 1,3-dimethyl-5-nitrobenzene ($37.8 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ eq.), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2$ eq.), L -
proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}$.$) , and THF (2 \mathrm{~mL}$), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=40 / 1$) afforded the title compound as a white solid ($21 \mathrm{mg}, 60 \%$ yield, m.p.: $184.8-185^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 6.49$ (s, 2H), 6.33 (s, 4H), 4.63 (s, 2H), 3.63 (s, 4H), 2.34 (s, $12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 145.57,137.95,118.57,109.37,64.88,45.46,20.63$; HRMS (ESI): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 281.2013$; found: 281.2012.

1,3-bis(benzo[d][1,3]dioxol-5-yl)imidazolidine (B22)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 3.83 \mathrm{~mol} \%$), 5-nitrobenzo $[d][1,3]$ dioxole ($41.8 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$), $\mathrm{HCHO}(38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}$.$) , and THF (2 \mathrm{~mL}$) , $100{ }^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=7 / 1$) afforded the title compound as a brown solid ($20 \mathrm{mg}, 51 \%$ yield, m.p.: $314.5-315.6^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{dd}, J$ $=8.4,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.90(\mathrm{~s}, 4 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 148.52, 142.56, 139.77, 108.75, 104.10, 100.75, 95.34, 67.37, 47.35; HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 313.1182; found: 313.1177.

1,3-di(pyridin-3-yl)imidazolidine (B23)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 3.83 \mathrm{~mol} \%$), 3-nitropyridine ($31 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$.), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2$ eq.), L-proline ($9 \mathrm{mg}, 30$ $\mathrm{mol} \%$), $\mathrm{HCOOH}\left(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}\right.$.), and THF (2 mL), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=2 / 1$) afforded the title compound as a brown oil ($24.3 \mathrm{mg}, 86 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.10(\mathrm{q}, J=2.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.22(\mathrm{t}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 142.08$, $139.38,134.77,123.85,119.08,64.98,46.07$; HRMS (ESI): Calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 227.1291$; found: 227.1288 .

1,3-di(quinolin-6-yl)imidazolidine (B24)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}, 3.83 \mathrm{~mol} \%$), 6-nitroquinoline ($43.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$), $\mathrm{HCHO}(38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 30$ $\mathrm{mol} \%$), $\mathrm{HCOOH}\left(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}\right.$.), and THF (2 mL), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: dichloromethane/acetone $=7 / 1$) afforded the title compound as a brown oil ($34.7 \mathrm{mg}, 85 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform- d) $\delta 8.64(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{dd}, J=7.4,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, 2H), $4.85(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 146.83,144.10,142.83$, 134.16, 130.54, 129.81, 121.67, 118.77, 105.40, 65.89, 46.67; HRMS (ESI): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 327.1604$; found: 327.1601.

1,3-bis(2-methylquinolin-6-yl)imidazolidine (B25)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}, 3.83 \mathrm{~mol} \%)$, 2-methyl-6-nitroquinoline ($47.3 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$), $\mathrm{HCHO}(38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), $\mathrm{HCOOH}\left(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}\right.$), and THF (2 mL), $100{ }^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: dichloromethane/acetone $=3 / 1$) afforded the title compound as a brown solid ($30.2 \mathrm{mg}, 68 \%$ yield, m.p.: $196-197^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.00(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J$ $=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 4 \mathrm{H}), 2.71(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 155.13,143.66,142.12,134.60,129.52,127.86,122.57,118.61$, 105.54, 66.03, 46.71, 24.85; HRMS (ESI): Calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 355.1917; found: 355.1911.

1,3-di(pyridin-2-yl)imidazolidine (B26)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 3.83 \mathrm{~mol} \%$), 2-nitropyridine ($31 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$.), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2$ eq.), L-proline ($9 \mathrm{mg}, 30$ mol\%), $\mathrm{HCOOH}\left(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}\right.$.), and THF (2 mL), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=5 / 1$) afforded the title compound as a white solid ($23 \mathrm{mg}, 81 \%$ yield, m.p.: $97-98^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.21(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{t}, J=$ $6.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroformd) $\delta 156.26,148.30,137.39,113.08,106.89,63.26,45.17$; HRMS (ESI): Calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}$: 277.1291; found: 277.1288.

1,3-bis(5-methylpyridin-2-yl)imidazolidine (B27)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 3.83 \mathrm{~mol} \%$), 5-methyl-2-nitropyridine ($34.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$.), $\mathrm{HCHO}(38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}$.$) , and THF (2 \mathrm{~mL}$), $100{ }^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=5 / 1$) afforded the title compound as a white solid ($29.3 \mathrm{mg}, 92 \%$ yield, m.p.: $152-153{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.02(\mathrm{~s}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 2H), 4.89 ($\mathrm{s}, 2 \mathrm{H}$), $3.78(\mathrm{~s}, 4 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 154.78, 147.91, 138.35, 121.78, 106.59, 63.69, 45.44, 17.42; HRMS (ESI): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 255.1604$; found: 255.1600 .

1,3-bis(5-fluoropyridin-2-yl)imidazolidine (B28)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}, 3.83 \mathrm{~mol} \%)$, 5-fluoro-2-nitropyridine ($35.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$), L-proline (9 $\mathrm{mg}, 30 \mathrm{~mol} \%), \mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}$.$) , and THF (2 \mathrm{~mL}$), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=5 / 1$) afforded the title compound as a white solid ($13.5 \mathrm{mg}, 41 \%$ yield, m.p.: $148-149{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.08(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{td}, J=8.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.43$ (dd, $J=9.2,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 154.60$, $153.21,152.67,135.16,134.97,125.28,125.11,106.91(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 64.11,45.83 ;{ }^{19}$ F NMR (471 MHz , Chloroform- d) $\delta-143.39$ (dd, $J=7.6,3.0 \mathrm{~Hz}$); HRMS (ESI): Calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 263.1102; found: 263.1101.

1,3-bis(5-chloropyridin-2-yl)imidazolidine (B29)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}, 3.83 \mathrm{~mol} \%$), 5-chloro-2-nitropyridine ($39.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$.), $\mathrm{HCHO}(38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), $\mathrm{HCOOH}\left(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}\right.$), and THF (2 mL), $100{ }^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=5 / 1$) afforded the title compound as a white solid ($22.1 \mathrm{mg}, 60 \%$ yield, m.p.: $164-165^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform- d) $\delta 8.14(\mathrm{~s}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 154.46, 146.69, 137.22, 120.45, 107.44, 63.44, 45.37; HRMS (ESI): Calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 295.0511; found: 295.0508 .

1,3-bis(5-bromopyridin-2-yl)imidazolidine (B30)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}, 3.83 \mathrm{~mol} \%$), 5-bromo-2-nitropyridine ($50.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$.), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$), $\mathrm{HCOOH}\left(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}\right.$), and THF (2 mL), $100{ }^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=5 / 1$) afforded the title compound as a white solid ($32 \mathrm{mg}, 67 \%$ yield, m.p.: $192-193{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform- d) $\delta 8.22(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.39$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) $\delta 154.63,148.93$, 139.77, 108.09, 107.92, 63.30, 45.28; HRMS (ESI): Calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 382.9501$; found: 382.9496 .

1,3-bis(4-fluoropyridin-2-yl)imidazolidine (B31)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 3.83 \mathrm{~mol} \%$), 4-fluoro-2-nitropyridine ($35.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$.), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2 \mathrm{eq}$), L-proline (9 $\mathrm{mg}, 30 \mathrm{~mol} \%), \mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 5 \mathrm{eq}$.$) , and THF (2 \mathrm{~mL}$), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=5 / 1$) afforded the title compound as a white solid ($10.2 \mathrm{mg}, 31 \%$ yield, m.p.: $139-140{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.16(\mathrm{dd}, J=9.2,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.47-6.42(\mathrm{~m}, 2 \mathrm{H}), 6.17(\mathrm{dd}$, $J=11.4,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 171.05$, $169.00,158.09,150.65(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 102.06,101.92,93.51,93.34,63.21,45.12 ;{ }^{19} \mathrm{~F}$ NMR (471 MHz , Chloroform- d) $\delta-102.65$ ($\mathrm{q}, ~ J=9.8,9.4 \mathrm{~Hz}$); HRMS (ESI): Calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 263.1103; found: 263.1101.

1-phenyl-3-(3-(trifluoromethyl)phenyl)imidazolidine (B32)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 7.66 \mathrm{~mol} \%$), nitrobenzene ($15.4 \mathrm{mg}, 0.125 \mathrm{mmol}, 1 \mathrm{eq}$.), 1-nitro-3-(trifluoromethyl)benzene ($24 \mathrm{mg}, 0.125 \mathrm{mmol}$, 1 eq.), $\mathrm{HCHO}(38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 4 \mathrm{eq}),$.$L -proline (9 \mathrm{mg}, 60 \mathrm{~mol} \%$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}$, 10 eq.), and THF (2 mL), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=40 / 1)$ afforded the title compound as a white solid $(13.2 \mathrm{mg}, 36 \%$ yield, m.p.: $92.7-93.7^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.38(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{~s}$, 2H), $3.70(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) $\delta 146.22,129.76,129.42,118.09,115.21$, $113.88,112.68,108.53,65.70,46.45,46.39,29.71 ;{ }^{19} \mathrm{~F}$ NMR (471 MHz , Chloroform- d) $\delta-62.71$; HRMS (ESI): Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 293.1260$; found: 293.1258.

