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Abstract
The truth semantics of linear logic (i.e. phase semantics) is often overlooked despite having a wide
range of applications and deep connections with several denotational semantics. In phase semantics,
one is concerned about the provability of formulas rather than the contents of their proofs (or
refutations). Linear logic equipped with the least and greatest fixpoint operators (µMALL) has been
an active field of research for the past one and a half decades. Various proof systems are known viz.
finitary and non-wellfounded, based on explicit and implicit (co)induction respectively.

In this paper, we extend the phase semantics of multiplicative additive linear logic (a.k.a. MALL)
to µMALL with explicit (co)induction (i.e. µMALLind). We introduce a Tait-style system for µMALL
called µMALLω where proofs are wellfounded but potentially infinitely branching. We study its
phase semantics and prove that it does not have the finite model property.

2012 ACM Subject Classification Theory of computation → Linear logic; Theory of computation
→ Proof theory

Keywords and phrases Linear logic, fixed points, phase semantics, closure ordinals, cut elimination

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.35

Funding This research has been partially supported by ANR project RECIPROG, project reference
ANR-21-CE48-019-01.
Abhishek De: This author has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement No 754362.

Acknowledgements We would like to thank anonymous reviewers for their valuable comments that
enhanced the clarity and presentation of this paper. We would like to thank Amina Doumane,
Graham Leigh and Rémi Nollet for helpful discussions in the early phase of this work.

1 Introduction

Fixpoint logics: from truth to proofs. Fixpoint logics were first introduced in the study of
inductive definability [1] in recursion theory which predates its first application in computer
science as an expressive database query language [3]. In order to define the language
of a fixpoint logic, one introduces explicit fixpoint construct(s) and closes it under these
construct(s) thus obtaining a richer language. First order logic extended with various fixpoint
operators have been extensively explored in model theory [38]. In the propositional case,
the (multi)modal µ-calculus (the extension of basic modal logic K with least and greatest
fixpoint operators) is probably the most well-studied. Introduced by Scott and Bakker in an
unpublished manuscript, the logic has been historically studied in the formal methods and
verification community [16]. More recently, there has been a growing interest in its structural
proof-theory. The most important result in this direction is the completeness of Hilbert-style
axiomatisations for the logic, which has turned out be notoriously difficult [34, 51, 50].
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35:2 Phase Semantics for µMALL

Various proof systems for fixpoint logics. The setting of our paper is µMALL, the extension
of multiplicative additive linear logic by fixpoints viz. the propositional fragment of the logic
introduced by Baelde and Miller in [7] who proposed the sequent calculus system µMALLind

for the logic. All these formalisations viz. the Hilbert-style axiomatisations of µ-calculus
and µMALLind employ inference rules that express an explicit (co)induction scheme i.e. the
induction hypothesis must be provided explicitly. However, sequent calculi with explicit
(co)induction do not have the subformula property in spite of having analyticity. In fact, it
is generally accepted that we do not have true cut elimination for any logic equipped with a
theory of inductive definitions [40]. However, one can consider an alternative formalisation
of inductive reasoning viz. implicit induction, which avoids the need for explicitly specifying
(co)induction invariants. This formalism generally recovers true cut elimination but at the
price of infinitary axiomatisation of the fixpoints. There are two approaches to this.

The first approach is to consider a Tait-style system i.e. infinitary wellfounded derivations
which use a so-called ω-rule with infinitely many premises of finite approximations of a
fixpoint. Such rules arise in various areas of logic, notably as Carnap’s rule [15] in arithmetic.
A complete Tait-style system has been proposed for fixpoint logics viz. for the µ-calculus [35]
and star-continuous action lattices [43] (where the ω-rule construes the Kleene star as an
ω-iteration of finite concatenations).

The second approach is to define a non-wellfounded and/or a circular proof system with
finitely branching inferences. Such systems have been extensively studied in the setting
of µMALL [44, 28, 6, 23]. Circular proofs have deep roots in the history of logic and
mathematical reasoning: starting with Euclid’s [27] heuristic of infinite descent through the
more rigorous studies of Fermat [22]. A systematic investigation of the connection between
circular proofs and reasoning by infinite descent has been carried out by Brotherston and
Simpson [11, 12, 13].

Proof systems difficult to compare. Brotherston and Simpson conjectured that (in the
setting of Martin-Löf’s inductive definitions) circular proofs derive the same statements
as finitary proofs with explicit induction. The so-called Brotherston-Simpson conjecture
remained open for about a decade until Berardi and Tatsuta [8, 10] answered it negatively
for the general case. On the other hand, if the logic contains arithmetic, the conjecture is
known to be true; proved independently by Simpson [47], and Berardi and Tatsuta [9].

Note that the Brotherston-Simpson conjecture is heavily dependent on the base logic since
the availability of structural rules or modal constructs induce subtle differences. For instance,
the modal µ-calculus coincides on all systems. On the other hand, in Kleene Algebras, which
is a substructural logic, the wellfounded, circular, and Tait-style systems are indeed different.
In the setting of linear logic, in a recent work [20], the circular and the non-wellfouded
system has been shown to be separate. However, the exact relation between finitary and
circular system is still open. There is good reason for the difficulty. The very restricted
use of structural rules in the linear setting induces a much more refined provability relation.
Therefore, in this paper, we study the provability semantics a.k.a. the phase semantics
of these logics as a first step of tackling the Brotherston-Simpson conjecture. Categorical
semantics of circular proofs of the additive fragment have been studied in [44]. More recently,
coherence space semantics have been studied for µMALLind [24] as well as preliminary results
on µMALLω denotational semantics [26]. These semantics interpret formulas as well as
their proofs thereby preserving their computational content. On the other hand, phase
semantics is a coarser interpretation that allows for expressing strong invariant of linear
logic provability and has been notably used to prove decidability results [36, 19] and cut
admissibility results [42].
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Contributions. In this paper, we shall develop a phase semantics for various proof systems
for µMALL. Our first contribution is the notion of µ-phase models which are bespoke
mathematical objects that are shown to be sound and complete interpretation for µMALLind.
The completeness proof is intricate via Tait-Girard reducibility candidates and is inspired
from [42]. Subsequently, we obtain the cut-admissibility of µMALLind by semantic means.
Furthermore, we design a new Tait-style proof system for µMALL viz. µMALLω and obtain
its phase semantics and cut-admissibility. In this case, the crux of the completeness proof
is the obtention of a wellfounded notion of the rank of a formula. Cut-admissibility lets us
show that µMALLω and µMALLind are different systems in terms of provability. Finally, we
show that µMALLω does not have a finite model property using an idea by Lafont [36].

Organisation of the paper. The paper is organised as follows. In Section 2, we give
a brief exposition of linear logic and its phase semantics, relevant fixpoint theorems and
describe the syntax and relevant properties of µMALL. In Section 3, we develop the phase
semantics of µMALL wrt. the wellfounded proof system µMALLind. In Section 4, we introduce
the Tait-style proof system µMALLω and study its semantics, cut-admissibility and finite
model property. Finally, we conclude in Section 5 discussing directions of future work. Two
appendices complement the paper: a table summarizing the proof systems used in this paper
is provided in Appendix A, proof details are provided in Appendix B.

Notation. Let F and G be formulas. F (G/x) denotes that every occurrence of x in F is
replaced by G. If x is clear from the context, we simply write it as F (G). A special case is

F n(x) which denotes
n︷ ︸︸ ︷

F (F (· · · (F (x)) · · · ). We write an as a macro for
n︷ ︸︸ ︷

aO . . .Oa. Let Γ be
any sequent. Then, L ⊢ Γ (L ⊢cf Γ respectively) denotes that there is a proof (cut-free proof
respectively) of Γ in the system L. Finally, for any finite set S, its cardinality is |S|.

2 Background

2.1 Linear logic and phase semantics
Substructural logics are logics lacking at least one of the usual structural rules. In linear
logic [30], one of the most well-studied substructural logics, sequents are effectively multisets
and the use of contraction and weakening is carefully controlled. Conjunction and disjunction
each have two versions in linear logic: multiplicative and additive. Consequently the units
have multiplicative and additive versions as well.

conjunction disjunction true false
multiplicative ⊗ O 1 ⊥

additive N ⊕ ⊤ 0

The logical system thus obtained is called multiplicative-additive linear logic (MALL) and
its inference rules are depicted in Figure 1 (sequents being construed as finite multisets).
Full linear logic extends MALL by incorporating certain “exponential” modalities, written
?F and, dually, !F . Because of the absence of contraction and weakening, linear logic is
resource-conscious i.e. one is concerned over the number of times that a given sentence is
used in the proof of another sentence. To get a flavour of phase semantics, the provability
semantics of linear logic [30], it is informative to characterise the set of lists Γ of formulas
that make a formula F provable.

