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Abstract

Distribution-free control charts are an efficient quality monitoring tool to inspect lots

of parts manufactured within a finite production horizon. In this work, the perfor-

mance of the Exponentially Weighted Moving Average chart based on the Wilcoxon

signed rank statistic is investigated for on-line monitoring of finite production runs.

The chart’s on-target performance is evaluated through a specific non-homogeneous

Markov chain model under different process scenarios. A numerical analysis is con-

ducted for determining its optimal design and a performance comparison with other

available schemes is presented for different symmetric distributions of observations.

Finally, an illustrative example is presented to show a practical implementation of

the investigated chart.

Keywords:Quality control; Statistical Process Monitoring; Markov processes;

Distribution-free; Wilcoxon signed rank statistic.

1. Introduction

Statistical process monitoring (SPM), through the use of control charts, is widely

implemented in industries as an efficient tool for the on-line monitoring of a product’s

characteristic of interest. The design of conventional control charts such as the

Shewhart-type (see Shewhart (1939)), the EWMA (Exponentially Weighted Moving

Average, see Roberts (1958)) or the CUSUM (Cumulative Sum, see Page (1954))

control charts is generally tackled by assuming on-line monitoring of long run

processes. In particular, the chart’s statistical design relies on the assumption that the

process either never stops or it does after a very large number, say hundreds or thou-
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sands, of inspections scheduled during the production horizon. However, in practice,

in several manufacturing industries, process flexibility allows consecutive productions

of lots of different part codes to be produced within a very short production horizon.

For example, production of customized parts with the recent advanced manufacturing

technologies, e.g. additive manufacturing based on 3D printing machines, is limited to

delivering a finite number of parts within a short time horizon. Quality practitioners

are required to monitor production by collecting a small number of samples and the

main objective of monitoring is checking if the process location and/or dispersion is

centered on a target value or not. At the end of each production run, the process

resources are restored and reconfigured by performing proper set-up activities to

begin manufacturing of the next scheduled lot of part codes. Frequently, in this

manufacturing scenario only a few tens of inspections can be scheduled by quality

practitioners for each production lot. As a result, a stream of SPM research has been

developed on the design of control charts under the so called Finite Horizon Process

(FHP) framework, see Chakraborti et al. (2021).

When a control chart should be selected to run in a FHP quality practitioners

need to consider the following challenges:

• Under the FHP framework it is assumed that a finite lot of N parts is produced

during a production horizon of finite length equal toH time units. To monitor the

quality characteristic of interest, practitioners can schedule only I inspections

during the production horizon H. Then, the sampling frequency between two

consecutive inspections is defined as h0 = H
I time units. At each inspection, a

sample of size n from a sub-population of Nh = N
I parts is collected to run a

control chart. The value of I could be restricted to a few tens due to constraints

on the lot size and/or the rate of inspection.

• It should be noted that, due to the fact that the process setup frequently switches

to a new part code, the underlying distribution of the quality characteristic to

be monitored is not known: very often, the number of scheduled inspections

is too small to allow this distribution to be identified. As a result, the use of

distribution-free schemes is necessary (Chakrabortiand Graham (2019)).

• Usually, in productions where a large number of inspections is scheduled, the

chart’s statistical design is determined by its average run length properties,

ARL = E(RL), where the run length (RL) is the random variable defined as

“ the count of points plotted on the control chart”. However, these metrics are

valid under the assumption that an infinite number of inspections is available.

On the other hand, under the FHP framework, only a small number of inspec-

tions can be scheduled by the end of the production horizon. As a result, the

distribution of the RL is truncated by the end of the production run. Therefore,

different performance metrics have to be considered to design the control chart

and evaluate its statistical performance.
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As a consequence, with all being said, it is worth of interest to investigate the perfor-

mance of conventional schemes (parametric or not), originally designed for long runs,

under the FHP framework and to provide practitioners with guidelines about their

design and statistical performance.

Many researchers have investigated the performance of control charts monitoring

FHP. Under the assumption of normal observations, there are many contributions for

monitoring shifts in the process mean (see, Nenes and Tagaras (2010), Castagliola et

al. (2013), Nenes et al. (2014), Nenes et al. (2017)). Similarly, many nonparametric

control charts have been widely investigated in literature under the FHP framework.

For instance, there are many publications focusing on Shewhart control charts

monitoring process location, which are based on distribution-free statistics such as

the Sign control chart (Celano et al. (2016), Celano and Castagliola (2018)), the

Wilcoxon signed rank control chart (Celano et al. (2016)) or the Mann-Whitney

control chart (Celano et al. (2021)). Additionally, Bayesian control charts are another

type of control schemes that can efficiently monitor shifts in the process location or

scale in a FHP framework. In particular, at each inspection these charts allow the

design parameters to be varied adaptively, based on prior knowledge and observed

outcomes, see ?, Wang and Lee (2015), Nikolaidis and Tagaras (2017).

In this work, we aim to investigate the performance of the EWMA control chart based

on the Wilcoxon signed rank statistic introduced by Graham et al. (2011) under the

FHP framework. With this control chart, the location deviation of the process from

a nominal target value specified by the quality practitioner can be monitored for

observations having a symmetric distribution.

The remainder of this work is organised as follows. In Section 2, the operation and

design of the EWMA chart based on the Wilcoxon signed rank statistic is presented.

Furthermore, its statistical design under the FHP framework is introduced and appro-

priate metrics are discussed regarding the determination of its performance. In Section

3, a numerical analysis is conducted on the selection of its design parameters and their

effect on the investigated control chart’s performance. In Section 4, the performance of

the proposed chart is compared with existing nonparametric schemes under different

process scenarios. Finally, in Section 5 an illustrative example is presented to show a

practical implementation of the proposed scheme, while in Section 6 some concluding

remarks and suggestions for future works are discussed.

2. Implementation of the EWMA chart based on Signed Ranks for FHP

The nonparametric EMWA chart based on the Wilcoxon signed rank statistic has been

originally introduced by Graham et al. (2011) for long run processes. In particular,

its statistical performance has been investigated for several symmetric distributions
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under the assumption that the process operates indefinitely. Therefore, its statistical

design and implementation were entirely based on the fact that the process theo-

retically never stops, meaning that practitioners have at their disposal thousands of

potential inspections. Under the FHP framework, this assumption does no longer hold

and the effect of varying control limits for the EWMA control chart must be inves-

tigated by calculating proper performance metrics defined for a FHP. In this work,

we aim to revisit the EWMA control chart based on Wilcoxon signed rank statistic

by providing practitioners with detailed guidelines about its design, performance and

implementation under the FHP framework.