1-(4-fluorophenyl)-3-(p-tolyl)imidazolidine (B33)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 7.66 \mathrm{~mol} \%$), 1-methyl-4-nitrobenzene ($17.2 \mathrm{mg}, 0.125 \mathrm{mmol}, 1 \mathrm{eq}$.), 1-fluoro-4-nitrobenzene ($17.7 \mathrm{mg}, 0.125$ mmol, 1 eq.), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 4 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 60 \mathrm{~mol} \%$), HCOOH ($47 \mu \mathrm{~L}, 1.25$ mmol, 10 eq), and THF (2 mL), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent:
petroleum ether/ethyl acetate $=40 / 1)$ afforded the title compound as a dark yellow solid $(16.4 \mathrm{mg}$, 51% yield, m.p.: $119.7-120.4^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{dd}, J$ $=8.4,5.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{hept}, J=5.8,4.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 155.84,143.33,142.14,128.83,125.95,114.85,114.67,112.09,112.03,111.55$, 65.63, 46.04, 45.83, 19.34; ${ }^{19}$ F NMR (471 MHz, Chloroform- d) $\delta-128.00$; HRMS (ESI): Calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{FN}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 257.1448$; found: 257.1446 .

1-(4-ethylphenyl)-3-(3-(trifluoromethyl)phenyl)imidazolidine (B34)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 7.66 \mathrm{~mol} \%$), 1-ethyl-4-nitrobenzene ($19 \mathrm{mg}, 0.125 \mathrm{mmol}, 1 \mathrm{eq}$.), 1-nitro-3-(trifluoromethyl)benzene (24 mg , $0.125 \mathrm{mmol}, 1 \mathrm{eq}$), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 4 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 60 \mathrm{~mol} \%$), HCOOH ($47 \mu \mathrm{~L}$, $1.25 \mathrm{mmol}, 10 \mathrm{eq}$.$) , and THF (2 \mathrm{~mL}$), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=40 / 1$) afforded the title compound as a grey solid (14 mg , 35% yield, m.p.: $76.7-7{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 3.70$ $-3.64(\mathrm{~m}, J=3.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.60(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 146.27,144.43,134.07,129.72,129.61,129.27,128.74,124.80,115.09,113.69$ (d, $J=3.8 \mathrm{~Hz}$), 112.92, 108.38, 65.97, 46.78, 46.42, 27.93, 15.93; ${ }^{19}$ F NMR (471 MHz , Chloroformd) δ-62.71; HRMS (ESI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 321.1573 ; found: 321.1568 .

3-(3-(pyridin-3-yl)imidazolidin-1-yl)benzonitrile (B35)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 7.66 \mathrm{~mol} \%$), 3-nitropyridine ($15.5 \mathrm{mg}, 0.125 \mathrm{mmol}, 1$ eq.), 3-nitrobenzonitrile ($18.5 \mathrm{mg}, 0.125 \mathrm{mmol}, 1 \mathrm{eq}$.), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 4 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 60 \mathrm{~mol} \%$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 10 \mathrm{eq}$.), and THF (2 mL), $100{ }^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=3 / 1$) afforded the title compound as a brown crystal $(11.9 \mathrm{mg}, 38 \%$ yield, m.p.: $192.7-194{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.12(\mathrm{~s}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.09$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.82-3.61(\mathrm{~m}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 145.96,139.68,134.96$, $130.17,121.16,119.13,116.52,115.08,113.24,65.10,46.13$; HRMS (ESI): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 251.1291$; found: 251.1290.

3-(3-(4-methoxyphenyl)imidazolidin-1-yl)benzonitrile (B36)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 7.66 \mathrm{~mol} \%$), 1-methoxy-4-nitrobenzene ($19.2 \mathrm{mg}, 0.125 \mathrm{mmol}, 1 \mathrm{eq}$), 3-nitrobenzonitrile ($18.5 \mathrm{mg}, 0.125 \mathrm{mmol}$, 1 eq.), $\mathrm{HCHO}(38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 4 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 60 \mathrm{~mol} \%$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}$, 10 eq.), and THF (2 mL), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=7 / 1)$ afforded the title compound as a brown crystal $(9.1 \mathrm{mg}, 26 \%$ yield, m.p.: $206.4-207.3^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.34(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.80-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, 3.64 (dq, $J=10.4,5.4 \mathrm{~Hz}, 4 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) δ 152.81, 146.14, 140.89, $130.04,120.45,116.09,115.04,114.66,114.22,113.10,66.34,55.79,47.37,46.34$; HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 280.1444$; found: 280.1441.

1-(3-chlorophenyl)-3-phenylimidazolidine (B37)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}, 7.66 \mathrm{~mol} \%$), nitrobenzene ($15.4 \mathrm{mg}, 0.125 \mathrm{mmol}, 1 \mathrm{eq}$.$) , 1-chloro-3-nitrobenzene (19.7 \mathrm{mg}, 0.125 \mathrm{mmol}, 1 \mathrm{eq}$.), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 4 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 60 \mathrm{~mol} \%$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 10 \mathrm{eq}$.), and THF (2 mL), $100{ }^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=40 / 1$) afforded the title compound as a yellow solid ($13.9 \mathrm{mg}, 43 \%$ yield, m.p.: $106.1-107^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.33$ (t, $\left.J=7.8 \mathrm{~Hz}, 3 \mathrm{H}\right), 7.28(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, 2H), $3.66(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 145.24,143.90,128.36,128.14$, $116.85,112.42,111.49,64.88,45.58$, 45.47 ; HRMS (ESI): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClN}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 259.0996; found: 259.0992.

6-(3-(4-bromophenyl)imidazolidin-1-yl)quinoline (B38)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 7.66 \mathrm{~mol} \%$), 6-nitroquinoline ($21.8 \mathrm{mg}, 0.125 \mathrm{mmol}, 1 \mathrm{eq}$.), 1-bromo-4-nitrobenzene ($25.2 \mathrm{mg}, 0.125 \mathrm{mmol}, 1$ eq.), $\mathrm{HCHO}(38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 4 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 60 \mathrm{~mol} \%$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 10$ eq.), and THF (2 mL), $100{ }^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: dichloromethane/ acetone $=10 / 1$) afforded the title compound as a brown liquid $(12.4 \mathrm{mg}, 28 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 8.67(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{dd}, J=18.0,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41$ $-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.61-6.53(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126

MHz, Chloroform- d) $\delta 146.69,145.14,144.12,134.23,132.12,130.44,129.82,121.65,118.77$, $114.12,110.02,105.27,65.83,46.60(\mathrm{~d}, J=5.0 \mathrm{~Hz})$; HRMS (ESI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrN}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 354.0600 ; found: 354.0597 .

1-(3-(3-(3,5-dimethylphenyl)imidazolidin-1-yl)phenyl)ethan-1-one (B39)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 7.66 \mathrm{~mol} \%$), 1,3-dimethyl-5-nitrobenzene ($19 \mathrm{mg}, 0.125 \mathrm{mmol}, 1 \mathrm{eq}$.), 1-(3-nitrophenyl)ethan-1-one (20.7 mg , $0.125 \mathrm{mmol}, 1 \mathrm{eq}$.$) , \mathrm{HCHO}$ ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 4$ eq.), L-proline ($9 \mathrm{mg}, 60 \mathrm{~mol} \%$), HCOOH ($47 \mu \mathrm{~L}$, $1.25 \mathrm{mmol}, 10 \mathrm{eq}$.$) , and THF (2 \mathrm{~mL}$) , $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=5 / 1$) afforded the title compound as an orange-yellow solid ($11.1 \mathrm{mg}, 30 \%$ yield, m.p.: $80.7-82^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform- d) $\delta 7.37(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{dt}, J=$ $6.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 2 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 3.71-3.64(\mathrm{~m}, 4 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ 198.93, 146.65, 146.57, 139.22, 138.26, 129.56, 120.14 , 118.12, 117.07, 111.10, 110.79, 66.04, 46.67, 46.64, 26.97, 21.78; HRMS (ESI): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 295.1805$; found: 295.1804 .

1-(3-(3-(3-fluoro-4-methylphenyl)imidazolidin-1-yl)phenyl)ethan-1-one (B40)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}, 7.66 \mathrm{~mol} \%)$, 2-fluoro-1-methyl-4-nitrobenzene ($19.4 \mathrm{mg}, 0.125 \mathrm{mmol}, 1 \mathrm{eq}$.), 1-(3-nitrophenyl)ethan-1-one $(20.7 \mathrm{mg}, 0.125 \mathrm{mmol}, 1 \mathrm{eq}$.$) , \mathrm{HCHO}(38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 4 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 60 \mathrm{~mol} \%$), HCOOH ($47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 10 \mathrm{eq}$.$) , and THF (2 \mathrm{~mL}$), $100{ }^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=5 / 1$) afforded the title compound as a yellow solid ($9 \mathrm{mg}, 24 \%$ yield, m.p.: $152.1-153{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.96-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.57(\mathrm{~m}$, $2 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 6.37(\mathrm{q}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{dd}, J=7.4,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{dd}, J$ $=7.4,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) δ $196.54,162.04(\mathrm{~d}, J=242.8 \mathrm{~Hz}), 149.14,145.77(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 131.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 130.73$, $126.80,114.06(\mathrm{~d}, J=17.6 \mathrm{~Hz}), 111.09,108.40(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 100.20(\mathrm{~d}, J=26.6 \mathrm{~Hz}), 65.38$, 46.64, 46.04, 26.07, 13.62 (d, $J=3.2 \mathrm{~Hz}$); ${ }^{19}$ F NMR (471 MHz , Chloroform- d) $\delta-116.02$; HRMS (ESI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 299.1554$; found: 299.1553.

