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Local times and capacity for transient branching

random walks

Amine Asselah ∗ Bruno Schapira† Perla Sousi‡

Abstract

We consider branching random walks on the Euclidean lattice in dimensions five and higher.
In this non-Markovian setting, we first obtain a relationship between the equilibrium measure
and Green’s function, in the form of an approximate last passage decomposition. Secondly,
we obtain exponential moment bounds for functionals of the branching random walk, under
optimal condition. As a corollary we obtain an approximate variational characterisation of the
branching capacity. We finally derive upper bounds involving the branching capacity for the tail
of the time spent in an arbitrary finite collection of balls. This generalises the results of [AHJ21]
and [AS22] for d ≥ 5. For random walks, the analogous tail estimates have been instrumental
tools for tackling deviations problems on the range, related to folding of the walk.

Keywords and phrases. Branching random walk, capacity, local times, equilibrium measure.
MSC 2010 subject classifications. Primary 60G50; 60J80.

1 Introduction

In this paper we study branching random walks (BRW), also called tree-indexed random walks,
on Zd with d ≥ 5. To define this process, we need two sources of randomness. First we sample a
random spatial rooted tree and next we attach i.i.d. random variables to the edges of the tree. The
branching random walk is then obtained by assigning to each node of the tree the sum of all the
variables associated to the edges along the unique geodesic path from the root to that node.

To be more precise, for a general ordered rooted tree, we denote the root by ∅ and the parent of a
vertex u 6= ∅ by u−. Given x ∈ Zd, a random walk indexed by a (possibly random) rooted tree T
starting from x is a set of random variables {Sxu}u∈T indexed by the vertices of T with values in Zd,
which is such that, given T , Sx∅ = x, and the set of increments {Sxu − Sxu−}u∈T\{∅}, forms a family
of independent and identically distributed random variables. When x = 0, we sometimes drop it
from the notation.

To keep our analysis simpler, we assume in the whole paper that the joint distribution of the
increments of our tree-indexed walks is given by the uniform measure on nearest neighbours of
the origin. We note that all our proofs and results would adapt to centred finitely supported
distributions.
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We denote by T x the range of the random walk indexed by T starting from x, i.e.

T x = {Sxu : u ∈ T}.

In our work we consider two types of random rooted spatial trees: a critical Bienaymé-Galton-
Watson tree and an invariant infinite tree that we now define.

Let µ be an offspring distribution with mean 1 and positive finite variance σ2. We write µsb for
the size biased distribution of µ, i.e. µsb(i) = iµ(i) for i ∈ N.

Definition 1.1. Let T be an infinite ordered and rooted tree constructed as follows:

• The root produces i offspring with probability µ(i− 1) for every i ≥ 1. The first offspring of
the root is special, while the others if they exist are normal.

• Special vertices produce offspring independently according to µsb, while normal vertices pro-
duce offspring independently according to µ.

• Each special vertex produces exactly one special vertex chosen uniformly at random among
its children, while the other children are normal.

Note that if we forget the spatial structure of T , we obtain a prominent example of an invariant
one-ended tree introduced by Aldous in [Ald91], which appears as the local limit as n → ∞ of a
Galton-Watson tree with offspring distribution µ conditioned on having n vertices, and rooted at
a uniformly chosen vertex, see again [Ald91].

By construction T has a unique infinite path stemming from the root that we call the spine. We
assign label 0 to the root. We assign positive labels to the vertices on the side of the spine reached
clockwise from the root according to a depth-first search from the root and negative labels to the
other ones according to depth-first search from infinity as depicted in the first tree of Figure 1. We
call the vertices with negative labels (including the spine vertices) the past of T and denote them
by T−, while the vertices with non-negative labels are in the future of T and we denote them by T+.
Note that the root does not have any offspring in the past of T .
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Figure 1: An infinite tree rooted at 0, seen from −8 and relabelled.

We denote by Tc a Bienaymé-Galton Watson tree with offspring distribution µ. The tree Tc is almost
surely finite, but conditioned on being large, say having n nodes, it has of the order of

√
n generation
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and the set of positions, T xc , typically fills a ball of volume nd/4. The cases d ≥ 5 are called
by physicists the upper-critical space dimensions, when considering the BRW. For probabilists,
when d ≥ 5 the critical BRW is transient in the sense that a BRW, conditioned on having size n,
visits the origin a finite number of times independent of n, and the expected number of visits of
a site (the so-called Green’s function) is well defined. Dimension four is the critical dimension for
BRW, and there the number of visits to the origin grows logarithmically (in the size of the critical
tree). We mention here the works of Le Gall and Lin [LGL15, LGL16] in the transient dimensions
that obtained laws of large numbers for the volume of the set of visited sites, when conditioning
the BRW to have n nodes, as n goes to infinity. The far-reaching idea behind the law of large
numbers is introducing an infinite labelled tree invariant under a shift of the labelling as shown in
Figure 1, and its corresponding re-rooting of the tree. On such an invariant object, such as T−,
ergodic theory, yields laws of large numbers. The genealogy of the invariant tree looks like a comb
whose teeth are independent critical trees, with respective volumes being independent heavy tailed
variables (since by Kolmogorov’s estimate P(|Tc| > t) � 1√

t
). This allowed Le Gall and Lin to

retrieve information on the critical tree from the infinite invariant ones. Then, building on their
beautiful observations, Zhu [Zhu16a] defines, in d ≥ 5, the branching capacity of a set, and links
it to the probability that a critical BRW (indexed by Tc) or an infinite BRW (indexed by T−) hits
the set, properly normalised. With our notation, Zhu’s key results read as follows.

lim
‖x‖→∞

P(T xc hits K)

g(x)
= BCap(K) = lim

‖x‖→∞

P(T x− hits K)

G(x)
, (1.1)

where g (respectively G) is the Green’s function for the critical tree T xc (resp. for the infinite
tree T x− ). In other words,

g(x) = E

[∑
u∈Tc

1(S0
u = x)

]
, and G(x) = E

∑
u∈T−

1(S0
u = x)

 .
Note that by criticality of the tree, the function g is the same as the Green’s function for simple
random walk.

Moreover, [Zhu16a] gives a dual definition of branching capacity in terms of escape probabilities:

BCap(K) =
∑
x∈K

P(T x− ∩K = ∅). (1.2)

In view of these findings, a transient branching random walk seems to resemble a transient random
walk. What about a last passage decomposition? Let us recall what it amounts to for a simple
random walk, denoted here by (Xn)n≥0. When starting at x, we denote its law by Px, and for any
subset K ⊂ Zd, we denote by HK = inf{n ≥ 0 : Xn ∈ K} and H+

K = inf{n ≥ 1 : Xn ∈ K}, the first
hitting and the first return time to K respectively. Then we have a last passage decomposition

Px(HK <∞) =
∑
y∈K

∑
n∈N

Px
(
Xn = y, {Xn+k : k ≥ 1} avoids K

)
. (1.3)

We next use the Markov property and invariance by time shift to get, for any x ∈ Zd

Px(HK <∞) =
∑
y∈K

g(x− y) · Py(H+
K =∞). (1.4)

For a tree this Markov property fails and this is the main source of difficulty in this setting. The
fundamental formula (1.4) is at the heart of the potential theory for random walks, and can also
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be thought of as a relation between the function x 7→ Px(HK <∞), which equals one on K and is
harmonic outside K, the Green’s function g and the equilibrium measure. Such an exact formula
in the context of branching random walks is missing due to the lack of Markov property, and so far
it has prevented the development of a satisfactory potential theory for branching random walks,
despite the series of works by Zhu [Zhu16a, Zhu16b, Zhu18, Zhu19, Zhu20, Zhu21] that laid its
foundations. The main goal of this paper is to establish a relation between the Green’s function
and the equilibrium measure similar to (1.4). As a main application we are able to establish an
approximate variational characterisation, see Corollary 1.4.

Our second result is obtained independently of the approximate last passage decomposition and
provides exponential moment bounds on certain functionals of the BRW for both the infinite tree
and the critical one. Using these results, we estimate the probability the BRW spends a large time
in each of the balls making up a domain Λ, in terms of the branching capacity of Λ, in an analogous
form as for the simple random walk.

We then give two other corollaries of our results: (i) Euclidean balls are sets of minimal branch-
ing capacity (up to constant), given their volume, and (ii) in each finite set Λ ⊂ Zd, there is a
subset whose branching capacity and volume are of order the branching capacity of Λ, which were
instrumental for solving large deviations problems on the range, see below.

Before stating precisely our results, we recall the definitions of equilibrium measure and branching
capacity, which were introduced by Zhu in [Zhu16a]. We assume from now on and until the end of
the paper that d ≥ 5.

Definition 1.2. Let K be a finite subset of Zd. The equilibrium measure of K is the measure
defined for x ∈ Zd, by

eK(x) = 1(x ∈ K) · P(T x− ∩K = ∅).

The branching capacity of K is defined to be

BCap(K) =
∑
x∈K

eK(x).

Our first result provides an approximate last passage decomposition.

Theorem 1.3. There exist positive constants c and C, so that for any finite set K ⊆ Zd, we have

‖GeK‖∞ = max
x∈Zd

GeK(x) := max
x∈Zd

∑
y∈K

G(x, y)eK(y) ≤ C, (1.5)

and if K is nonempty,
min
x∈K

GeK(x) ≥ c. (1.6)

One application of this result is an approximate variational characterisation of the branching ca-
pacity, which solves an open question of [Zhu20].

Corollary 1.4. There exist positive constants C1, C2, such that for any finite nonempty setK ⊆ Zd,

C1

BCap(K)
≤ inf

{ ∑
x,y∈K

G(x− y) ν(x)ν(y) : ν probability measure on K
}
≤ C2

BCap(K)
. (1.7)
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We shall give two proofs of this corollary. One, based on the method of [BPP95], which only
uses (1.5), but requires a finite third moment on µ, and a second one which needs both (1.5)
and (1.6), but only requires a finite second moment on µ.

Our second main result is an exponential moment bound for functionals of the infinite BRW,
which can be thought of as an extension of Kac’s moment formula to a non-Markovian setting, see
e.g. [S12, Proposition 2.9], and is obtained independently of Theorem 1.3.

Theorem 1.5. Assume that µ has a finite exponential moment. There exists κ > 0, such that for
any map ϕ : Zd → [0,∞), satisfying ‖Gϕ‖∞ ≤ κ, one has

E

[
exp

(∑
u∈T

ϕ(Su)
)]
≤ 2.

Theorem 1.5 is useful if we can find a potential ϕ with ‖Gϕ‖∞ ≤ κ, and Theorem 1.3 provides such
a family of functions: we build them from the equilibrium potential eK , with appropriate K.

Our proof of Theorem 1.5 uses a moment method, which bears similarities with the one in [AHJ21].
However, while [AHJ21] handles any dimension, including the intricate dimension four, it restricts
its analysis to the case when ϕ is supported on a single point. Our approach is a priori restricted to
dimensions five and higher but we are able to consider any function satisfying ‖Gϕ‖∞ ≤ κ, which
is ideally suited to study covering of a given domain of space by BRW, and our recursion method
is elementary.

When combined together our two main results have a number of interesting consequences. A first
immediate application is a large deviations upper bound for the time spent on a collection of balls.
For x ∈ Zd, and r > 0, write B(x, r) for the Euclidean closed ball of radius r centered at x
(intersected with Zd), and for a subset C ⊂ Zd, define B(C, r) = ∪x∈CB(x, r).

For x, y ∈ Zd, we define

`T x(y) =
∑
u∈T

1(Sxu = y),

and for A ⊆ Zd, we write `T x(A) =
∑

y∈A `T x(y).

Corollary 1.6. Assume that µ has a finite exponential moment. Then there exists κ > 0, such
that for any t > 0, any r ≥ 1, and any finite set C ⊂ Zd,

P
(
`T 0(B(x, r)) > t, for all x ∈ C

)
≤ 2 exp

(
− κ · t

rd
· BCap(B(C, r))

)
. (1.8)

Remark 1.7. Note that since T contains Tc as subtree, the same result holds as well with T 0
c

instead of T 0 (and this remark applies to Theorem 1.5 as well).

Also, it was proved in [Zhu16a] that the branching capacity of a ball of radius r is of order rd−4,
thus in the case of one ball we recover the results of [AHJ21, AS22]. We note that the case of
dimension four would require a completely different strategy, and is open (except for one ball).
The question of obtaining a corresponding lower bound is also interesting, but even in the case of
a single random walk, which form the lower bound should take is not clear to us.

Let us mention that in the setting of a simple random walk the argument used here for proving
Corollary 1.6 provides an alternative and more direct approach for Theorem 1.2 from [AS23a], see
also Remark 4.8.

We present now a result which has proved useful in studying the folding of a random walk in large
deviations problems on the range, as in [AS23a], and also played an important role in the context
of random interlacements [S21, S23].
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Corollary 1.8. There exists α > 0, such that for any r ≥ 1 and any finite C ⊂ Zd, there is a
subset U ⊆ C, satisfying

(i) BCap(∪x∈UB(x, r)) ≥ α · rd−4|U | and (ii) rd−4|U | ≥ α · BCap(∪x∈CB(x, r)). (1.9)

Another application of Theorem 1.5 is the following general upper deviations bound for the time
spent in an arbitrary set. Define for x ∈ Zd, and Λ ⊂ Zd, G(x,Λ) =

∑
y∈ΛG(x, y).