2.1. Implementation in a FHP

Suppose that, at each scheduled inspection i = 1, 2, . . . , I during the production run,

a subgroup of observations {Xi,1, Xi,2, . . . , Xi,n} having size n is collected from a sub-

population having size Nh. We assume that the observations Xi,j , for i = 1, . . . I, j =

1, . . . n are i.i.d. random variables with unknown continuous symmetric distribution.

Without loss of generality, we also assume that Nh is an even number, as in Celano

et al. (2016), and θt denotes the process median, which is the location parameter

of interest at time t = h0, 2 × h0, . . . ,H. In general, during the production run the

process median is equal to

θt =

θ0, t = h0, 2× h0, . . . , (i− 1)× h0

θ1, t = i× h0, (i+ 1)× h0, . . . ,H
,

where θ1 = θ0+δσ, δ is the shift magnitude and i−1 is the inspection index immediately

before the shift. Similarly to what was suggested by Zimmer et al. (2000) for long

run processes, different operating conditions can be considered for the process finite

production horizon:

- on-target condition: the process starts and remains on-target ( θt = θ0 for t =

h0, 2× h0, . . . ,H) without any location shift during the production run. In this case,

the control chart should not signal any alarm. Any signal triggering is a false alarm;

- off-target condition: the process starts off-target ( θt = θ1 for t = h0, 2× h0, . . .) due

to an imperfect set-up. The location shift is conventionally assumed immediately after

the start of the production run. In this case, all I scheduled inspections are available

to the control chart to trigger a signal by the end of the production run.

- on-to-off-target condition: the process starts on-target ( θt = θ0 for

t = h0, 2 × h0, . . . , (i − 1) × h0) with a location shift occurring during the pro-

duction run before inspection i. In this case, only I − i+ 1 scheduled inspections are

available to the control chart to trigger a signal by the end of the production run.

At each inspection i, the Wilcoxon signed rank statistic (SRi) from sample i of obser-

vations is computed as follows:
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SRi =

n∑
j=1

sign(Xi,j − θ0)Li,j , (1)

where sign(Xi,j − θ0) = −1, 0 or 1, if Xi,j < θ0,Xi,j = θ0 or Xi,j > θ0, respectively.

Additionally, Li,j ∈ {1, 2, . . . , n} denotes the rank of the absolute value of the differ-

ences |Xi,j − θ0| , j = 1, 2, ..., n, for inspection i = 1, 2, . . . , I. It is worth stretching

that, due to the assumption that each sample follows a continuous distribution, the

condition Xi,j = θ0, corresponding to an observation tied to the target median is

very unlikely to occur. For the computation of the sign statistic, Castagliola et al.

(2020) provide some practical solutions to the problem of tied observations that can

be easily adapted to the WSR statistic.

Generally, the SRi statistic presented in (1) can be alternatively expressed as:

SRi = 2SR+
i −

n(n+ 1)

2
, (2)

where SR+
i is the sum of positive signed ranks and is often called as the null

Wilcoxon distribution. Moreover, by definition, the SRi statistic is defined on

{−n(n+1)
2 ,−n(n+1)

2 + 2, . . . , n(n+1)
2 − 2, n(n+1)

2 }. A simple and efficient way to compute

the distribution of SRi is through the null Wilcoxon distribution, SR+
i using the

relation presented in (2), see Gibbons and Chakraborti (20121).

Finally, at each inspection i, the charting statistic of the two-sided EWMA

chart based on signed ranks (WSR EWMA chart) is defined by the following recursive

formula:

Zi = λ× SRi + (1− λ)Zi−1, (3)

where Z0 = E0(SRi) and E0(SRi) is the on-target mean of SRi. Considering a finite

horizon process for which the number of inspections is small (say I < 50), the time-

varying (TV) control limits of the proposed chart under the FHP framework are equal

to:

UCL(i) = E0(SRi) +K

√
V0(SRi)

λ

(2− λ)
(1− (1− λ)2i)

LCL(i) = E0(SRi)−K

√
V0(SRi)

λ

(2− λ)
(1− (1− λ)2i)

When the process is on-target the mean and variance of SRi are equal to ( Graham et
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al. (2011)):

E0(SRi) = 0,

V0(SRi) =
n(n+ 1)(2n+ 1)

6
.

Additionally, for a sufficiently large number of I inspections, the above limits converge

to the asymptotic (A∞) control limits defined as

UCL∞ = E0(SRi) +K

√
V0(SRi)

λ

(2− λ)

LCL∞ = E0(SRi)−K

√
V0(SRi)

λ

(2− λ)

It is worth remembering that for a finite horizon process the control limits

rarely converge to their asymptotic values due to the small values of I. For this

reason, we discourage practitioners from implementing the EWMA control chart with

(LCL∞,UCL∞) in a FHP. Later, in the Numerical Analysis Section we also prove

that, as expected, the TV control limits boost the control chart’s detection capability

vs. the A∞ control limits.

2.2. Selection of design parameters

Generally, the design and performance of conventional EWMA charts for long-run

processes are derived through their RL (Run Length) distribution. In particular, the

most commonly used metric for the charts’ performance is the ARL (Average Run

Length), defined as “the expected number of plotted points until the first signal is

triggered by the control chart” (out-of-control state) or as “the expected number of

plotted points between two successive false alarms” (in-control state). However, under

the FHP framework, this metric is inefficient due to the fact that its operation assumes

that I →∞. In this work, the chart’s operation and statistical design will be derived

though the following metrics (Celano and Castagliola (2018)):

• Let us assume that the process is on-target. The chart’s design parameters (λ,K)

are selected by considering the FAP (False Alarm Probability) metric: it is de-

fined as the probability of at least one false alarm occurring by the end of the

production run, given a finite number of I scheduled inspections. The design pa-

rameters (λ,K) of the EWMA control chart are selected by fixing at a nominal

value FAP0 the expected probability of false alarm during the production run.

For the computation of the FAP value, a discrete Markov chain approach origi-
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nally introduced by Brook and Evans (1972) for long run processes is adapted

to FHP. A detailed presentation regarding the computation of FAP is provided

in the Appendix A.