1-(benzo[d][1,3]dioxol-5-yl)-3-(4-ethylphenyl)imidazolidine (B41)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 7.66 \mathrm{~mol} \%$), 5-nitrobenzo[d][1,3]dioxole ($20.9 \mathrm{mg}, 0.125 \mathrm{mmol}, 1 \mathrm{eq}$.$) , 1-ethyl-4-nitrobenzene (18.9 \mathrm{mg}, 0.125$ mmol, 1 eq.), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 4 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 60 \mathrm{~mol} \%$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25$ mmol, 10 eq.), and THF (2 mL), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=7 / 1$) afforded the title compound as a light-brown solid $(11.5 \mathrm{mg}$, 31% yield, m.p.: $117.8-119^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H})$, $3.63-3.55(\mathrm{~m}, 4 \mathrm{H}), 2.59(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 148.52,142.69,139.75,133.47,128.69,112.49,108.74,104.18,100.72,95.41$, 66.89, 47.37, 46.79, 27.93, 15.97; HRMS (ESI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 297.1598$; found: 297.1596.

3-(3-(3-fluoro-4-methylphenyl)imidazolidin-1-yl)benzaldehyde (B42)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 7.66 \mathrm{~mol} \%$), 2-fluoro-1-methyl-4-nitrobenzene ($19.4 \mathrm{mg}, 0.125 \mathrm{mmol}, 1 \mathrm{eq}$.$) , 3-nitrobenzaldehyde (18.9 \mathrm{mg}$, $0.125 \mathrm{mmol}, 1 \mathrm{eq}$), $\mathrm{HCHO}(38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 4 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 60 \mathrm{~mol} \%$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}$, $1.25 \mathrm{mmol}, 10 \mathrm{eq}$.$) , and THF (2 \mathrm{~mL}$), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=10 / 1$) afforded the title compound as a yellow solid (10.7 $\mathrm{mg}, 30 \%$ yield, m.p.: $126.7-128.1^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 9.99(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.12(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=8.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 6.37$ (dd, $J=5.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{dd}, J=7.8,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{dd}, J=7.8,5.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) δ 193.02, 161.24, 146.69, 145.96, 137.57, 132.03 $(\mathrm{d}, J=7.0 \mathrm{~Hz}), 130.09,120.58,118.43,113.76,111.29,108.34(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 100.19,99.98,66.05$, $46.85,46.58,13.75(\mathrm{~d}, J=3.2 \mathrm{~Hz})$; ${ }^{19} \mathrm{~F}$ NMR (471 MHz , Chloroform- d) $\delta-116.14$; HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 285.1398 ; found: 285.1395 .

3-(3-(quinolin-6-yl)imidazolidin-1-yl)benzaldehyde (B43)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900$ ($20 \mathrm{mg}, 7.66 \mathrm{~mol} \%$), 3-nitrobenzaldehyde ($18.9 \mathrm{mg}, 0.125 \mathrm{mmol}, 1 \mathrm{eq}$.$) , 6-nitroquinoline (21.8 \mathrm{mg}, 0.125 \mathrm{mmol}, 1 \mathrm{eq}$.), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 4 \mathrm{eq}$.), L-proline ($9 \mathrm{mg}, 60 \mathrm{~mol} \%$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 10 \mathrm{eq}$.), and THF (2 mL), $100{ }^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: dichloromethane/ acetone $=10 / 1$, then petroleum ether/ethyl acetate $=1 / 1$) afforded the title compound as a yellow solid ($12.9 \mathrm{mg}, 34 \%$ yield, m.p.: $353.2-354^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 10.01(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{dd}, J=4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=8.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ $(\mathrm{d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 3.86-3.78(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 192.86$, $146.93,146.55,144.07,142.92,137.47,134.16,130.64,130.01,129.79,121.68,120.82,118.75$, $118.46,111.15,105.55,65.86,46.65,46.56$; HRMS (ESI): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 304.1444$; found: 304.1444 .
methyl 3-(3-(4-(methylthio)phenyl)imidazolidin-1-yl)benzoate (B44)

Prepared following the general procedure outlined above using Co- $\mathrm{N}_{\mathrm{x}} / \mathrm{NC}-900(20 \mathrm{mg}, 7.66 \mathrm{~mol} \%$), methyl(4-nitrophenyl)sulfane ($21.2 \mathrm{mg}, 0.125 \mathrm{mmol}, 1 \mathrm{eq}$), methyl 3-nitrobenzoate ($22.7 \mathrm{mg}, 0.125$ mmol, 1 eq.), HCHO ($38 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 4$ eq.), L-proline ($9 \mathrm{mg}, 60 \mathrm{~mol} \%$), $\mathrm{HCOOH}(47 \mu \mathrm{~L}, 1.25$ mmol, 10 eq.), and THF (2 mL), $100^{\circ} \mathrm{C}, \mathrm{N}_{2}, 20 \mathrm{~h}$. Purification by column chromatography (Eluent: petroleum ether/ethyl acetate $=20 / 1$) afforded the title compound as a yellow solid $(13.2 \mathrm{mg}, 32 \%$ yield, m.p.: $125.8-126.6^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dt}, J=9.2,7.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.84$ (dd, $J=8.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.66(\mathrm{~m}, 4 \mathrm{H})$, $2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) $\delta 167.49,146.19,144.98,131.27,131.14,129.33$, 125.24, 118.76, 116.67, 113.22, 113.14, 65.84, 52.15, 46.53, 18.89; HRMS (ESI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 329.1318$; found: 329.1316.

1,3-diphenylimidazolidine-2-thione (B45)

Brown crystal, m.p.: $178.4-179{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- $\left.d\right) \delta 7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H})$, $7.71(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 181.32,140.86,128.90,126.66,125.49,49.41 ; \mathrm{MS}(\mathrm{EI}, \mathrm{m} / \mathrm{z}): 254.07[\mathrm{M}]^{+}$.

Ibuprofen derivatives (B46)

White solid, ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.18(\mathrm{dt}, J=4.2,2.6 \mathrm{~Hz}, 8 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 4 \mathrm{H}), 7.01(\mathrm{dd}, J=19.8,8.6 \mathrm{~Hz}, 4 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 5.09-4.97(\mathrm{~m}, 4 \mathrm{H}), 3.72(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H})$, $3.42-3.34(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.85(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{dd}, J=7.2,1.6 \mathrm{~Hz}$, $6 \mathrm{H}), 0.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 174.66(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 148.19$,
$138.78,137.67(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 129.59,129.43,127.33,115.99,66.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 49.00,45.16,45.04$, 30.22, 22.42, 18.53.

Adapalene derivatives (B47)

White solid, ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.09$ (s, 2H), 7.99 ($\mathrm{s}, 3 \mathrm{H}$), 7.89 (d, $J=8.4 \mathrm{~Hz}$, $6 \mathrm{H}), 7.82-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.67-7.50(\mathrm{~m}, 9 \mathrm{H}), 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.28-4.13(\mathrm{~m}, 4 \mathrm{H}), 4.12$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 6 \mathrm{H}), 3.50(\mathrm{tdt}, J=11.0,7.8,3.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.17(\mathrm{~s}, 18 \mathrm{H}), 1.80(\mathrm{~d}, J=3.2$ $\mathrm{Hz}, 12 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 158.86,154.53,140.61,138.98,133.67,132.51$, $131.32,129.18,128.49,126.92,126.63,125.89,125.67,124.69,124.04,112.11,55.17,49.67,40.59$, 37.20, 37.14, 29.12.

1,3-diphenyl-4,5-dihydro-1H-imidazol-3-ium chloride (C1)

White solid (12.6 mg, 49\% yield), ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.03(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 4 \mathrm{H}), 7.57(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO$\left.d_{6}\right) \delta 152.37,136.60,130.20,127.54,118.99,48.83$; HRMS (ESI): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}-\mathrm{Cl}]^{+}$: 223.1235; found: 223.1227 .

1,3-diphenyl-4,5-dihydro-1H-imidazol-3-ium bromide (C2)

White solid ($25 \mathrm{mg}, 83 \%$ yield), ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.06(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 4 \mathrm{H}), 7.56(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO$\left.d_{6}\right) \delta 152.19,136.58,130.14,127.49,119.03,48.85$; HRMS (ESI): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}-\mathrm{Br}]^{+}$: 223.1235; found: 223.1227.

1,3-diphenyl-4,5-dihydro-1H-imidazol-3-ium 2,3-dichloro-5,6-dicyano-4-hydroxyphenolate (C3)

White solid ($31.5 \mathrm{mg}, 70 \%$ yield), ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.98(\mathrm{~s}, 1 \mathrm{H}), 7.61$ (d, $J=38.6$ $\mathrm{Hz}, 8 \mathrm{H}), 7.38(\mathrm{~s}, 2 \mathrm{H}), 4.68(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 153.13, 136.72, 130.46,
127.89, 119.26, 49.78; HRMS (ESI): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2}{ }^{+}\left[\mathrm{M}-\mathrm{HOC}_{6} \mathrm{Cl}_{2}(\mathrm{CN})_{2} \mathrm{O}\right]^{+}: 223.1235$; found: 223.1227 .

1,3-di-p-tolyl-4,5-dihydro-1H-imidazol-3-ium bromide (C4)

Yellow solid ($27 \mathrm{mg}, 82 \%$ yield), ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.00(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 4 \mathrm{H}), 7.51(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.70(\mathrm{~s}, 4 \mathrm{H}), 2.65(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- $\left.d_{6}\right) \delta$ 151.61, 137.02, 134.26, 130.51, 118.77, 48.80, 20.92; HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}-\mathrm{Br}]^{+}$: 251.1548; found: 225.1540 .