FSTTCS 2022



35:4 Phase Semantics for µMALL

Identity rules
(id)

⊢ F, F ⊥
⊢ Γ1, F ⊢ Γ2, F ⊥

(cut)
⊢ Γ1, Γ2

Logical rules

multiplicative
connectives

⊢ Γ, F1, F2 (O)
⊢ Γ, F1OF2

⊢ Γ1, F1 ⊢ Γ2, F2 (⊗)
⊢ Γ1, Γ2, F1 ⊗ F2

(1)
⊢ 1

⊢ Γ
(⊥)

⊢ Γ, ⊥

additive con-
nectives

⊢ Γ, Fi (⊕i)⊢ Γ, F1 ⊕ F2

⊢ Γ, F1 ⊢ Γ, F2 (N)
⊢ Γ, F1NF2

(⊤)
⊢ Γ, ⊤ No rule for 0

Figure 1 Inference rules for MALL, where i ∈ {1, 2}.

▶ Definition 1. For a formula F , define Pr(F ) = {Γ | MALL ⊢ Γ, F} and Prcf (F ) = {Γ |
MALL ⊢cf Γ, F}.

Let us examine some properties of Pr(F ). First, notice that the axiom rule ensures
that for any F , F ⊥ ∈ Pr(F ). Invertibility of the (⊥) rule gives us Pr(⊥) is the set of all
provable sequents. Similar observations on the invertibility of the (N) rule inform that
Pr(GNG) = Pr(F ) ∩ Pr(G). For the (non-invertible) connectives ⊗ and ⊕, we only have
Pr(F ⊗ G) ⊇ Pr(F ) · Pr(G) = {Γ, ∆ | Γ ∈ Pr(F ), ∆ ∈ Pr(G)} and Pr(F ⊕ G) ⊇ Pr(F ) ∪ Pr(G).
This suggests that the algebraic model for linear logic should simultenously be a monoid and
lattice i.e. a residuated lattice.

Pr(⊥) plays an major role in this approach, especially when considering it together with
the cut inference. Indeed, for any F , one has that Pr(F ⊥) = {Γ | ∀∆ ∈ Pr(F ), Γ, ∆ ∈ Pr(⊥)}.
This naturally suggests to consider the operation S⊥ = {Γ | ∀∆ ∈ S, Γ · ∆ ∈ Pr(⊥)} which
induces a closure operator (•)⊥⊥ on the set of multisets of linear formulas. As we will soon
see, Pr(F ) is closed under the double negation operation for any F .

These are the basic design principles of phase semantics: interpreting linear formulas as
closed subsets of a monoid for the closure operation induced by the orthogonality relation
w.r.t. a specific subset ⊥⊥ of the monoid which is an abstraction of the provable sequents.

▶ Definition 2. A phase space is a 4-tuple M = (M, 1, ·, ⊥⊥) where (M, 1, ·) is a commutative
monoid and ⊥⊥⊆ M . For X, Y ⊆ M , define the following operations: XY := {x · y | x ∈
X, y ∈ Y } and X⊥ := {y | ∀x ∈ X, x · y ∈⊥⊥}.

Facts are those X ⊆ M such that X = X⊥⊥. (Equivalently, X = Y ⊥ for some Y ⊆ M .)

▶ Example 3. Consider the additive monoid (Z, 0, +) and let ⊥⊥= {0}. For any set S ⊆ Z,
S⊥ = {y | ∀x ∈ S.x + y = 0}. Therefore, if S is not singleton then S⊥ = ∅; so, S⊥⊥ = Z.
On the other hand, {x}⊥ = {−x}. The facts of this phase space are ∅, singleton sets, and Z.

▶ Proposition 4. Let X, Y ⊆ M . Then the following properties hold.
1. X ⊆ Y ⊥ ⇐⇒ XY ⊆⊥⊥
2. XX⊥ ⊆ ⊥⊥
3. X ⊆ Y =⇒ Y ⊥ ⊆ X⊥

4. X ⊆ X⊥⊥

5. X⊥⊥⊥ = X⊥

6. (X ∪ Y )⊥ = X⊥ ∩ Y ⊥

Let X and Y be facts. We define the following operations on facts.

X ⊗ Y := (XY )⊥⊥
XOY := (X⊥Y ⊥)⊥

XNY := X ∩ Y X ⊕ Y := (X ∪ Y )⊥⊥

▶ Proposition 5. Let X, Y be facts. Then, 1 ∈ XOY ⇐⇒ X⊥ ⊆ Y .
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Fix a phase space M and let X be its set of facts. Fix V : A → X where A is the set of
atoms. A phase space along with such a valuation V is called a phase model. The semantics
JF K of a MALL formula F is parameterised by a valuation (suppose, V ) which we will denote
by JF KV . We are now ready to define the semantics which is defined inductively as follows:

JaKV = V (a) Ja⊥KV = JaKV ⊥
a ∈ A

J1KV = {1}⊥⊥ J⊥KV = ⊥⊥

J0KV = {∅}⊥⊥ J⊤KV = M

JF1 ⊙ F2KV = JF1KV ⊙ JF2KV ⊙ ∈ {⊗, O, N, ⊕}

When V is clear from the context, we shall drop it, simply writing JF K. Finally, we generalise
the interpretation to sequents of the form Γ = F1, . . . , Fn as JΓK = JF1OF2O . . .OFnK.
▶ Theorem 6 (MALL Soundness [30]). If MALL ⊢ Γ then for all phase models (M, V ),
1 ∈ JΓKV .
▶ Example 7. To illustrate the utility of the phase semantics, we show that in any provable
multiplicative formula F (i.e. a MALL formula with only multiplicative connectives), an
atom occurs exactly as many times as its negation. Fix an arbitrary atom a occurring in F .
Let JF KV be the interpretation of F in the phase space in Example 3 w.r.t. the valuation V

that maps the atom a to {1} and every other atom to {0}. In this phase space, it is easy to
see that X ⊗ Y = XOY = {x + y | x ∈ X, y ∈ Y }. By Theorem 6, if F is provable, 0 ∈ JF KV

hence number of occurrences of a in F is equal to the number of occurrences of a⊥.
Note that a syntactic proof would require the heavy tool of MALL cut-admissibility.

▶ Definition 8. The syntactic model (MALL•, ∅, ·, ⊥⊥, V ) is a phase model such that:
(MALL•, ∅, ·), called syntactic monoid, is the free commutative monoid generated by all
formulas. In other words, MALL• is the set of all sequents construed as finite multisets,
the empty multiset ∅ is the monoid identity, and multiset union is the monoid operation.
⊥⊥= Pr(⊥) i.e. ⊥⊥ is set of all provable sequents.
V (a) = Pr(a) for all atoms a ∈ A.

▶ Remark 9. Note that for the syntactic model to be well-defined one needs to show that
Pr(a) is a fact in the phase space (MALL•, ∅, ·, ⊥⊥).
▶ Lemma 10 (Adequation Lemma for MALL). For all formulas F , JF KV ⊆ Pr(F ).
▶ Theorem 11 (MALL Completeness [30]). If for all phase models (M, V ), 1 ∈ JΓKV then
MALL ⊢ Γ.
Proof sketch. Suppose for any phase model (M, V ), 1 ∈ JΓKV . In particular, this holds
for the syntactic model. By Lemma 10, JΓKV ⊆ Pr(Γ) (construing Γ as a parr formula).
Therefore, ∅ ∈ Pr(Γ) (recall ∅ is the unit of syntactic monoid). Hence, ⊢ Γ. ◀

Okada [42] observed that one can obtain the cut-admissibility of MALL for free by slightly
modifying the definition of the syntactic monoid. Now define ⊥⊥= Prcf (⊥) and V (a) = Prcf (a).
The refined adequation lemma JF K ⊆ Prcf (F ) follows exactly as in Lemma 10.
▶ Theorem 12 (MALL cut-free completeness [42]). If for any phase model (M, V ), 1 ∈ JΓKV

then MALL ⊢cf Γ.
▶ Corollary 13. MALL admits cuts.
Proof. Suppose MALL ⊢ Γ. By Theorem 6, ∅ ∈ JΓKV for the syntactic model of MALL.
By Theorem 12, MALL ⊢cf Γ. ◀

FSTTCS 2022



35:6 Phase Semantics for µMALL

2.2 Fixpoint theory and fixpoint logic
In this section we will recall some background on the fundamental fixpoint theorems of
lattice theory. Not only will we use them several times in our technical proofs, but also, they
will provide the intuition about the design of proof systems with fixpoint rules and their
corresponding semantics. For the rest of this subsection, let (S,⩽S) be a complete lattice
with least element ⊥ and greatest element ⊤.

▶ Theorem 14 ([33, 49]). Let f : S → S be a monotonic function. The set of fixpoints of f

is non-empty and equipped with ⩽S forms a complete lattice.

▶ Definition 15. Let f : S → S be a monotonic function. f is said to be Scott-continuous
if for each directed subset S we have f(

∨
Si∈S Si) =

∨
Si∈S f(Si).

▶ Theorem 16 (Kleene Fixed Point Theorem). Every Scott-continuous function f has the
least fixpoint

∨
n∈ω fn(⊥).

Observe that this is a constructive formulation of a fixpoint. Cousot and Cousot proved
a constructive version of Theorem 14 without using the Scott-continuity hypothesis [17]. Let
f : S → S be a monotonic function. The lower iteration sequence for f starting with
x ∈ S is the sequence ⟨Uα | α ∈ Ord⟩ of elements of S defined by transfinite induction as
follows: (i) U0 = x; (ii) Uα+1 = f(Uα); and, (iii) Uλ =

∧
α<λ Uα for λ a limit ordinal.

▶ Theorem 17 ([17]). Let f : S → S be a monotonic function. The lower iteration sequence
for f starting from ⊥ is increasing and there exists an ordinal θ (called the closure ordinal
of f) such that Uθ = Uθ+1. Moreover, Uθ is the least fixpoint of f .

Note that one defines upper iteration sequence by taking supremums at limit ordinals.
Dually, the greatest fixpoint is the stationary point of the decreasing upper iteration sequence
starting from ⊤.
▶ Remark 18. The closure ordinal of a Scott-continuous function is at most ω.

2.3 Multiplicative additive linear logic with fixpoints
In this subsection we recall the propositional version of logic µMALL and its wellfounded
proof system µMALLind introduced in [7]. (See Appendix A for details)

▶ Definition 19. Fix a countable set of atoms A = {a, b, . . . } and variables V = {x, y, . . . }
such that A ∩ V = ∅. µMALL pre-formulas are given by the following grammar:

F, G ::= 0 | ⊤ | ⊥ | 1 | a | a⊥ | x | FOG | F ⊗ G | F ⊕ G | FNG | µx.F | νx.F

where a ∈ A, x ∈ V, and µ, ν bind the variable x in F . When a pre-formula is closed (i.e.
no free variables), we simply call it a formula.

Negation, (•)⊥, defined as a meta-operation on pre-formulas, will be used only on formulas.
As it is not part of the syntax, we do not need any positivity condition on the fixed-point
expressions. As expected, least and greatest fixed points are the dual of each other.

▶ Definition 20. Negation of a pre-formula is defined inductively as follows.

0⊥ = ⊤; ⊤⊥ = 0; ⊥⊥ = 1; 1⊥ = ⊥; (a)⊥ = a⊥; a⊥⊥ = a;

x⊥ = x; (FOG)⊥ = F ⊥ ⊗ G⊥; (F ⊗ G)⊥ = F ⊥OG⊥; (F ⊕ G)⊥ = F ⊥NG⊥;

(FNG)⊥ = F ⊥ ⊕ G⊥; (µx.F )⊥ = νx.F ⊥; (νx.F )⊥ = µx.F ⊥.
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Fixpoint logics have a notion of subformula that is a different from usual:

▶ Definition 21. The Fischer-Ladner closure FL(F ) of a µMALLω formula F is the
smallest set such that:

F ∈ FL(F ).
G ⊙ H ∈ FL(F ) =⇒ G, H ∈ FL(F ) where ⊙ ∈ {O, ⊗, ⊕, N}.
ηx.G ∈ FL(F ) =⇒ G(ηx.G/x) ∈ FL(F ) where η ∈ {µ, ν}.

As is well-known, for any formula F , FL(F ) is a finite set.

▶ Definition 22. A proof of µMALLind is a finite tree generated from the inference rules of
MALL given in Figure 1 and the following rules for fixpoint operators.

⊢ Γ, F (µx.F/x)
(µ)

⊢ Γ, µx.F ;
⊢ Γ, S ⊢ S⊥, F (S/x)

(ν)
⊢ Γ, νx.F

▶ Example 23. Let G = a⊥Ox, F = a ⊗ (a ⊗ y). Throughout the rest of the paper let
Γ0 = µx.G, a ⊗ νy.F .

(id)
⊢ a⊥, a

(id)
⊢ µx.G, (µx.G)⊥

(id)
⊢ a⊥, a

(id)
⊢ a⊥, a

(id)
⊢ µx.G, (µx.G)⊥

(⊗)
⊢ a⊥, µx.G, a ⊗ (µx.G)⊥

(µ, O)
⊢ µx.G, a ⊗ (µx.G)⊥

(⊗)
⊢ a⊥, µx.G, a ⊗ (a ⊗ (µx.G)⊥)

(µ, O)
⊢ µx.G, a ⊗ (a ⊗ (µx.G)⊥)

(ν)
⊢ µx.G, νy.F

(⊗)
⊢ a⊥, µx.G, a ⊗ νy.F

(O)
⊢ a⊥Oµx.G, a ⊗ νy.F

(µ)
⊢ Γ0

▶ Theorem 24 ([7]). The following rule is admissible in µMALLind.

⊢ A, B
(func)

⊢ F ⊥(A/x), F (B/x)

▶ Theorem 25 ([7, 5]). µMALLind admits cuts.

3 Phase semantics of µMALLind

Fixpoints can be encoded in second order linear logic (LL2) vis-à-vis the translation [µx.F ] =
∀S.?([F ](S) ⊗ S⊥)OS and [νx.F ] = ∃S.!(S⊥O[F ](S)) ⊗ S. Since this translation respects
provability [7] in µMALLind, one can use LL2 phase semantics [42] to define the phase semantics
of a µMALL formula F as J[F ]K i.e. the semantics of its translation into LL2. Although the
resulting semantics is sound and complete, it is barely insightful since it relies on the phase
semantics of LL2 as a black box. In this section, we essentially peek into this black box.

Observe that the set of all facts of a phase space ordered by inclusion (X , ⊆) is a complete
lattice. Therefore, by Theorem 14, any monotonic function ξ : X → X has a fixpoint. The
least fixpoint µξ (respectively, the greatest fixpoint νξ by duality) is given by

µξ =
⋂

X∈X
{X | ξ(X) ⊆ X} ; νξ =

( ⋃
X∈X

{X | X ⊆ ξ(X)}
)⊥⊥

.

FSTTCS 2022



35:8 Phase Semantics for µMALL

In order to extend the phase semantics of MALL to µMALLind we extend valuations to
variables i.e. for any valuation V , dom(V ) = A ∪ V and define JF KV by induction on F

with the usual interpretation of section 2.1 for atoms, units, and multiplicative-additive
connectives and as follows for fixpoints formulas:

Jµx.F KV =
⋂

X∈X

{
X | JF KV [x 7→X] ⊆ X

}
; Jνx.F KV =

( ⋃
X∈X

{
X | X ⊆ JF KV [x 7→X]

})⊥⊥

where V [x 7→ X](y) :=
{

V (y) if y ̸= x;
X if y = x.

.

However completeness fails for such an interpretation. Indeed, not all facts necessarily
have a pre-image, therefore JF KV [x 7→X] does not exactly correspond to syntactic substitution
and the tentative syntactic model is not a phase model. We need to allow strict subsets of
X for building fixpoints. Obviously, one cannot consider any subsets of X for this purpose
and we shall require that they satisfy some closure properties. Therefore we restrict the
codomain of J•KV to subspaces of X closed under µMALL operations. For any set of facts
D ⊆ X , the set of contexts is given by the following grammar where ⊙ ∈ {⊗, O, N, ⊕}. Let
FD denote the set of contexts with exactly one hole.

f, g ::= [ ] | X ∈ D | f ⊙ g

For f ∈ FD, define µf =
⋂

X∈D{X | f(X) ⊆ X} and νf =
(⋃

X∈D{X | X ⊆ f(X)}
)⊥⊥.

▶ Definition 26. D ⊆ X is said to be µ-closed if
{⊥⊥, ⊥⊥, M, M⊥} ⊆ D;
D is closed under the operations ⊗, O, N, and ⊕; and
for all f ∈ FD, µf ∈ D and νf ∈ D.

A phase space M equipped with a µ-closed set of facts D is called a µ-phase space.
A D-valuation is a map of the form V : A ∪ V → D. A µ-phase space along with a

D-valuation is called a µ-phase model. The µ-phase semantics J•K is a function that
takes a µMALL pre-formula F and returns a fact in D.

Note that Jµx.F KV and Jνx.F KV are defined as before except X ranges over D. A priori,
the semantics of pre-formula is only an element of X . The closure properties of D ensures
JF KV ∈ D for every formula F and D-valuation V .