Corollary 1.9. Assume that µ has a finite exponential moment. Then there exists c > 0, such
that for any t > 0 and any finite nonempty set Λ ⊂ Zd, one has

P(`T 0(Λ) > t) ≤ 2 exp

(
−c · t

supx∈Zd G(x,Λ)

)
.

Note that G(x,Λ) ≤ C|Λ|4/d, for some universal constant C which does not depend on Λ nor on
x ∈ Zd, thus in the above corollary, one could as well replace the denominator in the exponential
by |Λ|4/d. However, the slightly more general form presented here can be useful in some situations
when e.g. the set Λ has a small local density, as in [AS21, AS23b].

In the standard framework of random walks, Corollaries 1.6, 1.8 and 1.9 were instrumental in study-
ing the moderate deviations of the range in [AS17, AS21, AS23a], and for solving a long-standing
conjecture of Khanin, Mazel, Schlossman and Sinai [KMSS94] concerning the large deviations for
the intersection of two independent ranges in [AS23b]. We expect that our tools will permit anal-
ogous questions to be handled in upper-critical dimensions for BRW.

For completeness and to emphasise the analogy with a single random walk we provide two other
variational characterisations.

Corollary 1.10. There exist positive constants C3, C4, such that for any finite set K ⊂ Zd,

C3 · BCap(K) ≤ sup
{∑
x∈K

ϕ(x) : ϕ ≥ 0 on K, max
x∈K

Gϕ(x) ≤ 1
}
≤ C4 · BCap(K), (1.10)

and

C3 · BCap(K) ≤ inf
{∑
x∈K

ϕ(x) : ϕ ≥ 0 on K, min
x∈K

Gϕ(x) ≥ 1
}
≤ C4 · BCap(K). (1.11)

Finally another immediate application of Theorem 1.3 is the following general lower bound for the
branching capacity of a set in terms of its volume.

Corollary 1.11. There exists a positive constant c > 0, such that for any finite set K ⊂ Zd,

BCap(K) ≥ c|K|1−
4
d .

Together with the fact already mentioned that the branching capacity of a ball B(x, r) is of or-
der rd−4, this shows that as for the usual Newtonian capacity, balls are sets having minimal branch-
ing capacity among those with fixed volume (at least up to universal constants).

The non-Markovian nature of the BRW. We mentioned already that this work can be seen
as extending some key random walk potential theoretic results to a non-Markovian setting: the
infinite invariant tree defined above. We describe the latter informally as being a one-sided infinite
random walk, the so-called spine, on each node of which there are two critical trees hanging off,
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one in the past and the other one in the future. It is only when conditioning on the spine that we
can disentangle past and future. However, as we average over both the spine and its dangling trees
there is often a subtle tradeoff between what is required from the spine, and what the dangling trees
achieve. We use extensively that we are in a regime where the typical behaviour is dominant, and
the spine is a simple random walk which typically spends time L2 in a region of diameter L. If we
can place ourselves in a situation where the dangling trees all see the same environment (typically
avoid some set far away) then their initial position is innocuous, and we can use uniform bounds
on them.

Organisation. The rest of the paper is organised as follows. In Section 2 we provide some
preliminary results, such as the shift-invariance of the infinite tree, some basic facts about Green’s
functions, and also about the equilibrium measure. We also recall important results of Zhu on
hitting probability estimates. In Section 3 we first give a sketch of the proof of (1.5) and in the
remaining section we give the full proof as well as provide a first proof of Corollary 1.4, that
only uses the upper bound part of Theorem 1.3. In Section 4 we prove Theorem 1.5, together
with Corollary 1.6. Then in Section 5 we prove (1.6), which concludes the proof of Theorem 1.3.
Finally in Section 6, we give another short proof of Corollary 1.4, and prove the remaining results,
Corollaries 1.8, 1.9, 1.10, and 1.11.

2 Preliminaries

2.1 General notation

Given two real functions f and g, we write f . g, or sometimes f = O(g), when there exists a
constant C > 0, such that f(x) ≤ Cg(x), for all x. We write f � g, when both f . g and g . f .
We write f ∼ g, when f(x)/g(x)→ 1, as x→∞.

Given A ⊂ Zd, we let Ac := Zd\A, and we define the boundary ∂A of A as the set of elements of A
which have at least one neighbor in Ac.

We let ‖x‖ denote the Euclidean norm of an element x ∈ Zd. We write a∧b and a∨b respectively for
the minimum and maximum between two real numbers a and b. For r > 0, we write G(r) = r4−d.

2.2 Trees and tree-indexed random walks

Let µ̃ be the probability measure defined by µ̃(i) =
∑

j≥i+1 µ(j). A tree where only the distribution
of the offspring of the root is µ̃ and everywhere else it is µ is called a µ-adjoint tree and we denote
it by T̃c.

Definition 2.1. We define the shift transformations θ and its inverse θ−1 on T by adding 1,
respectively −1, to all labels and then the vertex with label 0 becomes the new root. Furthermore,
these maps extend naturally to transformations on the law of the random walk indexed by T .

Proposition 2.2. The laws of T and of the random walk indexed by T are invariant under the
shift transformations θ and θ−1.

We refer the reader to [Zhu18] or [BW22] for a full proof of this proposition. The fact that the law
of the random walk indexed by T+ is invariant under θ−1 was first observed by Le Gall and Lin
[LGL15, LGL16], and is reminiscent of the invariance property of sin-trees discovered by Aldous
[Ald91].
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Figure 2: Applying the shift transformation θ8: the blue part is the spine, the green part is the
future and the red part is the past.

For a special vertex u of T (i.e. on the spine of T ) we write kp(u) and kf(u) for the number of
normal offsprings of u in the past and future of T respectively. By the construction of T we then
see that for all i, j ∈ N,

P(kp(u) = i, kf(u) = j) = µ(i+ j + 1),

and hence both kp(u) and kf(u) are distributed according to µ̃. As a consequence, the subtrees
of T emanating from the vertices on the spine, either in the past or in the future, are µ-adjoint
trees. A random walk indexed by a µ-adjoint tree is called an adjoint branching random walk.

For n ≥ 0, we let T x(n) be the value of the random walk indexed by T starting from x at the
vertex with label n ∈ Z, and similarly for the other tree-indexed walks. For a ≤ b in Z, we write
T x[a, b] := {T x(n)}n∈[a,b], and similarly for T x[a, b), T x(a, b], or for other random trees. We write
(Xx(n))n∈N for the random walk indexed by the spine parametrised by its intrinsic labelling (i.e.
its natural time parametrisation), when it starts from x ∈ Zd.

With a slight abuse of notation we shall sometimes denote the tree-indexed random walk (as a
process) by T x (which was formally defined as a random subset of Zd). For integers 0 ≤ a ≤ b ≤ ∞,
we also write Fx−[a, b] (respectively Fx+[a, b]) for the positions of T x on the set of vertices lying in
the adjoint trees in the past (respectively future) emanating from the points on the spine with time
index (in the natural parametrisation of the spine) in [a, b], and similarly with [a, b). See Figure 2.2
for an illustration of these definitions.

2.3 Basic facts on Green’s functions and branching capacity

We denote by g the Green’s function of a simple random walk (Xn)n≥0, in other words:

g(x, y) = Ex
[ ∞∑
n=0

1(Xn = y)
]

= g(0, y − x),
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where Ex denotes the expectation for a walk starting from x. Recall that (see e.g. [LL10]),

g(x, y) � 1

1 + ‖x− y‖d−2
. (2.1)

In fact by linearity of expectation and criticality of µ, one also has

g(x, y) = E
[ ∑
u∈Tc

1(Sxu = y)
]
.

Similarly we define

G(x, y) = G(y − x) = E
[ ∑
u∈T−

1(Sxu = y)
]
.

Since the mean number of normal offspring of a vertex on the left of the spine of T has mean σ2/2,
we deduce that for any x, y ∈ Zd,

G(x, y) =
∑
z∈Zd

(
g(x, z)− 1(z = x)

)
·
(
1(z = y) +

σ2

2
(g(z, y)− 1(z = y))

)
=
σ2

2

∑
z∈Zd

g(x, z)g(z, y) +O(g(x, y)). (2.2)

Using (2.1), this yields

G(x, y) � 1

1 + ‖x− y‖d−4
. (2.3)

We now state some important facts related to the equilibrium measure and the branching capacity.
The next proposition is a simple last passage decomposition formula which will be used widely in
the paper.

Proposition 2.3. Let K ′ ⊆ K and B be finite subsets of Zd such that B contains K ′ and points
at distance 1 from K ′. Then∑

y∈K′
eK(y) =

∑
w∈∂B

P
(
T w− ∩ (K ∪B) = ∅, T w+ first hits K in K ′

)
.

Proof. Let L be the last time that the past of the tree-indexed random walk is in B. For all y ∈ K ′
we can now write

eK(y) = P
(
T y− ∩K = ∅

)
=
∑
w∈∂B

∑
n≥1

P
(
T y− ∩K = ∅, T y(−n) = w,L = n

)
,

since L is finite almost surely. Using the invariance of the tree T y under the shift θn by Proposi-
tion 2.2 we get

P
(
T y− ∩K = ∅, T y(−n) = w,L = n

)
= P

(
T w(n) = y, T w− ∩ (K ∪B) = ∅, T w[0, n) ∩K = ∅

)
.

Taking now the sum over all y ∈ K ′ and all n ≥ 1 completes the proof.

For a finite subset K ⊂ Zd, and A ⊆ Zd, we write eK(A) =
∑

x∈A eK(x).

Lemma 2.4. For any finite set K ⊆ Zd containing two disjoint sets U and V , we have

eK(U ∪ V ) ≥ eK\V (U).
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Remark 2.5. An immediate consequence of this lemma is that the branching capacity is monotone
for inclusion, a fact already proved by [Zhu16a]. Indeed, applying the lemma with V = K\U , gives
that if U ⊆ K, then BCap(U) ≤ BCap(K).

Proof of Lemma 2.4. Let R > 0, be such that K ⊂ B(0, R − 1). Applying Proposition 2.3 we
get

eK(U ∪ V ) =
∑

w∈∂B(0,R)

P
(
T w− ∩B(0, R) = ∅, T w+ first hits K in U ∪ V

)
.

Observing that {T w+ first hits K\V in U} ⊆ {T w+ first hits K in U ∪ V }, we then obtain

eK(U ∪ V ) ≥
∑

w∈∂B(0,R)

P
(
T w− ∩B(0, R) = ∅, T w+ first hits K\V in U

)
= eK\V (U),

applying Proposition 2.3 again for the last equality.

The next result provides the exact order of magnitude of the branching capacity of balls.

Proposition 2.6 ([Zhu16a]). There exist positive constants c1, c2, such that for all r ≥ 1,

c1 · rd−4 ≤ BCap(B(0, r)) ≤ c2 · rd−4.

We shall often use later, without further reference that for a set K ⊆ B(0, R), one has BCap(K) .
Rd−4, which follows from a combination of the last two results.

2.4 Hitting probability for a branching random walk

Definition 2.7. Suppose that S is a random walk indexed by a spatial rooted tree T . On the
event that S hits a set A we define the first entry vertex to A as the smallest vertex u ∈ T in the
lexicographical order for which Su ∈ A. If the unique path from the root of T to the first entry
vertex of A is given by (v0, v1, . . . , vk) for some k ∈ N, then we set Γ(S) = (Sv0 , . . . , Svk). We say
that S hits A via γ, if Γ(S) = γ. We also say that S first hits the set A in a ∈ A if at the first
entry vertex to A the walk S is at a.

Recall that T̃ xc denotes the range of an adjoint branching random walk starting from x. For a set
A ⊆ Zd, we write

bA(x) = P
(
T̃ xc ∩A = ∅

)
.

For a path γ : {0, . . . , N} → Zd we write |γ| = N , i.e. |γ| is the length of γ without its first point.
We write s(γ) for the probability that a simple random walk started from γ(0) follows this path
for its first |γ| steps. We say that γ starts from x if γ(0) = x, and that it goes from x to a set A
and write γ : x→ A, if in addition γ(N) ∈ A and γ(`) /∈ A for all ` < N . Given x, y ∈ Zd, we write
γ : x→ y if γ(0) = x and γ(N) = y.

Proposition 2.8 ([Zhu16a, Proposition 5.1]). Let A ⊂ Zd and x ∈ Ac. Then for any γ : x → A
we have

P(T xc hits A via γ) = s(γ)

|γ|−1∏
`=0

bA(γ(`)).
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We now recall some hitting probability estimates obtained by Zhu. Given x ∈ Zd and K ⊂ Zd, we
let d(x,K) = inf{‖x− y‖ : y ∈ K}, and diam(K) = sup{‖x− y‖ : x, y ∈ K}.

Theorem 2.9 ([Zhu16a, Zhu16b]). Let ε > 0 be fixed. There exist positive constants c1, c2, such
that for any finite nonempty K ⊂ Zd and any x ∈ Zd, with d(x,K) ≥ ε · diam(K), one has

c1
BCap(K)

d(x,K)d−4
≤ P

(
T x− ∩K 6= ∅

)
≤ c2

BCap(K)

d(x,K)d−4
, (2.4)

and

c1
BCap(K)

d(x,K)d−2
≤ P

(
T xc ∩K 6= ∅

)
≤ c2

BCap(K)

d(x,K)d−2
. (2.5)

Remark 2.10. We note that the same estimate as (2.5) holds as well for T̃ xc .