1,3-bis(4-fluorophenyl)-4,5-dihydro-1 H -imidazol-3-ium bromide (C5)

White solid ($27 \mathrm{mg}, 80 \%$ yield), ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.95(\mathrm{~s}, 1 \mathrm{H}), 7.72$ (dd, $J=9.0$, $4.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.45(\mathrm{t}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 4.60(\mathrm{~s}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 162.00,160.06$, $152.78,133.12(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 121.35(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 117.08,116.89,49.28$; HRMS (ESI): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}-\mathrm{Br}]^{+}: 259.1046$; found: 259.1038.

1,3-bis(4-chlorophenyl)-4,5-dihydro-1 H -imidazol-3-ium bromide (C6)

White solid ($28.3 \mathrm{mg}, 77 \%$ yield), ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.00(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 8 \mathrm{H})$, $4.59(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) δ 152.87, 135.48, 131.82, 130.09, 120.81, 48.98; HRMS (ESI): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}-\mathrm{Br}]^{+}$: 291.0455; found: 291.0445 .

1,3-bis(3-cyanophenyl)-4,5-dihydro-1H-imidazol-3-ium bromide (C7)

White solid ($26.4 \mathrm{mg}, 75 \%$ yield), ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.17(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 2 \mathrm{H})$, $7.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 153.86,137.18,131.58,131.10,123.72,122.58,118.37,113.04,48.90$; HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}-\mathrm{Br}]^{+}: 273.1140$; found: 273.1132.

1,3-bis(3-(trifluoromethyl)phenyl)-4,5-dihydro-1 H -imidazol-3-ium bromide (C8)

White solid ($36.4 \mathrm{mg}, 83 \%$ yield), ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.23(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 2 \mathrm{H})$, $7.95(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 154.02,137.28,131.52,130.97,130.72,130.46,125.25,124.26-123.93$ (m), 123.16 (d, $J=17.7 \mathrm{~Hz}), 116.38-116.11(\mathrm{~m}), 49.07$; HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~F}_{6} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}-$ $\mathrm{Br}]^{+}$: 359.0983; found: 359.0974.

1,3-bis(3,5-dimethylphenyl)-4,5-dihydro-1 H -imidazol-3-ium bromide (C9)

White solid ($25.1 \mathrm{mg}, 70 \%$ yield), ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.92(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 6 \mathrm{H}), 4.56$ $(\mathrm{s}, 4 \mathrm{H}), 2.45(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 152.29,139.77,135.23,125.05,118.61$, 48.79, 23.99; HRMS (ESI): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}-\mathrm{Br}]^{+}$: 279.1861; found: 279.1851.

1,3-bis(5-methylpyridin-2-yl)-4,5-dihydro-1H-imidazol-3-ium (C10)

White solid ($24.9 \mathrm{mg}, 75 \%$ yield), ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.28(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 2 \mathrm{H})$, $7.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ 152.12, 148.92, 146.54, 140.31, 132.69, 112.59, 47.83, 17.82; HRMS (ESI): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{4}{ }^{+}$ $\left[_{\mathrm{M}-\mathrm{Br}]^{+}:}\right.$253.1448; found: 253.1444 .

1,3-bis(5-bromopyridin-2-yl)-4,5-dihydro-1 H -imidazol-3-ium bromide (C11)

White solid ($30.8 \mathrm{mg}, 67 \%$ yield), ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.34(\mathrm{~s}, 1 \mathrm{H}), 8.57(\mathrm{~s}, 2 \mathrm{H})$, $8.09(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 152.91$, 149.22, 140.12, 123.24, 113.17, 47.83; HRMS (ESI): Calcd. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}-\mathrm{Br}]^{+}: 380.9345$; found: 380.9339 .

1,3-bis(5-chloropyridin-2-yl)-4,5-dihydro-1 H -imidazol-3-ium bromide (C12)

White solid ($24.6 \mathrm{mg}, 66 \%$ yield), ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.40(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~d}, J=2.6$ $\mathrm{Hz}, 2 \mathrm{H}), 8.28(\mathrm{dd}, J=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 162.86,153.73,147.59,139.77,129.85,114.76,48.08$; HRMS (ESI): Calcd. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}-\mathrm{Br}]^{+}$: 293.0355; found: 293.0350.

1,3-bis(5-fluoropyridin-2-yl)-4,5-dihydro-1H-imidazol-3-ium bromide (C13)

White solid ($20.4 \mathrm{mg}, 60 \%$ yield), ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.31(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 2 \mathrm{H})$, $8.12(\mathrm{~s}, 2 \mathrm{H}), 7.94(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 153.36,144.97,136.98$, 136.77, 127.44 (d, $J=21.2 \mathrm{~Hz}$), 114.87, 48.21; HRMS (ESI): Calcd. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}-\mathrm{Br}]^{+}$: 261.0946; found: 261.0942 .

8. NMR Spectra of the Obtained Compounds

${ }^{\mathbf{1}} \mathbf{H}$ - NMR spectrum of compound B1

${ }^{13}$ C- NMR spectrum of compound B1

${ }^{1} \mathrm{H}$ - NMR spectrum of compound B 2

${ }^{13}$ C-NMR spectrum of compound $B 2$

${ }^{1} \mathrm{H}$ - NMR spectrum of compound B3

${ }^{13} \mathrm{C}$-NMR spectrum of compound B 3

${ }^{1} \mathrm{H}$ - NMR spectrum of compound B4

${ }^{13} \mathrm{C}$-NMR spectrum of compound B4

${ }^{19}$ F-NMR spectrum of compound B4

$-.127 .70$

[^0]${ }^{1} \mathrm{H}$ - NMR spectrum of compound B5

${ }^{13}$ C-NMR spectrum of compound B5

${ }^{1} \mathrm{H}$ - NMR spectrum of compound B6

${ }^{13} \mathrm{C}$-NMR spectrum of compound B6

${ }^{1} \mathrm{H}$ - NMR spectrum of compound B 7

${ }^{13}$ C-NMR spectrum of compound B7

${ }^{1} \mathrm{H}$ - NMR spectrum of compound B8

${ }^{13} \mathrm{C}$-NMR spectrum of compound B8

${ }^{1} \mathrm{H}$-NMR spectrum of compound B9

${ }^{13} \mathrm{C}$-NMR spectrum of compound $B 9$

${ }^{1}$ H- NMR spectrum of compound B10
${ }^{13}$ C-NMR spectrum of compound B10

${ }^{1} H$ - NMR spectrum of compound B11

${ }^{13} \mathrm{C}$-NMR spectrum of compound B11

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	。

${ }^{1}$ H-NMR spectrum of compound B12

${ }^{13}$ C-NMR spectrum of compound $B 12$

${ }^{1}$ H-NMR spectrum of compound B13

${ }^{13}$ C-NMR spectrum of compound B13

${ }^{1}$ H-NMR spectrum of compound B14

${ }^{13}$ C-NMR spectrum of compound B14

${ }^{19}$ F-NMR spectrum of compound B14

| 8 |
| :---: | :---: |

${ }^{1}$ H-NMR spectrum of compound B15

${ }^{13}$ C-NMR spectrum of compound B15

${ }^{1}$ H-NMR spectrum of compound B16

${ }^{13} \mathrm{C}$-NMR spectrum of compound B 16

N

${ }^{1}$ H-NMR spectrum of compound B17

${ }^{13} \mathrm{C}$-NMR spectrum of compound B 17

${ }^{1}$ H-NMR spectrum of compound B18

${ }^{13}$ C-NMR spectrum of compound B18

${ }^{19}$ F-NMR spectrum of compound B18

${ }^{1}$ H-NMR spectrum of compound B19

${ }^{13}$ C-NMR spectrum of compound B19

${ }^{1}$ H-NMR spectrum of compound B20

${ }^{13} \mathrm{C}$-NMR spectrum of compound B 20

$$
0-1
$$

C NMR

${ }^{1} \mathrm{H}$ - NMR spectrum of compound B21

${ }^{13} \mathrm{C}$-NMR spectrum of compound B 21

${ }^{1}$ H-NMR spectrum of compound B22

${ }^{13}$ C-NMR spectrum of compound B22)

${ }^{\mathbf{1}} \mathrm{H}$-NMR spectrum of compound $\mathbf{B 2 3}$

${ }^{13}$ C-NMR spectrum of compound B23

${ }^{1}$ H-NMR spectrum of compound B24

${ }^{13} \mathrm{C}$-NMR spectrum of compound B 24

${ }^{1}$ H-NMR spectrum of compound B25

${ }^{13}$ C-NMR spectrum of compound B25

${ }^{1}$ H-NMR spectrum of compound B26

${ }^{13} \mathrm{C}$-NMR spectrum of compound B 26

${ }^{1}$ H-NMR spectrum of compound B27

${ }^{13} \mathrm{C}$-NMR spectrum of compound B27

[^1]

${ }^{13} \mathrm{C}$-NMR spectrum of compound B28

${ }^{19}$ F-NMR spectrum of compound B28

${ }^{1}$ H-NMR spectrum of compound B29

${ }^{13} \mathrm{C}$-NMR spectrum of compound B 29

or
${ }^{\mathbf{1}} \mathrm{H}$-NMR spectrum of compound B30

${ }^{13} \mathrm{C}$-NMR spectrum of compound B30

${ }^{1}$ H-NMR spectrum of compound B31

${ }^{13} \mathrm{C}$-NMR spectrum of compound B 31

${ }^{19}$ F-NMR spectrum of compound B31

${ }^{1} \mathrm{H}$-NMR spectrum of compound B32

${ }^{13} \mathrm{C}$-NMR spectrum of compound B32

ne
${ }^{19}$ F-NMR spectrum of compound B32

${ }^{\mathbf{1}} \mathrm{H}$ - NMR spectrum of compound B33

${ }^{13} \mathrm{C}$-NMR spectrum of compound B33

${ }^{19}$ F-NMR spectrum of compound B33

-128.00

${ }^{\mathbf{1}} \mathrm{H}$-NMR spectrum of compound B34

${ }^{13}$ C-NMR spectrum of compound B34

${ }^{19}$ F-NMR spectrum of compound B34

		,	1	1	1	1	1	1	1	1			1	1								
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

