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ABSTRACT  24 

Plastic has become one of the most ubiquitous and environmentally threatening sources of 25 

pollution in the Anthropocene. Beyond the conspicuous visual impact and physical damages, 26 

plastics both carry and release a cocktail of harmful chemicals, such as monomers, additives 27 

and persistent organic pollutants. Here we show through a review of the scientific literature 28 

dealing with both plastic pollution and benthic foraminifera (Rhizaria), that despite their 29 

critical roles in the structure and function of benthic ecosystems, only 0.4% of studies have 30 

investigated the effects of micro- and nano-plastics on this group. Consequently, we urge to 31 

consider benthic foraminifera in plastic pollution studies via a tentative roadmap that includes 32 

(i) the use of their biological, physiological and behavioral responses that may unveil the 33 

effects of microplastics and nanoplastics and (ii) the evaluation of the indicative value of 34 

foraminiferal species to serve as proxies for the degree of pollution. This appears particularly 35 

timely in the context of the development of management strategies to restore coastal 36 

ecosystems. 37 

 38 

Introduction 39 

Plastic pollution in marine environments has been reported as early as 1970 (Carpenter and 40 

Smith Jr 1972) with an increasing interest until the mid-1980s (Bean 1987). It nevertheless 41 

took nearly two additional decades to fully acknowledge the extent of the related 42 

environmental issues (Thompson et al. 2004). Due to both the exponential increase in plastic 43 

production (i.e., from 1.5 Mt in 1950 to 368 Mt in 2019, PlasticsEurope 2020) and the 44 

mismanagement of plastic waste (one third of the plastic waste (32 million Mt) from 93% of 45 

the world's population was classified as mismanaged in 2010, Borrelle et al. 2020), the 5 to 13 46 
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Mt of plastics discharged into the ocean every year, are expected to reach to up to 90 Mt/year 47 

by 2030 under business-as-usual scenarios (Borrelle et al. 2020). As an inherently durable 48 

material, plastic debris persist in the environment and are dispersed over long distances by 49 

winds and water currents (Alimi et al. 2018). The potential threats related to plastic debris via 50 

ingestion or leaching of contaminants (additives and persistent organic pollutants, see review 51 

in Delaeter et al. 2022) have been identified as a major global conservation issue and a key 52 

priority for research (Vegter et al. 2014, Harrison and Hester 2019, Seuront et al. 2022).  53 

Plastic debris typically constantly degrade and fragment into smaller and smaller pieces 54 

over time under UV radiation and wave actions to eventually form microplastics (<5 mm; 55 

MPs) and nanoplastics (<100 nm; NPs). These small particles continuously sink towards the 56 

seafloor where they are typically buried in unvegetated and vegetated sediments in subtidal 57 

and intertidal coastal areas (Cozzolino et al. 2020). Noticeably, coastal ecosystems like 58 

seagrass and macroalgal meadows (Cozzolino et al. 2020), mussel beds (Nicastro et al. 2022), 59 

coral reefs (Reichert et al. 2022), tidal marshes and mangroves act as barriers against the 60 

dispersal of MPs and NPs debris towards the marine environment (Martin et al. 2020). As 61 

such, coastal habitats are major sinks for MPs and NPs, which enter long-term sequestration 62 

in sediments (Martin et al. 2020).  As a consequence, plastic pollution may interfere with the 63 

key role played by living organisms in coastal ecosystems in mitigating the effects of climate 64 

change by storing carbon dioxide (CO2) in sediments (Taillardat et al. 2018). Yet, the effects 65 

of plastic burial on the benthic biocoenosis of intertidal areas and coastal shallow-waters have 66 

been largely overlooked. 67 

Of the studies that have explicitly tested the effects of plastic on benthic species, relatively 68 

few have attempted to consider MPs and NPs pollution and meiofaunal species which, for the 69 

most part, are invisible to the naked eye, but are nevertheless crucial elements of coastal 70 

benthic ecosystems (Schratzberger and Ingels 2018). In particular, meiobenthic foraminifera 71 
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are an important component of these coastal ecosystems. Amongst meiobenthic organisms 72 

(<1 mm), benthic foraminifera (Rhizaria) may represent up to 50% of the benthic eukaryotic 73 

biomass in coastal sediments (Moodley et al. 2000). They also contribute significantly to the 74 

carbon and nitrogen biogeochemical cycles in coastal ecosystems (Jauffrais et al. 2019, 75 

Choquel et al. 2021). They occupy a major trophic position through bacterivory, herbivory or 76 

carnivory (Nomaki et al. 2008, Chronopoulou et al. 2019). They also actively participate in 77 

the benthic ecosystem functioning via sediment mixing and bioirrigation, hence enhancing the 78 

fluxes of particulate and dissolved elements at the sediment-water interface (Bouchet and 79 

Seuront 2020, Deldicq et al. 2020, Deldicq et al. 2021a). In addition, foraminifera can 80 

accumulate large quantities of nitrate in their cell and reduce it through denitrification under 81 

low-oxygen conditions (Risgaard-Petersen et al. 2006, Piña-Ochoa et al. 2010, Choquel et al. 82 

2021); their contribution to the nitrogen cycle being, for instance, up to 70% in the North Sea 83 

(Piña-Ochoa et al. 2010) or ranging from 50% to 100% in Swedish fjords (Choquel et al. 84 

2021). In the context of biomonitoring, benthic foraminifera have been shown to be good 85 

sentinel of the health of benthic habitats (Armynot du Châtelet et al. 2004). Due to their 86 

sensitivity to environmental changes, shifts in species composition of benthic foraminiferal 87 

communities quickly reflect                                                     . 2012). 88 

Hence, they are used as indicators of pollution (e.g. Alve 1995, Francescangeli et al. 2016, 89 

Polovodova Asteman et al. 2015), such as oil spills (e.g. Morvan et al. 2004), drill cutting 90 

(e.g. Mojtahid et al. 2006), element trace metals (e.g. Armynot du Châtelet et al. 2004), urban 91 

sewage (e.g. Melis et al. 2019), and aquaculture (e.g. He et al. 2019). They are also considered 92 

as accurate bioassay in ecotoxicological experiments which reported test (shell) 93 

malformations (Le Cadre and Debenay 2006), alteration of the growth (Denoyelle et al. 94 

2012), oxydative stress (Frontalini et al. 2018a), physiological changes (Losada Ros et al. 95 

2020), proteom modifications (Ciacci et al. 2022) and changes in species composition of 96 
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foraminiferal communities in mesocosm (Frontalini et al. 2018b) in response to, respectively, 97 

copper, oil-based drilling muds, element trace metals, cadmium and mercury exposure.  98 

Because of the recognized fundamental role of foraminifera in the coastal benthic realm 99 

(Moodley et al. 1998, LeKieffre et al. 2018), it is an important concern how MPs and NPs can 100 

affect them. Specifically, plastic burial in benthic sediments may lead to the ingestion of MPs 101 

or NPs and to long-term exposure of benthic foraminifera to a variety of additives and 102 

chemicals leaching from plastic items in the sediment. Element trace metals, for instance, 103 

which may accumulate onto and then leach from weathered plastic surface, are known to be 104 

harmful for foraminifera (e.g. Le Cadre and Debenay 2006, Frontalini et al. 2018a, 2018b). 105 