3 Upper bound on ‖GeK‖∞

In this section we give the proof of the first part of Theorem 1.3, namely (1.5). Using (1.5) we
then give a proof of Corollary 1.4 assuming a finite third moment on µ. We start with a sketch of
the proof in Section 3.1. Then after recalling some standard estimates for a simple random walk
in Section 3.2, we state and prove some results on hitting times for branching random walks in
Section 3.3. The proofs of (1.5) and Corollary 1.4 are deferred to Sections 3.4 and 3.5 respectively.

3.1 Sketch of proof of (1.5)

First, since we seek an upper bound of GeK(x), which is uniform in K and x, one can always assume
that x is at the origin. Now by decomposing K into slices K = ∪iKi, where Ki = K ∩{2i ≤ ‖x‖ ≤
2i+1}, we find that

GeK(0) �
∑
i

G(2i)eK(Ki),

with eK(Ki) =
∑

y∈Ki
eK(y). Thus one needs to estimate eK(Ki) now. For each y ∈ Ki, we

decompose the event {T y− ∩K = ∅} according to the last point on ∂B(0, 2i+2) visited by the spine,
and using shift invariance of the tree we arrive at

eK(Ki) ≤
∑

w∈∂B(0,2i+2)

P
(
T w+ ∩Ki 6= ∅, T w− ∩ (Bi+2 ∪K) = ∅

)
,

see (3.6) below. If the past and future trees were independent, we could separate both events in
the probability on the right-hand side. Now for any w ∈ ∂B(0, 2i+2), by (2.4) (which holds as well
for T w+ ), one has

P
(
T w+ ∩Ki 6= ∅) � G(2i) · BCap(Ki),

while by Proposition 2.6,∑
w∈∂B(0,2i+2)

P
(
T w− ∩Bi+2 = ∅

)
= BCap

(
B(0, 2i+2)

)
.

1

G(2i)
.

Moreover, at a heuristic level the events {T w− ∩Kj = ∅}, for j ≥ i+ 3, can be considered as being
almost independent, and also independent of the event {T w− ∩ Bi+2 = ∅}, since they depend on
different pieces of T w− involving different scales. Thus we may infer that for some constant c > 0,

P
(
T w− ∩ (Bi+2 ∪K) = ∅

)
.

1

G(2i)
·
∏
j≥i+3

(
1− c ·G(2j)BCap(Kj)

)
.

11



Therefore, under these rough independence assumptions, we arrive at

G(2i)eK(Ki) . G(2i)BCap(Ki) · exp
(
− c

∑
i+3≤j≤I

G(2j)BCap(Kj)
)
, (3.1)

where I is the maximal index i such that Ki is nonempty, and we conclude by observing that for
any sequence (εi)i≥0, bounded by one,

sup
I≥1

∑
i≤I

εi · exp
(
− c

∑
j≥i+3

εj

)
,

is bounded by a constant that does not depend on the sequence (εi)i≥1. Now of course, while we
will prove that (3.1) is indeed correct, the whole technical matter of the proof is to deal with the
fact that the events above are not really independent. In particular it is only once we condition on
the positions of the walk on the spine that the past and future can be decorrelated. However, to
make the arguments work fine, one also needs to ensure that one can place ourselves on the typical
event, when the spine spends a time of order 22j in each of the sets {2j ≤ ‖x‖ ≤ 2j+1}, which leads
to some technical difficulties.

3.2 Simple random walk estimates

We collect here a number of preliminary estimates concerning the simple random walk on Zd, that
will be used for the proof of (1.5). We write Px for the law of a simple random walk started from
x ∈ Zd and Ex for the corresponding expectation. We let X be a simple random walk in Zd. For
r > 0, we let τr be the first hitting time of ∂B(0, r) and τ+

r the first return time to B(0, r), i.e.

τr = inf{t ≥ 0 : Xt ∈ ∂B(0, r)} and τ+
r = inf{t ≥ 1 : Xt ∈ ∂B(0, r)}.

Lemma 3.1. Let δ > 0. There exists a positive constant c = c(δ) such that if R > 0, then for all
u ∈ ∂B(0, R) we have

Eu
[
τR(1+δ) · 1(τR(1+δ) < τ+

R )
]
≤ cR.

Proof. Let τ = τR(1+δ) ∧ τR. Applying the optional stopping theorem to the martingale (‖Xn‖2−
n)n≥0 we obtain that there exists a positive constant c = c(δ) such that

Eu
[
τR(1+δ) · 1(τR(1+δ) < τ+

R )
]
≤ 1 + sup

v/∈B(0,R)
v∼u

Ev[τ ] ≤ cR

and this concludes the proof.

Lemma 3.2. There exists c > 0 such that the following holds. Let R > 0, u ∈ ∂B(0, R) and
v ∈ ∂B(0, 2R). Then

Pv
(
XτR = u, τR < cR2

)
≤ 1

2
· Pv(XτR = u) .

Proof. Let τ = inf{t ≥ 0 : Xt ∈ ∂B(0, 3R/2)} be the first hitting time of ∂B(0, 3R/2). Let c be a
positive constant to be determined later. By the strong Markov property applied to τ we have

Pv
(
XτR = u, τR < cR2

)
=

∑
w∈∂B(0,3R/2)

∑
n≤bcR2c

∑
s<n

Pv(Xs = w, τ = s)Pw(XτR = u, τR = n− s)

12



≤
∑

w∈∂B(0,3R/2)

∑
s<bcR2c

Pv(Xs = w, τ = s)Pw(XτR = u) .

By a proof similar to [LL10, Lemma 6.3.7], we get that there exist universal constants c1, c2 so that
for all w ∈ ∂B(0, 3R/2) we have

Pw(XτR = u) ≤ c2

Rd−1
and Pv(XτR = u) ≥ c1

Rd−1
. (3.2)

Therefore, plugging this above gives

Pv
(
XτR = u, τR < cR2

)
≤ c2

Rd−1
· Pv
(
τ < bcR2c

)
.

On the event {τ < bcR2c}, the walk must travel distance R/2 in time less than bcR2c, and hence
this has probability less than exp(−c3/c), where c3 is a positive constant. Plugging this above gives

Pv
(
XτR = u, τR < cR2

)
≤ c2

Rd−1
· exp(−c3/c).

Taking now c sufficiently small so that c2 · exp(−c3/c) ≤ c1/2 and using (3.2) we conclude

Pv
(
XτR = u, τR < cR2

)
≤ 1

2
· c1

Rd−1
≤ 1

2
· Pv(XτR = u) ,

and this finishes the proof.

Lemma 3.3. There exists a positive constant c so that the following holds. Let R > 0, u ∈ ∂B(0, R)
and v ∈ ∂B(0, 2R). Then we have∑

n≥0

n · Pu
(
Xn = v, τ+

R > n
)
≤ c ·R2 ·

∑
n≥0

Pu
(
Xn = v, τ+

R > n
)
.

Proof. First of all using a reversal argument we see that∑
n≥0

Pu
(
Xn = v, τ+

R > n
)

= Pv(XτR = u) .

Since Pv(XτR = u) � R1−d (see [LL10, Lemma 6.3.7]), to prove the claim it suffices to show that
there exists a positive constant c so that∑

n

n · Pu
(
Xn = v, τ+

R > n
)
≤ c

Rd−3
. (3.3)

Let τ be the first hitting time of ∂B(0, 3R/2). Then by the strong Markov property applied to τ
we have∑

n≥0

n · Pu
(
Xn = v, τ+

R > n
)

=
∑
n≥0

∑
w∈∂B(0,3R/2)

∑
s<n

n · Pu
(
τ = s,Xs = w, τ < τ+

R

)
Pw(Xn−s = v, τR > n− s)

=
∑

w∈∂B(0,3R/2)

∑
s≥0

Pu
(
τ = s,Xs = w, τ < τ+

R

)(∑
n>s

n · Pw(Xn−s = v, τR > n− s)

)
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≤
∑

w∈∂B(0,3R/2)

∑
s≥0

Pu
(
τ = s,Xs = w, τ < τ+

R

)(∑
n>s

n · Pw(Xn−s = v)

)
.

Using the local central limit theorem we now obtain∑
n>s

n · Pw(Xn−s = v) =
∞∑
n=1

n · Pw(Xn = v) + s ·
∞∑
n=1

Pw(Xn = v) � 1

Rd−4
+

s

Rd−2
.

Plugging this above we deduce∑
n≥0

n · Pu
(
Xn = v, τ+

R > n
)
.

∑
w∈∂B(0,3R/2)

∑
s≥0

Pu
(
τ = s,Xs = w, τ < τ+

R

)
·
(

1

Rd−4
+

s

Rd−2

)
=

1

Rd−4
· Pu

(
τ < τ+

R

)
+

1

Rd−2
· Eu

[
τ · 1(τ < τ+

R )
]
.

1

Rd−3
,

where we used that Lemma 3.1 for the last inequality. This now concludes the proof.

3.3 Hitting times for branching random walks

For a path γ : {0, . . . , N} → Zd, and A ⊆ Zd, we write γ ⊆ A, if γ(`) ∈ A, for all ` ≥ 1 (note
that we allow the starting point of the path to be in Ac). Recall the notation introduced at the
beginning of Section 2.4.

Lemma 3.4. There exists a positive constant c so that for any R ≥ 1 any K ⊆ B(0, R/2), any
u ∈ ∂B(0, R) and v ∈ ∂B(0, 2R), one has

∑
γ:u→v

γ⊆B(0,R)c

s(γ)

|γ|∏
`=0

bK(γ(`)) ≤ exp

(
−cBCap(K)

Rd−4

)
·

∑
γ:u→v

γ⊆B(0,R)c

s(γ).

Proof. Since γ ⊆ B(0, R)c and K ⊆ B(0, R/2), using (2.5) and Remark 2.10 we get that for a
positive constant c and for all ` ≥ 0

bK(γ(`)) ≤ 1− cBCap(K)

Rd−2
.

So taking the product over all ` we get for a positive constant c′

|γ|∏
`=0

bK(γ(`)) ≤ exp

(
−c′|γ|BCap(K)

Rd−2

)
.

Thus we deduce ∑
γ:u→v

γ⊆B(0,R)c

s(γ)

|γ|∏
`=0

bK(γ(`)) ≤
∑
γ:u→v

γ⊆B(0,R)c

s(γ) exp

(
−c′|γ|BCap(K)

Rd−2

)
.

Let c1 be a positive constant to be determined later. We now show that the last sum above is
upper bounded by the sum where we restrict γ to have length at least c1R

2. First we write∑
γ:u→v

γ⊆B(0,R)c

s(γ) exp

(
−c′|γ|BCap(K)

Rd−2

)
≤

∑
γ:u→v

γ⊆B(0,R)c

|γ|≤c1R2

s(γ) +
∑
γ:u→v

γ⊆B(0,R)c

|γ|>c1R2

s(γ) exp

(
−c′c1

BCap(K)

Rd−4

)
.
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Since BCap(K) ≤ CRd−4 for a positive constant C we can take c1 sufficiently small so that

exp

(
−c′c1

BCap(K)

Rd−4

)
≤ 1− c′c1

2
· BCap(K)

Rd−4
,

and hence plugging this above we obtain∑
γ:u→v

γ⊆B(0,R)c

s(γ) exp

(
−c′|γ|BCap(K)

Rd−2

)

≤
(

1− c′c1BCap(K)

2Rd−4

)
·

∑
γ:u→v

γ⊆B(0,R)c

s(γ) +
c′c1BCap(K)

2Rd−4
·

∑
γ:u→v

γ⊆B(0,R)c

|γ|≤c1R2

s(γ).

Taking c1 even smaller, applying a time reversal and using Lemma 3.2 we upper bound the quantity
above by (

1− c′c1BCap(K)

4Rd−4

)
·

∑
γ:u→v

γ⊆B(0,R)c

s(γ) ≤ exp

(
−c′c1

BCap(K)

4Rd−4

)
·

∑
γ:u→v

γ⊆B(0,R)c

s(γ),

and this concludes the proof.

Lemma 3.5. For each R ≥ 1 let τuR be the generation of the first hitting vertex of B(0, R) by T uc .
There exists C > 0, such that, for any R ≥ 1, and any u ∈ ∂B(0, 2R), we have

E[τuR · 1(τuR <∞)] ≤ C.

Proof. We have

E[τuR · 1(τuR <∞)] ≤ 2R2 · P(τuR <∞) +R2 ·
∑
k≥2

P
(
τuR ≥ kR2, τuR <∞

)
. (3.4)

Using Theorem 2.9 we get

P(τuR <∞) .
1

R2
,

and hence it only remains to bound the sum appearing on the right hand side of (3.4). We now
notice that on the event {τuR > kR2, τuR < ∞}, there must exist a node on the tree in generation
(k − 1)R2, whose position is not in B(0, R), but which has at least one descendant at distance at
least R2 from it, whose position is in B(0, R). Writing Zm for the number of vertices in generation
m and S` = B(0, R`+1) \B(0, R`) with R` = 2`R, for ` ∈ N, we get

P
(
τuR ≥ kR2, τuR <∞

)
≤E
[
Z(k−1)R2

]
×
∞∑
m=0

Pu
(
X(k−1)R2 ∈ Sm

)
max
x∈Sm

P
(
T xc hits B(0, R) after R2 generations

)
,

where X is a simple random walk. For m = 0 we bound the second probability appearing above by
the probability that the tree survives for R2 generations, which is of order 1/R2, by Kolmogorov’s
estimate again. For m ≥ 1 we bound the second probability by Rd−4/Rd−2

m using (2.5) and Propo-
sition 2.6. We also have for a constant c > 0, by the local central limit theorem, for all k ≥ 2

Pu
(
X(k−1)R2 ∈ Sm

)
.

Rdm
kd/2Rd

∧ exp

(
−c R

2
m

kR2

)
.

15



Putting everything together we get

∞∑
m=1

Pu
(
X(k−1)R2 ∈ Sm

)
max
x∈Sm

P
(
T xc hits B(0, R) after R2 generations

)
.

1

kd/2
· 1

R2
+

∑
m≥2:R2

m≤kR2

Rdm
kd/2Rd

· R
d−4

Rd−2
m

+
∑

m:R2
m>kR

2

exp

(
−c R

2
m

kR2

)
· R

d−4

Rd−2
m

� 1

R2
· 1

kd/2−1
.

Plugging this back into the sum in (3.4) and using that E[Z(k−1)R2 ] = 1 by criticality of µ, concludes
the proof.

3.4 Proof of (1.5)

We prove here the first part of Theorem 1.3. We let R0 = 0 and Ri = 2i for i ≥ 1, as well as

Bi = B(x,Ri), Si = {y : Ri ≤ ‖y − x‖ ≤ Ri+1} and Ki = K ∩ Si.

Let I be the maximal index i such that K ∩ Si 6= ∅. Then we have

∑
y∈K

G(x, y)eK(y) �
I∑
i=0

G(Ri)
∑
y∈Ki

eK(y). (3.5)

Fix some 0 ≤ i ≤ I. Then applying Proposition 2.3 with K ′ = Ki and B = Bi+2 we obtain∑
y∈Ki

eK(y) ≤
∑

w∈∂Bi+2

P
(
T w− ∩ (Bi+2 ∪K) = ∅, T w+ ∩Ki 6= ∅

)
. (3.6)

We now use the natural parametrisation of the spine and let Xw be the simple random walk that
the spine performs starting from w. Recall that we also write Fw− [a, b] (respectively Fw+ [a, b]) for
the positions of the walk indexed by T starting from w at vertices lying in the forest consisting
of the adjoint trees in the past (respectively future) emanating from the points on the spine with
time index (in the natural parametrisation of the spine) in [a, b].

Fix some w ∈ ∂Bi+2, and for each j ≥ i+ 2 we let σj be the last time that Xw is on ∂Bj , i.e.

σj = sup{n ≥ 0 : Xw(n) ∈ ∂Bj}.

Note in particular that σi+2 = 0 on the event {T w− ∩ Bi+2 = ∅}. For i, j ∈ N with j ≥ i + 2 we
define

Ai,j = {Fw+ [σj , σj+1]∩Ki 6= ∅, T w− ∩Bi+2 = ∅, and ∀ i+2 ≤ m ≤ I+2, Fw− [σm, σm+1]∩Km−2 = ∅}.

With this definition we then get

{T w− ∩ (Bi+2 ∪K) = ∅, T w+ ∩Ki 6= ∅} ⊆
∞⋃

j=i+2

Ai,j . (3.7)

We now upper bound P(Ai,j) for all i, j with j ≥ i+ 2. First we consider j > i+ 2. In this case we
have

P(Ai,j) =
∑

ui+3∈∂Bi+3

· · ·
∑

uI+3∈∂BI+3

P(∩i+3≤m≤I+3{Xw(σm) = um}, Ai,j) .

16



w

Ki

Kj

Si+1

Sj

Ri+1

Ri+2

Rj

Rj+1

x

Xσj
Xσj+1

Figure 3: The re-rooted tree at w whose spine (in blue) has to avoid Bi+2 and the past trees (in
red) have to avoid Kj in the shell Sj , whereas the future trees (in green) have to hit Ki.

For any path γ using (2.5) and a union bound we get

P
(
Fw+ [σj , σj+1] ∩Ki 6= ∅

∣∣ Xw[σj , σj+1] = γ
)
. |γ| · BCap(Ki)

Rd−2
j

.

Recall that T̃ zc denotes an adjoint branching random walk started from z ∈ Zd, and that for a finite
set A ⊆ Zd we write

bA(z) = P
(
T̃ zc ∩A = ∅

)
.

Also recall that we write s(γ) for the probability that a simple random walk of length |γ| started
from γ(0) follows the path γ. Using the above together with the independence of the adjoint trees
hanging off the spine conditionally on the values of the spine, we get

P(Ai,j) .
∑

ui+3∈∂Bi+3

· · ·
∑

uI+3∈∂BI+3

( ∑
γ:w→ui+3
γ⊆Bc

i+2

s(γ)

|γ|∏
`=1

bBi+2(γ(`))
)
×
( ∑
γ:uj→uj+1

γ⊆Bc
j

|γ|s(γ) · BCap(Ki)

Rd−2
j

)

×
∏

i+3≤m≤I+2
m 6=j

( ∑
γ:um→um+1

γ⊆Bc
m

s(γ)

|γ|∏
`=0

bKm−2(γ(`))
)
× PuI+3(τ+

BI+3
=∞),
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where τ+
A stands for the first return time to A by a simple random walk. Using Lemma 3.3 we get∑

γ:uj→uj+1

γ⊆Bc
j

|γ|s(γ) . R2
j ·

∑
γ:uj→uj+1

γ⊆Bc
j

s(γ). (3.8)

For any path γ : w → ui+3 with γ ⊆ Bc
i+2 one has by Proposition 2.8

s(γ)

|γ|∏
`=1

bBi+2(γ(`)) = P
(
T ui+3
c hits Bi+2 via γ←

)
,

where γ← denotes the reversal of γ. Therefore, using also Theorem 2.9 we now get

∑
w∈∂Bi+2

∑
γ:w→ui+3
γ⊆Bc

i+2

s(γ)

|γ|∏
`=1

bBi+2(γ(`)) = P
(
T ui+3
c hits Bi+2

)
� 1

R2
i

.

Using this together with (3.8) and Lemma 3.4, we finally get that in the case j > i+ 2

∑
w∈∂Bi+2

P(Ai,j) .
BCap(Ki)

Rd−4
j

· 1

R2
i

· exp

(
−c

I∑
m=i+1

BCap(Km)

Rd−4
m

)
·
∑

u∈∂Bi+3

Pu(τ+
Bi+3

=∞),

and thus using that the capacity of a ball B(0, R) is of order Rd−2, for the usual notion of capacity,
we get ∑

w∈∂Bi+2

P(Ai,j) .
BCap(Ki)

Rd−4
j

·Rd−4
i · exp

(
−c

I∑
m=i+1

BCap(Km)

Rd−4
m

)
. (3.9)

We now bound the sum
∑

w∈∂Bi+2
P(Ai,j) in the case when j = i + 2. Conditionally on the event

{Xw[σi+2, σi+3] = γ}, we let T` be the `-th adjoint tree in the past hanging off γ(`) (taking T0 = ∅)
and T ′` be the `-th adjoint tree in the future hanging off γ(`). Then we get using again (2.5),

P
(
Fw+ [0, σi+3] ∩Ki 6= ∅,Fw− [0, σi+3] ∩Bi+2 = ∅

∣∣ Xw[0, σi+3] = γ
)

≤
|γ|∑
`=0

P
(
T ′` ∩Ki 6= ∅, ∀k 6= `, Tk ∩Bi+2 = ∅

)
.
|γ|∑
`=0

BCap(Ki)

Rd−2
i

·
|γ|∏
m=1
m 6=`

bBi+2(γ(m)).

Note that bBi+2(γ(m)) ≥ µ̃(0) for all m, since if the tree dies out immediately, the adjoint branching
random walk cannot hit the set Bi+2. Using this we deduce

P
(
Fw+ [0, σi+3] ∩Ki 6= ∅,Fw− [0, σi+3] ∩Bi+2 = ∅

∣∣ Xw[0, σi+3] = γ
)
. |γ| · BCap(Ki)

Rd−2
i

·
|γ|∏
`=1

bBi+2(γ(`)).

Using this we obtain

∑
w∈∂Bi+2

P(Ai,i+2) .
∑

w∈∂Bi+2

∑
ui+3∈∂Bi+3

· · ·
∑

uI+3∈∂BI+3

I+2∏
m=i+3

( ∑
γ:um→um+1

γ⊆Bc
m

s(γ)

|γ|∏
`=0

bKm−2(γ(`))
)

×
( ∑
γ:w→ui+3
γ⊆Bc

i+2

s(γ) · |γ| · BCap(Ki)

Rd−2
i

·
|γ|−1∏
`=0

bBi+2(γ(`))
)
× PuI+3

(
τ+
BI+3

=∞
)
.
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Using Lemma 3.4 again we get

∑
w∈∂Bi+2

P(Ai,j) .
∑

w∈∂Bi+2
u∈∂Bi+3

exp

(
−c

I∑
m=i+1

BCap(Km)

Rd−4
m

)

×
( ∑
γ:w→u
γ⊆Bc

i+2

s(γ) · |γ| · BCap(Ki)

Rd−2
i

·
|γ|∏
`=1

bBi+2(γ(`))
)
· Pu

(
τ+
Bi+3

=∞
)
.

(3.10)

We note again that for any path γ : w → u, with γ ⊆ Bc
i+2, one has by Proposition 2.8

s(γ)

|γ|∏
`=1

bBi+2(γ(`)) = P(T uc hits Bi+2 via γ←) ,

where γ← denotes the reversal of γ. Writing τu for the generation of the first hitting vertex of Bi+2

by a critical branching random walk started from u, we therefore deduce by Lemma 3.5, that

∑
w∈∂Bi+2

∑
γ:w→u
γ⊆Bc

i+2

s(γ) · |γ| ·
|γ|∏
`=1

bBi+2(γ(`)) = E[τu · 1(τu <∞)] ≤ C.

Plugging this back into (3.10) we get that for all i, j with j ≥ i+ 2 we have

∑
w∈∂Bi+2

P(Ai,j) .
BCap(Ki)

Rd−4
j

·Rd−4
i · exp

(
−c

I∑
m=i+1

BCap(Km)

Rd−4
m

)
.

Then taking the sum over all j ≥ i+ 2 and using (3.7) and (3.6) yields

∑
y∈Ki

eK(y) ≤
∑
j≥i+2

∑
w∈∂Bi+2

P(Ai,j) . BCap(Ki) · exp

(
−c

I∑
m=i+1

BCap(Km)

Rd−4
m

)
.

We can now conclude the proof using (3.5) to get

∑
y∈K

G(x, y)eK(y) .
I∑
i=0

BCap(Ki)

Rd−4
i

· exp

(
−c

I∑
m=i+1

BCap(Km)

Rd−4
m

)
.

Setting εi = BCap(Ki)/R
d−4
i we know that there exists a universal constant C > 0, such that

0 < εi ≤ C, for all i. We have now reduced the problem to proving that for such (εi) we have

I∑
i=0

εi · exp

(
−

I∑
m=i+1

εm

)
. 1.

Using that for x ≤ C we have e−x ≤ 1− x/eC we get

I∑
i=0

εi · exp

(
−

I∑
m=i+1

εm

)
≤

I∑
i=1

εi

I∏
m=i+1

(
1− εm

eC

)
.
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Hence, it suffices to prove that for (εi)i with εi ∈ [0, 1] we have

I∑
i=0

εi

I∏
m=i+1

(1− εm) ≤ 1.

It now suffices to prove that

I∑
i=0

εi

I∏
m=i+1

(1− εm) +
I∏
i=1

(1− εi) = 1. (3.11)

Indeed, notice that for any i we have

εi

I∏
m=i+1

(1− εm) +

I∏
m=i

(1− εm) =

I∏
m=i+1

(1− εm).

Applying this iteratively we deduce (3.11) and this concludes the proof of (1.5).

3.5 Variational characterisation: first proof of Corollary 1.4

In this section we prove Corollary 1.4, using only the results obtained so far, but under the additional
hypothesis that µ has a finite third moment. We start with a technical lemma that will be needed
in the proof.

Lemma 3.6. There exists a positive C so that the following is true. For every M > 0, all x, y ∈
B(0,M) and all ρ with ‖ρ‖ ≥ 10M , we have∑

z∈Zd

g(x, z)g(z, ρ)G(y, z) ≤ C ·G(ρ) ·G(x− y),

∑
z∈Zd

g(x, z)g(y, z)G(ρ, z) ≤ C ·G(ρ) ·G(x− y).

Proof. We start with the first inequality. We consider the set E = {z : ‖z − ρ‖ ≤ ‖ρ‖ /2}. Then
for z ∈ E we have ‖y − z‖ , ‖x− z‖ � ‖ρ‖, so we get using (2.1) and (2.3),∑

z∈E
g(x, z)g(ρ, z)G(z, y) � 1

‖ρ‖2d−6
·
∑
z∈E

1

‖z − ρ‖d−2
� 1

‖ρ‖2d−8
.

1

‖ρ‖d−4 ‖x− y‖d−4
,

where for the last step we used that ‖ρ‖ ≥ ‖x− y‖. For the sum over Ec we have∑
z∈Ec

g(x, z)g(ρ, z)G(z, y) .
1

‖ρ‖d−2
·
∑
z

1

‖z‖d−2 ‖z − (x− y)‖d−4
. (3.12)

Setting u = x − y and considering three different cases depending on whether ‖z − u‖ ≤ ‖u‖ /2,
‖u‖ /2 ≤ ‖z − u‖ ≤ 2 ‖u‖ or ‖z − u‖ ≥ 2 ‖u‖ we obtain that∑

z

1

‖z‖d−2 ‖z − (x− y)‖d−4
.

1

‖x− y‖d−6
.

Plugging this into (3.12) and using that ‖x− y‖ ≤ ‖ρ‖, we get the desired bound.
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For the second sum of the statement considering again the set E we have∑
z∈E

g(x, z)g(y, z)G(ρ, z) � 1

‖ρ‖2d−4
·
∑
z∈E

1

‖z − ρ‖d−4
� 1

‖ρ‖2d−8
.

1

‖ρ‖d−4 ‖x− y‖d−4
.

For the sum over Ec we get∑
z∈Ec

g(x, z)g(y, z)G(ρ, z) .
1

‖ρ‖d−4
·
∑
z

g(x, z)g(y, z) � 1

‖ρ‖d−4
· 1

‖x− y‖d−4

and this concludes the proof.

The proof of Corollary 1.4 uses the same idea as the proof of [BPP95, Theorem 2.2] (see also [MP10,
Proposition 8.26]).

Proof of Corollary 1.4 when
∑

i i
3µ(i) <∞. To prove the upper bound we take ν = eK/BCap(K)

and use (1.5).

To prove the lower bound, it suffices to show that for any probability measure ν supported on K
we have

BCap(K) &
1∑

x∈K
∑

y∈K ν(x)ν(y)G(x, y)
.

Let ν be a probability measure on K. Let ρ ∈ Zd and

Z =
∑
u∈T−

∑
y∈K

1(Sρu = y)ν(y)

G(ρ, y)
.

Then it is clear that by the Payley-Zygmund inequality

P
(
T ρ− ∩K 6= ∅

)
≥ P(Z > 0) ≥ (E[Z])2

E[Z2]
. (3.13)

By Proposition 8.1 of [Zhu16a] we have that

lim
‖ρ‖→∞

P
(
T ρ− ∩K 6= ∅

)
G(ρ)

= BCap(K).

In view of this and (3.13) it suffices to prove that for ‖ρ‖ sufficiently large

E
[
Z2
]

(E[Z])2
.

1

G(ρ)
·
∑
x,y∈K

ν(x)ν(y)G(x, y). (3.14)

For the first moment of Z we have

E[Z] =
∑
y∈K

ν(y)
G(ρ, y)

G(ρ, y)
= 1. (3.15)

We now turn to the second moment. For this we have

E
[
Z2
]
≤ 2E

∑
k≤n

∑
y∈K

∑
x∈K

1(T ρ(−k) = x)1(T ρ(−n) = y)ν(x)ν(y)

G(ρ, x)G(ρ, y)

 . (3.16)
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Applying the shift θk and using the invariance of the tree and the walk under θ we obtain

P(T ρ(−k) = x, T ρ(−n) = y) = P(T x(k) = ρ, T x(−n+ k) = y) .

Taking the sum over all k and n we obtain

E

∑
k≤n

1(T ρ(−k) = x)1(T ρ(−n) = y)

 = E

∑
k≥0

1(T x(k) = ρ)

 ·
∑
n≥0

1(T x(−n) = y)

 .
So above we get the product of the number of visits to ρ in the future of T with the number of visits
to y in the past of T including the root. Let (Xx

m)m∈N be the random walk of the spine started
from x and denote by Vf (k) the number of visits to ρ in the adjoint tree in the future hanging off
Xx
k and Vp(k) for the number of visits to y in the adjoint tree in the past hanging off Xx

k . We then
have, denoting by (±ei)i=1,...,d the neighbors of the origin in Zd,

E

∑
k≤n

1(T ρ(−k) = x)1(T ρ(−n) = y)

 ≤ E

∑
k,`≥0

Vp(k)Vf (`)


�
∑
k 6=`

E[g(Xx
k , y)g(Xx

` , ρ)] +
∑
k≥0

E[Vp(k)Vf (k)]

.
∑
k 6=`

E[g(Xx
k , y)g(Xx

` , ρ)] +
∑
i,j≥0

µ(i+ j + 1) · i · E
[
max
m≤d

g(Xx
k ± em, y)

]
· j · E

[
max
m≤d

g(Xx
k ± em, ρ)

]
.
∑
k,`≥0

E[g(Xx
k , y)g(Xx

` , ρ)] ≤
∑
z,w

g(x, z)g(z, w)g(z, ρ)g(w, y) +
∑
z,w

g(x, z)g(z, y)g(z, w)g(w, ρ)

�
∑
z

g(x, z)g(z, ρ)G(z, y) +
∑
z

g(x, z)g(z, y)G(z, ρ),

where for the second line we used the independence between the trees in the past and future
attached to different points on the spine, and for the fourth line we used the assumption that µ has
a finite third moment. Taking ρ with ‖ρ‖ ≥ 10 · diam(K), and applying Lemma 3.6 we get∑

z

g(x, z)g(z, ρ)G(z, y) +
∑
z

g(x, z)g(z, y)G(z, ρ) . G(ρ) ·G(x, y).

Therefore for ρ with ‖ρ‖ ≥ 10 ·diam(K), plugging this in the above and then using (3.16) we deduce
that

E
[
Z2
]
.

1

G(ρ)
·
∑
x,y∈K

ν(x)ν(y)G(x, y).

This together with (3.15) finish the proof of (3.14) and the proof of the theorem.

4 Moments of local times

In this section we prove Theorem 1.5 and Corollary 1.6. To prove Theorem 1.5 we first show the
result for a critical branching random walk, then for an adjoint critical branching random walk, and
finally we extend it to the infinite tree-indexed random walk using the natural decomposition of T
in terms of a spine together with adjoint trees hanging off its vertices. We use here the notation
{Su}u∈T to denote the random walk indexed by T and similarly with Tc or T̃c. We then let Px
denote their law when the starting point is x, and write Ex for the corresponding expectation.
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We assume in the whole section that µ has a finite exponential moment, in other words we assume
that there exists λ > 0, such that

∑
i≥0 e

λiµ(i) < ∞. We also assume that ϕ : Zd → [0,∞) is a
function satisfying ‖Gϕ‖∞ ≤ 1. Note that one may also assume that ‖gϕ‖∞ ≤ 1 thanks to (2.1)
and (2.3).

4.1 The case of a critical branching random walk

We consider here the case of a critical branching random walk. The proof consists in bounding the
moments using a suitable induction.

To start with let us bound the first moment. Recall that g denotes the Green’s function of the
simple random walk (Xn)n≥0, and notice that for any x ∈ Zd, one has with Zn the number of
vertices in the n-th generation of Tc,

Ex

[∑
v∈Tc

ϕ(Sv)

]
=
∑
n≥0

E[Zn] · Ex[ϕ(Xn)] = gϕ(x) ≤ 1, (4.1)

using for the second equality that E[Zn] = 1, by criticality of µ, and our standing hypothesis on ϕ
for the last inequality.

Now our recursion hypothesis takes the following form.

Lemma 4.1. There exists C > 0, such that for any function ϕ : Zd → [0,∞), satisfying ‖Gϕ‖∞ ≤ 1,
and any x ∈ Zd, we have for all k ≥ 1,

Ex

(∑
v∈Tc

ϕ(Sv)

)k ≤ Ck−1 · ((k − 2) ∨ 1)! · Ex

[∑
v∈Tc

ϕ(Sv)

]
.

Note that Theorem 1.5 for the critical tree Tc immediately follows from this lemma and (4.1).

Proof of Lemma 4.1. We will prove this by induction on k and for a constant C that we will
determine. The case k = 1 is immediate. We assume now that it holds for k − 1 and we will prove
it for k. We have

Ex

(∑
v∈Tc

ϕ(Sv)

)k = Ex

 ∑
v1,...,vk∈Tc

ϕ(Sv1) · · ·ϕ(Svk)

 . (4.2)

We write v0 = MRCA(v1, . . . , v`), if v0 is the most recent common ancestor of v1, . . . , v`. With this
notation we have∑

v1,...,vk∈Tc

ϕ(Sv1) · · ·ϕ(Svk)

=
∑

v1,...,vk∈Tc

∑
v0∈Tc

1(v0 = MRCA(v1, . . . , vk))1(v0 /∈ {v1, . . . , vk})
k∏
i=1

ϕ(Svi)

+
∑

v1,...,vk∈Tc

∑
v0∈Tc

1(v0 = MRCA(v1, . . . , vk))1(v0 ∈ {v1, . . . , vk})
k∏
i=1

ϕ(Svi)

(4.3)
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We first treat the case where v0 /∈ {v1, . . . , vk}. Changing the order of summation this becomes
equal to

∑
v0∈Tc

∑
j≥1

1(deg(v0) = j)
∑
y∈Zd

1(Sv0 = y)

j∑
L=2

(
j

L

) ∑
n1,...,nL∑

i ni=k
ni≥1,∀i

(
k

n1, . . . , nL

) L∏
`=1

∑
v`1,...,v

`
n`
∈T`

n∏̀
m=1

ϕ(Sv`m),

where T` stands for the `-th descendant tree of v0 containing at least one of the vertices v1, . . . , vk,
and n` is the number of these vertices that it contains. The expectation of the expression above
equals

∑
j≥1

µ(j)
∑
y∈Zd

g(x− y)

j∑
L=2

(
j

L

) ∑
n1,...,nL∑

i ni=k
ni≥1,∀i

(
k

n1, . . . , nL

) L∏
`=1

Eνy

[(∑
v∈Tc

ϕ(Sv)

)n`
]
,

where νy is the uniform distribution on all neighbours of y. We can now use the induction hypothesis
to upper bound the expectations appearing above and obtain that this last expression is bounded
by

∑
j≥1

µ(j)
∑
y∈Zd

g(x− y)

j∑
L=2

(
j

L

) ∑
n1,...,nL∑

i ni=k
ni≥1,∀i

(
k

n1, . . . , nL

)
· Ck−L ·

L∏
i=1

((ni − 2) ∨ 1)! ·

(
Eνy

[∑
v∈Tc

ϕ(Sv)

])L
.

By (4.1) we get that the last expectation to the power L can be bounded by its square, since we
take L ≥ 2. Expanding the combinatorial factor we deduce

∑
j≥1

µ(j)
∑
y∈Zd

g(x− y)

(
Eνy

[∑
v∈Tc

ϕ(Sv)

])2

·
j∑

L=2

(
j

L

)
· Ck−L ·

∑
n1,...,nL∑

i ni=k
ni≥1,∀i

k! ·
L∏
i=1

1

ni((ni − 1) ∨ 1)
.

(4.4)

Claim 4.2. There exists a positive constant C1 so that for every L ≥ 2 we have

∑
n1,...,nL∑

i ni=k
ni≥1,∀i

L∏
i=1

1

ni((ni − 1) ∨ 1)
≤ (C1)L

k2
.

Claim 4.3. There exists a positive constant C2 so that for all x we have

∑
y∈Zd

g(x− y)

(
Eνy

[∑
v∈Tc

ϕ(Sv)

])2

≤ C2 · Ex

[∑
v∈Tc

ϕ(Sv)

]
.

We now complete the proof of the lemma and defer the proofs of the claims to the end of the
section. Using the two claims above we deduce that the sum in (4.4) is upper bounded by

C2 · Ex

[∑
v∈Tc

ϕ(Sv)

]
·
∑
j≥1

µ(j)

j∑
L=2

(
j

L

)
· Ck−L · k! · C

L
1

k2
.
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Using that k!/k2 ≤ (k − 2)! and
(
j
L

)
≤ jL/L! and taking C > C100

1 , we obtain that the above sum
is bounded by

C2 · (k − 2)! · Ck · Ex

[∑
v∈Tc

ϕ(Sv)

]
·

k∑
L=2

C−99L/100

L!
·
∑
j≥L

µ(j) · jL

≤ C2 · (k − 2)! · Ck · Ex

[∑
v∈Tc

ϕ(Sv)

]
·

k∑
L=2

CL3 · C−99L/100,

where C3 is a positive constant and where for this we used the assumption that µ has exponential
moments. Taking further C > C100

3 ∨ 4 we get that the sum above is upper bounded by

2Ck−1.96 · (k − 2)! · Ex

[∑
v∈Tc

ϕ(Sv)

]
.

So far we have established that

Ex

 ∑
v1,...,vk∈Tc

∑
v0∈Tc

1(v0 = MRCA(v1, . . . , vk))1(v0 /∈ {v1, . . . , vk})
k∏
i=1

ϕ(Svi)


≤ 2Ck−1.96 · (k − 2)! · Ex

[∑
v∈Tc

ϕ(Sv)

]
.

(4.5)

We then have, denoting by Tv0 the subtree of descendants of v0,

Ex

 ∑
v1,...,vk∈Tc

∑
v0∈Tc

1(v0 = MRCA(v1, . . . , vk))1(v0 ∈ {v1, . . . , vk})
k∏
i=1

ϕ(Svi)



= Ex

∑
v0∈Tc

∑
v1,...,vk∈Tv0
v0∈{v1,...,vk}

k∏
i=1

ϕ(Svi)

 ≤ Ex

∑
v0∈Tc

∑
y∈Zd

1(Sv0 = y)ϕ(y)
∑

v1,...,vk−1∈Tv0

k

k−1∏
i=1

ϕ(Svi)



=
∑
y∈Zd

ϕ(y)g(x− y)k · Ey

(∑
v∈Tc

ϕ(Sv)

)k−1
 .

We now consider two different cases depending on whether k = 2 or k ≥ 3. If k = 2, then the sum
above becomes equal to

2
∑
y∈Zd

ϕ(y)g(x− y)Ey

[∑
v∈Tc

ϕ(Sv)

]
≤ 2Ex

[∑
v∈Tc

ϕ(Sv)

]
≤ 2Ck−1.96 · Ex

[∑
v∈Tc

ϕ(Sv)

]
,

since C > 4 and where we used again (4.1). Suppose next that k ≥ 3. Then we can use the
induction hypothesis to get

∑
y∈Zd

ϕ(y)g(x− y)k · Ey

(∑
v∈Tc

ϕ(Sv)

)k−1
 ≤ ∑

y∈Zd

ϕ(y)g(x− y) · k · (k − 3)!Ck−2 · Ey

[∑
v∈Tc

ϕ(Sv)

]
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Using that k ≤ 3(k − 2) for k ≥ 3 we can further bound the sum above by

3(k − 2)! · Ck−2 · Ex

[∑
v∈Tc

ϕ(Sv)

]
.

Therefore in both cases taking C > (3/2)25 we get

Ex

 ∑
v1,...,vk∈Tc

∑
v0∈Tc

1(v0 = MRCA(v1, . . . , vk))1(v0 ∈ {v1, . . . , vk})
k∏
i=1

ϕ(Svi)


≤ 2Ck−1.96 · (k − 2)! · Ex

[∑
v∈Tc

ϕ(Sv)

]
.

Plugging in this bound together with the bound from (4.5) into (4.3) and using (4.2) we finally
deduce

Ex

(∑
v∈Tc

ϕ(Sv)

)k ≤ 4Ck−1.96 · (k − 2)! · Ex

[∑
v∈Tc

ϕ(Sv)

]
≤ Ck−1 · (k − 2)! · Ex

[∑
v∈Tc

ϕ(Sv)

]
,

since C > (3/2)25 and this completes the proof.

It remains to prove the two claims used in the proof above.

Proof of Claim 4.2. We first note that there exists a positive constant A > 1 such that for all k
we have

k∑
`=1

1

`((`− 1) ∨ 1)
· 1

(k − `)2
≤ A

k2
. (4.6)

We will prove that the statement of the claim is true for C1 = A by induction on L. For L = 1,
the claim is obvious for all k. Suppose now that the claim is true for L− 1 for all values of k. We
will establish it also for L. We have

∑
n1,...,nL∑

i ni=k
ni≥1,∀i

L∏
i=1

1

ni((ni − 1) ∨ 1)
=

k∑
n1=1

1

n1((n1 − 1) ∨ 1)
·

∑
n2,...,nL∑
i ni=k−n1

ni≥1,∀i

L∏
i=2

1

ni((ni − 1) ∨ 1)

≤
k∑

n1=1

1

n1((n1 − 1) ∨ 1)
· (C1)L−1

(k − n1)2
≤ CL−1

1 · A
k2

=
CL1
k2
,

where for the first inequality we used the induction hypothesis and for second one we used (4.6).
This completes the proof.

Proof of Claim 4.3. We first prove that there exists a universal constant C so that for all x, z, z′

we have ∑
y

g(x− y)g(y − z)g(y − z′) ≤ C(g(x− z)G(x− z′) + g(x− z)G(z − z′)).
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Indeed, letting E = {y : ‖y − z‖ ≥ ‖z − x‖/2} we have for the sum over E∑
y∈E

g(x− y)g(y − z)g(y − z′) . 1

‖z − x‖d−2
·
∑
y

g(x− y)g(y − z′) . g(x− z)G(x− z′),

using (2.1) and (2.2) for the last inequality. We notice that when y ∈ Ec, then by the triangle
inequality we get ‖y − x‖ ≥ ‖z − x‖/2. So for the sum over Ec we get∑

y∈Ec

g(x− y)g(y − z)g(y − z′) . 1

‖z − x‖d−2
·
∑
y

g(y − z)g(y − z′) . g(x− z)G(z − z′).

We now prove the statement of the claim. We have, using the notation x ∼ y when x and y are
neighbors in Zd,

∑
y∈Zd

g(x− y)

(
1

2d

∑
z∼y

Ez

[∑
v∈Tc

ϕ(Sv)

])2

=
1

(2d)2

∑
y∈Zd

∑
y1∼y

∑
y2∼y

∑
z,z′

g(x− y)g(y1 − z)g(y2 − z′)ϕ(z)ϕ(z′).

Using that for all neighbours y1 of y and all z we have that g(y1 − z) � g(y − z), we then get

∑
y∈Zd

g(x− y)

(
1

2d

∑
z∼y

Ez

[∑
v∈Tc

ϕ(Sv)

])2

�
∑
y∈Zd

∑
z,z′

g(x− y)g(y − z)g(y − z′)ϕ(z)ϕ(z′)

.
∑
z,z′

(g(x− z)G(x− z′) + g(x− z)G(z − z′))ϕ(z)ϕ(z′) ≤ 2 ·
∑
z

g(x− z)ϕ(z),

where in the last inequality we used Claim 4.6. Using that

∑
z

g(x− z)ϕ(z) = Ex

[∑
v∈Tc

ϕ(Sv)

]
,

finally concludes the proof of the claim.

4.2 Moments for the infinite tree

Recall that we write x ∼ y when x and y are neighbours in Zd. We begin with the case of an
adjoint branching random walk.

Lemma 4.4. There exists C > 0, so that for all k ∈ N and z ∈ Zd, we have

Ez


∑
v∈T̃c

ϕ(Sv)

k
 ≤ Ck−1 · ((k − 2) ∨ 1)! · sup

x∼0
Ez+x

[∑
v∈Tc

ϕ(Sv)

]
.

Proof. We first claim that it suffices to prove that there exists λ sufficiently small and a positive
constant C so that

Ez

(∑
v∈T̃c

ϕ(Sv)
)
· exp

(
λ
∑
v∈T̃c

ϕ(Sv)
) ≤ C · sup

x∼0
Ez+x

[∑
v∈Tc

ϕ(Sv)

]
. (4.7)
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Indeed, once this is established, then expanding the exponential we get

Ez

(∑
v∈T̃c

ϕ(Sv)
)
· exp

(
λ
∑
v∈T̃c

ϕ(Sv)
) =

∞∑
n=0

λn

n!
· Ez

(∑
v∈T̃c

ϕ(Sv)
)n+1

 ,
and hence for all n ≥ 1 this gives

Ez

(∑
v∈T̃c

ϕ(Sv)
)n ≤ C · 1

λn−1
· (n− 1)! · sup

x∼0
Ez+x

[∑
v∈Tc

ϕ(Sv)

]
,

which is equivalent to the statement of the lemma by taking the constant C from the statement
sufficiently large.

We now turn to prove (4.7). Let Z be the number of offspring of the root of T̃c which has dis-
tribution µ̃ and let (Ui)i≥1 be i.i.d. uniformly chosen among the neighbours of 0. Then we can
write∑
v∈T̃c

ϕ(Sv) · exp
(
λ
∑
v∈T̃c

ϕ(Sv)
)

=

Z∑
i=1

( ∑
v∈T i

c

ϕ(Siv)
)
· exp

(
λ
∑
v∈T i

c

ϕ(Siv)
)
·
∏
j≤Z
j 6=i

exp
(
λ
∑
v∈T j

c

ϕ(Sjv)
)
,

where (T ic )i≥1 are i.i.d. critical trees and (Si)i≥1 are independent branching random walks on (T ic )i≥1

started from (Ui)i≥1. Using the independence property, we then get

Ez

(∑
v∈T̃c

ϕ(Sv)
)
· exp

(
λ
∑
v∈T̃c

ϕ(Sv)
) =

∑
k∈N

k · P(Z = k) ·

Ez

exp
(
λ
∑
v∈T 1

c

ϕ(S1
v)
)k−1

× Ez

( ∑
v∈T 1

c

ϕ(S1
v)
)
· exp

(
λ
∑
v∈T 1

c

ϕ(S1
v)
) .

(4.8)

By Lemma 4.1 we obtain for λ < 1/C with C as in Lemma 4.1

Ez

( ∑
v∈T 1

c

ϕ(S1
v)
)
· exp

(
λ
∑
v∈T 1

c

ϕ(S1
v)
) =

∞∑
n=0

λn

n!
· Ez

( ∑
v∈T 1

c

ϕ(S1
v)
)n+1


≤ 1

1− λC
· sup
x∼0

Ez+x

∑
v∈T 1

c

ϕ(S1
v)

 .
We also get that for λ < 1/C

Ez

exp
(
λ
∑
v∈T i

c

ϕ(S1
v)
) ≤ 1

1− λC
,

and hence plugging these two bounds into (4.8) yields for λ < 1/C

Ez

(∑
v∈T̃c

ϕ(Sv)
)
· exp

(
λ
∑
v∈T̃c

ϕ(Sv)
) ≤ 1

1− λC
· sup
x∼0

Ez+x

∑
v∈T 1

c

ϕ(S1
v)

 · E[Z ( 1

1− λC

)Z]
.

Since µ has an exponential moment, the same is true also for µ̃. Therefore, choosing λ sufficiently
small we get that the last expectation appearing on the right hand side above is bounded by a
constant, and hence this completes the proof of (4.7) and the proof of the lemma.
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We now move to the case of an infinite tree. We start with the case of T− which is slightly easier
to handle.

Lemma 4.5. There exists C > 0 so that for all z ∈ Zd and n ≥ 1, we have

Ez

∑
v∈T−

ϕ(Sv)

n ≤ Cn · n!.

Proof. Let (Xm) denote the random walk of the spine in its natural parametrization. We then
have

Ez


∑
v∈T−

ϕ(Sv)

k
 = Ez


 ∞∑
n=1

∑
u∈T̃ n

c

ϕ(Snu +Xn)

k
 ,

where (T̃ nc ) are i.i.d. adjoint critical trees and (Sn) are independent branching random walks
on (T̃ nc ). With this representation we now obtain

Ez

∑
v∈T−

ϕ(Sv)

n =
n∑
j=1

∑
n1,...,nj≥1∑j

i=1 ni=n

(
n

n1, . . . , nj

) ∑
k1<...<kj

Ez

 j∏
i=1

 ∑
u∈T̃ ki

c

ϕ(Skiu +Xki)

ni


=

n∑
j=1

∑
n1,...,nd≥1∑j

i=1 ni=n

(
n

n1, . . . , nj

) ∑
x1,...,xj

g(z, x1) . . . g(xj−1, xj)

j∏
i=1

Exi

∑
u∈T̃c

ϕ(Su)

ni
 (4.9)

=

n∑
j=1

∑
n1,...,nj≥1∑j

i=1 ni=n

(
n

n1, . . . , nj

) ∑
x1,...,xj

g(z, x1) . . . g(xj−1, xj) ·
j∏
i=1

Cni−1(ni − 2)! sup
y∼0

Exi+y

[∑
u∈Tc

ϕ(Su)

]
,

where for the last step we used Lemma 4.1. Using Claim 4.2 the above sum reduces to

n∑
j=1

n! · C
j
1

n2
· Cn−j

∑
x1,...,xj

g(z, x1) . . . g(xj−1, xj) ·
j∏
i=1

sup
y∼0

Exi+y

[∑
u∈Tc

ϕ(Su)

]
. (4.10)

Furthermore, for all x, z ∈ Zd and y ∼ 0 we have g(z, y) � g(z, x+ y) and by (2.2),∑
x

g(z, x)Ex

[∑
v∈Tc

ϕ(Sv)

]
=
∑
x,y

g(z, x)g(x, y)ϕ(y) . Gϕ(z) . 1.

These now imply that there exists a positive constant C2 so that

∑
x1,...,xj

g(z, x1) . . . g(xj−1, xj) ·
j∏
i=1

sup
y∼0

Exi+y

[∑
u∈Tc

ϕ(Su)

]
≤ Cj2 .

Plugging this back into (4.10) and then into (4.9) we conclude that

Ez

∑
v∈T−

ϕ(Sv)

n ≤ (n− 2)! ·
n∑
j=1

Cn−d · Cj2 · C
j
1 ,

which by choosing C sufficiently large compared to C1 and C2 finishes the proof.
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Proof of Theorem 1.5. Lemmas 4.1 and 4.5 immediately imply that the statement of the theo-
rem is true for Tc and T−. Moreover, T+ is made of a critical tree attached to the root plus a forest
of trees which are contained in a copy of T−. Therefore the result for T follows by an application
of the Cauchy-Schwarz inequality.

4.3 Proof of Corollary 1.6

We start with two technical lemmas. Recall that for C ⊂ Zd, we write B(C, r) = ∪x∈CB(x, r).

Lemma 4.6. There exists C1 > 0, so that the following holds. Let C be a finite collection of points
in Zd within distance greater than 2r from each other. Then for all x0 ∈ Zd we have∑

x∈C

∑
y∈B(x,r)

G(x0 − y)
∑

z∈∂B(x,r)

eB(C,r)(z) ≤ C1 · rd.

Proof. We let
A(x0) = {x ∈ C : ‖x− x0‖ ≥ 2r}.

By (2.3), there exists C1 > 0, such that for all x ∈ A(x0), all y ∈ B(x, r) and z ∈ ∂B(x, r),

G(x0 − y) ≤ C1 ·G(x0 − z).

We then have∑
x∈A(x0)

∑
y∈B(x,r)

G(x0 − y)
∑

z∈∂B(x,r)

eB(C,r)(z) ≤ C1C2r
d
∑

x∈A(x0)

∑
z∈∂B(x,r)

G(x0 − z)eB(C,r)(z)

≤ C1C2r
d
∑
x∈C

∑
z∈∂B(x,r)

G(x0 − z)eB(C,r)(z) ≤ C4r
d,

where for the last step we used (1.5). For the sum over x /∈ A(x0), we have using again (2.3),∑
x/∈A(x0)

∑
y∈B(x,r)

G(x0 − y)
∑

z∈∂B(x,r)

eB(C,r)(z) ≤ BCap(B(x, r)) ·
∑

x/∈A(x0)

∑
y∈B(x,r)

G(x0 − y)

. rd−4
∑

x∈B(x0,3r)

G(x0 − x) � rd−4 · r4 = rd.

This now concludes the proof.

Lemma 4.7. There exists c1 > 0, such that for any finite set C ⊂ Zd, and any r ≥ 1, one has

BCap(B(C, r)) ≥ c1 · BCap(B(C, 3r)).

Proof. Note that B(C, 3r) can be covered by a finite number of translates of B(C, r), so the lemma
just follows from sub-additivity of branching capacity proved in [Zhu16a].

Proof of Corollary 1.6. Let C be a finite subset of Zd and r ≥ 1 be given. By discarding some
points, one can find a subset C′ ⊆ C, whose points are all at distance greater than 2r from each
other, and such that B(C, r) ⊆ B(C′, 3r).
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We now define a function ϕ by taking it to be equal to 0 outside of B(C′, r) and for every y ∈ B(x, r)
with x ∈ C′ we define

ϕ(y) =
1

C1rd
·

∑
z∈∂B(x,r)

eB(C′,r)(z), (4.11)

where C1 is the constant from Lemma 4.6 so that ‖Gϕ‖∞ ≤ 1. We then have using Chernoff’s
bound

P(`T 0(B(x, r)) ≥ t, ∀ x ∈ C) ≤ P
(
`T 0(B(x, r)) ≥ t, ∀ x ∈ C′

)
≤ P

(∑
x∈C′

ϕ(x) · `T 0(B(x, r)) ≥ t · BCap(B(C′, r))
C1rd

)

≤ 2 exp
(
− κ · t · BCap(B(C′, r))

C1rd

)
≤ 2 exp

(
− κc1 · t ·

BCap(B(C, r))
C1rd

)
,

where we used Theorem 1.5 at the third line, and Lemmas 4.7 and 2.4 at the last one. This
concludes the proof of the corollary.

Remark 4.8. In the case of a simple random walk on Zd, d ≥ 3, one can recover Theorem 1.2
of [AS23a] by using a similar argument (which in the setting of standard random walks is much
simpler). This allows also to remove the hypothesis (1.4) from there.

5 The Lower Bound in Theorem 1.3

5.1 Preliminary estimates

Given A and B two disjoint subsets of Zd, we say that a tree-indexed random walk hits the set A
before the set B, if the first vertex in the lexicographical order of the tree at which the walk is in
A ∪B, the walk is in A. We say that the tree indexed random walk hits the set A after the set B
if it hits the set A but not before the set B.

Lemma 5.1. There exist positive constants c and L0 ≥ 3, such that for any L ≥ L0, any R ≥ 1,
any finite set K ⊆ B(0, R), and any x ∈ B(0, LR) rB(0, 2R),

P
(
T xc hits K before ∂B(0, L2R)

)
≥ c · BCap(K)

(LR)d−2
.

Proof. For two vertices u, v ∈ Tc, let us write v < u if v is on the geodesic going from the root to
u, and different from u. Then consider the set

Ux = {u ∈ Tc : Sxu ∈ ∂B(0, L2R) and Sxv ∈ B(0, L2R) \ ∂B(0, L2R) ∀v < u}.

If T xc hits K, but only after hitting ∂B(0, L2R), there must exist u ∈ Ux, whose tree of descendants
hits K. Since conditionally on Ux, the descendant trees of its vertices are independent copies of Tc,
we get

P
(
T xc hits K after ∂B(0, L2R) | Ux

)
≤ |Ux| · sup

x∈∂B(0,L2R)

P(T xc ∩K 6= ∅) . |Ux| · BCap(K)

(L2R)d−2
,

(5.1)
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using (2.5) for the last inequality. Note also that for any x ∈ B(0, LR),

E[|Ux|] =
∑
n≥0

E[Zn] · Px(τ = n) = 1,

where Zn is the number of vertices of generation n in Tc, and τ is the hitting time of ∂B(0, L2R)
by a simple random walk. Therefore taking expectation on both sides of (5.1) gives

P
(
T xc hits K after ∂B(0, L2R)

)
.

BCap(K)

(L2R)d−2
.

Hence, applying again (2.5) gives for L large enough,

P
(
T xc hits K before ∂B(0, L2R)

)
= P(T xc ∩K 6= ∅)− P

(
T xc hits K after ∂B(0, L2R)

)
&

BCap(K)

(LR)d−2
,

concluding the proof of the lemma.

Recall the definitions of s(γ) and bA(x) given in Section 2.4. For a path γ define

bA(γ) =

|γ|∏
`=1

bA(γ(`)), and b̃A(γ) =

|γ|−1∏
`=0

bA(γ(`)).

Lemma 5.2. There exists L0 > 0, such that for any L ≥ L0, and any R ≥ 1,∑
x∈∂B(0,R)

∑
γ:x→∂B(0,LR)

R2≤|γ|≤LdR2

s(γ) · bB(0,R)(γ) ≥ BCap(B(0, R))

2
.

Proof. For x ∈ ∂B(0, R), consider a random walk indexed by T starting from x, and let σx be
the first hitting time of ∂B(0, LR) by the spine (using its intrinsic labelling). Then one has by
definition,

∑
γ:x→∂B(0,LR)

R2≤|γ|≤LdR2

s(γ) · bB(0,R)(γ) ≥
P(T x− ∩B(0, R) = ∅, R2 ≤ σx ≤ LdR2)

supy∈∂B(0,LR) P(T y− ∩B(0, R) = ∅)
,

and thus by (2.4) and Proposition 2.6 one has for L large enough,∑
γ:x→∂B(0,LR)

R2≤|γ|≤LdR2

s(γ) · bB(0,R)(γ) ≥ 3

4
· P(T x− ∩B(0, R) = ∅, R2 ≤ σx ≤ LdR2). (5.2)

Recall that typically σx is of order L2R2, hence one can expect the two events {σx > LdR2} and
{σx < R2} to have small probability, provided that L is large enough. We start considering the
first one. Let τx be the last visiting time of ∂B(0, LR) by the walk on the spine:

τx = sup{n ≥ 0 : Xx(n) ∈ B(0, LR)}.
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Then by rerooting the tree at the vertex corresponding to τx, we can write using Proposition 2.8,
and denoting by Zn the number of vertices at generation n in a critical tree,∑
x∈∂B(0,R)

P(T x− ∩B(0, R) = ∅, σx > LdR2) ≤
∑

x∈∂B(0,R)

P(T x− ∩B(0, R) = ∅, τx > LdR2)

=
∑

x∈∂B(0,R)

∑
y∈∂B(0,LR)

P(T x− ∩B(0, R) = ∅, τx > LdR2, Xx(τx) = y)

=
∑

y∈∂B(0,LR)

( ∑
γ:y→B(0,R)

|γ|>LdR2

s(γ) · b̃B(0,R)(γ)
)
· P(T y− ∩B(0, R) = ∅, Xy(n) ∈ B(0, LR)c, for all n ≥ 1)

≤
∑

y∈∂B(0,LR)

P(ZLdR2 6= 0) · Py(Xn ∈ B(0, LR)c, for all n ≥ 1)

.
Cap(B(0, LR))

LdR2
.

BCap(B(0, R))

L2
,

using also Kolmogorov’s estimate at the last line, see e.g. [AN72, Theorem 1 p.19]. Therefore, for L
large enough, one has for any R ≥ 1,∑

x∈∂B(0,R)

P(T x− ∩B(0, R) = ∅, σx > LdR2) ≤ BCap(B(0, R))

10
. (5.3)

It remains to consider the event {σx < R2}, which is more complicated to handle. We introduce
two intermediate surfaces:

Σ1 = ∂B(0,
R
√
L

2
), and Σ2 = ∂B(0, R

√
L).

Define τx1 and τx2 to be the last visiting times of Σ1 and Σ2 respectively by the spine (for its natural
parametrisation). First observe that

P(T x− ∩B(0, R) = ∅, τx2 > σx) ≤ P(τx2 > σx)P
(
Fx−[0, σx] ∩B(0, R) = ∅

)
.

1

L
d−2
2

· P
(
Fx−[0, σx] ∩B(0, R) = ∅

)
.

Using (2.4) we see that for L sufficiently large

P
(
T x− ∩B(0, R) = ∅

)
≥ P

(
Fx−[0, σx] ∩B(0, R) = ∅

)
· inf
y∈∂B(0,RL)

P
(
T y− ∩B(0, R) = ∅

)
& P

(
Fx−[0, σx] ∩B(0, R) = ∅

)
,

and hence plugging this above we deduce

P(T x− ∩B(0, R) = ∅, τx2 > σx) .
1

L
d−2
2

· P
(
T x− ∩B(0, R) = ∅

)
. (5.4)

Now, denoting by HΣ1 and H+
Σ2

for the first hitting time of Σ1 and first return time to Σ2 respec-
tively, by a simple random walk, one can write for some constant c > 0,∑

x∈∂B(0,R)

P(T x− ∩B(0, R) = ∅, τx2 < R2)

=
∑

x∈∂B(0,R)

∑
y∈Σ1,z∈Σ2

P(T x− ∩B(0, R) = ∅, τx2 < R2, Xx(τx1 ) = y,Xx(τx2 ) = z)
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≤
∑

y∈Σ1,z∈Σ2

P(T yc ∩B(0, R) 6= ∅) ·
( ∑

γ:y→z
γ⊆Σc

1, |γ|<R2

s(γ)
)
· Pz(H+

Σ2
=∞),

where the last inequality follows from Proposition 2.8. Using (2.5) for a positive constant C we can
now upper bound this last expression by

C

L
d−2
2 R2

·
∑
z∈Σ2

Pz(HΣ1 < R2) · Pz(H+
Σ2

=∞)

. exp(−c
√
L) ·Rd−4. exp(−c

√
L) · BCap(B(0, R)), (5.5)

where for the last inequality we used (2.6). Combining (5.4) and (5.5) yields for L large enough,∑
x∈∂B(0,R)

P(T x− ∩B(0, R) = ∅, σx < R2) ≤ BCap(B(0, R))

10
.

Together with (5.3), this gives∑
x∈∂B(0,R)

P(T x− ∩B(0, R) = ∅, R2 ≤ σx ≤ LdR2) ≥ 4

5
· BCap(B(0, R)),

and remembering also (5.2) concludes the proof of the lemma.

5.2 Proof of the lower bound of Theorem 1.3

Proof of (1.6). Assume without loss of generality that 0 ∈ K, and x = 0. It amounts to bound
from below GeK(0) =

∑
x∈K G(x)eK(x), by some universal constant that does not depend on K.

Fix L ≥ 2 to be determined later and define Ri = L2i, for i ≥ 0. Then let

Bi = B(0, Ri), Si = Bi rBi−1 and Ki = K ∩Bi,

with also B−1 = ∅. Define I as the maximal index i such that K ∩Si 6= ∅. Note that if I ≤ 1, then
we can write

GeK(0) ≥
(

inf
x∈B(0,R1)

G(x)
)
· BCap(K) ≥

(
inf

x∈B(0,R1)
G(x)

)
· BCap({0}),

which gives a universal lower bound independent of K. Thus we may assume now that I ≥ 2.

Recall that we defined G(r) = r4−d, for r > 0. Using (2.3), we get that for a positive constance c0

(only depending on L) whose value may change from line to line∑
x∈K

G(x)eK(x) =
I∑
i=0

∑
x∈Si

G(x)eK(x) ≥ c0

I∑
i=0

G(Ri) · eK(Si)

≥ c0

I∑
i=0

(∑
j≥i

G(Rj)
)
· eK(Si) = c0

I∑
i=0

G(Ri) · eK(Bi).

(5.6)

For i ∈ {0, . . . , I}, define
εi = G(Ri) · BCap(Ki),

and let

I∗ = inf
{
i ≥ 0 :

I∑
k=i

εk ≤ δ
}
,

where δ > 0 is another constant to be fixed later, and using the convention inf ∅ = +∞. The proof
of (1.6) will follow from the next result, where we use the convention K−1 = ∅.
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Proposition 5.3. There exists c > 0, and a choice of L and δ, such that for any finite K ⊂ Zd,
and any index i satisfying I∗ + 1 ≤ i ≤ I,

eK(Bi) ≥ c · BCap(Ki−2).

Assuming this proposition, one can conclude the proof of (1.6). Indeed, fix L and δ, as in Propo-
sition 5.3, and distinguish between a few cases. If εI ≥ δ/(4L2(d−4)), then we have by (5.6),

GeK(0) ≥ c0G(RI) · eK(BI) = c0 · εI ≥ c0 ·
δ

4L2(d−4)
.

If εI ≤ δ/(4L2(d−4)), then we have

εI−1 = G(RI−1) · BCap(KI−1) ≤ L2(d−4) · εI ≤ δ/4.