${ }^{13} \mathrm{C}$-NMR spectrum of compound B 35

${ }^{1}$ H-NMR spectrum of compound B36

${ }^{13}$ C-NMR spectrum of compound B36

[

${ }^{\mathbf{1}} \mathrm{H}$-NMR spectrum of compound B37

${ }^{13}$ C-NMR spectrum of compound B37

${ }^{1}$ H-NMR spectrum of compound B38

${ }^{13} \mathrm{C}$-NMR spectrum of compound B38

${ }^{1}$ H-NMR spectrum of compound B39

${ }^{13}$ C-NMR spectrum of compound B39

${ }^{1}$ H-NMR spectrum of compound B40

${ }^{13} \mathrm{C}$-NMR spectrum of compound B 40

${ }^{19}$ F-NMR spectrum of compound B40

116.02

${ }^{1}$ H-NMR spectrum of compound B41

${ }^{13}$ C-NMR spectrum of compound B41

${ }^{1}$ H-NMR spectrum of compound B42

${ }^{13}$ C-NMR spectrum of compound 42

13.76

${ }^{19}$ F-NMR spectrum of compound B42

-116.14

${ }^{1}$ H-NMR spectrum of compound B43

${ }^{13} \mathrm{C}$-NMR spectrum of compound B 43

${ }^{1}$ H-NMR spectrum of compound B44

${ }^{13}$ C-NMR spectrum of compound B44

${ }^{1} \mathrm{H}$-NMR spectrum of compound B 45

${ }^{13}$ C-NMR spectrum of compound B45

${ }^{1} \mathrm{H}$-NMR spectrum of compound B46

${ }^{13}$ C-NMR spectrum of compound B46

${ }^{1} \mathrm{H}$-NMR spectrum of compound B47

${ }^{13}$ C-NMR spectrum of compound B47

${ }^{1} \mathbf{H}$-NMR spectrum of compound $\mathbf{C} 1$

${ }^{13}$ C-NMR spectrum of compound C1

${ }^{1}$ H-NMR spectrum of compound C2

${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{C} 2$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound C 3

${ }^{13} \mathrm{C}$-NMR spectrum of compound C3

${ }^{1} \mathrm{H}$-NMR spectrum of compound C 4

${ }^{13} \mathrm{C}$-NMR spectrum of compound C 4

${ }^{1} \mathrm{H}$-NMR spectrum of compound C 5

${ }^{13} \mathrm{C}$-NMR spectrum of compound C 5

${ }^{1} \mathrm{H}$-NMR spectrum of compound C6

${ }^{13} \mathrm{C}$-NMR spectrum of compound C6

160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathbf{H}$-NMR spectrum of compound $\mathbf{C} 7$

${ }^{13} \mathrm{C}$-NMR spectrum of compound C 7

${ }^{1} \mathrm{H}$-NMR spectrum of compound C8

${ }^{13} \mathrm{C}$-NMR spectrum of compound C8

${ }^{1} H$-NMR spectrum of compound C9

${ }^{13} \mathrm{C}$-NMR spectrum of compound C9

${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{C 1 0}$

${ }^{13}$ C-NMR spectrum of compound C10

${ }^{1}$ H-NMR spectrum of compound C11

${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{C} 11$

${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{C 1 2}$

${ }^{13}$ C-NMR spectrum of compound $\mathbf{C 1 2}$

${ }^{1} \mathbf{H}$-NMR spectrum of compound C13

${ }^{13}$ C-NMR spectrum of compound C13

9. Cartesian Coordinates and Absolute Energies for All Species

int-3
G+ZPE = -401.19131

C	-4.39961500	0.10690000	0.26433700
C	-3.04646800	-0.11784200	0.51715200
C	-2.09978200	0.83423800	0.16110900
C	-2.54437600	2.00817400	-0.44235500
C	-3.88746900	2.25031100	-0.71844400
C	-4.81787300	1.28497500	-0.35287700
H	-5.12982900	-0.64361100	0.54107900
H	-2.72543700	-1.03473600	0.99497100
H	-1.04745900	0.67808300	0.35468700
H	-4.19090200	3.15296300	-1.23367500
H	-5.86668800	1.44767600	-0.56642900
N	-1.57644900	3.01255000	-0.79361700
C	-1.71785200	4.27532400	-0.64566000
H	-2.59951000	4.62952600	-0.12991000
H	-0.96473600	4.95434300	-1.02813200
O	-0.45394000	2.46215300	-1.36002500
H	0.26188000	3.12002700	-1.27354000

int-4
$\mathrm{G}+\mathrm{ZPE}=\mathbf{- 4 0 0 . 7 8 3 3 5 6}$

C	-4.40751900	0.10862200	0.27437700
C	-3.05184100	-0.12359000	0.50636300
C	-2.10550900	0.82688500	0.13926300
C	-2.53197700	2.01527800	-0.44368700
C	-3.87840900	2.25764900	-0.69604800
C	-4.81670200	1.29462600	-0.33146700
H	-5.14141200	-0.63750600	0.55534100
H	-2.72921900	-1.04758700	0.97134900
H	-1.04701200	0.66522100	0.28846600
H	-4.19034600	3.16789600	-1.19165800
H	-5.86665400	1.47015900	-0.53339900
N	-1.50462400	2.99028900	-0.81293500
C	-1.74507700	4.26574300	-0.68131400
H	-2.68052400	4.59224600	-0.25856700
H	-0.96936300	4.95063100	-0.98909900
O	-0.40219700	2.50446700	-1.23477500

int-5

$\mathrm{G}+\mathrm{ZPE}=\mathbf{- 3 2 5 . 5 9 9 6 8 2}$

C	-4.34095400	0.08623600	0.31094200
C	-2.96163100	-0.08749200	0.43160800

C	-2.08882900	0.89040700	-0.03223700
C	-2.58820200	2.07195400	-0.59341800
C	-3.97315100	2.24001500	-0.72386600
C	-4.84082900	1.24725000	-0.27610900
H	-5.01952700	-0.68408600	0.65840200
H	-2.56505400	-0.99199400	0.87865700
H	-1.01519500	0.76197200	0.04018400
H	-4.36196100	3.13186000	-1.20135300
H	-5.91069000	1.38045100	-0.39135600
N	-1.65679200	3.02963000	-1.05542500
C	-1.87011000	4.26267200	-0.84131000
H	-2.72527300	4.6418300	-0.27043400
H	-1.16570300	4.99454100	-1.23326800

L-proline

$\mathbf{G}+$ ZPE $=\mathbf{- 4 0 1 . 0 6 1 8 3 7}$

H	-2.75045400	7.14224300	-2.53072100
N	-4.50706300	10.00043200	-0.97048700
C	-3.58430400	11.09536400	-1.30020200
C	-5.00490900	9.43141700	-2.22643700
H	-2.59162500	10.74020300	-1.61651600
H	-3.45318900	11.75650000	-0.44031200
C	-4.30035200	11.76602400	-2.47012000
C	-4.81826300	10.56851100	-3.28483600
H	-6.06020500	9.16268700	-2.13440200
C	-4.31318000	8.17186300	-2.72191700
H	-3.64660700	12.41553300	-3.05455400
H	-5.13617900	12.36213200	-2.09489400
H	-4.07849800	10.27141500	-4.03162200
H	-5.74955300	10.77600200	-3.81084400
O	-3.11824800	7.94857200	-2.13260200
H	-4.07606800	9.29725900	-0.38200100
O	-4.76597200	7.44082900	-3.57007500

L-proline ${ }^{-}$

$\mathrm{G}+\mathrm{ZPE}=\mathbf{- 4 0 0 . 5 9 0 6 1 4}$

N	-4.48847700	10.03660600	-0.91259900
C	-3.59233400	11.13719900	-1.30594300
C	-5.04501600	9.46471000	-2.16656200
H	-2.60307200	10.77628400	-1.63388900
H	-3.43512200	11.83660500	-0.47805400
C	-4.31828000	11.76776700	-2.49328700
C	-4.79910700	10.53062700	-3.26649100
H	-6.12185200	9.29453400	-2.04571500

C	-4.40422100	8.08694100	-2.52941600
H	-3.67911600	12.42885700	-3.08471700
H	-5.17227700	12.35074700	-2.13200400
H	-4.01777900	10.18328700	-3.94844900
H	-5.68891800	10.72279700	-3.86929000
O	-3.55227400	7.64231900	-1.71632600
H	-3.92790000	9.26917600	-0.53760500
O	-4.80994500	7.56805300	-3.59252100

int-5-int-3-L-proline
$\mathrm{G}+\mathrm{ZPE}=\mathbf{- 1 1 2 7 . 8 5 9 3 8 3}$

C	-0.10388500	1.94889000	0.40025600
C	1.35678700	2.37077200	0.23525900
N	-0.17465700	0.70936400	-0.42669100
C	1.75374600	1.91283900	-1.19010800
H	1.96223900	1.85900100	0.98520500
H	1.47061100	3.44313800	0.37654500
C	-1.09372000	3.01311800	-0.10441100
H	-0.36115200	1.69698400	1.43067000
C	0.60847100	0.99715500	-1.66190500
H	-1.12993600	0.45205000	-0.66504700
H	1.85810400	2.76210500	-1.86403500
H	2.70140500	1.37639800	-1.17446400
O	-2.38248900	2.74667000	0.10964600
O	-0.74681300	4.02303300	-0.66816200
H	0.95240100	0.06031800	-2.09678700
H	-0.03025200	1.50382600	-2.38869600
H	-2.53803800	1.87466700	0.58520500
N	-2.88521400	0.33710000	1.24643000
C	-2.91326400	0.12547500	2.49954200
C	-3.12387000	-0.71319000	0.32059300
H	-3.16832300	-0.84311500	2.93321200
H	-2.68519900	0.94707000	3.17407400
C	-3.81318500	-0.39771400	-0.85564100
C	-2.61997700	-2.00478500	0.51181100
C	-4.03327400	-1.38170400	-1.81407800
H	-4.18115200	0.61105300	-1.00097800
C	-2.83212400	-2.97765900	-0.45976600
H	-2.03117500	-2.22819800	1.39198700
C	-3.54353800	-2.67255000	-1.61948100
H	-4.58109500	-1.13730800	-2.71646500
H	-2.43178200	-3.97430100	-0.31453800
O	0.45464000	-1.15094400	1.11643800
H	-3.70382200	-3.43372300	-2.37378800