• The chart’s off-target statistical performance is determined through the SP(i, g)

(signal probability) defined as “the probability to get from the control chart a

true signal by the g-th inspection after the event shifting the process location, as-

sumed to occur before inspection i”. In particular, assuming that the assignable

cause occurs before the i-th inspection, the signal probabilities SP(i, g) are cal-

culated as follows:

SP(i, g) =

g∑
k=1

P(Zk > UCL(k) or Zk < LCL(k)|θ = θ1)

where g ≤ (I−i)+1 denotes the g-th scheduled inspection after the occurrence of

the assignable cause. For instance, assuming that a shift occurs before inspection

i = 1 i.e. for an off-target process, then g = {1, 2, . . . , I}. Therefore, when g = 1,

SP(1, 1) denotes the probability that the control chart triggers a true off-target

signal by the first inspection after the occurrence of the assignable cause; when

g = 3, SP(1, 3) denotes the probability that the control chart triggers a true

off-target signal by the third inspection after the occurence of the assignable

cause; when g = I, SP(1, I) is the probability that the control chart triggers a

true off-target signal by the end of the production run. Thus, given the process

location shift, a plot of SP(i, g), can be generated. This plot is known as the signal

probability profile, as defined by Celano et al. (2021). Finally, assuming that

the process shifts to the off-target state before inspection i, an efficient metric

to quantify the chart’s overall statistical performance during a production run

is the SP(i) (Average Signal Probability), defined as:

SP(i) =
1

Gi

Gi∑
g=1

SP(i, g)

For the computation of every SP(i, g) profile, we consider a Monte Carlo simulation

because considering the process change-point at any time during the production run

condition does not allow the vector of initial probabilities to be defined for the Markov

chain. Furthermore, a steady-state condition cannot be assumed within a few inspec-

tions. Neither the zero state nor the FIR feature can be considered, because they would

assume either an on-target or an off-target process. Therefore, we have decided to sim-

ulate Nsim runs, for each process location change-point during the production run to

overcome the problem and to perform the study. We considered Nsim = 106 simula-

tion runs to get reliable estimates of the off-target WSR EWMA chart’s performance.

It should be clarified the fact that, even though the chart’s off-target performance is

determined through a simulation-based method, the obtained results are not affected
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by the selected number of simulation runs, (see Appendix B).

3. Numerical analysis

The proper determination of the parameters (λ,K) is essential to design an efficient
EWMA chart. In particular, the couple of design parameters (λ,K) should be obtained
under the condition that the corresponding FAP metric is equal to a nominal value
FAP0. The correct estimation of FAP values can be affected by the number of subin-
tervals S chosen for the Markov chain, see Appendix A. Thus, a preliminary study
has been performed on the correct tuning of the Markov chain. In Figure 1, several
plots present FAP values as a function of the number of Markov chain’s subintervals
S = {251, 301, . . . , 1001} for (I = 20, Nh = 200) and n ∈ {5, 10, 15, 20} using the
A∞ control limits. Additionally, for each case, an error bandwidth FAPS=1001 ± 3%
(dashed lines) is used where FAPS=1001 (solid lines) represents the FAP value com-
puted for S = 1001, (i.e a substantially large number of subintervals). Finally, the
couple (λ,K) = (0.2, 2.5) has been randomly selected only for illustration purposes.
From Figure 1 we may conclude that the FAP values are inside the error bandwidth
and, as n increases, they become steady around the value FAPS=1001. Looking at the
plots in Figure 1, setting S ≈ 501 can be considered as a reasonable choice regarding
the number of subintervals.
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Figure 1. FAP values vs. the number of subintervals S for (I = 20, Nh = 200), (λ,K) = (0.2, 2.5) and

n ∈ {5, 10, 15, 20}

3.1. On-target and off-target performance

Similarly to any distribution-free control chart, our proposed scheme can be designed

without any assumption about the underlying distribution of observations. In par-

ticular, for a given process scenario (n,Nh, I), practitioners want to select a cou-

ple of design parameters (λ,K) that meets the constraint on false alarm probability

FAP = FAP0, (on-target performance study). In particular, it should be mentioned

that, for a distribution-free control chart, due to the discrete nature of the statistic to
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Table 1. Values of K when I ∈ (10, 20), FAP0 ∈ {0.01, 0.1} under different process scenarios (n,Nh, I)

FAP0 = 0.01

I ∈ (10, 20)

λ

Nh n 0.05 0.1 0.15 0.2 0.25

50 5 (2.67,2.85) (2.761,3.019) (2.832,3.098) (2.873,3.127) (2.893,3.126)

10 (2.69,2.86) (2.791,3.06) (2.88,3.148) (2.941,3.209) (2.98,3.217)

15 (2.69,2.87) (2.8,3.07) (2.891,3.181) (2.961,3.241) (3.01,3.263)

FAP0 = 0.1

I ∈ (10, 20)

λ

Nh n 0.05 0.1 0.15 0.2 0.25

150 5 (1.88,2.07) (2.011,2.298) (2.11,2.419) (2.199,2.489) (2.25,2.518)

10 (1.88,2.08) (2.02,2.302) (2.128,2.443) (2.219,2.523) (2.278,2.57)

15 (1.88,2.079) (2.02,2.31) (2.129,2.451) (2.227,2.532) (2.287,2.581)

be monitored (such as the Sign or the Wilcoxon statistics), it is not always possible

to find design parameters to get exactly FAP = FAP0, see Graham et al. (2011). As

a result, for a given process scenario (n,Nh, I), couples (λ,K) can be selected if:

|FAP− FAP0| ≤ τ

where τ is a fixed constant. Without loss of generality, we set τ = 0.001. In Table 1

several couples of the design parameters (λ,K) are reported for the WSR EWMA

control chart under different process scenarios (n,Nh, I). In particular, for a given

value of λ ∈ {0.01, 0.025, 0.05, 0.1, 0.2} and FAP0 ∈ {0.01, 0.1}, the corresponding

values of K have been computed for a population size Nh ∈ {50, 150} between two

consecutive inspections, sample size n ∈ {5, 10, 15} and the scheduled number of

inspections is I ∈ {10, 20}. In general, in conventional EWMA schemes, as λ increases

the corresponding value of K also increases. From Table 1, it may be concluded that

this trend is also valid for the proposed chart implemented in the FHP scenario. In

particular, for the process scenario (n,Nh, I,FAP0)=(5, 50, 10, 0.01) we may see that

for λ ∈ {0.05, 0.1, 0.15, 0.2, 0.25} we get K ∈ {2.67, 2.761, 2.832, 2.873, 2.893}.

The off-target performance of the WSR EWMA chart is examined under the following

symmetric distributions of observations:

• normal distribution, N(0, 1)

• Student t distribution, t(8)

• logistic distribution, L
(

0,
√

3
π

)
• contaminated normal distribution CN(0.05, 2)
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where the location and scale parameters for each distribution have been chosen in

order to have zero mean and unit variance.

Before we proceed to any conclusions or performance evaluations for the WSR

EMWA control chart in the FHP scenario, for the sake of completeness it is important

to investigate the effect of the two types of control limits (i.e. the TV and A∞

control limits), described at the beginning of this Section, on the chart’s best

off-target performance. Under the design of a conventional WSR EMWA chart

for long runs, due to the availability of a very large number of inspections the

chart’s control limits become steady and so the A∞ limits can be used. On the

other hand, under FHP, only a few inspections are available by the end of the

production. As a consequence, the “steady” control limits cannot be achieved and

the use of the TV limits is crucial. In Figure 2, assuming the N(0, 1) distribution,

for δ ∈ {0.25, 0.5, 0.75, 1} the corresponding probability profiles SP(1, g) of the

WSR EWMA chart are presented using the A∞, and TV control limits, considering

the process scenario (I, n,Nh) = (10, 10, 100). Moreover, setting λ = 0.05, we get

K = 2.69 (using A∞ limits) and K = 2.17 (using the TV limits). Finally, the design

parameters (λ,K) have been chosen in order to get that FAP ≈ 0.01. From Figure

2, it can be clearly seen that using the TV control limits the signal probabilities

are significantly higher than for the A∞ limits. As an immediate consequence,

under the FHP framework the use of TV limits significantly increases the chart’s

detection power for any shift magnitude in the process median. This is an expected

finding since the number of scheduled inspections is small and the narrower TV limits

at the beginning of the process allow a faster detection speed than the wider A∞ limits.

In Table 2, for each distribution listed above, the corresponding off-target performance

for the WSR EWMA chart with TV limits is presented, considering the process sce-

nario (n,Nh, I,FAP0)=(10, 150, 10, 0.1) for λ ∈ {0.05, 0.1, 0.2} in terms of the SP(1)

metric for an off-target process. For each case, as expected, we may observe that as

δ increases SP(1) → 1. Values of SP(1) close to one mean that the WSR EWMA

control chart immediately signals the process location shift from the target since the

first scheduled inspection. For instance, when the underlying distribution is N(0, 1) for

λ = 0.05 and δ ∈ {0.25, 0.5, 0.75, 1.25, 1.5, 2}, the corresponding values for the average

signal probabilities are

SP(1) ∈ {0.5348, 0.8548, 0.9475, 0.9947, 0.9989, 1}.
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Table 2. Off-target performance in terms of SP(1) for the WSR EWMA chart with TV limits for

(n,Nh, I,FAP0)=(10, 150, 10, 0.1) and λ ∈ {0.05, 0.1, 0.2}. Off-target process scenario, i = 1.

N(0, 1) t(8)

δ λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.05 λ = 0.1 λ = 0.2

0.25 0.5348 0.4835 0.4118 0.5702 0.5202 0.4502

0.5 0.8548 0.8270 0.7874 0.8725 0.8471 0.8117

0.75 0.9475 0.9313 0.9097 0.9538 0.9390 0.9195

1.25 0.9947 0.9902 0.9816 0.9941 0.9894 0.9820

1.5 0.9989 0.9974 0.9937 0.9981 0.9960 0.9922

2 1.0000 0.9999 0.9997 0.9998 0.9994 0.9987

L
(

0,
√

3
π

)
CN(0.05, 2)

δ λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.05 λ = 0.1 λ = 0.2

0.25 0.5724 0.5222 0.4524 0.5508 0.4999 0.4282

0.5 0.8732 0.8478 0.8129 0.8645 0.8377 0.8005

0.75 0.9538 0.9389 0.9197 0.9524 0.9369 0.9162

1.25 0.9940 0.9891 0.9816 0.9959 0.9919 0.9843

1.5 0.9981 0.9959 0.9920 0.9992 0.9981 0.9950

2 0.9998 0.9995 0.9988 1.0000 1.0000 0.9998
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Figure 2. SP(1, g) values (off-target process) using A∞ and TV control limits vs. g for n = 10, when

(I,Nh) = (10, 100) and δ ∈ {0.25, 0.5, 0.75, 1} under N(0, 1)

To show the effect of λ on the chart’s off-target performance, Figure 3 plots the SP(1)

values presented in Table 2. Within each plot, each dotted line represents the off-

target performance of the WSR EWMA chart for λ ∈ {0.05, 0.1, 0.2}. It can be seen

that, for small to moderate shifts, the corresponding SP(1) values are maximized by

setting λ = 0.05. On the other hand, as δ increases, the probabilities tend to be the

same regardless the value of λ. As a result, choosing λ = 0.05 can be considered as a

reasonable choice.
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Similarly, it is important to investigate the effect of the sample size n on the off-target

performance of the WSR EWMA chart under the FHP framework. In general, as

the sample size increases the chart’s shift detection ability is significantly improved.

However, in real-life applications, quality practitioners may not have at their disposal

a large set of observations at each inspection. In Figure 4, the SP(1) values using TV

control limits are reported, under different process scenarios for small to moderate

sample sizes n ∈ {1, 5, 10, 15}. From Figure 4 it can be seen that, as the sample size

becomes larger, the SP(1) values increase. In particular, for small shifts (δ = 0.5),

when n = 1 we obtain SP(1) < 0.1 (FAP = 0.01) and SP(1) = 0.14 (FAP0 = 0.1). On

the other hand, when n = 15 we obtain SP(1) ≈ 0.8 (FAP = 0.01) and SP(1) ≈ 0.91

(FAP0 = 0.1). For moderate to large shifts (δ > 1) and n > 10 the corresponding

SP(1) values tend to be the same. As consequence, it can be concluded that the use of

moderate sample sizes (n ≈ 10) yields to an efficient overall performance for detecting

small to large shifts.
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Figure 3. Effect of λ: SP(1) values using TV control limits considering the process scenario
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Figure 4. Effect of the sample size n: SP(1) values using TV control limits, when (Nh, I,FAP0) =

(150, 10, 0.01) (left) and (Nh, I,FAP0) = (150, 10, 0.1) (right) for δ ∈ {0.25, 0.5, 0.75, 1.25, 1.5, 2} and n ∈
{1, 5, 10, 15}

It is worth noting that a location shift can occur at any time during the production run,

(on-to-off-target process condition). In the numerical analysis presented so far, only for

illustration purposes it has been assumed that an assignable cause occurs immediately
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Table 3. SP(i, g) values assuming that an assignable cause occurs before inspection i under N(0, 1) for

(n = 15, Nh = 200, I = 10,FAP0 = 0.1) with TV limits. On-to-off-target scenario.

δ = 0.5 δ = 0.75

i = 1 i = 3 i = 5 i = 7 i = 9 i = 1 i = 3 i = 5 i = 7 i = 9

0.4440 - - - - 0.7705 - - - -

0.7796 - - - - 0.9787 - - - -

0.9219 0.1586 - - - 0.9985 0.2849 - - -

0.9744 0.4777 - - - 0.9999 0.7899 - - -

SP(i, g) 0.9920 0.7544 0.1032 - - 1 0.9738 0.1811 - -

0.9977 0.9050 0.3475 - - 1 0.9980 0.6255 - -

0.9993 0.9676 0.6334 0.0796 - 1 0.9999 0.9221 0.1386 -

0.9998 0.9899 0.8360 0.2815 - 1 1 0.9918 0.5225 -

1 0.9971 0.9385 0.5539 0.0670 1 1 0.9994 0.8657 0.1165

1 0.9992 0.9794 0.7789 0.2422 1 1 1 0.9813 0.4568

δ = 1 δ = 1.5

i = 1 i = 3 i = 5 i = 7 i = 9 i = 1 i = 3 i = 5 i = 7 i = 9

0.9469 - - - - 0.9996 - - - -

0.9995 - - - - 1 - - - -

1 0.4088 - - - 1 0.5614 - - -

1 0.9446 - - - 1 0.9990 - - -

SP(i, g) 1 0.9993 0.2568 - - 1 1 0.3478 - -

1 1 0.8176 - - 1 1 0.9484 - -

1 1 0.9935 0.1963 - 1 1 1 0.2674 -

1 1 0.9999 0.7123 - 1 1 1 0.8698 -

1 1 1 0.9780 0.1636 1 1 1 0.9999 0.2235

1 1 1 0.9997 0.6375 1 1 1 1 0.8023

after the production begins (i.e. for i = 1, off-target condition). In order to investigate

the control chart’s signal probability profile for the on-to-off-target process condition,

in Table 3 several scenarios are considered under N(0, 1) for (n = 15, Nh = 200, I =

10,FAP0 = 0.1, i ∈ {1, 3, 5, 7, 9}) using (λ,K) = (0.05, 1.88). In particular, for δ = 0.5,

when i = 9, (i.e. we assume that the shift has occurred before inspection 9), the

corresponding probabilities of detecting a shift by inspection g = {1, 2} after the

occurrence of the shift, are SP(i, g) = {0.067, 0.24}. As expected, these probabilities

are quite low, since the control chart should detect a small shift by only two available

inspections. On the other hand, for δ = 1.5 and i = 9 the corresponding probabilities

are SP(i, g) = {0.2235, 0.8023}. For the other investigated cases i ∈ {3, 5, 7} it is

evident that the signal probabilities converge to 1 regardless of the shift magnitude.

4. Performance comparisons

In this Section we aim to investigate the performance of the WSR EWMA chart

versus other nonparametric control charts under the FHP framework: in particular,

we consider the Sign EWMA control chart with TV limits (Celano and Castagliola

(2018)) and the Shewhart Wilcoxon Signed Rank control chart (Celano et al. (2016)).

In Table 4, performances comparisons between the Sign and the WSR EWMA control

charts are presented under different process scenarios (n,Nh, I,FAP0). In particular,
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for each investigated distribution of observations, the percentage difference between

the Sign and the WSR control charts is presented and computed as:

∆ =
SP(1)SR − SP(1)SN

SP(1)SN
× 100% (4)

where SP(1)SR and SP(1)SN are the corresponding average probabilities for the WSR

and Sign EWMA charts, respectively. Additionally, for each scheme, setting λ = 0.05,

the corresponding value of K has been computed for FAP ∈ {0, 01, 0.1}. It is clear

that values of ∆ > 0 show the superiority of the WSR EWMA chart because they

correspond to an higher average signal probability. From Table 4 we may conclude

that for FAP = 0.1 the WSR outperforms the Sign EWMA chart except for large

shifts with n = 5. On the other hand, for small to moderate shifts the WSR has

a better performance, regardless of the sample size or the underlying distribution.

Similarly, for FAP = 0.01, the WSR EWMA chart has a better performance for

small to moderate shifts (δ < 1.25). For n > 15 (large sample size) and δ > 1.25

(large shifts) the Sign EWMA chart performs slightly better under the t(8) and

L
(

0,
√

3
π

)
distributions. As a consequence, for small to moderate sample sizes and

shift mangitudes the WSR EWMA chart outperforms the Sign EWMA control

chart. It is worth stretching that these findings are consistent with the perfomance

comparisons for long run processes performed by Graham et al. (2011) between these

two schemes in terms of the ARL metric.

Table 5 shows values of ∆ between the WSR EWMA chart and the WSR Shewhart

control chart. Note that, in order to perform fair comparisons, the design of the

EWMA chart is selected as to get the same FAP value as the Shewhart chart. In

fact, it is well acknowledged that a main disadvantage of Shewhart distribution-free

schemes is that frequently these charts cannot be designed to get a FAP exactly

equal to the fixed nominal value FAP0 (i.e. close to 0.01 or 0.1). Moreover, in

Table 5, the coefficient C denotes the width of the control limits for the Shewhart

control chart. From the results in Table 5 we may conclude that, for small shifts,

the WSR EWMA chart has the best performance. On the other hand, for large

shifts, the WSR Shewhart chart performs slightly better. In general, for large

shifts and using a small value of λ in the EWMA chart, Shewhart-type schemes

perform slightly better. Of course, by setting λ ≈ 0.2 the EWMA chart will be

superior for detecting large shifts. Nevertheless, in most cases, the differences are

close to zero because the signal probabilities rapidly tend to one for both charts. As

a consequence, both schemes can be considered for detecting large shifts in the process.

It should be noted that, for the performance comparisons performed above, it has been

assumed that the shift occurs at the start of the process (i = 1, off-target condition).

However, as it was highlighted in Section 3, a shift in a process can occur at any

14



Table 4. Performance comparisons in terms of SP(1) between the Sign and WSR EWMA charts for (Nh =

150, I = 20) with TV limits. Off-target process scenario, (i = 1).
FAP0 = 0.01

N(0, 1) t(8)

δ n = 5 n = 10 n = 15 n = 20 n = 5 n = 10 n = 15 n = 20

0.25 17.66% 23.43% 15.94% 10.46% 10.75% 14.18% 8.73% 4.94

0.5 12.56% 6.37% 3.32% 1.93% 6.7% 3.28% 1.45% 0.65%

0.75 4.18% 2.14% 0.86% 0.38% 2.04% 0.93% 0.1% -0.17%

1.25 0.66% -1.1% 0.02% 0.09% 0.2% -1.61% -0.24% -0.03%

1.5 0.23% -2.39% 0.06% 0.03% 0.03% -2.63% -0.13% 0%

2 0.01% -4.01% 0.01% 0% -0.01% -3.92% -0.04% 0

L
(

0,
√

3
π

)
CN(0.05, 2)

δ n = 5 n = 10 n = 15 n = 20 n = 5 n = 10 n = 15 n = 20

0.25 9.87% 12.41% 7.46% 3.8% 17.3% 23.18% 15.55% 9.87

0.5 5.76% 2.82% 1.22% 0.44% 11.47% 5.76% 3.05% 1.77%

0.75 1.78% 0.77% 0% -0.23% 3.82% 1.93% 0.77% 0.33%

1.25 0.19% -1.6% -0.25% -0.04% 0.56% -1.33% 0.03% 0.08%

1.5 0.03% -2.59% -0.13% 0% 0.18% -2.6% 0.07% 0.02 %

7 -0.01% -3.89% -0.02% 0 % 0.01% -4.14% 0.01% 0%

FAP0 = 0.1

N(0, 1) t(8)

δ n = 5 n = 10 n = 15 n = 20 n = 5 n = 10 n = 15 n = 20

0.25 10.1% 13.09% 8.17% 6% 6.98% 8.59% 4.79% 3.5%

0.5 5.49% 4.32% 2.57% 1.91% 2.92% 2.87% 1.63% 1.17%

0.75 1.36% 2.26% 1.29% 0.87% 0.12% 1.59% 0.81% 0.52%

1.25 -2.04% 1.02% 0.27% 0.07% -2.55% 0.71% 0.16% 0.03%

1.5 -3.13% 0.59% 0.07% 0.01% -3.42% 0.4% 0.04% 0%

2 -4.41% 0.1% 0% 0% -4.37% 0.09% 0% 0

L
(

0,
√

3
π

)
CN(0.05, 2)

δ n = 5 n = 10 n = 15 n = 20 n = 5 n = 10 n = 15 n = 20

0.25 6.23% 7.76% 4.36% 3% 10.3% 12.71% 7.93% 5.76%

0.5 2.39% 2.61% 1.47% 1.08% 5.04% 4.11% 2.46% 1.83%

0.75 -0.05% 1.51% 0.73% 0.47% 1.13% 2.16% 1.21% 0.81%

1.25 -2.56% 0.7% 0.15% 0.03% -2.24% 0.94% 0.22% 0.05%

1.5 -3.37% 0.42% 0.05% 0% -3.31% 0.51% 0.05% 0 %

2 -4.34% 0.11% 0% 0% -4.5% 0.07% 0% 0%

time during the production run. As a consequence, before we make any conclusions

regarding the superiority of the proposed scheme, in Table 6 the performance of the

WSR EWMA chart is compared to the Sign EWMA chart under different on-to-off-

target process scenarios (δ, I, i, n). In particular, for (Nh = 150, I = 10, n = 15), λ =

0.05 and FAP0 = 0.1 the differences ∆ defined in (4) between the Sign and the WSR

EWMA charts are reported for i ∈ {3, 5, 7, 9}, for different shift magnitudes. It can be

clearly seen that the results presented in Table 6 are consistent with those in Table 4.

In particular, Table 6 shows that, regardless of the time when the shift occurs and even

for cases when an assignable cause occurs close to the end of the production run, i.e.

before inspections (i ∈ {7, 9} in our case), the WSR EWMA chart performs the better

for small to moderate shifts. As a result, for all the investigated process scenarios, we

may conclude that the WSR EWMA chart has an overall better performance against

its competitors for detecting small to moderate shifts in the process location.
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Table 5. Performance comparisons between the WSR EWMA chart with TV limits and the Shewhart WSR

chart. Off-target process scenario, (i = 1).

Nh = 150, I = 10,FAP0 ≈ 0.01

(n,C) = {(10, 49), (15, 88), (20, 134)}

N(0, 1) t(8)

δ n = 10 n = 15 n = 20 n = 10 n = 15 n = 20

0.25 65.17% 70.14% 73.82% 66.22% 69.49% 69.84%

0.5 66.64% 27.05% 13.87% 52.84% 20.49% 10.13%

0.75 18.94% 2.65% 0.26% 12.91% 1.54% -0.04%

1.25 -0.98% -0.65% -0.1% -0.98% -0.67% -0.12%

1.5 -1.54% -0.18% -0.01% -1.27% -0.31% -0.02%

2 -0.55% 0% 0% -0.58% -0.05% 0%

L
(

0,
√

3
π

)
CN(0.05, 2)

δ n = 10 n = 15 n = 20 n = 10 n = 15 n = 20

0.25 65.17% 70.14% 73.82% 66.22% 69.49% 69.84%

0.5 66.64% 27.05% 13.87% 52.84% 20.49% 10.13%

0.75 18.94% 2.65% 0.26% 12.91% 1.54% -0.04%

1.25 -0.98% -0.65% -0.1% -0.98% -0.67% -0.12%

1.5 -1.54% -0.18% -0.01% -1.27% -0.31% -0.02%

2 -0.55% 0% 0% -0.58% -0.05% 0%

Nh = 150, I = 10,FAP0 ≈ 0.05

(n,C) = {(10, 38), (15, 69), (20, 105)}

N(0, 1) t(8)

δ n = 10 n = 15 n = 20 n = 10 n = 15 n = 20

0.25 0.84% 5.72% 6.4% 3.49% 7.38% 6.78%

0.5 6.86% 2.3% 0.44% 5.44% 1.54% 0.15%

0.75 0.53% -0.4% -0.48% 0.24% -0.42% -0.41%

1.25 -0.57% -0.07% -0.01% -0.51% -0.09% -0.01%

1.5 -0.23% -0.01% 0% -0.28% -0.02% 0%

2 -0.01% 0% 0% -0.05% 0% 0%

L
(

0,
√

3
π

)
CN(0.05, 2)

δ n = 10 n = 15 n = 20 n = 10 n = 15 n = 20

0.25 3.04% 6.35% 6.31% 1.33% 6.78% 6.69%

0.5 5.13% 1.51% 0.06% 6.12% 1.86% 0.21%

0.75 0.2% -0.46% -0.43% 0.21% -0.5% -0.44%

1.25 -0.53% -0.1% -0.01% -0.5% -0.06% -0.01%

1.5 -0.28% -0.02% 0% -0.18% 0% 0%

2 -0.05% 0% 0% -0.01% 0% 0%
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Table 6. Performance comparisons in terms of SP(i) for i ∈ {3, 5, 7, 9} between the Sign and WSR EWMA

charts for (Nh = 150, I = 10) with TV limits. On-to-off-target process scenario.
FAP0 = 0.1

N(0, 1) t(8)

δ i = 3 i = 5 i = 7 i = 9 i = 3 i = 5 i = 7 i = 9

0.25 14.41% 14.56% 9.94% 0.45% 24.73% 29.48% 25.68% 15.91%

0.5 6.12% 10.09% 15.13% 11.39% 9.28% 16.42% 26.24% 26.47%

0.75 2.45% 3.59% 6.96% 7.87% 3.51% 5.73% 11.63% 19.09%

1 1.01% 0.77% 1.82% 1.24% 1.48% 1.69% 3.57% 7.08%

1.5 -0.59% -1.85% -3.29% -9.69% -0.41% -1.75% -2.81% -8.63%

L
(

0,
√

3
π

)
CN(0.05, 2)

δ i = 3 i = 5 i = 7 i = 9 i = 3 i = 5 i = 7 i = 9

0.25 8.74% 10.46% 7.05% 1.11% 13.9% 15.03% 10.2% 1.73%

0.5 3.17% 5.62% 8.74% 6.97% 5.72% 9.52% 14.55% 14.21%

0.75 1.16% 1.48% 3.22% 2.27% 2.28% 3.18% 6.46% 7.65%

1 0.39% -0.24% -0.14% -2.53% 0.44% -0.19% -0.1% -2.42%

1.5 -0.61% -2.08% -3.36% -10.13% -0.45% -1.8% -2.86% -8.86%

5. Illustrative example

In this Section, we discuss a practical implementation of the WSR EWMA chart un-

der the FHP framework on a real-life dataset related to a filling process of carbonated

beverages into cans or polyethylene terephthalate (PET)/glass bottles, where frequent

machine changeovers are scheduled to change the soft drink to be filled and the pack-

aging size (see Celano and Chakraborti (2021)). In these processes, the measurement

rate of some important quality characteristics is very slow: among them, monitoring

the carbon dioxide content of the soft drink filling a bottle/can is worth of attention

by practitioners. Usually, only a few inspections can be scheduled between two con-

secutive changeovers. For the considered production horizon, I = 10 inspections have

been scheduled. In particular, at each inspection i ∈ {1, 2, . . . , 10} a sample of n = 10

observations of the carbon dioxide content within the soft drink is collected, according

to the company’s inspection policy. Then, the deviation X from the target value of

the carbon dioxide content is calculated. The nominal value of the median deviation is

θ0 = 0.095. It is worth stretching that the distribution of the carbon dioxide content

is unknown. Based on past process knowledge, practitioners know that it is symmetric

around its median value. The original dataset along with the values of the charting

statistic Zi at each inspection are presented in Table 7. Moreover, setting λ = 0.05

and FAP0 = 0.1, we get K = 1.88. In Figure 5, the WSR EWMA control chart with

time-varying limits (right panel) and asymptotic limits (left panel) are plotted for the

I = 10 scheduled inspections during the production run. Implementing a control chart

with time-varying limits allows process location shifts to be quickly detected. In fact,

for the control chart with asymptotic limits, an off-target signal is triggered only at

inspection #9. On the other hand, using time-varying limits, the chart triggers a sig-

nal at inspection #6. Furthermore, at inspections #4 and #5 the plotted points next

to the lower control limit already reveal a process shift leading to a lower amount of

carbon dioxide within the carbonated drink to be packaged. A root cause search origi-
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Table 7. Example: Observations of carbon dioxide content Xij of I = 1, . . . 10 samples having size n = 10

and the corresponding values for and the corresponding values for SRi, Zi and UCL(i)and LCL(i). Target

median θ0 = 0.0905

Xi,j

i 1 2 3 4 5 6 7 8 9 10 SRt Zi UCL(i) LCL(i)

1 0.11 0.14 0.09 0.11 0.09 0.08 0.12 0.08 0.11 0.12 35.00 1.75 1.84 -1.84

2 0.10 0.10 0.11 0.12 0.07 -0.04 -0.04 0.04 -0.05 -0.05 -33.00 -1.65 2.54 -2.54

3 0.07 0.06 0.14 0.06 0.05 0.11 0.05 0.06 0.06 0.08 -31.00 -3.12 3.04 -3.04

4 0.06 0.14 0.03 0.03 0.03 0.10 0.03 0.10 0.02 0.08 -39.00 -1.95 3.43 -3.43

5 0.10 0.10 0.14 0.08 0.08 0.12 0.14 0.05 0.05 -0.01 -5.00 -2.10 3.74 -3.74

6 0.10 0.10 0.04 0.06 0.06 0.12 0.11 0.11 0.05 0.05 -25.00 -3.25 4.00 -4.00

7 0.06 0.06 0.15 0.14 0.14 0.14 0.11 0.11 0.15 0.15 41.00 2.05 4.23 -4.23

8 0.15 0.15 0.15 0.12 0.12 0.14 0.14 0.05 0.05 0.13 37.00 3.80 4.42 -4.42

9 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.15 0.15 55.00 2.75 4.59 -4.59

10 0.14 0.15 0.14 0.14 0.14 0.14 0.12 0.12 0.13 0.07 53.00 5.26 4.73 -4.73

nating from the control chart’s signal has revealed a problem at the pressure regulator.

After eliminating the problem, a second signal is triggered at inspection #9 due to a

pressure overcompensation.

−4

0

4

1 2 3 4 5 6 7 8 9 10

Inspection 

Z
i

EWMA WSR chart (Asymptotic limits)

Figure 5. Example: the WSR EWMA chart for the data presented in Table 7 with asymptotic limits (left

panel) and time-varying limits (right panel)

6. Conclusions

In this work the performance of an EWMA chart based on the Wilcoxon signed

rank statistic has been investigated for monitoring finite horizon processes. Using

appropriate metrics of statistical performance and carrying out an extensive nu-

merical analysis, the chart’s design parameters have been selected and its off-target

performance has been investigated. Additionally, performance comparisons have been

discussed among the WSR EWMA, the Sign EWMA and WSR Shewhart charts. The

obtained results show that the WSR EWMA chart can be considered as an efficient

tool for monitoring small to moderate shifts in the process location regardless of the

process scenario being considered. In fact, for on-line process monitoring of a FHP,

the WSR EWMA control chart overperforms its competitors for small and medium
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shift sizes of the process location.

As a suggested future research directions in the field of distribution-free control charts

for monitoring finite horizon production processes, many topics can be suggested.

First of all, further research is required on joint monitoring schemes for location and

scale. Particular attention should be paid to situations when a target value cannot

be defined a priori and a reference sample should be considered at the beginning

of the production run. An extension to multivariate observations must be carefully

investigated as well, because current sensor technologies allow many process parame-

ters to be contemporarily recorded. To boost the control chart’s sensitivity, improved

adaptive schemes can be taken into account. Finally, it is worth remembering that,

currently, there aren’t any software packages implementing control charts for the FHP

scenario. Efforts in this direction are welcome to bridge the gap between academic

research and industrial practice. Open source software like the Shiny package for

R can be a good programming environment to develop distribution-free SPM web

applications to be shared by quality practitioners within manufacturing companies.

Appendix A

The statistical on-target performance for the WSR EWMA control chart is evaluated

through a modified version of the method of Brook and Evans (1972) as discussed

by Celano and Castagliola (2018) for the Sign EWMA chart. In particular, the wider

control interval [LCL(I),UCL(I)] is divided into 2m + 1 subintervals of width 2ρ =
UCL(I)−LCL(I)

2m+1 . The Markov chain has S = 2m+3 states. Note that for the I-th control

interval all these states are transient from s ∈ {2, . . . , 2m + 2}. Additionally, let Ha,

a ∈ {2, . . . , 2m+2}, represents the midpoint of the a-th subinterval. The regions below

LCL(I) (denoted as state s = 1) and above LCL(I) (denoted as state s = 2m + 3)

correspond to the absorbing states at inspection I. On the other hand, due to the

fact that for i < I the control interval is tightened due to time-varying limits, some

originally transient states 2 ≤ s ≤ 2m + 2 fall outside the interval and they become

absorbing states. Similarly to Celano and Castagliola (2018), a state is considered

as absorbing if at the i-th inspection Hs − ρ < LCL(i) or Hs + ρ > UCL(i), with

s = {1, . . . , S}. Finally, the transient probabilities matrix takes the following form:
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P(i) =



1 0 . . . 0 0

0 1 . . . 0 0
...

... . . .
...

...

p(j(i)+1),1 p(j(i)+1),2 . . . p(j(i)+1),S−1 p(j(i)+1),S
...

... . . .
...

...

p(S−j(i)+1),1 p(S−j(i)+1),2 . . . p(S−j(i)+1),S−1 p(S−j(i)+1),S
...

... . . .
...

...

0 0 . . . 1 0

0 0 . . . 0 1


where j(i) = max[s : Hs − ρ < LCL(i)]. If we consider as an example the case where

i = I, then the transient probabilities matrix is equal to:

P(i) =


1 0 . . . 0 0

p2,1 p2,2 . . . p2,S−1 p2,S

...
... . . .

...
...

p(S−1),1 p(S−2),2 . . . p(S−1),S−1 p(S−1),S

0 0 . . . 0 1


The transient probabilities pa,b are computed as:

• for j(i) + 1 > a or S − j(i) < a:

pa,b = 1 (a = b) or pa,b = 0 (otherwise)

• j(i) + 1 ≤ a ≤ S − j(i):
pa,b = P(Hb − ρ ≤ λSRi + (1− λ)Zi−1 ≤ Hb + ρ|Zt−1 = Ha).

After some simple calculations the above probabilities can be derived as:

pa,b =FSR+
i

(
1

2

(
Hb + ρ− (1− λ)Ha

λ
+
n(n+ 1)

2

) ∣∣∣∣n)
− FSR+

i

(
1

2

(
Hb − ρ− (1− λ)Ha

λ
+
n(n+ 1)

2

) ∣∣∣∣n)
where FSR+

i
(. . .) is the c.d.f. of SR+

i . Furthermore, let

W(i) =

i∏
t=1

P(t)

denote the the on-target matrix containing the i-step transition probabilities for i =∈
{1, 2, . . . , I}. Finally, the FAP value, defined as the probability to have a false alarm

by the end of the production run, can be derived as:
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FAP = qᵀW(I)r

where q = (q1,1, . . . , q1,S)ᵀ is the (2m + 1, 1) vector of initial probabilities which

is set to q = (0, . . . , 1, . . . , 0)ᵀ. Moreover, r denotes a vector with elements r =

(1, . . . , 0, . . . , 1)ᵀ.

Appendix B

In Table 8, we present the off-target performance of the WSR EWMA chart assum-

ing the N(0, 1) distribution. The off-target performance is calculated by means of

simulation. Here, we investigate the effect of the number of simulation runs Nsim

on the accuracy of estimation of the chart’s detection capability. We have consid-

ered Nsim = {105, 5 × 105, 106, 1.5 × 106}. For illustration purposes we randomly use

(λ,K) = (0.05, 1.88) and n ∈ {10, 15}. Each column in Table 8 represents a different

value of Nsim for Monte Carlo simulation. The entries in each table’s row show that,

neither the SP(1, g) nor the SP(1) values are significantly affected by Nsim, with some

minor difference in the fourth decimal place for some cases. As a consequence, the

simulation method is a robust approach for determining the chart’s off-target perfor-

mance. For our investigation we have chosen Nsim = 106.
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