In particular I∗ ≤ I − 1. If in addition I∗ ≥ 1, then by (5.6) and Proposition 5.3, we get

GeK(0) ≥ c0

I∑
i=I∗+1

G(Ri) · eK(Bi) ≥
c0c

L4(d−4)
·

I−2∑
i=I∗−1

εi ≥
c0c

L4(d−4)
· (δ − δ

4
− δ

4L2(d−4)
) ≥ c0c · δ

2L4(d−4)
.

If I∗ = 0, then we have as well (recall that we assume I ≥ 2),

GeK(0) ≥ c0G(R2) · eK(B2) ≥ c0cG(R2) · BCap(K0) ≥ c0cG(R2) · BCap({0}),

using that K0 contains the origin for the last inequality. In all cases we get a universal lower bound
for GeK(0), independent of K, and this concludes the proof of (1.6).

It remains to prove the previous proposition.

Proof of Proposition 5.3. Assume that I∗ ≤ I − 1, as otherwise there is nothing to prove, and
fix some i ∈ {I∗ + 1, . . . , I}. By Lemma 2.4, we have that

eK(Bi) ≥ eKi(Bi−2), where Ki = K \ (Si ∪ Si−1). (5.7)

Applying Proposition 2.3 yields

eKi(Bi−2) =
∑

w∈∂Bi−1

P
(
T w+ first hits Ki in Ki−2, T w− ∩ (Bi−1 ∪Ki) = ∅

)
. (5.8)

Let Σ = ∂B(0, LRi−1), and define σ as the first time the spine hits Σ (in its natural parametrisa-
tion). One has for any w ∈ ∂Bi−1,

P
(
T w+ first hits Ki in Ki−2, T w− ∩ (Bi−1 ∪Ki) = ∅

)
≥ P(Fw+ [0, σ] first hits Ki in Ki−2, T w− ∩ (Bi−1 ∪Ki) = ∅

)
≥ P(Fw+ [0, σ] hits Ki−2 before ∂Bi, Fw− [0, σ] ∩ (Bi−1 ∪ ∂Bi) = ∅

)
× inf
u∈Σ

P
(
T u− ∩ (Bi−1 ∪Ki) = ∅

)
. (5.9)

We deal first with the last probability. By Proposition 2.6 and (2.4), one has

sup
u∈Σ

P(T u− ∩Bi−1 6= ∅) .
1

Ld−4
,
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and by definition of I∗, one has by a union bound

sup
u∈Σ

P(T u− ∩K ∩Bc
i 6= ∅) .

∑
j≥i+1

εj . δ,

so that by choosing δ small enough, and L large enough, one can ensure that

inf
u∈Σ

P
(
T u− ∩ (Bi−1 ∪Ki) = ∅

)
≥ 1

2
. (5.10)

Now we bound from below the other probability in (5.9). Recall that Xw denotes the random walk
on the spine. One has

P(Fw+ [0, σ] hits Ki−2 before ∂Bi, Fw− [0, σ] ∩ (Bi−1 ∪ ∂Bi) = ∅
)

≥
∑

γ:w→Σ
γ⊆Bc

i−1

R2
i−1≤|γ|≤LdR2

i−1

s(γ) · P(Fw+ [0, σ] hits Ki−2 before ∂Bi, Fw− [0, σ] ∩ (Bi−1 ∪ ∂Bi) = ∅ | Xw[0, σ] = γ
)

For ` ≥ 0, and on the event {Xw[0, σ] = γ}, we denote by T̃ γ(`)
− the adjoint tree hanging off γ(`) in

the past and by T̃ γ(`)
+ the adjoint tree without its root hanging off γ(`) in the future. Then using

the independence of these trees for different `, we get that for any γ : w → Σ with γ ⊆ Bc
i−1, one

has

P(Fw+ [0, σ] hits Ki−2 before ∂Bi, Fw− [0, σ] ∩ (Bi−1 ∪ ∂Bi) = ∅ | Xw[0, σ] = γ
)

≥
( |γ|∏
`=0

P(T̃ γ(`)
+ ∩ (Bi−2 ∪ ∂Bi) = ∅, T̃ γ(`)

− ∩ (Bi−1 ∪ ∂Bi) = ∅)
)

×
( |γ|∑
`=0

P(T̃ γ(`)
+ hits Ki−2 before ∂Bi, T̃ γ(`)

− ∩ (Bi−1 ∪ ∂Bi) = ∅)
)
. (5.11)

Now by (2.5) and since γ ⊆ Bc
i−1 ∩B(0, LRi−1), one has for any ` ≥ 0, and some constant c > 0,

P(T̃ γ(`)
+ ∩ (Bi−2 ∪ ∂Bi) = ∅, T̃ γ(`)

− ∩ (Bi−1 ∪ ∂Bi) = ∅) ≥ P(T̃ γ(`)
− ∩Bi−1 = ∅) · (1− c

R2
i−1

)

= bBi−1(γ(`)) · (1− c

R2
i−1

),

and thus the product on the right-hand side of (5.11) is bounded from below by bBi−1(γ) · exp(−c′ ·
Ld), with c′ another positive constant and for any γ satisfying |γ| ≤ LdR2

i−1. Concerning the other
terms appearing in the sum in (5.11), by considering the event that the `-th vertex of the spine
has no children in the past, and at least one in the future, we obtain that for some constant c > 0
whose value may change from line to line,

P(T̃ γ(`)
+ hits Ki−2 before ∂Bi, T̃ γ(`)

− ∩ (Bi−1 ∪ ∂Bi) = ∅) ≥ c · inf
x∼γ(`)

P
(
T xc hits Ki−2 before ∂Bi

)
≥ c

Ld−2
· BCap(Ki−2)

Rd−2
i−1

,

using also Lemma 5.1 for the last inequality. Altogether this gives, using in addition Lemma 5.2,∑
w∈∂Bi−1

P(Fw+ [0, σ] hits Ki−2 before ∂Bi, Fw− [0, σ] ∩ (Bi−1 ∪ ∂Bi) = ∅
)
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≥ c · BCap(Ki−2)

Rd−4
i−1

· exp(−C · Ld) ·
∑

w∈∂Bi−1

∑
γ:w→Σ

R2
i−1≤|γ|≤LdR2

i−1

s(γ) · bBi−1(γ)

≥ c · BCap(Ki−2) · exp(−C · Ld).

Plugging this together with (5.10) into (5.9), and then in (5.8) and (5.7) concludes the proof of the
proposition.

6 Proofs of miscellaneous corollaries

Proof of Corollary 1.8. We follow broadly the same proof as in [AS23a], but use some simplified
arguments. We therefore omit similar details and focus on the differences. We recall that B(U , r) =
∪x∈UB(x, r). The idea is to show that with positive probability there is a set U such that

BCap(B(U , r)) � rd−4 · |U| � BCap(B(C, r)).

In [AS23a], the random subset U is constructed by keeping the points x in C such that an in-
dependent random walk started from x never returns to B(C, r) after escaping the ball B(x, 2r).
In our setting it is in fact slightly simpler to choose a family of independent Bernoulli variables
{Yx, x ∈ C} with respective parameter

E[Yx] :=
c

rd−4

∑
y∈∂B(x,r)

P
(
T y− ∩B(C, r) = ∅

)
,

with c > 0 chosen so that supx E[Yx] ≤ 1. This is possible, since

P
(
T y− ∩B(C, r) = ∅

)
≤ P

(
T y− ∩B(x, r) = ∅

)
and∑

y∈∂B(x,r)

P
(
T y− ∩B(x, r) = ∅

)
= BCap(B(x, r)) � rd−4.

Now, define U = {x ∈ C : Yx = 1}. Then,

E[|B(U , r)|] =|B(0, r)| ·
∑
x∈C

c

rd−4

∑
y∈∂B(x,r)

P
(
T y− ∩B(C, r) = ∅

)
=|B(0, r)| · c

rd−4
BCap(B(C, r)) � r4 · BCap(B(C, r)).

(6.1)

As a sum of Bernoulli, we also obtain Var(|B(U , r)|) ≤ |B(0, r)| · E[|B(U , r)|], so that

P
(
|B(U , r)| � r4 · BCap(B(C, r))

)
≥ 3

4
. (6.2)

Now, we need to deal with the branching capacity of B(U , r). Note that from the lower bound of
the variational characterisation, there is a constant C (independent of C),

∑
x,x′∈U

∑
y∈∂B(x,r)

∑
y′∈∂B(x′,r)

G(y − y′) ≥
C
(
|∂B(0, r)| · |U|

)2
BCap(B(U , r))

. (6.3)

Following the arguments of [AS23a], we only need an upper bound of the left hand side of (6.3) of
order rd+2 · |U|. To obtain an upper bound for the left hand side of (6.3), we consider expectation,
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and treat separately the cases x = x′ and x 6= x′. Assume x = x′, then an easy computation using
G(z) ≤ C‖z‖4−d yields (for some constant c whose value may change from line to line).

E

∑
x∈U

∑
y∈∂B(x,r)

∑
y′∈∂B(x,r)

G(y − y′)

 ≤ c · r3 · rd−1 · E[|U|] . (6.4)

In the case x 6= x′,

E

∑
x∈U

∑
x′ 6=x∈U

∑
y∈∂B(x,r)

∑
y′∈∂B(x′,r)

G(y − y′)

 ≤ c|∂B(0, r)|2
∑

x 6=x′∈C
P(Yx = 1)G(x− x′)P(Yx′ = 1)

≤ c(rd−2)2

rd−4
· E[|U|] · sup

x∈C

∑
x′ 6=x∈C

G(x− x′)
∑

y′∈∂B(x′,r)

P
(
T y− ∩B(C, r) = ∅

)
.

(6.5)

But since x 6= x′, we have that G(x− x′) � G(x− y′) for any y′ ∈ ∂Br(x′). Thus,

E

 ∑
x 6=x′∈U

∑
y∈∂B(x,r)

∑
y′∈∂B(x′,r)

G(y − y′)


≤ cr

2d−2

rd−4
· E[|U|] · sup

x∈C

∑
x′ 6=x∈C

∑
y′∈∂B(x′,r)

G(x− y′)P
(
T y− ∩B(C, r) = ∅

)
. rd+2 · E[|U|] ·

∑
z∈∂B(C,r)

G(z − x)eB(C,r)(z) . rd+2 · E[|U|].

(6.6)

This now proves the desired upper bound on the left hand side of (6.3) and finishes the proof of
the corollary.

Proof of Corollary 1.9. Let Λ be a finite and nonempty subset of Zd, and consider the function

ϕ(x) = 1(x∈Λ)
sup

y∈Zd G(y,Λ) . It is then immediate that ‖Gϕ‖∞ ≤ 1, and thus the corollary follows from

Chebyshev’s exponential inequality together with Theorem 1.5.

Proof of Corollary 1.4. Define the function G(x, y), by

G(x, y) =
∑
z∈Zd

g(x, z)g(z, y),

which is symmetric and positive definite. Note also that by (2.2) it is of the same order as G. Then
define the scalar product on the set of functions supported on K, by

〈f, g〉 =
∑
x,y∈K

G(x, y)f(x)g(y).

As already seen, the upper bound

inf
{
〈ν, ν〉 : ν probability measure on K

}
.

1

BCap(K)
,
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follows from (1.5) by choosing for ν the measure êK = eK/BCap(K). For the lower bound, note
that by (1.6) one has for any measure ν supported on K,

〈ν, êK〉 &
1

BCap(K)
.

On the other hand by Cauchy-Schwarz inequality one also has

〈ν, êK〉2 ≤ 〈ν, ν〉 · 〈êK , êK〉 .
〈ν, ν〉

BCap(K)
,

using again (1.5) for the last inequality. Combining the last two displays gives as wanted

inf
{
〈ν, ν〉 : ν probability measure on K

}
&

1

BCap(K)
.

Proof of Corollary 1.10. We only prove (1.10), the other characterisation (1.11) is entirely sim-
ilar and left to the reader. The lower bound is obtained by taking ϕ = eK

‖GeK‖∞ . For the upper

bound, note that for any function ϕ which is nonnegative on K and satisfies maxx∈K Gϕ(x) ≤ 1,
one has on one hand by (1.6)

〈ϕ, eK〉 &
∑
x∈K

ϕ(x),

and on the other hand using Cauchy-Schwarz’s inequality,

〈ϕ, eK〉2 ≤ 〈ϕ,ϕ〉 · 〈eK , eK〉 .
(∑
x∈K

ϕ(x)
)
· BCap(K),

which gives the desired upper bound after simplifying.

Proof of Corollary 1.11. On one hand (1.5) shows that for any finite set K,∑
x∈K

∑
y∈K

G(x, y)eK(y) & |K|,

and on the other hand, by summing first over x and using (2.3) we get∑
x,y∈K

G(x, y)eK(y) . |K|4/d · BCap(K).

The corollary follows.
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path concentration. Ann. Sci. Éc. Norm. Supér. (4) 50 (2017), 755–786.

[AS21] A. Asselah, B. Schapira. The two regimes of moderate deviations for the range of a transient
random walk. Probab. Theory Related Fields 180 (2021), 439–465.

39



[AS22] A. Asselah, B. Schapira. Time spent in a ball by a critical branching random walk.
arXiv:2203.14737

[AS23a] A. Asselah, B. Schapira. Extracting subsets maximizing capacity and folding of random
walks. To appear in Ann. Sc. Éc. Norm. Supér. (2023).
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