N	1.72679300	-1.11295400	1.55644300
H	0.27407000	-0.35489200	0.39084400
C	1.95497500	-1.19931900	2.81549500
C	2.76057900	-1.05183700	0.54850400
H	1.11187000	-1.19533400	3.49192700
H	2.97682100	-1.28889400	3.15336800
C	2.55044200	-1.72208600	-0.65277600
C	3.91940900	-0.32134100	0.79853700
C	3.54215800	-1.66505500	-1.62542300
H	1.63828700	-2.28005500	-0.81407500
C	4.90079600	-0.27701800	-0.18458200
H	4.04169600	0.22377400	1.72540700
C	4.71329500	-0.94543300	-1.39392200
H	3.39810700	-2.18562500	-2.56388500
H	5.80351500	0.29502500	-0.01067100
H	5.47871900	-0.89995500	-2.15908300

TS1

G+ZPE $=\mathbf{- 7 2 6 . 7 5 7 3 0 2}$

C	-6.79838400	3.06892700	-0.22569800
C	-6.33163900	4.25170700	0.34798100
C	-5.01272400	4.64644900	0.17525400
C	-4.15768400	3.84376500	-0.59129200
C	-4.61061000	2.64129200	-1.15324600
C	-5.93370800	2.26753500	-0.97240500
H	-7.82828300	2.76619000	-0.08171800
H	-6.99862000	4.87299300	0.93273600
H	-4.64464800	5.56063700	0.61687500
H	-3.93482000	1.99615700	-1.69784900
H	-6.28648500	1.33807200	-1.40163700
N	-2.81898100	4.24018900	-0.78624900
C	-2.07604200	4.01918600	-1.90115300
H	-1.00284800	4.05357600	-1.73879800
H	-2.43987100	3.23333100	-2.55172400
C	-0.17612600	7.93541100	-1.19849300
C	-0.52004700	6.94189800	-2.14731900
C	0.48774800	6.42347800	-2.99797700
C	1.78438100	6.88932500	-2.88787200
C	2.10819800	7.87167400	-1.94398300
C	1.12465000	8.39369000	-1.10060900
H	-0.95832900	8.32357700	-0.55701200
H	0.25466000	5.67773800	-3.74551600
H	2.55384800	6.49609100	-3.54087100
H	3.12755700	8.23147100	-1.87214300

H	1.37908600	9.15475500	-0.37369500
N	-1.84044800	6.55837600	-2.15070200
C	-2.29105400	5.54191500	-2.91778000
H	-3.37154300	5.52459000	-3.03843200
H	-1.73007500	5.23053400	-3.79905100
O	-2.35886600	5.25442200	-0.01624600
H	-2.23008200	6.03518200	-0.68784800

TS2

$G+Z P E=\mathbf{- 1 1 2 7 . 8 4 3 6 0 6}$

C	4.48995100	-1.57345900	0.09378100
C	3.90391300	-1.23061400	-1.12448800
C	2.53751300	-1.38837700	-1.31200800
C	1.75977300	-1.90368100	-0.27131100
C	2.33594500	-2.25902300	0.95140400
C	3.70425900	-2.08480500	1.12572900
H	5.55556100	-1.44423600	0.23860700
H	4.51251000	-0.84399900	-1.93268500
H	2.06837400	-1.13679200	-2.25278000
H	1.73392300	-2.63546000	1.76697700
H	4.15488600	-2.34427500	2.07571000
N	0.35070600	-2.01768300	-0.49563100
C	-0.47862500	-2.76071600	0.27085900
H	-1.41306000	-2.98091500	-0.23003100
H	-0.02410900	-3.56215000	0.83704100
C	-3.26412000	0.92570900	-0.10056500
C	-2.83571500	-0.34028600	0.34616100
C	-3.69724700	-1.44011700	0.16264200
C	-4.92604200	-1.27268400	-0.46400600
C	-5.33288700	-0.01516400	-0.90906700
C	-4.49635400	1.08516200	-0.71610100
H	-2.62996400	1.78636600	0.07118900
H	-3.41894700	-2.42640400	0.50905200
H	-5.57336000	-2.13084300	-0.60294400
H	-6.29370000	0.10745500	-1.39440000
H	-4.80868800	2.07001200	-1.04355600
N	-1.57154800	-0.41114900	0.92980200
C	-1.14957800	-1.52984100	1.53668400
H	-0.27029200	-1.39499700	2.16151200
H	-1.87982900	-2.23313500	1.93912000
O	-0.20411000	-1.17736100	-1.28724900
H	-0.94065200	0.98431200	1.42783400
N	0.40055000	1.46878600	-0.86540400
C	1.19944300	2.05208100	-2.01108500

C	1.23710700	1.60137900	0.40926000
H	0.50930800	2.50524800	-2.71887200
H	1.72348600	1.22415500	-2.48497700
C	2.16182100	3.01082400	-1.32630000
C	2.54198300	2.25504800	-0.04852600
H	1.39175700	0.59559400	0.79764300
C	0.46086200	2.41201400	1.46354900
H	1.65725800	3.94911700	-1.08254200
H	3.02059900	3.23597800	-1.95791700
H	2.93223200	2.90498800	0.73108000
H	3.27692300	1.48023200	-0.26922600
O	0.88893100	3.44197100	1.92367200
H	0.15423900	0.46892300	-1.03823900
O	-0.70060600	1.89864600	1.83789100
H	-0.48214300	1.97438900	-0.78315800

TS3

$\mathrm{G}+\mathrm{ZPE}=\mathbf{- 1 1 2 7 . 8 4 1 6 1 8}$

C	4.42593400	-1.78937400	-0.13448600
C	3.76641100	-1.30989600	-1.26760600
C	2.38542300	-1.38703100	-1.35669900
C	1.65723400	-1.94945300	-0.29847300
C	2.31176700	-2.44753700	0.83684000
C	3.69552400	-2.35604300	0.90978200
H	5.50520500	-1.72786100	-0.06873200
H	4.33185300	-0.88437100	-2.08739100
H	1.86276900	-1.03439900	-2.23474300
H	1.76225500	-2.87629700	1.66260700
H	4.20475000	-2.72590300	1.79104000
N	0.24680600	-1.97110300	-0.41192800
C	-0.62934500	-2.58962200	0.50628700
H	-1.51668600	-2.91513600	-0.03434200
H	-0.17202700	-3.40461500	1.05609800
C	-3.23010800	0.94711500	-0.36359800
C	-2.83659500	-0.24827000	0.28210800
C	-3.74476400	-1.33040300	0.29990500
C	-4.98233900	-1.21532100	-0.31914800
C	-5.35075800	-0.03405500	-0.96245300
C	-4.46692000	1.04940300	-0.97415400
H	-2.55344800	1.79191200	-0.35853100
H	-3.50236600	-2.24676700	0.82079600
H	-5.66983700	-2.05274500	-0.29169000
H	-6.31976800	0.04772600	-1.43965000
H	-4.75071100	1.97520100	-1.46075100

N	-1.57753500	-0.27828200	0.83567800
C	-1.10433200	-1.41165300	1.51374900
H	-0.24336800	-1.14463000	2.12675500
H	-1.85285400	-1.91282300	2.13314800
O	-0.33717300	-1.11416000	-1.14429700
H	-1.04706400	0.89830300	1.21261300
N	0.50751100	1.59658700	-0.84702100
C	1.36917700	2.18287200	-1.94182100
C	1.32571100	1.59865900	0.44836500
H	0.72437000	2.67727800	-2.66498200
H	1.88973900	1.35290100	-2.41712400
C	2.32512800	3.09024800	-1.18189400
C	2.64797700	2.27239600	0.07419100
H	1.46609700	0.55860600	0.73950300
C	0.51894100	2.29558100	1.56569900
H	1.82634300	4.02558500	-0.91420500
H	3.20800000	3.32830300	-1.77433000
H	2.99761700	2.88322800	0.90335900
H	3.39787900	1.51229200	-0.15074400
O	1.04055400	3.13783200	2.26665800
H	0.18167100	0.64192000	-1.07198500
O	-0.72152600	1.90407000	1.67729900
H	-0.32713800	2.17423600	-0.73067100