Noticeably, a wide range of physiological and ultrastructural impairments (e.g., involving 106 

thickening of organic lining of test, mitochondrial degeneration, proliferation of degradation 107 

vacuoles, lysosomes, residual bodies and the increased production of neutral lipids and of 108 

reactive oxygen species) have been reported in benthic foraminifera exposed to element trace 109 

metals (Frontalini et al. 2018a), as well as morphological abnormalities and decreased growth 110 

rate (Le Cadre and Debenay 2006, Denoyelle et al. 2012). In addition, sediment anoxia 111 

induced by plastic accumulation in the marine litter (Krause et al. 2020) may also contribute 112 

to shape benthic foraminifera communities and promote low-oxygen-tolerant species. On the 113 

basis of the above evidences, it seems legitimate to hypothesize that benthic foraminifera 114 

would be highly affected by plastic pollution. 115 

In this context, through a systematic review, this study quantifies the current state of 116 

plastic pollution research on benthic foraminifera, presents key results, and summarizes 117 

perspectives that warrant further study. Here, we highlight why foraminifera should be given 118 

more emphasis in studies aiming to understand the effect of plastics on the benthic 119 

biocoenosis of intertidal areas and coastal shallow-waters. We further suggest a way forward 120 

toward consolidating research and policy efforts to better address the effect of plastic 121 
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pollution as a potential driver of benthic foraminiferal community structure and role in the 122 

functioning of such key habitats. 123 

 124 

Methods 125 

 126 

The field of research dedicated to plastic pollution in benthic marine ecosystems is 127 

currently one of the most prolific. A literature search was performed in the Web of Science 128 

                   J  u  y, 13, 2023) u         w     p         . . ‘p      *’), marine (i.e. 129 

‘      ’)     b         . . ‘b    *’). A          928 pub          w       u    . T      u    130 

the research effort for the main taxa encountered in benthic coastal habitats, the literature 131 

search was refined though the use of different combin          k yw       . . ‘b       *’, 132 

‘  u       *’, ‘       *’, ‘          *’, ‘        *’, ‘    u   *’, ‘              *’, 133 

‘p  y      ’, ‘       *’, ‘        *’, ‘            ’,    p       y,          w    ‘p      *’, 134 

‘      ’    /   ‘          ’    /   ‘       ’,     ‘b    *’). T                   w            135 

studies were also scrutinized to identify additional relevant studies. For this opinion paper, we 136 

only included English-written studies that assessed the impact of plastic pollution on the 137 

above-mentioned taxa. A total of 925 studies were selected. This literature search allowed us 138 

to evaluate the status of the research on benthic foraminifera and plastic pollution compared 139 

to other biological components of benthic ecosystems. 140 

 141 

Plastic pollution and benthic foraminifera: the big void 142 

Among the studies that considered the effect of plastic pollution on marine organisms, a 143 

vast majority (i.e., 81%) essentially targeted bacteria, algae and crustaceans (Fig. 1). Protists 144 

were critically underrepresented (i.e., 2%) and amongst the 24 papers that considered them, 145 

ten of these studies focused on benthic foraminifera; amongst which four observed benthic 146 
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foraminifera on floating and benthic plastic debris (Jorissen 2014, Finger 2017, Birarda et al. 147 

2021,  ub as-Baratau et al. 2022), four focused on the inclusion of plastic particles in 148 

foraminiferal tests (Tsuchiya and Nomaki 2019, Birarda et al. 2021, Joppien et al. 2022a, 149 

Romano et al. 2023) and only four stricto sensu monitored the effect of MPs or NPs (Ciacci et 150 

al. 2019, Langlet et al. 2020, Birarda et al. 2021, Joppien et al. 2022b). A recent review 151 

(Delaeter et al. 2022) showed that, in plastic leachates-related studies, only 0.64% studies 152 

considered benthic foraminifera, while about 98% were on macro-invertebrates. Note that, 153 

according to our literature survey, there is still no study considering the impact of plastic 154 

pollution on planktic foraminifera. In short, regardless of coastal ecosystems, the assessment 155 

of MPs and NPs impacts on foraminifera overwhelmingly lags behind other marine species.  156 

 157 

 158 

Figure 1. Research effort (number of publications) considering the physical and toxic effects 159 

of plastic pollution for the most relevant marine benthic taxa.  160 
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 161 

Drifting and benthic plastic debris may be colonized by benthic foraminifera (Jorissen 162 

2014, Finger 2017, Birarda et al. 2021,  ub   -Baratau et al. 2022). This may contribute to the 163 

dispersion of benthic foraminifera, and their introduction outside their natural range as 164 

observed on rafted plastic items with shallow-water foraminiferal fouling transported by 165 

currents from Japan to Hawaii and North-America (Finger 2017).   166 

Foraminifera have mainly four types of tests: those that assemble calcium carbonate crystals 167 

constructed intracellularly and build tests (porcelaneous test), those that crystallized calcium 168 

carbonate (mainly) extracellularly (hyaline), those that collect sediment particle in the habitat 169 

for a test (agglutinated), and those with an organic membrane. Plastic particles were found to 170 

be included in the test of hyaline (Joppien et al. 2022a) and agglutinated foraminifera 171 

(Tsuchiya and Nomaki 2019, Birarda et al. 2021, Romano et al. 2023), and, as such, might 172 

further be transferred to predators of foraminifera like gastropods, copepods, polychaetes, 173 

decapods, polychaetes and fishes (Buzas and Carle 1979, Culver and Lipps 2003, Nomaki et 174 

al. 2008). Inclusion of plastic particles into the test of benthic foraminifera may likely expose 175 

them to the harmful effects of plastic additives; see Delaeter et al. (2022) for a specific review 176 

on the impacts of plastic leachates on organisms.  177 

Amongst the only four papers dealing with the stricto sensu influence of plastic on benthic 178 

foraminifera (see details in Table 1), three dealt with the effect of particles (Ciacci et al. 2019, 179 

Birarda et al. 2021, Joppien et al. 2022b) and two with the effects of additives (Langlet et al. 180 

2020, Birarda et al. 2021). Noticeably, the exposition and ingestion of NPs of polystyrene (1 181 

mg.L
-1

) induced physiological stress by promoting the accumulation of neutral lipids and 182 

enhanced reactive oxygen species production in Ammonia parkinsoniana (Ciacci et al. 2019). 183 

In the presence of seawater-soaked polyethylene MPs (1 particle.mL
-1

), the coral-reef species 184 

Amphistegina gibbosa indifferently fed on MPs and on Artemia sp. nauplii (Joppien et al. 185 
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2022b). The heterotrophic behavior of this symbiont-bearing species was clearly altered; 186 

hence, it had to be more reliant on autotrophy. Furthermore, Rosalina bradyi, Textularia 187 

bocki, and Lobatula lobatula were found to colonize in situ a plastic bag (most likely 188 

polyethylene) buried in the sediment (Birarda et al. 2021). The accumulation of protein beta-189 

sheets was observed in all three species, a typical feature observed during oxidative stress 190 

cytotoxicity (Novak et al. 2019). The authors hypothesized that the accumulation of MPs 191 

debris and additives both in the cytoplasm and agglutinated test (i.e., T. bocki) may alter the 192 

biomineralization process in foraminifera. Laboratory experiments further showed that the 193 

plastic additive bis-(2-ethylhexyl) phthalate (0.3 mg.L
-1

) can be incorporated in the cytoplasm 194 

of R. globularis (Birarda et al. 2021). However, the intertidal foraminifera Haynesina 195 

germanica did not show any change in motion behavior nor in respiration rate when exposed 196 

to leachates from virgin polypropylene pellets (20 and 200 mg of pellets.L
-1

; Langlet et al. 197 

2020).  198 

These limited number of studies have partially explored the potential hazard of plastic 199 

contamination of foraminifera in suggesting that MPs and NPs may interfere in the feeding 200 

behavior of benthic foraminifera and generate physiological stress. However, they do not 201 

allow to draw any robust conclusion, in particular because of the heterogeneity between 202 

studies in terms of targeted foraminiferal species, type of plastic polymer, sizes and 203 

concentrations of plastic particles, exposure time and measured parameters (Table 1), which 204 

altogether further hampers any comparison among these works. Hence, we emphasize that our 205 

knowledge is entirely insufficient for an integrated understanding of MPs and NPs effects on 206 

foraminifera, as evidenced by the fact that the response is apparently dependent on the type of 207 

plastic and foraminiferal species.  208 

Given the ubiquity and extent of plastic pollution, the ever-growing number of studies 209 

assessing the effect of plastics on a wide range of organisms and the aforementioned potential 210 
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ecological role of benthic foraminifera in key coastal habitats, it is striking that they have 211 

been disregarded for so long, which further stresses the need to amend the status quo. The 212 

lack of attention to a group as dominant in coastal sediments as foraminifera has received 213 

from the scientific community is no longer justified neither on methodological nor ecological 214 

grounds. 215 
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Table 1: Publications on the effects of plastic on benthic foraminifera: studied species, plastic types and methodological approaches. 216 

Study Species 
Symbiont/ 

Chloroplast 
Habitat Type of study Polymer/Additives Particles size Exposure Concentration 

Time of the 

exposure 
Parameters 

Birarda et al. 2021 
Rosalina globularis None Temperate, Coastal, shallow-water Experimental Phtalate (DEHP) / Additive 0.3 mg.L-1 7 weeks Oxydative stress 

Rosalina bradyi, Textularia bocki, 

Cibicidoides lobatulus None Temperate, Coastal, shallow-water In situ Polyethylene  Plastic bag Particles and additive / / Particle inclusion in the test, Oxydative stress 

Ciacci et al. 2019 Ammonia parkinsoniana None Temperate, Coastal, shallow-water Experimental Polystyrene 42 nm Particles 1 mg.L-1 24h Ultrastructural and physiological changes (oxydative stress) 

Joppien et al. 2022b Amphistegina gibbosa Symbiont-bearing Tropical, Coral reefs, shallow-water Experimental 

Polyethylene 

terephthalate 150-300  m Particles 1 and 2 particles.mL-1 24h Feeding behavior (Artemia sp. versus plastic particles) 

Langlet et al. 2020 Haynesina germanica Kleptoplastic Temperate, Coastal, Intertidal Experimental Polypropylene 3.3-4.7 mm 

Leachates (24h in 

seawater) 

20 and 200 mL of 

pellets.L-1 10h Motion behavior, Respiration 
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 217 

Benthic foraminifera: culprits and victims of plastic pollution? 218 

It is generally recognized that MPs and NPs have a negative impact on organisms (e.g. 219 

Delaeter et al. 2022), but this is not confirmed to be true for foraminifera. Ironically, benthic 220 

foraminifera may not be only prime suspects but also guilty of sequestering both MPs and 221 

NPs in sediment through their bioturbation activity that would actively transfer plastic 222 

particles from the water-sediment interface to the sediment matrix. Noticeably, they are able 223 

to burrow particles in the size range (10-125 m) of MPs (Gross 2002). This may help to 224 

isolate plastic particles from biologically active area (surface sediments) to less active area, 225 

and promote fossilization of MPs and NPs. However, sub-sediments may also constitute a 226 

reservoir where plastics are trapped and be further re-introduced in the food-web by benthic 227 

organisms feeding in this compartment (Sandgaard et al. 2023). In addition, the inclusion of 228 

plastic particles in the test of hyaline and agglutinated benthic foraminifera (Tsuchiya and 229 

Nomaki 2019, Birarda et al. 2021, Joppien et al. 2022a, Romano et al. 2023) possibly 230 

contributes to the transfer of plastic particles and additives through the food web, and to the 231 

trapping of MPs and NPs in the sediment. In this specific context, benthic foraminifera 232 

became their own victims as the burial of MPs and NPs is likely to expose them to ever 233 

increasing concentrations of the countless additives and chemicals carried by plastic items. 234 

We do not yet have evidence of whether they are culprits or victims, but at the very least, 235 

benthic foraminifera that take up plastic provide an archive for the accumulation of MPs and 236 

NPs in marine habitats, and this is in fine likely to provide additional evidence of how plastic 237 

can be considered as a key stratigraphic indicator of the Anthropocene as a distinctive strata 238 

component (Corcoran et al. 2015, Zalasiewicz et al. 2016, Dibley 2018). We hence advocate 239 

for more comprehensive research programs (i) to understand the role of benthic foraminifera 240 
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in plastic trapping in sediments, and (ii) to improve our poor knowledge of the effect of 241 

plastic particles and their leachates on benthic foraminifera. 242 

The assessment of the pernicious non-lethal effects of MPs and NPs on organisms is a 243 

challenge in the benthic coastal realm, particularly in minute organisms like benthic 244 

foraminifera that represent an emerging model in coastal ecosystems. Despite their noticeable 245 

small number relative to the available literature (see Fig. 1), the recent studies on the response 246 

of benthic foraminifera to various aspects of plastic exposure (Ciacci et al. 2019, Langlet et al. 247 

2020, Birarda et al. 2021, Joppien et al. 2022b) have stressed how critical it is to understand 248 

why, how and under which environmental conditions MPs and NPs affect benthic 249 

foraminifera, and we plea to address the following scientific questions (Fig. 2): 250 

(1) What are the processes involved in the integration of plastic particles in foraminiferal test? 251 

In particular, is this particle size- and/or concentration-dependent? Does this occur during 252 

shell construction that includes calcification and agglutination or via ingestion? Does this 253 

enhance the exposure of benthic foraminifera to plastic? 254 

(2) Does sediment reworking by benthic foraminifera contribute to MPs and NPs 255 

accumulation in coastal sediments? 256 

(3) What are the potential harmful effects of plastic on benthic foraminifera at community 257 

level, individual level, and cellular level? 258 

(4) In fine, do the harmful effects of MPs and NPs alter the role of foraminifera in the benthic 259 

ecosystem functioning?  260 
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 261 

Figure 2. Schematic of the questions to be tackled to understand (1) how much plastic 262 

particles are incorporated in foraminiferal test, (2) to what extent foraminifera may contribute 263 

to the trapping of MPs and NPs in coastal sediments and (3) the potential harmful effect of 264 

plastic on (a) species composition of foraminiferal communities (community level), (b) 265 

behavior (individual level), (c) cellular alterations and physiological changes (cellular level), 266 

and (4) the possible consequences on the benthic ecosystem functioning i.e. sediment mixing 267 

and bioirrigation. These questions are intended to shed light on the emerging opportunities of 268 

benthic foraminifera as proxies for the characterization of plastic pollution in coastal 269 

ecosystems. (Filled blue circles: MPs/NPs particles, Add: additives, POPs: persistent organic 270 

pollutants) 271 

 272 

Addressing those questions can be achieved in future researches that should—and ideally 273 

concurrently—monitor the hazards of MPs and NPs exposure at different levels from cells to 274 

communities in the following roadmap: 275 
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(i) Cellular level: Underlying mechanisms behind the responses observed at the individual 276 

level can be understood though the study of cellular alterations and physiological changes. 277 

For instance, recent advances in omics technologies have provided new tools to understand 278 

the effects of contaminants, which, in turn, may serve as biomarkers to be used in 279 

environmental monitoring as early warning of pollution (Tomanek 2011; Ciacci et al. 2022). 280 

In details, the response of benthic foraminifera to MPs and NPs particles and leachates are 281 

now deeply accessible through the advance in transcriptomics (Titelboim et al. 2020), 282 

proteomics (Stuhr et al. 2018) and microscopy (Frontalini et al. 2019). In addition, alterations 283 

in the proteom can, for instance, have consequences on the fitness (i.e. reproductive success) 284 

of an organism. 285 

(ii) Individual level: While pernicious non-lethal effects of MPs and NPs may likely not be 286 

easy to observe in communities, targeted experiments on foraminiferal individuals with 287 

environmentally relevant concentrations and focusing on specific biological features known to 288 

respond to contamination can address such limitations. Specifically, motion behavior is an 289 

acknowledged keystone process behind the success of foraging, mate-finding and habitat 290 

selection (Bowler and Benton 2005). Motion behavior is still, however, the forgotten child of 291 

foraminiferal ecology, despite its increasingly recognized variability (Seuront and Bouchet 292 

2015, Jauffrais et al. 2016) and role in bioturbation (Bouchet and Seuront 2020, Deldicq et al. 293 

2020, Deldicq et al. 2021a). In addition, benthic foraminiferal behavior is affected in the 294 

presence of a stressor (gravity, organic matter, temperature; Seuront and Bouchet 2015, 295 

Jauffrais et al. 2016, Deldicq et al. 2021b) that may have further consequences on their search 296 

for food and for the optimal microhabitat. In this context, investigating the behavioral changes 297 

induced by MPs and NPs on benthic foraminifera will contribute to improve our 298 

understanding of the effects of plastic pollution on their survival, may serve to predict 299 

population-level effects. 300 
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We further stress that measurements suggested at points i) and ii) does not require long-term 301 

incubation and recent studies confirmed they can be easily performed on foraminifera, which 302 

may facilitate their implementation. 303 

(iii) Community level: MPs and NPs may implicitly alter the quality of habitats inhabited by 304 

benthic foraminifera, hence undermine the survival of some species, and ultimately constrain 305 

the composition of foraminiferal communities. To reveal the response of community 306 

composition to MPs and NPs, it is essential to monitor their spatial distribution through joint 307 

in situ sampling surveys of MPs, NPs, and foraminiferal species. By applying spatial models, 308 

i.e., spatial varying coefficient model (Murakami et al. 2017, Matsuba et al. 2020), to these 309 

spatial data, it may be possible to predict the distribution and composition of foraminiferal 310 

communities in response to spatial patterns of MPs and NPs and their concentrations in 311 

sediments, as well as ocean environmental factors (e.g. current velocity) that affect the 312 

distribution of MPs and NPs. Such a modeling approach would be one way to determine how 313 

MPs and NPs pollution, coupled with macro-environmental changes in the ocean, including 314 

climate change, could affect foraminiferal communities. In addition, taking advantage of the 315 

recent development of the use of benthic foraminifera to assess ecological quality statuses 316 

(Alve et al. 2016, Bouchet et al. 2021, Parent et al. 2021), it may provide an opportunity to 317 

develop an index of the degree of plastic pollution in coastal ecosystems sediment through the 318 

identification of indicator species of the presence/absence of MPs and NPs. Finally, a better 319 

understanding of benthic foraminiferal community response to plastic pollution will 320 

eventually help to grasp their role in marine ecosystems functioning. 321 

 322 

Conclusion 323 

Benthic foraminifera offer a putatively endless sets of opportunities to tackle the question of 324 

the potential harmful effects of plastic pollution, from the cellular to the community level. We 325 

plea here to embrace the opportunity to see in these abundant but minute—though highly 326 
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neglected (see Fig. 1)—organisms a unique prospect to refine our understanding of the effects 327 

o  one o  the main environmental threats o  the   nthropocene  on the structure and  unctions 328 

at play behind the future of coastal ecosystems under climate change. In fine, foraminifera 329 

will provide proxies of the history and the degree of plastic pollution on the benthic 330 

ecosystem. Last but not the least, there is, to date, no study on the interaction between plastic 331 

and planktic foraminifera, although they may be in contact with MPs and NPs in the water 332 

column. This last aspect must also deserve more attention in the future.  333 

 334 
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