▶ Lemma 27 (Monotonicity). Let F be a µMALL pre-formula. If X ⊆ Y then JF KV [x 7→X] ⊆
JF KV [x 7→Y ].

Proof. A proof can be found in Appendix B.1.1. ◀

An application of monotonicity is showing that the interpretation of the fixpoint operators
are indeed fixpoints in the mathematical sense:

▶ Theorem 28. Let D be µ-closed and f ∈ FD. Then µf and νf are the least and greatest
fixpoints of f in D.

Proof. A proof can be found in Appendix B.1.2. ◀
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Note that Theorem 28 cannot be proved directly by Theorem 14 since D is not necessarily
a complete lattice. Moreover, it does not also imply that D is a complete lattice by the
converse of Theorem 14 since we show that it has fixpoints of a particular kind of monotonic
function, not any arbitrary monotonic function. Given a valuation V , define

V ⊥(p) =
{

V (p) if p ∈ A;
V (p)⊥ if p ∈ V.

We have V ⊥⊥ = V and V [x 7→ X]⊥ = V ⊥[x 7→ X⊥].

▶ Lemma 29 (Duality preservation). For any µMALL preformula F , JF ⊥KV ⊥ = (JF KV )⊥.

Proof. A proof can be found in Appendix B.1.3. ◀

3.1 Soundness
▶ Theorem 30 (µMALLind Soundness). If µMALLind ⊢ Γ then for all µ-phase models
(M, D, V ), 1 ∈ JΓKV .

Proof. Fix an arbitrary µ-phase model (M, D, V ). Given a proof π of ⊢ Γ we will induct
on π. The proof is similar to that of Theorem 6 except for the fixpoint cases. Suppose
the last rule of π is a (µ) rule. We have that Γ = Γ′, µx.F . Assume that we have proved
JF (µx.F )KV ⊆ Jµx.F KV . We have the following:(

Jµx.F KV
)⊥ ⊆

(
JF (µx.F )KV

)⊥ [Proposition 4.3]

⇒
(
JΓ′KV

)⊥
.
(
Jµx.F KV

)⊥ ⊆
(
JΓ′KV

)⊥
.
(
JF (µx.F )KV

)⊥

⇒
(
JΓ′KV ⊥

.JF (µx.F )KV ⊥)⊥
⊆
(
JΓ′KV ⊥

.Jµx.F KV ⊥)⊥
[Proposition 4.3]

⇔ JΓ′OF (µx.F )KV ⊆ JΓ′Oµx.F KV

⇒ 1 ∈ JΓ′Oµx.F KV [IH]

Therefore, it suffices to prove JF (µx.F )KV ⊆ Jµx.F KV . Observe that JF (µx.F )KV =
JF KV [x 7→Jµx.F KV ]. Let X ∈ D such that JF KV [x 7→X] ⊆ X (we thus have Jµx.F K ⊆ X). We need
to show that JF KV [x 7→Jµx.F KV ] ⊆ X. It suffices to show that JF KV [x7→Jµx.F KV ] ⊆ JF KV [x7→X]

which is true by Lemma 27.
Now suppose the last rule is a (ν) rule i.e. Γ = Γ′, νx.F such that the coinductive

invariant is S. We need to show that 1 ∈ JΓ′Oνx.F KV which by Proposition 5 is equivalent
to showing JΓ′KV ⊥ ⊆ Jνx.F KV . By hypothesis, we have that 1 ∈ JΓ′OSKV which is similarly
equivalent to JΓ′KV ⊥ ⊆ JSKV . Therefore it suffices to show that JSKV ⊆ Jνx.F KV :

1 ∈ JS⊥OF (S)KV [IH]

⇔
(
JS⊥KV

)⊥ ⊆ JF (S)KV [Proposition 5]

⇔ JSKV ⊆ JF (S)KV = JF KV [x 7→JSKV ] [Lemma 29]
⇒ JSKV ⊆ Jνx.F KV ◀

3.2 Completeness
Completeness for fixpoint logics are generally quite difficult since analyticity does not
guarantee a subformula property. One is faced with a similar cul de sac in proving the cut-
elimination of µMALLind since it is not straightforward to define the notion of the complexity
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of the cut formula which reduces with each step of cut-elimination. This problem is solved
in [5] by invoking a technique similar to the Tait-Girard reducibility candidates (originally
formulated to establish certain properties of various typed lambda calculi [48, 29]). Recall
that the completeness of phase semantics gives cut admissibility for free. Therefore, it is not
surprising that in order to prove completeness one needs to invoke reducibility candidates.

▶ Definition 31. Let (M, D, V ) be a µ-phase model. Given a µMALL formula F , the
reducibility candidates of F , denoted ⟨F ⟩, is given by {X ∈ X | F ⊥ ∈ X ⊆ Prcf (F )}.

▶ Proposition 32. X ∈ ⟨F ⟩ ⇐⇒ X⊥ ∈ ⟨F ⊥⟩

Proof. We first note that Prcf (•) can be straightforwardly generalised to sets of formulas
as follows: Prcf ({F1, . . . , Fn}) =

⋃
i∈[n] Prcf (Fi). Let X ∈ ⟨F ⟩. Then {F ⊥} ⊆ X =⇒

X⊥ ⊆ {F ⊥}⊥ = Prcf (F ⊥). Also, X ⊆ Prcf (F ) =⇒ Prcf (F )⊥ = Prcf (Prcf (F )) ⊆ X. But
F ∈ Prcf (Prcf (F )). Hence done. ◀

We are now ready to define the µ-syntactic model. Recall that Prcf (F ) is the set of all
sequents Γ such that ⊢ Γ, F is cut-free provable.

▶ Definition 33. The µ-syntactic model, denoted (µMALL•, ∅, ·, ⊥⊥, V ), is defined as:
(µMALL•, ∅, ·) is the free commutative monoid generated by all formulas.
⊥⊥= Prcf (⊥).
V (p) = Prcf (p) for all p ∈ A ∪ V.
D =

⋃
F ∈F orm⟨F ⟩ where Form is the set of all µMALL formulas.

Observe that ⊥⊥= Prcf (⊥) ∈ D and that D indeed contains ⊥⊥⊥, µMALL• and µMALL•⊥.

▶ Lemma 34 (Adequation Lemma for µMALLind). Let F (x) be a pre-formula, G ≡ G1, . . . , Gm

with x ≡ x1, . . . , xm be an m-tuple of pre-formulas and let X ≡ X1 . . . Xm be an m-tuple of
facts such that Xi ∈ ⟨Gi⟩. We have JF KV [x 7→X] ⊆ Prcf (F (G/x)).

Proof. By induction on F . Multiplicative additive cases are treated as in the proof of
Lemma 10; we detail fixed-point cases only.

Case 1. Suppose F = µy.F ′. Let ξ = µy.F ′(G/x). In the proof of Theorem 30, we showed
that for any formula F0, Prcf (F0(µx.F0/x)) ⊆ Prcf (µx.F0). Therefore, Prcf (F ′(G/x, ξ/y)) ⊆
Prcf (ξ). Let Y ∗ = JF ′KV [x 7→X,y 7→Prcf (ξ)]. By induction hypothesis and that fact that
Prcf (F0) ∈ ⟨F0⟩ for all formulas F0, we have the following.

Y ∗ ⊆ Prcf (F ′(G/x, ξ/y)) (1)

Therefore, it is enough to show that Jµy.F ′KV [x 7→X] ⊆ Y ∗. Take Γ ∈ Jµy.F ′KV [x7→X]. For any
fact Y ∈ D, to show Γ ∈ Y it is enough to show JF ′KV [x 7→X,y 7→Y ] ⊆ Y . Therefore we need
to check that JF ′KV [x7→X,y 7→Y ∗] ⊆ Y ∗ = JF ′KV [x 7→X,y 7→Prcf (ξ)]. This follows by Lemma 27
from 1.

Case 2. Suppose F = νy.F ′. For any fact Y , define ZY = JF ′KV [x 7→X,y 7→Y ]. Let Γ ∈⋃
{Y ∈ D | Y ⊆ ZY }. Therefore, there exists, Y ∗ ∈ D such that Γ ∈ Y ∗ ⊆ ZY ∗ . Since

Y ∗ ∈ D, Y ∗ ∈ ⟨ξ⟩ for some formula ξ. By induction hypothesis, JF ′KV [x 7→X,y 7→Y ∗] ⊆
Prcf (F ′(G/x, ξ/y)).

We will now show that Prcf (F ′(G/x, ξ/y)) ⊆ Prcf (F (G/x)). Let ∆ ∈ Prcf (F ′(G/x, ξ/y)).
If we show that ξ⊥ ∈ Prcf (F ′(G/x, ξ/y)), we have the following.
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⊢ ∆, F ′(G/x, ξ/y)

⊢ ξ⊥, F ′(G/x, ξ/y)
(func)

⊢ (F ′(G/x, ξ/y))⊥
, F ′(G/x, F ′(G/x, ξ/y)/y)

(ν)
⊢ ∆, νx.F ′(G/x)

In order to show ξ⊥ ∈ Prcf (F ′(G/x, ξ/y)), we use the induction hypothesis to reduce the
problem to showing ξ⊥ ∈ JF ′KV [x 7→X,y 7→Y ∗] which is true since Y ∗ ∈ ⟨ξ⟩. Therefore we have,

Γ ∈ Prcf (νy.F ′(G/x)) ⇒
⋃

{Y ∈ D | Y ⊆ ZY } ⊆ Prcf (νy.F ′(G/x))

⇒
(⋃

{Y ∈ D | Y ⊆ ZY }
)⊥⊥

⊆ Prcf (νy.F ′(G/x))

This concludes our proof. ◀

▶ Lemma 35. Using notations of the previous lemma, we have that F ⊥(G/x) ∈ JF KV [x 7→X].

Proof. Observe that Lemma 34 and Proposition 32 imply JF ⊥KV [x 7→X⊥] ⊆ Prcf (F ⊥(G⊥/x)).
Therefore, {F ⊥(G⊥/x)}JF ⊥KV [x 7→X⊥] ⊆ {F ⊥(G⊥/x)}.Prcf (F ⊥(G⊥/x)) ⊆ Prcf (⊥) =⊥⊥. By

Proposition 4.1, F ⊥(G⊥/x) ⊆
(
JF ⊥KV [x 7→X⊥]

)⊥
which is JF KV [x 7→X] by Lemma 29. ◀

Observe that by Lemma 34 and Lemma 35 we have JF KV [x7→X] ∈ ⟨F (G/x)⟩. This ensures
that D is µ-closed. Consequently, (µMALL•, ∅, ·, ⊥⊥, V ) is a µ-phase space model.

▶ Theorem 36 (µMALLind cut-free completeness). If for any µ-phase model (M, D, V ),
1 ∈ JΓKV then µMALLind ⊢cf Γ.

▶ Corollary 37. µMALLind admits cuts.

▶ Remark 38. Note that this is an alternate proof of Theorem 25.

3.3 Closure ordinals
Closure ordinals are a standard measure of the complexity of any (class of) monotone
functions. The closure ordinal of a fixed-point formula is essentially the closure ordinal of
the corresponding monotone function in the truth semantics. In [21], the closure ordinal
is construed as a function of the size of the finite model. The study of closure ordinals of
modal logic formulas is a young and exciting area of research [18, 2, 31]. It departs from the
previous notion of closure ordinals in its model-independence. In this case, closure ordinal
really serves as a measure of complexity of a formula.

▶ Definition 39. Let F be a pre-formula such that x ∈ fv(F ) and let M = (M, D, V ) be a
µ-phase model. We define the closure ordinal of F with respect to x and M, denoted OM(F ),
as the closure ordinal of λX.JF KV [x 7→X]. The closure ordinal of F with respect to x (across
all models) is defined as O(F ) := supM{OM(F )}. Finally, F is said to be constructive if
its closure ordinal is at most ω.

For any pre-formula F and phase model M, OM(F ) exists since λX.JF KV [x 7→X] is mono-
tonic. Consequently, the supremum O(F ) exists since the class of all µ-phase models is
indeed a set.
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▶ Example 40. Consider the pre-formula aNx. Let ⟨UaNx
α | α ∈ Ord⟩ be the iteration

sequence of its approximations. UaNx
0 = ∅⊥⊥ and UaNx

1 = JaNxKV [x 7→UaNx
0 ] = V (a) ∩ ∅⊥⊥.

Therefore, O(aNx) = 0.

In the tradition of µ-calculus, the name “constructive” is used loosely here, motivated
by the observation that if O(F ) is a finite ordinal strictly below ω for any pre-formula F ,
then µx.F is provably equivalent to F O(F )(0). Therefore, the class of µMALL formulas
with closure ordinal strictly less than ω can be embedded in MALL and enjoys several good
properties like finite model property and decidability. Observe that if the interpretation of a
formula in any phase model is Scott-continuous, then it is constructive by Theorem 16. The
converse does not hold in general. In the following section we consider a proof system of
µMALL where fixed points are approximated by their ωth approximation.

4 µMALLω: an infinitary proof system

For a constructive formula F ,

Jµx.F KV =

⋃
n≥0

JF n(0)KV

⊥⊥

; Jνx.F KV =
⋂

n≥0
JF n(⊤)KV (2)

Therefore, syntactically, µx.F (respectively νx.F ) is equivalent to an infinitary ⊕-formula⊕
n∈ω F n(0) (respectively, an infinitary N-formula Nn∈ωF n(⊤)). We enrich the language

of µMALL with the operators µn and νn for all n ∈ ω. We call this language as well as the
corresponding proof system, µMALLω. (See Appendix A for details.)

▶ Definition 41. A µMALLω proof is a wellfounded (possibly infinitely branching) tree
generated from the inference rules of MALL given in Figure 1 and the following rules for
fixpoint operators where η ∈ {µ, ν}.

⊢ Γ, 0
(µ0)

⊢ Γ, µ0x.F ;
⊢ Γ, F (ηnx.F/x)

(ηn+1)
⊢ Γ, ηn+1x.F ;

⊢ Γ, µnx.F
(µω

n)
⊢ Γ, µx.F

⊢ Γ, ⊤
(ν0)

⊢ Γ, ν0x.F ;
⊢ Γ, ν0x.F ⊢ Γ, ν1x.F ⊢ Γ, ν2x.F . . .

(νω)
⊢ Γ, νx.F

▶ Example 42. Let H = (µx.aOx)⊥O(a⊥pO0) for some p ∈ ω.

(id)
⊢ a⊥, a

⊢ µpx.a⊥Ox, (a⊥p
O0)

⊥

{⊢ νny.F, µ2nx.aOx}n∈ω (µω
2n)

{⊢ νny.F, µx.aOx}n∈ω (νω)
⊢ νy.F, µx.aOx

(⊗)
⊢ µpx.a⊥Ox, νy.F, H⊥

(⊗)
⊢ a⊥, µpx.a⊥Ox, a ⊗ (νy.F ), H⊥

(O)
⊢ a⊥O(µpx.a⊥Ox), a ⊗ (νy.F ), H⊥

(µp+1)
⊢ µp+1x.a⊥Ox, a ⊗ (νy.F ), H⊥

(µω
p+1)

⊢ Γ0, H⊥

It is easy to show that for all p, n ∈ ω, ⊢ µpx.a⊥Ox, (a⊥pO0)⊥ and ⊢ νny.F, µ2nx.aOx

are provable by induction on p and n respectively.
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Note that the set of inference rules (as schema) is infinite since {µω
n}n∈ω is a collection

of ω-many rules. Such infinitary systems (called Tait-style systems) where proof trees
are wellfounded with possible infinite branching are studied in various areas of logic viz.
arithmetic [15, 41] and fixpoint logics [35, 32]. It is quite tricky to define a proper notion of
the complexity of a fixpoint formula in such settings. Closely based on [32], our notion of
the rank of a µMALLω formula is a finite sequences of ordinals.

First we will set up some notion. If α1, . . . , αn are ordinals, we write ⟨α1, . . . , αn⟩ for the
sequence σ whose length |σ| is n and whose ith component σi is the ordinal αi. Let <lex

be the strict lexicographical ordering of finite sequences of ordinals and ≤lex its reflexive
closure. Note that <lex is a well-ordering on any set of sequences of bounded lengths but
not a well-ordering in general. In particular, ⟨1⟩, ⟨0, 1⟩, ⟨0, 0, 1⟩, . . . is an infinite descending
chain in <lex. Given two finite sequences of ordinals σ, τ , we define the component-wise
ordering ⊴ as σ, τ iff |σ| ≤ |τ | and (σ)i ≤ (τ)i for all 1 ≤ i ≤ |σ|. Clearly, the relation ⊴ is
transitive. We denote the standard concatenation of sequences by ∗. Finally we define a
component-wise maximum operation ⊔ by setting: (i) σ ⊔ ⟨⟩ := ⟨⟩; (ii) if σ = ⟨b1, . . . , bm⟩
and τ = ⟨b′

1, . . . , b′
n⟩, then

σ ⊔ τ =
{

⟨max(b1, b′
1), . . . , max(bm, b′

m), b′
m+1, . . . , b′

n⟩ if m ≤ n;
⟨max(b1, b′

1), . . . , max(bn, b′
n), bn+1, . . . , bm⟩ otherwise.

Now we are ready to define the rank of a µMALLω formula. The rank of every µMALLω

formula will be a finite sequence of ordinals less than or equal to ω.

▶ Definition 43. The rank of a µMALLω formula F , denoted rk(F ), is defined by induction
on F as follows.

if F is an atom, a variable, or a unit, then rk(F ) = ⟨0⟩;
if F = G ⊙ G′, then rk(F ) = (rk(G) ⊔ rk(G′)) ∗ ⟨0⟩ where ⊙ ∈ {O, ⊗, ⊕, N};
if F = ηnx.G, then rk(F ) = rk(G) ∗ ⟨n⟩ where η ∈ {µ, ν};
if F = ηx.G, then rk(F ) = rk(G) ∗ ⟨ω⟩ where η ∈ {µ, ν}.

▶ Example 44. Consider H = (νx.a⊥ ⊗ x)O(apO0) from Example 42.

rk(H) = rk(νx.a⊥ ⊗ x) ⊔ rk(apO0) ∗ ⟨0⟩ =

(rk(a⊥ ⊗ x) ∗ ⟨ω⟩
)

⊔ ⟨
p+1︷ ︸︸ ︷

0, . . . , 0⟩

 ∗ ⟨0⟩

=

⟨0, 0, ω⟩ ⊔ ⟨
p+1︷ ︸︸ ︷

0, . . . , 0⟩

 ∗ ⟨0⟩ = ⟨0, 0, ω,

max(1,p−1)︷ ︸︸ ︷
0, . . . , 0 ⟩

▶ Lemma 45. Let F be a µMALLω pre-formula such that x ∈ fv(F ). Let ξ be a preformula
such that rk(F ) ⊴ rk(ξ). Then, there exists a finite (possibly empty) sequence of ordinals σ

such that rk(F (ξ/x)) = rk(ξ) ∗ σ.

Proof. A proof can be found in Appendix B.2.1. ◀

▶ Theorem 46. The following hold for any µMALLω formula F :
1. rk(F ) <lex rk(F ⊙ G) and rk(G) <lex rk(F ⊙ G);
2. rk(0) <lex rk(µ0x.F ), rk(⊤) <lex rk(ν0x.F );
3. rk(F (ηnx.F/x)) <lex rk(ηn+1x.F ) for all n < ω;
4. rk(ηnx.F ) <lex rk(ηx.F ) for all n < ω.
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Proof. The first, second, and fourth assertions are immediate from Definition 43. For the
third one, we have two cases:

Suppose x ̸∈ fv(F ). Then, F (ηnx.F/x) = F and the result follows from Definition 43.
Otherwise, note that we have rk(F ) ⊴ rk(ηnx.F ). By Lemma 45, rk(F (ηnx.F/x)) =
rk(ηnx.F ) ∗ σ = rk(F ) ∗ ⟨n⟩ ∗ σ for some σ. But rk(ηn+1x.F ) = rk(F ) ∗ ⟨n + 1⟩.

Hence we are done. ◀

▶ Definition 47. The strong closure SC(F ) of a µMALLω formula F is the least set s.t.:
F ∈ SC(F );
G ⊙ H ∈ SC(F ) =⇒ {G, H} ⊂ SC(F ) where ⊙ ∈ {O, ⊗, ⊕, N};
µ0x.G ∈ SC(F ) =⇒ 0 ∈ SC(F );
ν0x.G ∈ SC(F ) =⇒ ⊤ ∈ SC(F );
ηn+1x.G ∈ SC(F ) =⇒ G(ηnx.G/x) ∈ SC(F ) for all n ∈ ω and η ∈ {µ, ν};
ηx.G ∈ SC(F ) =⇒ ηnx.G ∈ SC(F ) for all n ∈ ω and η ∈ {µ, ν}.

Define F − to be image of F under the forgetful functor that erases the explicit approxim-
ations occurring in F . For example, (a ⊗ µ6x.νy.x ⊕ y)− = a ⊗ µx.νy.x ⊕ y.

▶ Theorem 48. For any formula F , the set {rk(G) | G ∈ SC(F )} is a well-order with respect
to the <lex ordering.

Proof. By contradiction. Note that |rk(G)| = |rk(G−)|. Furthermore, if G ∈ SC(F ) then
G− ∈ FL(F ). But FL(F ) is a finite set, therefore the set {|rk(G)| | G ∈ SC(F )} is finite.

Assume there exists {σi}i∈I an infinite descending chain in {rk(G) | G ∈ SC(F )}. By the
Infinite Ramsey Theorem, there is an infinite subsequence {σi}i∈ω such that for all j, ij ∈ I

and for all j, j′, |σij | = |σij′ | = n. Then, there exist k ≤ n and N ∈ N such that {(σij )k}j>N

is a descending chain. This contradicts the wellfoundedness of natural numbers. ◀

4.1 Soundness and completeness of µMALLω

The phase semantics for µMALLω is much simpler to define. Like MALL the semantics can
be defined given a phase space and a valuation (without the extra structure over the set
of facts and extension of valuations to variables as in µMALLind). Given a phase space M
and a valuation function V : A → X , we define the interpretation of multiplicative-additive
connectives and units as usual, of µx.F and νx.F as in Equation (2), and of ηnx.F (for
η ∈ {µ, ν}) as follows: Jµ0x.F K = J0K, Jν0x.F K = J⊤K, and Jηn+1x.F K = JF (ηnx.F/x)K.

▶ Theorem 49 (µMALLω soundness). If ⊢ Γ then for all phase models (M, V ), 1 ∈ JΓKV .

The proof of Theorem 49 is by a straightforward induction on the structure of the proof.

▶ Lemma 50 (Adequation Lemma for µMALLω). For all formula F , JF KV ⊆ Prcf (F ).

Proof. By induction on rk(F ). The base case is when F is an atom or a unit in which case
by definition JF K = Prcf (F ). Suppose F = G ⊙ H for ⊙ ∈ {⊗, O, N, ⊕}. By Theorem 46.1,
rk(G) <lex rk(F ) and rk(H) <lex rk(F ). By IH, JGKV ⊆ Prcf (G) and JHKV ⊆ Prcf (H). Using
standard techniques in the proof of Lemma 10 (cf. [30]), we can conclude that JF K = Prcf (F ).

The case F = η0x.G is trivial. Suppose F = ηn+1x.G where η ∈ {µ, ν}. By Theorem 46.3,
rk(G(ηnx.G)) <lex rk(ηn+1x.G). By IH, JF K = JG(ηnx.G)KV ⊆ Prcf (G(ηnx.G)) ⊆ Prcf (F ).

Suppose F = µx.G. Noting that Prcf (F ) is a fact for all F , it is enough to show that⋃
n≥0Jµ

nx.GK ⊆ Prcf (µx.G). By Theorem 46.4, rk(µnx.G) <lex rk(F ). By IH, for all n,
Jµnx.GK ⊆ Prcf (µnx.G). Observe that Prcf (µnx.G) ⊆ Prcf (µx.G) for all n. Therefore,⋃

n≥0 Prcf (µnx.G) ⊆ Prcf (µx.G). The case for F = νx.G works similarly. ◀
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▶ Theorem 51 (µMALLω cut-free completeness). If for any phase model (M, V ), 1 ∈ JΓKV

then µMALLω ⊢cf Γ.

▶ Corollary 52. µMALLω admits cuts.

Standard cut-elimination techniques for Tait-like systems employ techniques from
Schütte [45] where proofs are assigned a cut rank. One shows that if there is a proof
π of a sequent ⊢ Γ with cut-rank rk(π) > 0 then there is a proof π′ of ⊢ Γ such that
rk(π′) = 0 (possibly incurring a blowup in the size of the proof). Cut-admissibility has been
proved previously for Tait-style systems of fixpoints logics in [43, 14] using this technique.
Semantic proofs of cut-admissibility have been explored in various logics [46, 39, 4] but, to
our knowledge, this is the first semantic proof of cut-admissibility in a Tait-style system.

4.2 Finite model property
In this subsection, we show that µMALLω does not have the finite model property. Since
MALL has finite model property, this implies that µMALLω cannot be embedded in MALL.

▶ Lemma 53. ⊢ Γ0 is not provable in µMALLω.

Proof. A proof can be found in Appendix B.2.2. ◀

▶ Corollary 54. µMALLω does not prove the same theorems as µMALLind.

Proof. From Example 23 obtain µMALLind ⊢ Γ0. The result now follows from Lemma 53. ◀

▶ Theorem 55. µMALLω does not have finite model property.

Proof. The proof goes by contradiction. A finite phase model (M, V ) has finitely
many facts. Therefore, by pigeonhole principle, there exists p, q such that p < q and
JapO0KV = JaqO0KV . Therefore, Jµx.aOxKV = JapO0KV . Consequently, 1 ∈ JHKV where
H = (µx.aOx)⊥O(a⊥pO0). By Theorem 51, µMALLω ⊢ H. In Example 42, we show that
µMALLω ⊢ Γ0, H⊥. By an application of the cut-rule, we have µMALLω ⊢ Γ0 is provable.
This is a contradiction by Lemma 53. ◀

5 Conclusion

In this work, we provided a sound and complete provability semantics for linear logic with
fixpoints (µMALL) for the proof system with explicit induction due to Baelde and Miller [5, 7].
The completeness proof goes via an adaptation of Tait-Girard reducibility candidates. We
then introduced a Tait-style proof system where fixpoints are approximated by their ω-th
approximants (µMALLω) and we get a direct proof of completeness. Finally, we show that
µMALLω does not have finite model property and hence is a logic with non-trivial expressivity.

We conclude by mentioning pertinent directions for future work.

Exploring the phase semantics of µMALL⟳ and µMALL∞, circular and non-wellfounded
systems for µMALL respectively [6, 23], are relevant questions especially because that
would help settle the Brotherston-Simpson conjecture by semantic techniques. If the
conjecture is true, then it suffices to show that µMALL⟳ is sound with respect to µ-phase
models. If the conjecture is false, there are two possibilities for using phase semantics.
Firstly, if we have a µMALL⟳ theorem F which we wish to prove is not a µMALLind

theorem, then we can use the µ-phase model. Secondly, if one can devise the phase
semantics of µMALL⟳, then the proof is reduced to checking that the space of µ-phase
models and its counterpart for µMALL⟳ are the same.
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The computation of closure ordinals in phase semantics seems quite difficult and deserves a
closer study. An important problem is to compute an upper bound possibly by embedding
µMALLind in some arithmetic theory.
Techniques involving cut ranks used to obtain cut-admissibility also provide upper bounds
on the size of the cut-free proof. It would be interesting to see if Theorem 51 can be
refined to obtain such bounds.
µMALLind has the focusing property [7] but assigning polarities to fixed point operators
is not a priori clear. In fact, it holds for both possible assignments (the proofs being
quite different). In the implicit case, one can syntactically argue that µ has to be positive
(consequently ν should be negative). Categorical semantics of polarised µMALLind informs
us that µ should indeed be positive [25]. Can phase semantics also shed light on the
polarisation of fixed points?
We showed that µMALLind ̸⊆ µMALLω. Noting that the Park’s rule can be simulated
with the (νω) rule, we conjecture that µMALLω ̸⊆ µMALLind. Moreover, µMALLind can
encode the provability of linear logic exponentials but this is not clear for µMALLω.
We conjecture that µMALLω cannot simulate digging, but it can, indeed, encode soft
promotion and multiplexing, thereby being at least as powerful as soft linear logic [37].
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A Summary of µMALL systems used in the paper

µMALL preformulas:

F, G ::= 0 | ⊤ | ⊥ | 1 | a | a⊥ | FOG | F ⊗ G | F ⊕ G | FNG

| x | µx.F | νx.F

µMALLapprox, preformulas with fixed-point approximants:

F, G ::= 0 | ⊤ | ⊥ | 1 | a | a⊥ | FOG | F ⊗ G | F ⊕ G | FNG

| x | µx.F | νx.F | µnx.F | νnx.F n ∈ N

Formula language Inference rules Proof trees
µMALLind µMALL Definition 22 finite
µMALLω µMALLapprox Definition 41 wellfounded infinitely branching
µMALL∞ µMALL Figure 1 of [6] non-wellfounded finitely branching
µMALL⟳ µMALL Figure 1 of [6] non-wellfounded regular

▶ Remark. Note that, contrary to the convention used in the present paper, in [6] notation
µMALLω is used to refer to the circular proof system (that is regular non-wellfounded trees).

B Detailed proofs and clarifications

B.1 Proofs of Section 3

B.1.1 Proof of Lemma 27
Before we prove the lemma, we will prove the following claim.

▷ Claim 56. If S, T, U, V are subsets of M such that S ⊆ T and U ⊆ V then SU ⊆ TV .

Proof. Suppose x = su ∈ SU such that s ∈ S and u ∈ U . Then, s ∈ T and u ∈ V . Hence
x = st ∈ TV . ◁

Proof. By induction on F . The base case is when F is an atom, a variable, or a unit which
are trivial.

Suppose F = p ∈ A ∪ {⊥, 1, 0, ⊤}. Then, JF KV [x7→X] = JF KV [x 7→Y ] = V (p).
Suppose F = y ∈ V . There are two cases. If y ̸= x, then JF KV [x 7→X] = JF KV [x 7→Y ] = V (y).
Otherwise, we have JF KV [x 7→X] = X ⊆ Y = JF KV [x 7→Y ].

There are several subcases for the induction case.

Suppose F = G ⊗ G′.

JGKV [x 7→X] ⊆ JGKV [x7→Y ]; JG′KV [x 7→X] ⊆ JG′KV [x7→Y ] [By IH]

⇒ JGKV [x7→X]JG′KV [x 7→X] ⊆ JGKV [x 7→Y ]JG′KV [x 7→Y ] [By Claim 56]

⇒ (JGKV [x 7→X]JG′KV [x 7→X])
⊥⊥

⊆ (JGKV [x 7→Y ]JG′KV [x7→Y ])
⊥⊥

[By Proposition 4]

⇒ JF KV [x 7→X] ⊆ JF KV [x7→Y ]
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Suppose F = GOG′.
JGKV [x 7→X] ⊆ JGKV [x 7→Y ]; JG′KV [x 7→X] ⊆ JG′KV [x 7→Y ] [By IH]

⇒ (JGKV [x 7→Y ])
⊥

⊆ (JGKV [x 7→X])
⊥

; (JG′KV [x 7→Y ])
⊥

⊆ (JG′KV [x 7→X])
⊥

[By Proposition 4]

⇒ (JGKV [x 7→Y ])
⊥

(JG′KV [x 7→Y ])
⊥

⊆ (JGKV [x 7→X])
⊥

(JG′KV [x 7→X])
⊥

[By Claim 56]

⇒
(

(JGKV [x 7→X])
⊥

(JG′KV [x 7→X])
⊥
)⊥

⊆
(

(JGKV [x 7→Y ])
⊥

(JG′KV [x 7→Y ])
⊥
)⊥

[By Proposition 4]

⇒ JF KV [x 7→X] ⊆ JF KV [x 7→Y ]

Suppose F = GNG′.

JGKV [x 7→X] ⊆ JGKV [x7→Y ]; JG′KV [x 7→X] ⊆ JG′KV [x 7→Y ] [By IH]

⇒ JGKV [x7→X] ∩ JG′KV [x 7→X] ⊆ JGKV [x7→Y ] ∩ JG′KV [x7→Y ]

⇒ JF KV [x7→X] ⊆ JF KV [x 7→Y ]

Suppose F = G ⊕ G′.

JGKV [x 7→X] ⊆ JGKV [x 7→Y ]; JG′KV [x 7→X] ⊆ JG′KV [x 7→Y ] [By IH]

⇒ JGKV [x 7→X] ∪ JG′KV [x 7→X] ⊆ JGKV [x 7→Y ] ∪ JG′KV [x 7→Y ]

⇒ (JGKV [x 7→X] ∪ JG′KV [x 7→X])
⊥⊥

⊆ (JGKV [x 7→Y ] ∪ JG′KV [x 7→Y ])
⊥⊥

[By Proposition 4]

⇒ JF KV [x 7→X] ⊆ JF KV [x 7→Y ]

Suppose F = µy.G. Observe that y ≠ x since we assumed that x is not a bound variable
in F . Now by hypothesis, for any fact Z, JGKV [x 7→X,y 7→Z] ⊆ JGKV [x 7→Y,y 7→Z]. Therefore
for every Z such that JGKV [x7→Y,y 7→Z] ⊆ Z we have JGKV [x7→X,y 7→Z] ⊆ Z. Therefore, {Z |
JGKV [x 7→Y,y 7→Z] ⊆ Z} ⊆ {Z | JGKV [x7→X,y 7→Z] ⊆ Z}. Hence,

⋂
JGKV [x7→X,y 7→Z]⊆Z{Z} ⊆⋂

JGKV [x7→Y,y 7→Z]⊆Z{Z}. We conclude JF KV [x 7→X] ⊆ JF KV [x 7→Y ].
Suppose F = νy.G. As before we comment that y ̸= x and therefore by hypothesis,
for any fact Z, JGKV [x 7→X,y 7→Z] ⊆ JGKV [x 7→Y,y 7→Z]. Therefore for every Z such that Z ⊆
JGKV [x 7→X,y 7→Z] we have Z ⊆ JGKV [x 7→Y,y 7→Z]. Therefore, {Z | Z ⊆ JGKV [x 7→X,y 7→Z]} ⊆
{Z | Z ⊆ JGKV [x 7→Y,y 7→Z]}. Hence,

⋃
Z⊆JGKV [x7→X,y 7→Z]{Z} ⊆

⋃
Z⊆JGKV [x7→Y,y 7→Z]{Z}. Ap-

plying Proposition 4 twice, we conclude JF KV [x 7→X] ⊆ JF KV [x7→Y ]. ◀

B.1.2 Proof of Theorem 28
Proof. We show it for µf . First of all, {X | f(X) ⊆ X} is non-empty since M⊥ ∈ D.
First, we show that it is indeed a fixpoint. Observe that µf ⊆ X for any X ∈ D which is a
pre-fixpoint of f . By Lemma 27, one can apply f on both sides. So f(µf) ⊆ f(X) for all
X ∈ D satisfying f(X) ⊆ X and therefore f(µf) ⊆ ∩X∈D{X | f(X) ⊆ X} = µf . So µf is a
prefixpoint.

But then, since µf ∈ D, and thanks to the closure properties of D, so is f(µf ). By
monotonicity of f , one gets that f(f(µf )) ⊆ f(µf ), ensuring that f(µf ) is a prefixpoint of f .
But µf is the least prefixpoint; so, we conclude that µf ⊆ f(µf ). Therefore, µf = f(µf ).
Finally recall µf ⊆ X for any pre-fixpoint X in D, so it is the least fixpoint in D. ◀

B.1.3 Proof of Lemma 29
Proof. By induction on F . The base case is when F is an atom, a variable or a unit.

Suppose F = a ∈ A. Then, JF ⊥KV ⊥ = V ⊥(a⊥) = V (a⊥) = V (a)⊥ = (JF KV )⊥.
Suppose F = x ∈ V. Then, JF ⊥KV ⊥ = V ⊥(x⊥) = V ⊥(x) = V (x)⊥ = (JF KV )⊥.
The case for the units is easy.



A. De, F. Jafarrahmani, and A. Saurin 35:21

There are several subcases for the induction case.

Suppose F = G ⊗ G′.

J(G ⊗ G′)⊥KV ⊥
= JG⊥OG′⊥KV ⊥

= ((JG⊥KV ⊥
)
⊥

(JG′⊥KV ⊥
)
⊥

)
⊥

= (JG⊥⊥KV JG′⊥⊥KV )
⊥

[By IH]

= (JGKV JG′KV )⊥

= (JGKV JG′KV )⊥⊥⊥ [By Proposition 4]
= (J(G ⊗ G′)KV )⊥

Negating both sides we have, (J(G ⊗ G′)⊥KV ⊥)
⊥

= (J(G ⊗ G′)KV )⊥⊥. Hence,
(JG⊥OG′⊥KV ⊥)

⊥
= J(G⊥OG′⊥)

⊥
KV . This takes care of the case when the outermost

connective of F is a O.
Suppose F = G′ ⊕ G′.

J(G′ ⊕ G′)⊥KV ⊥
= JG⊥NG′⊥KV ⊥

= JG⊥KV ⊥
∩ JG′⊥KV ⊥

= (JGKV )⊥ ∩ (JG′KV )⊥ [By IH]

= (JGKV ∪ JG′KV )⊥

= (JGKV ∪ JG′KV )⊥⊥⊥ [By Proposition 4]

= (JG ⊕ G′KV )⊥

As in the previous case, negating both sides, we derive the case when the outermost
connective of F is a N.
Suppose F = µx.G.

J(µx.G)⊥KV ⊥
= Jνx.G⊥KV ⊥

=

( ⋃
X∈D

{
X | X ⊆ JG⊥KV ⊥[x 7→X]

})⊥⊥

=

( ⋃
X∈D

{
X | X ⊆ JG⊥K(V [x 7→X⊥])⊥})⊥⊥

=

( ⋃
X∈D

{
X | X ⊆ (JGKV [x 7→X⊥])

⊥})⊥⊥

[By IH]

=

( ⋂
X∈D

{
X⊥ | X ⊆ (JGKV [x 7→X⊥])

⊥})⊥

[By Proposition 4]

=

( ⋂
X∈D

{
X⊥ | JGKV [x7→X⊥] ⊆ X⊥

})⊥

[By Proposition 4]

=

( ⋂
X∈D

{
X | JGKV [x 7→X] ⊆ X

})⊥

[Closure property of D]

= (Jµx.GKV )⊥

As in the previous case, negating both sides, we derive the case when the outermost operator
of F is a ν. ◀

FSTTCS 2022
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B.2 Proofs of Section 4

B.2.1 Proof of Lemma 45

Proof. We induct on |rk(F )|. The base case is when |rk(F )| = 1. Since x ∈ fv(F ), F cannot
be an atom or a unit. Therefore, F = x. Plugging σ = ⟨ ⟩, we are done. The induction case
has several subcases.

Suppose F = G⊙G′ where ⊙ ∈ {⊗, O, N, ⊕}. We have two cases. Either x ∈ fv(G)∩fv(G′)
or x is free in only one of them. Note that rk(G), rk(G′) ⊴ rk(F ). Therefore if x is free
in them, the induction hypothesis can be fired. In the first case, we have rk(G(ξ/x)) =
rk(ξ) ∗ σ1 and rk(G′(ξ/x)) = rk(ξ) ∗ σ2. Therefore,

rk(F (ξ/x)) = rk(G(ξ/x) ⊙ rk(G′(ξ/x)))
= (rk(G(ξ/x)) ⊔ rk(G′(ξ/x))) ∗ ⟨0⟩
= ((rk(ξ) ∗ σ1) ⊔ (rk(ξ) ∗ σ2)) ∗ ⟨0⟩
= rk(ξ) ∗ (σ1 ⊔ σ2) ∗ ⟨0⟩

Therefore by plugging σ = (σ1 ⊔ σ2) ∗ ⟨0⟩, we are done. In the other case, wlog assume
x ̸∈ fv(G′). Therefore, we have G′(ξ/x) = G′. Firing the induction hypothesis for G, we
have rk(G(ξ/x)) = rk(ξ) ∗ σ1 as before. Therefore,

rk(F (ξ/x)) = rk(G(ξ/x) ⊙ rk(G′(ξ/x)))
= (rk(G(ξ/x)) ⊔ rk(G′)) ∗ ⟨0⟩
= ((rk(ξ) ∗ σ1) ⊔ rk(G′)) ∗ ⟨0⟩
= rk(ξ) ∗ σ1 ∗ ⟨0⟩ [Since rk(G′) ⊴ rk(ξ)]

Therefore by plugging σ = σ1 ∗ ⟨0⟩, we are done.
Suppose F = ηβy.G where η ∈ {µ, ν}, β < ω, and y ̸= x. Clearly, x ∈ fv(G) and
rk(G) ⊴ rk(F ). Therefore, by hypothesis, rk(G(ξ/x)) = rk(ξ) ∗ σ′.

rk(F (ξ/x)) = rk(ηβy.G(ξ/x))
= rk(G(ξ/x)) ∗ ⟨β⟩
= (rk(ξ) ∗ σ′ ∗ ⟨β⟩

By plugging σ = σ′ ∗ ⟨β⟩, we are done. The case F = ηy.G goes exactly similarly. ◀

B.2.2 Proof of Lemma 53

Proof. We recall that Γ0 = µx.G, a⊗νy.F and we will show that this sequent is not provable
in µMALLω. Suppose there is a proof. By Corollary 52, we can assume that this proof is
cut-free. Therefore, the only possibilities for the first rule are (⊗) or one of {(µω

n)}n∈ω. If
it is the former, then the left premisse has to contain µx.G since ⊢ a cannot be proved.
Consequently, the right premisse is ⊢ νy.F . If it were provable, so would be ⊢ νnx.F for all
n ∈ ω. It is easy to observe that ⊢ νnx.F is not provable for all n > 0.
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Now suppose the first rule is a (µω
n) for some n ∈ ω. We note that the (µn) rule is

invertible. Morever, the (O) rule is also invertible. Therefore, it suffices to show that
⊢ (a⊥)n, 0, a ⊗ νy.F is not provable. The only possible rule here is the (⊗). The only
splitting of the context which renders the left premisse provable is one where the right

premisse is ⊢

n−1︷ ︸︸ ︷
a⊥, . . . , a⊥, 0, νy.F . The only possible rule that can be applied here is the (νω)

rule. Consider any premisse other than the
⌊

n−1
2
⌋
th premisse. Since the number of a and

a⊥ are different in it, it is not provable by Example 7. ◀
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