TS3 ${ }^{\prime}$

$\mathrm{G}+\mathrm{ZPE}=\mathbf{- 1 1 2 7 . 8 6 2 2 5 4}$

C
C
C
C
C
C
H
H
H
H

H
N
C
H

H
C
C
C

3.58241100	-2.52735900	-0.59683000
2.89844500	-1.99650200	-1.69465600
1.53435100	-1.77676900	-1.62518400
0.84883200	-2.10421900	-0.44518400
1.52512900	-2.63492400	0.66148400
2.89510100	-2.83682300	0.57638700
4.64994400	-2.70051800	-0.65766300
3.43288200	-1.76212200	-2.60694200
0.98631700	-1.37011700	-2.46244900
1.00717800	-2.86749000	1.57972400
3.42661700	-3.23559000	1.43085100
-0.54929100	-1.86955600	-0.41286900
-1.39599100	-2.18821700	0.69586600
-2.35816100	-2.49502200	0.29128000
-0.97317600	-2.94642700	1.34418700
-3.57783800	1.59647600	-0.54996100
-3.33806100	0.47092500	0.26247100
-4.41062600	-0.37404300	0.59905100

C	-5.68801800	-0.08823600	0.13048400
C	-5.92272200	1.02826600	-0.66991200
C	-4.85703100	1.86804900	-1.00564300
H	-2.74741600	2.24294400	-0.81261600
H	-4.25406600	-1.24398300	1.22353500
H	-6.50753500	-0.74579600	0.39622300
H	-6.92191700	1.24350500	-1.02835200
H	-5.02787400	2.73889700	-1.62773000
N	-2.04782800	0.23740100	0.69028600
C	-1.61577500	-0.82400500	1.51049000
H	-0.66987700	-0.54935400	1.97464900
H	-2.34594200	-1.08436400	2.27649800
O	-1.08083800	-1.17212800	-1.28480100
H	-1.31310300	0.86761200	0.37478400
N	2.67924500	1.59483800	-0.99218800
C	3.23353500	2.97477000	-1.11260700
C	2.93543300	1.08672100	0.39107200
H	2.59267400	3.57591700	-1.75735900
H	4.23437800	2.92916300	-1.54840900
C	3.29117300	3.46643500	0.33372700
C	3.70354500	2.20692100	1.10850200
H	3.46526600	0.13650600	0.38265300
C	1.52265600	0.85643300	0.97064800
H	2.30410400	3.80873200	0.65710400
H	3.99292500	4.29134000	0.45666300
H	3.45863300	2.24476700	2.16946000
H	4.77791900	2.03502000	1.01003900
O	1.32864700	0.42684700	2.09239900
H	3.02403300	0.96702300	-1.71119800
O	0.60687500	1.17841000	0.08833800
H	1.36654800	1.49215800	-0.76025400

int-6'-L-proline

$\mathrm{G}+\mathrm{ZPE}=\mathbf{- 1 1 2 7 . 8 5 7 4 2 6}$

C	-4.41542500	-1.78862000	0.07579800
C	-3.75919700	-1.44037100	1.25686800
C	-2.37691400	-1.51690000	1.33714700
C	-1.64344000	-1.94673800	0.22273300
C	-2.29488800	-2.31096700	-0.96356700
C	-3.67978500	-2.22284200	-1.02677300
H	-5.49512500	-1.72755200	0.01642700
H	-4.32695500	-1.11764600	2.12098900
H	-1.85731600	-1.26677600	2.25168200
H	-1.73951900	-2.63012500	-1.83410100

H	-4.18598400	-2.48937000	-1.94639000
N	-0.23330200	-1.97445700	0.33541800
C	0.64050600	-2.51918300	-0.62346000
H	1.53606700	-2.87044500	-0.11319900
H	0.18728000	-3.29969100	-1.22544400
C	3.28598200	0.92948300	0.43421500
C	2.85571900	-0.22054000	-0.27168000
C	3.74697100	-1.31690200	-0.36033100
C	4.99165600	-1.26172400	0.25165900
C	5.39056100	-0.12555500	0.95582500
C	4.53015900	0.97383200	1.03621900
H	2.62444600	1.78619100	0.48727900
H	3.48375900	-2.19932500	-0.92768600
H	5.66139700	-2.11025900	0.17254400
H	6.36505700	-0.09118800	1.42772500
H	4.83833100	1.86557900	1.56942900
N	1.59065700	-0.18632900	-0.80619600
C	1.10725700	-1.26644100	-1.55391700
H	0.23349600	-0.96071000	-2.13143000
H	1.84274000	-1.73041500	-2.21737200
O	0.34879700	-1.15596700	1.12492300
H	1.03466600	1.21022500	-1.22800700
N	-0.56118500	1.47633800	0.89598500
C	-1.49564700	2.01583200	1.96093000
C	-1.28416500	1.55059600	-0.45306500
H	-0.90531000	2.55784800	2.69585800
H	-1.97160200	1.15750200	2.43133100
C	-2.49411200	2.85520300	1.17583700
C	-2.68797700	2.04323200	-0.10890400
H	-1.28635300	0.54793600	-0.87884600
C	-0.50112500	2.48120200	-1.39971400
H	-2.07180700	3.83649000	0.94646600
H	-3.41944300	2.99913400	1.73260300
H	-3.09170700	2.63255800	-0.92880100
H	-3.34029200	1.18815000	0.07439000
O	-1.01040300	3.45019300	-1.90888600
H	-0.25883900	0.50154800	1.09034200
O	0.75904500	2.14226500	-1.60562000
H	0.29350000	2.03395800	0.87953100

int-6"-L-proline

$\mathrm{G}+\mathrm{ZPE}=\mathbf{- 1 1 2 7 . 8 6 4 7 4 1}$

C	3.58558100	-2.53129100	-0.59765200
C	2.89404800	-2.00917900	-1.69500400

C	1.52889200	-1.79231700	-1.61942400
C	0.85090800	-2.11441400	-0.43421900
C	1.53481600	-2.63458100	0.67140600
C	2.90499300	-2.83426300	0.58074200
H	4.65288300	-2.70415000	-0.66369900
H	3.42257800	-1.78270100	-2.61293800
H	0.97314900	-1.39386400	-2.45576800
H	1.02195100	-2.86186000	1.59342700
H	3.44158700	-3.22643000	1.43516900
N	-0.54992500	-1.89249400	-0.39575000
C	-1.38531300	-2.20639000	0.72005700
H	-2.34921900	-2.52053000	0.32568400
H	-0.95525400	-2.95547600	1.37395000
C	-3.53187300	1.59495100	-0.55983800
C	-3.30556300	0.46869400	0.25692800
C	-4.38997200	-0.36495000	0.58781900
C	-5.66177000	-0.06989500	0.11049400
C	-5.88162900	1.04666100	-0.69431000
C	-4.80596300	1.87621900	-1.02432400
H	-2.69434600	2.23350400	-0.81806200
H	-4.24373400	-1.23467800	1.21510800
H	-6.48868200	-0.71976100	0.37258700
H	-6.87652600	1.26994700	-1.05985600
H	-4.96546800	2.74745800	-1.64906100
N	-2.02241900	0.22258500	0.69168400
C	-1.61071400	-0.83353900	1.52594800
H	-0.66377300	-0.55812600	1.99110800
H	-2.35150600	-1.08910400	2.28327900
O	-1.09271100	-1.20497300	-1.26963500
H	-1.24924600	0.82660400	0.37884100
N	2.74474500	1.61332900	-1.01819300
C	3.32808800	3.00344900	-1.07507600
C	2.85078300	1.09408900	0.40339600
H	2.74875300	3.60319400	-1.77375800
H	4.35398600	2.91370100	-1.43040700
C	3.27570800	3.46863500	0.37682700
C	3.60876500	2.19220900	1.16001000
H	3.36432000	0.13651900	0.39847500
C	1.39870500	0.88313800	0.91083100
H	2.27178900	3.82183900	0.62522700
H	3.97983600	4.27982900	0.56053200
H	3.29299700	2.22414500	2.20131300
H	4.68394800	1.99901100	1.13033200
O	1.27577300	0.43793600	2.05643000

H	3.16585400	0.98294400	-1.69934700
O	0.49402400	1.18677900	0.07130900
H	1.70969000	1.62275900	-1.15881200

int-6
$G+Z P E=-726.795126$

C	-6.81689100	2.89033900	0.01524800
C	-6.20815100	3.82297900	0.86032600
C	-4.90040700	4.21307100	0.63823100
C	-4.19761400	3.66401500	-0.44765700
C	-4.79810800	2.71936500	-1.29621500
C	-6.11032000	2.34299700	-1.05597200
H	-7.84093200	2.58721200	0.19592800
H	-6.75801000	4.24328400	1.69270900
H	-4.41263700	4.93228400	1.28006100
H	-4.26334000	2.27350300	-2.12120900
H	-6.58176500	1.61581900	-1.70447600
N	-2.86372400	4.09396100	-0.65167500
C	-2.10332100	3.81618700	-1.83715600
H	-1.06276300	3.70389500	-1.54033800
H	-2.46034300	2.94824800	-2.37697400
C	-0.20167400	7.85626900	-1.23358000
C	-0.47126400	6.66457500	-1.93251000
C	0.59999300	5.89124300	-2.41159100
C	1.90719600	6.31085500	-2.19125600
C	2.17158600	7.49160600	-1.50051600
C	1.10654600	8.26122400	-1.02530900
H	-1.02822600	8.44934000	-0.85743800
H	0.42037800	4.97781200	-2.96260500
H	2.72535800	5.70783000	-2.56724900
H	3.19316800	7.81069100	-1.33435100
H	1.29970000	9.18134300	-0.48635600
N	-1.79072000	6.29214000	-2.12040200
C	-2.23464000	5.11279000	-2.75863600
H	-3.27828100	5.22337000	-3.04632800
H	-1.64233600	4.87428500	-3.64340700
O	-2.35879600	4.93954300	0.09417200
H	-2.49477500	6.92494700	-1.76778100

int-6-L-proline

$\mathrm{G}+\mathrm{ZPE}=\mathbf{- 1 1 2 7 . 8 6 6 8 8 7}$

C	3.57812500	-2.53414700	-0.59296100
C	2.89715000	-2.00358000	-1.69258200
C	1.53352600	-1.77970200	-1.62493200

C	0.84545500	-2.10799000	-0.44595300
C	1.51858100	-2.64359900	0.66087300
C	2.88848600	-2.84443800	0.57909100
H	4.64561600	-2.70796800	-0.65165800
H	3.43354000	-1.76968700	-2.60368400
H	0.98829400	-1.37070200	-2.46307300
H	0.99747500	-2.88064100	1.57624800
H	3.41826400	-3.24515900	1.43368800
N	-0.55163800	-1.86942700	-0.41292100
C	-1.40030500	-2.18814500	0.69568700
H	-2.36127800	-2.49734000	0.29012000
H	-0.97779600	-2.94558600	1.34494500
C	-3.57884400	1.60132700	-0.55139200
C	-3.34668000	0.47406700	0.26092500
C	-4.42036900	-0.36896000	0.59380700
C	-5.69549500	-0.07905100	0.12304400
C	-5.92431800	1.03908200	-0.67680500
C	-4.85591600	1.87660800	-1.00998700
H	-2.74552100	2.24562800	-0.81105600
H	-4.26472700	-1.23876400	1.21851500
H	-6.51796600	-0.73377400	0.38643300
H	-6.92211100	1.25761200	-1.03708600
H	-5.02355100	2.74820100	-1.63184200
N	-2.05986900	0.23681600	0.69366900
C	-1.62628400	-0.82696400	1.51027200
H	-0.68480500	-0.55156000	1.98160700
H	-2.35719800	-1.09140100	2.27417900
O	-1.08138500	-1.16903900	-1.28381200
H	-1.33521000	0.87984700	0.39223200
N	2.73577200	1.59187600	-1.01358000
C	3.27448200	2.97490000	-1.11355500
C	2.93476100	1.09344900	0.36918700
H	2.63900200	3.58201600	-1.76000700
H	4.28584000	2.96396000	-1.53237000
C	3.30269000	3.46525900	0.33553700
C	3.70073000	2.20382800	1.11213800
H	3.45967100	0.13876200	0.39152100
C	1.54629500	0.85754700	0.97497200
H	2.30864700	3.80438700	0.64236100
H	3.99963800	4.29156100	0.47749000
H	3.44943200	2.23747300	2.17188500
H	4.77412100	2.02328100	1.01895500
O	1.34205300	0.44130400	2.09132300
H	3.14299600	0.96862100	-1.70077600

O	0.56897000	1.16238200	0.11567600
H	1.10824800	1.44225900	-0.70848600

TS4

$\mathrm{G}+\mathrm{ZPE}=\mathbf{- 6 6 6 . 9 9 6 9 4 3}$

C	-0.72719900	-0.98973700	-4.35909800
C	-1.40428400	-1.72195700	-3.38323100
C	-2.16079200	-1.06981900	-2.41617600
C	-2.23651300	0.31986000	-2.45171200
C	-1.55169500	1.07104400	-3.40410500
C	-0.79696700	0.40190600	-4.36387900
H	-0.13602500	-1.50408000	-5.10750000
H	-1.34313200	-2.80351100	-3.37403400
H	-2.68347400	-1.61551400	-1.64282300
H	-1.57887800	2.15221500	-3.35943100
H	-0.25222200	0.97293500	-5.10605800
N	-3.02342600	0.99355300	-1.45131400
C	-3.67592100	2.07601200	-1.67721000
H	-3.77625200	2.43561400	-2.68765800
H	-4.18448100	2.54479600	-0.84876300
O	-2.96566600	0.47491000	-0.20197500
H	-1.26739300	2.78495000	0.55276900
C	-1.67323700	4.55324200	-0.74588700
O	-1.38059600	4.09946700	0.40637700
H	-1.59483300	5.65829600	-0.82482300
O	-2.02511800	3.92315300	-1.75495600
O	-1.13057100	1.69990000	0.74152600
H	-2.04615800	1.03546200	0.29467000
H	-0.29884200	1.42796300	0.33445000

int-6'
 G+ZPE = -726.342006

C	-6.65451400	3.63696400	-0.20260200
C	-5.93735300	4.76152500	0.20243700
C	-4.57709900	4.87107300	-0.07088900
C	-3.93039000	3.84420500	-0.76081400
C	-4.63901200	2.70725700	-1.16134100
C	-5.99838700	2.61155300	-0.88347600
H	-7.71310900	3.55677700	0.01460100
H	-6.43910500	5.56380200	0.73144400
H	-4.00834800	5.73841500	0.23216200
H	-4.12764900	1.89892400	-1.66953400
H	-6.54435400	1.72800500	-1.19364100
N	-2.52640100	3.92526400	-1.02503800

C	-2.07664700	3.76868200	-2.39247900
H	-1.01286800	3.53512400	-2.38611100
H	-2.63660200	3.01119600	-2.93472800
C	-0.47667200	7.76280700	-1.01871300
C	-0.68605500	6.70531500	-1.92199300
C	0.40968100	6.23862900	-2.67158700
C	1.66106000	6.82871000	-2.52972900
C	1.85421700	7.87681500	-1.63024200
C	0.77773000	8.33862200	-0.87117400
H	-1.32418500	8.11538300	-0.44291100
H	0.28965300	5.42316900	-3.37307500
H	2.49317900	6.46350300	-3.12144000
H	2.83275600	8.33046200	-1.52369100
H	0.91724400	9.15318300	-0.16940400
N	-1.98721700	6.19233300	-1.97379500
C	-2.30532800	5.21302500	-2.97877900
H	-3.35986200	5.30848800	-3.24363900
H	-1.70122600	5.31762200	-3.88075800
O	-1.89758200	4.96490300	-0.53446000

int-6'-HCOOH

$\mathbf{G}+\mathbf{Z P E}=\mathbf{- 9 1 6 . 1 3 5 7 9 5}$

C	-6.65451400	3.63696400	-0.20260200
C	-5.93735300	4.76152500	0.20243700
C	-4.57709900	4.87107300	-0.07088900
C	-3.93039000	3.84420500	-0.76081400
C	-4.63901200	2.70725700	-1.16134100
C	-5.99838700	2.61155300	-0.88347600
H	-7.71310900	3.55677700	0.01460100
H	-6.43910500	5.56380200	0.73144400
H	-4.00834800	5.73841500	0.23216200
H	-4.12764900	1.89892400	-1.66953400
H	-6.54435400	1.72800500	-1.19364100
N	-2.52640100	3.92526400	-1.02503800
C	-2.07664700	3.76868200	-2.39247900
H	-1.01286800	3.53512400	-2.38611100
H	-2.63660200	3.01119600	-2.93472800
C	-0.47667200	7.76280700	-1.01871300
C	-0.68605500	6.70531500	-1.92199300
C	0.40968100	6.23862900	-2.67158700
C	1.66106000	6.82871000	-2.52972900
C	1.85421700	7.87681500	-1.63024200
C	0.77773000	8.33862200	-0.87117400
H	-1.32418500	8.11538300	-0.44291100

H	0.28965300	5.42316900	-3.37307500
H	2.49317900	6.46350300	-3.12144000
H	2.83275600	8.33046200	-1.52369100
H	0.91724400	9.15318300	-0.16940400
N	-1.98721700	6.19233300	-1.97379500
C	-2.30532800	5.21302500	-2.97877900
H	-3.35986200	5.30848800	-3.24363900
H	-1.70122600	5.31762200	-3.88075800
O	-1.89758200	4.96490300	-0.53446000
int-6-HCOO ${ }^{-}$			
G+ZPE $=-916.136917$			
C	-4.29224500	-2.23118100	0.92087600
C	-3.74439700	-1.08231800	1.49431100
C	-2.38652000	-0.82999900	1.39391700
C	-1.57333800	-1.73492000	0.69686800
C	-2.11211300	-2.89619300	0.12371600
C	-3.47375800	-3.13404400	0.24168100
H	-5.35512100	-2.42334100	1.00399600
H	-4.37848500	-0.37377400	2.01222900
H	-1.95331300	0.06094100	1.82142100
H	-1.49036400	-3.61411400	-0.39102800
H	-3.89651300	-4.02943700	-0.19654800
N	-0.18877500	-1.43806300	0.59207100
C	0.66278300	-1.97478000	-0.41807500
H	1.66858500	-2.04100000	-0.01012100
H	0.32086100	-2.92292600	-0.81423200
C	2.34030600	2.23529000	-0.44512000
C	2.22204800	0.89352500	-0.86663600
C	3.38471300	0.10675500	-0.97424200
C	4.62430600	0.65481800	-0.66429900
C	4.73479900	1.98004500	-0.24561000
C	3.58261700	2.76518300	-0.14095400
H	1.44237500	2.83571700	-0.36764600
H	3.32434300	-0.92174600	-1.30655500
H	5.51243100	0.03929100	-0.75177500
H	5.70503900	2.39832600	-0.00611400
H	3.65682400	3.79749900	0.18125000
C	0.67093800	-0.87507000	-1.59673800
H	-0.31823100	-0.88409800	-2.05159600
H	1.40679700	-1.26034500	-2.30483300
O	0.27981000	-0.44295700	1.16980000
N	0.96070200	0.41834400	-1.13714000
C	-1.46001300	2.23215500	0.24002600

O	-2.51870000	2.71768900	0.64543600
H	-0.66008800	2.02909900	1.00169300
O	-1.14087200	1.92663100	-0.95542100
H	0.12212100	1.09652000	-1.04711400

[^0]:

[^1]:

