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Introduction

Inequality measurement is an attempt to give meaning to comparisons of income distributions in terms of criteria which may be derived from ethical principles, appealing mathematical constructions or simple intuition. A serious approach to inequality measurement should begin with a consideration of the entities to which the tools of distributional judgement are applied. In the recent decades, economic thinking about the income shows that, the capital income is among the major incomes in a big number of countries, there are many important econometrics devoted to the income capital, mainly dealing with relationships between capital income taxation and welfare benefits, and in particular with the incidence and efficiency effects of taxes on incomes from capital in various economic scenarios. For further details see, e.g., [Chamley (1986)]; [Judd (2002)]; [START_REF] Golosov | Optimal indirect and capital taxation[END_REF]]; [Abel (2007)]; [Sørensen (2007)]; [START_REF] Greselin | Heavy tailed capital incomes: Zenga index, statistical inference, and ECHP data analysis[END_REF]].

Academics and governmental researchers have been developing measures that would aid them in understanding income and loss distributions, their differences with respect to geographic regions and changes over time periods. It is a fascinating area due to a number of reasons, one of them being the fact that different measures or indices are needed to reveal different features of capital income distributions. The Gini index has been widely used by economists and sociologists to measure economic inequality. It has been also studied extensively and its properties documented in a number of papers (see e.g. the survey papers [Xu (2004)] and [START_REF] Langel | Variance estimation of the Gini index: revisiting a result several times published[END_REF]). [Zenga (2007)] suggested the Zenga index of economic inequality, which aggregates the ratios of lower and upper conditional tail expectations, and by so doing takes into account the relative nature of the poor and the rich for a given population. It has been explored from various points of view; for example finite and asymptotic variance cases have been considered in [START_REF] Greselin | Asymptotic confidence intervals for a new inequality measure[END_REF]], [START_REF] Greselin | Zenga's new index of economic inequality, its estimation, and an analysis of incomes in Italy[END_REF]], [START_REF] Greselin | Contrasting the Gini and Zenga indices of economic inequality[END_REF]] and [START_REF] Greselin | Heavy tailed capital incomes: Zenga index, statistical inference, and ECHP data analysis[END_REF]]. Another trend, somewhat different from Zenga's but equally interesting, which is based on the Palma index, is considered in, e.g. [cobham and Summer (2013)].

The quintile share ratio (QSR) is a recently introduced measure of income inequality, also forming part of the European Laeken indicators which cover four important dimensions of social inclusion (Financial poverty, employment, health and education). In 2001, the European Council decided that income inequality in the European Union (EU) member states should be described using a number of indicators including the Quintile share ratio index. Compared to the Gini index, relatively little research is available on the statistical inference of the QSR. [START_REF] Langel | Statistical inference for the quintile share ratio[END_REF]] investigated the QSR and its variance in a complex sampling design framework. The authors upgraded on earlier work by [Osier (2006)] and [Osier (2009)]. As is to be expected from its definition, the influence function of the QSR is unbounded. The form of that influence function has been also derived by [Kpanzou (2015)]. Also, [Kpanzou (2014)] derived the asymptotic distribution of a non-parametric plug-in estimator for the QSR index. By making use of the extreme value theory, [START_REF] Deme | Semi-parametric estimation of the Quintile Share Ratio index of inequality measure for heavy-tailed income distributions with index in the upper half of the unit interval[END_REF]] introduced a semi-parametric estimator of the QSR index for heavy-tailed income distributions.

increasing. The (generalized) inverse Q : [0, 1) → [0, ∞) of the income distribution F , known in the literature as the quantile function, is defined for all s ∈ [0, 1) by the formula Q(s) = inf{x, F (x) ≥ s}.

Considering two different levels α and β, such that 0 < α < β < 1 as illustrated in [Kpanzou (2014)],

the QSR index at levels α and β of the capital income X denoted by η(Q, α, β), is the ratio of an upper integral U (Q, β) to a lower integral L(Q, α). More precisely, we have:

η(Q, α, β) := U (Q, β) L(Q, α) = 1 β Q(s)ds α 0 Q(s)ds
.

(2.1)

The QSR index is then given by: η(Q, 0.2, 0.8). In what follows, we will consider the more general QSR index η(Q, α, β) and the results will follow directly from that.

The empirical estimator of the distribution F is defined by F n (x) = n -1 n i=1 I {Xi≤x} and its corresponding empirical quantile function is expressed by Q n (s) = inf{x; F n (x) ≥ s}, where I S is the indicator function of the set S. Denote by X 1,n ≤ ... ≤ X n,n the order statistics associated with the sample (X 1 , . . . , X n ).

Thus, Q n (t) is equal to the i-th order statistic X i,n for all t ∈ ((i -1)/n, i/n], and for all i = 1, ..., n. For this, one natural candidate for the empirical estimator of η(Q, α, β) is obtained by replacing in (2.1) the true quantile Q(•) with the sample quantiles Q n (•). We arrive at the following 'traditional' QSR index estimator (see, e.g., [Kpanzou (2014)]):

η n (α, β) := η(Q n , α, β) = 1 β Q n (s)ds α 0 Q n (s)ds . (2.2)
Clearly, the estimator η n (α, β) can be rewritten as:

η n (α, β) =    n -1 n j=[nβ]+1 X j,n       n -1 [nα] j=1 X j,n    , (2.3)
where [x] is the integer part of x. Note that the QSR estimator η n (α, β) is the ratio of a U-statistic to a L-statistic.

Evidence from micro-data shows that capital incomes are exceedingly volatile, and that shares in disposable incomes have risen in recent years. Moreover, in some countries, capital incomes have been making up a disproportionately high contribution to the overall inequality (see, e.g., [START_REF] Fräßdorf | The impact of household capital income on income inequality: a factor decomposition analysis for the UK, Germany and the USA[END_REF]). The present research has been motivated by the need for better understanding the distribution and inequality of capital incomes, which in many cases appear to be heavy-tailed.

To this aim, we assume that the income distribution F is heavy-tailed. This is equivalent to the fact that the survival function F := 1 -F associated to F is regularly varying at infinity with index -1/γ < 0.

More precisely,

F (x) = x -1/γ ℓ F (x), x > 0, (2.4)
where ℓ F is a slowly varying function at infinity, i.e for all x > 0, ℓ

F (tx)/ℓ F (t) → 1, as t → ∞. The relation (2.4) is also equivalent to Q(1 -s) = s -γ ℓ Q (s), s ∈ (0, 1), where ℓ Q (zs)/ℓ Q (s) → 1, as s → 0, for
all z ∈ (0, 1). From (2.4), one can easily see that for all x > 0 and z ∈ (0, 1):

lim t→∞ F (tx) F (t) = x -1/γ and lim s→0 Q(1 -zs) Q(1 -s) = z -γ . (2.5)
The relation in (2.5) is namely called the first order regularly varying condition. The parameter γ is the tail index (or the extreme value index) and governs the tail behavior, with larger values indicating heavier tails. Its estimation has received a great attention in the extreme value literature (see, e.g., [de Haan and Ferreira (2006)]). Note also that:

• When γ > 1, the QSR index η(Q, α, β) and thus its estimator η n (α, β) are not defined.

• When 0 < γ ≤ 0.5, then E[X 2+ϵ ] < ∞ for some ϵ > 0, and so we can use the available asymptotically normal estimator η n (α, β), (see, [Kpanzou (2014)]).

• When 0.5 < γ < 1, the second moment is infinite, and so the asymptotic normality of the estimator [Kpanzou (2014)]).

η n (α, β) is violated (see,
The last situation motivate the need of a specific estimator of QSR index for heavy-tailed income distributions with infinite second moments. The class of heavy-tailed distributions (the so-called Pareto-type distributions) includes distributions such as Pareto, Burr, Student, Lévy-stable, and log-gamma which are known to be appropriate models in Extreme Value Theory for fitting large insurance claims, large fluctuations of prices, log-returns, incomes of countries with very high economic inequality, etc. (see, e.g., [START_REF] Beirlant | Tail index estimation and an exponential regression model[END_REF]]; [START_REF] Beirlant | On exponential representations of log-spacings of extreme order statistics[END_REF]]; [START_REF] Reiss | Statistical Analysis of Extreme Values with Applications to Insurance[END_REF]], [START_REF] Necir | Estimating the conditional tail expectation in the case of heavy-tailed losses[END_REF]]; [Deme et al. (2013a)], [START_REF] Greselin | Heavy tailed capital incomes: Zenga index, statistical inference, and ECHP data analysis[END_REF]], [START_REF] Deme | Reduced-biased estimators of the Conditional Tail Expectation for heavy-tailed distributions[END_REF]], [START_REF] Tami | An Improved Estimator of the Zenga Index for Heavy-Tailed Distributions[END_REF]], [Bari et al. (2021)], [START_REF] Deme | [END_REF]], [START_REF] Deme | Semi-parametric estimation of the Quintile Share Ratio index of inequality measure for heavy-tailed income distributions with index in the upper half of the unit interval[END_REF]]).

To better understand the heavy-tailed distribution and the inequality of capital incomes, which are governed by the unknown extreme value index γ, we make use, in this paper, of the extreme value methodology and propose asymptotically normal estimators of the QSR index η(Q, α, β). The following section concerns a class of semi-parametric estimators of the QSR index η(Q, α, β) for heavy-tailed income distributions with infinite second order moments.

Kernel estimation of the QSR index

In the rest of this paper, we shall be concerned with heavy-tailed capital income distributions with index in the upper half of the unit interval (infinite variance). More precisely, we will deal with the case where

F satisfies F (x) = x -1/γ ℓ F (x), x > 0, 0.5 < γ < 1. (3.6)
We have already mentioned that the extreme value index γ controls the tail of income distribution F and the finiteness of its variance. In this spirit, we shall take into account the estimation of γ in the construction of our class of semi-parametric estimators for QSR index η(Q, α, β). Now, Let k = k(n) be an intermediate sequence of integers, i.e., a sequence such that:

1 < k < n, k → ∞ and k/n → 0 as n → ∞. (3.7)
Using the same arguments as in [START_REF] Necir | Estimating the conditional tail expectation in the case of heavy-tailed losses[END_REF]], the QSR index can be decomposed for 0 < α < β < 1 -k/n as follows:

η(Q), α, β) := 1 L(Q, α) 1-k/n β Q(s)ds + 1 1-k/n Q(s)ds .
(3.8)

As mentioned above, one can estimate the moderate quantile Q(s), β ≤ s ≤ 1 -k/n by by its empirical estimator Q n (s). But the case where 1 -k/n < s < 1 corresponds to high quantiles i.e Q(s), s → 1 and it is not possible to use the empirical estimation Q n (s).

Under the first order regularly varying condition (2.5), we have Q(1 -zs) ≈ z -γ Q(1 -s), s → 0. By setting zs = 1 -u and s = k/n, we obtain the following approximation: (3.9) This leads to the following Weissman's type estimator ( [Weissman (1978)]) of high quantile Q(u), u → 1:

Q(u) ≈ (n(1 -u)/k) -γ Q(1 -k/n), u → 1.
Q (K) n,k (u) = n k (1 -u) -γ (K) n,k X n-k,n , (3.10) 
with γ K n,k , the kernel class of estimators for the tail index γ, introduced in [START_REF] Csörgő | Kernel estimates of the tail index of a distribution[END_REF]] and given by:

γ (K) n,k = 1 k k j=1 jK j k + 1 log X n-j+1,n X n-j,n , (3.11)
where K is a kernel integrating to one. Note that in the particular case where K = K := I (0,1) , the estimator γ K n,k corresponds to the well-known Hill's estimator ( [Hill (1975)]) of the tail index γ defined by:

γ n,k := γ (K) n,k = 1 k k j=1 j log X n-j+1,n X n-j,n . 
(3.12)

The estimator γ n,k is the most popular estimator of the tail index γ in the framework of heavy-tailed distributions. The Weissman's estimator ( [Weissman (1978)]) of high quantile is thus defined as

Q (K)
n,k (u). Replacing in (3.8), the quantile Q(s) by its empirical quantile estimator Q n (s), for β ≤ s ≤ 1 -k/n and by its high quantiles estimator (3.13) where L n (α) = n -1

Q (K) n,k (s), for 1 -k/n < s < 1, we arrive at the following kernel-type estimators of η(Q, α, β), 0 < α < β < 1 -k/n: η (K) n,k (α, β) = 1 L n (α) 1-k/n β Q n (s)ds + 1 1-k/n Q (K) n,k (s)ds ,
[nα] j=1 X j,n is the above empirical estimator of the lower integral L(α), which can be rewritten as:

η (K) n,k (α, β) = 1 L n (α) n-k j=1 j n -β + - j -1 n -β + X j,n + (k/n) 1 -γ (K) n,k X n-k,n , (3.14) 
where (s -t) + is the classical notation for the positive part of (s -t). The estimator η

(K)
n,k (α, β) generalizes the one proposed in [START_REF] Deme | Semi-parametric estimation of the Quintile Share Ratio index of inequality measure for heavy-tailed income distributions with index in the upper half of the unit interval[END_REF]], when we use a general kernel instead of K. In the above definitions and in what follows we indicate by Q(•) and Q n (•) the quantile function and its empirical counterpart (both functions are left-continuous).

The remaining part of this paper is organized as follows. First, we state an asymptotic normality result for η (K) n,k (α, β), (Section 4). As it exhibit a bias, we introduce a bias reduction method to estimate the QSR index. The efficiency of our method is illustrated on a simulation study in Section 5. All the proofs are postponed to Section 6.

Main results

In extreme value analysis, one can easily achieve asymptotic normality results by imposing a second order regularly varying condition (R U ), (see, e.g., [de Haan and Ferreira (2006)], Page 48), which is necessary to quantify the speed of convergence in (2.5).

This condition can be formulated in different ways, below we state it in terms of the tail quantile functions

U(x) = Q(1 -1/x): (R U ):
There exist a function a(x) → 0 as x → ∞ of constant sign for large values of x and a second order parameter ρ < 0 such that, for any x > 0, lim

t→∞ log U(tx) -log U(t) -γ log x a(t) = x ρ -1 ρ . (4.15)
Note that the condition (R U ) implies that |A| is regularly varying with index ρ (see, e.g., [Geluk and de Haan (1987)], [de Haan and Ferreira (2006)], [START_REF] Lo | Another look at Second order condition in Extreme Value Theory[END_REF]]).

As an example of heavy-tailed distributions satisfying the second order regularly varying condition (R U ),

we have the so called and frequently used Hall's model which is a class of cdf's, such that

U(t) = ct γ (1 + dρ -1 a(t) + o(t ρ )), as t → ∞
, where γ > 0, ρ ≤ 0, c > 0, and d ∈ R * . This sub-class of heavy-tailed distributions contains the Pareto, Burr, Fréchet and Student-t. For statistical inference concerning the second-order parameter ρ, we refer, for example, to [START_REF] Peng | Estimating the first-and second-order parameters of a heavy-tailed distribution[END_REF]] and [Deme et al. (2013b)].

Section 4.1 below gives the asymptotic normality of our proposed estimator η

(K) n,k (α, β).
4.1 Asymptotic normality of the kernel estimator η

(K) n,k (α, β).
To establish the asymptotic normality of the kernel-type estimator η

(K)
n,k (α, β), some classical assumptions about the kernel K are needed.

Condition (K). Let K be a function defined on (0, 1] such that (i) K(s) ≥ 0, whenever, 0 < s ≤ 1 and K(1) = 0; (ii) K(•) is differentiable, non increasing and right continuous on (0, 1]; (iii) K and K ′ are bounded; (iv)

1 0 K(u)du = 1; (v) 1 0 u -1/2 K(u)du < 1.
These conditions are not restrictive but are satisfied by the usual weight functions used in the literature, including the power kernel K(s) = (1 + τ )s τ I {0<s<1} , τ ≥ 0, and the log-weight function K(s) = (-log s) τ /Γ(τ + 1)I {0<s<1} , {τ ≥ 1}. In particular, we note that the classical Hill's estimator in (3.12) can be viewed as a particular case of our power kernel-type estimator corresponding to τ = 0 and

K(s) := K(s) = I {0<s<1} .
Under the second order regularly varying assumption (R U ) and the condition (K), [Deme et al. (2013a)] showed that

γ (K) n,k d = γ + a(n/k) 1 0 s -ρ K(s)ds + k -1/2 ξ n,k + o P (k -1/2 ), (4.16)
where ξ n,k is asymptotically a centred normal distribution with variance γ 2 1 0 K 2 (s)ds. In this spirit, we establish in Theorem 4.1 below the asymptotic normality of the class of kernel type estimators η

(K) n,k (α, β) for the QSR index.
Theorem 4.1 Let K be a kernel satisfying (K) and assume that the distribution F satisfies (R U ) with γ ∈ (1/2, 1). Then for any sequence of integers k

= k(n) satisfying k → ∞, k/n → 0 and √ ka(n/k) → λ ∈ R as n → ∞, we have, for 0 < α < β < 1 -k/n, √ n η (K) n,k (α, β) -η(Q, α, β) (k/n) 1/2 X n-k,n d → N λAB (η) K (γ, ρ, α), AV (η) K (γ, α) ,
where

AB (η) K (γ, ρ, α) := 1 (1 -γ) L(Q, α) 1 γ + ρ -1 + 1 1 -γ 1 0 s -ρ K(s)ds and AV (η) K (γ, α) := γ 2 (1 -γ) 2 L 2 (Q, α) 1 2γ -1 + 1 (1 -γ) 2 1 0 K 2 (s)ds .
Theorem 4.1 generalizes Theorem 1. in [START_REF] Deme | Semi-parametric estimation of the Quintile Share Ratio index of inequality measure for heavy-tailed income distributions with index in the upper half of the unit interval[END_REF]] in the case where we use a general kernel instead of K.

Remark 4.1 Since Q(1-•) is a regularly varying function at zero with index -γ, then from Theorem 2.4.1 in [de Haan and Ferreira (2006) andsince γ ∈ (1/2, 1), we have from Proposition 1.3.6 in [START_REF] Bingham | Regular variation[END_REF]],

], X n-k,n = Q(1 -k/n)(1 + o P (1)), as n → ∞ and (k/n) 1/2 Q(1 -k/n) = (k/n) 1/2-γ ℓ Q (k/n), for k → ∞, k/n → 0, as n → ∞. Remarking that n 1/2 /(k/n) 1/2 Q(1 -k/n) is equal to k 1/2 /(k/n) 1-γ ℓ Q (k/n)
(k/n) 1-γ ℓ Q (k/n) → 0, as n → ∞.
and the rate of convergence in Theorem 4.1 tends to infinity as n goes to infinity.

From Theorem 4.1, it is clear that the estimator η (K) n,k (α, β) exhibits a bias due to the fact that we use in its construction a symptomatic estimator of Q(•) derived from the Weissman's type estimator

Q (K) n,k (•),
which is known to have such a problem. To solve this issue, we propose in the next section to use a bias reduction method and to introduce an improved estimator of the QSR index η(Q, α, β).

Reduced bias estimation of the QSR index

In this section, we propose to substitute in (3.13), the Weissman's estimator

Q (K)
n,k with an asymptotically unbiased estimator of the extreme quantile. Our approach is similar to the bias reduction procedure introduced in [Goegebeur & Guillou 2013] and [Chavez-Demoulin et al.].

In order to find an asymptotically unbiased estimator of the extreme quantile, we use the second order condition (R U ), for which the following approximation holds:

Q(u) ≈ n k (1 -u) -γ Q(1 -k/n) 1 - a(n/k) ρ 1 - n k (1 -u) -ρ , u → 1, (4.17)
where γ, a(•) and ρ are unknown. The first part n k (1 -u)

-γ Q(1 -k/n
) in the right side of (4.17) is exactly estimated by the Weissman's type estimator Q (K) n,k (u) and defined in (3.9). Clearly, the estimator

Q (K)
n,k exhibits a potential bias because it depends on the Kernel type estimator γ

(K) n,k of the tail index γ, which from (4.16) has such problem. The expression 1 -ρ -1 a(n/k n )[1 -n k (1 -u) -ρ
] can be viewed as a correcting term since a(n/k n ) tends to 0. This leads to the necessity to find good estimators for γ, a(n/k n ) and ρ.

We first propose to introduce an asymptotically unbiased estimator for γ by following an approach similar to [Goegebeur & Guillou 2013]. To this end, consider two kernel functions K 1 and K 2 satisfying (K) and define a mixture of them in the form

K ∆ (s) = ∆K 1 (s) + (1 -∆) K 2 (s), for ∆ ∈ R. Clearly K ∆ also
satisfies the condition (K) and hence by the result given in (4.16), the asymptotic bias λ

1 0 s -ρ K ∆ (s)ds of γ (K∆) n,k is such that λ 1 0 s -ρ K ∆ (s)ds = λ∆ 1 0 s -ρ K 1 (s)ds + λ(1 -∆) 1 0 s -ρ K 2 (s)ds.
Equating the right-hand side of the above equation to zero leads to the value of eliminating the asymptotic bias

∆ * = 1 0 s -ρ K 2 (s)ds 1 0 s -ρ K 2 (s) -K 1 (s) ds , (4.18) provided 1 0 s -ρ K 2 (s) -K 1 (s) ds ̸ = 0.
Clearly, the tail index estimator γ

(K ∆ * ) n,k
is shown to be asymptotically unbiased in the sense that the mean of its limiting distribution is zero, whatever the value of λ.

More precisely, we have from (4.16):

k 1/2 γ (K ∆ * ) n,k -γ d → N 0, γ 2 1 0 K 2 ∆ * (s)ds . (4.19)
An open problem is to determine whether among this class of unbiased estimators γ

(K ∆ * ) n,k
, we can find the asymptotically unbiased estimator with minimum variance. Clearly, the asymptotic variance γ 2 1 0 K 2 ∆ * (s)ds is minimal for a minimum value of

1 0 K 2 ∆ * (s)ds.
According to [Goegebeur & Guillou 2013] and [Deme et al. (2013a)], the minimum of 1 0 K 2 ∆ * (s)ds is obtained at the "optimal" function given by:

K ∆ * opt (s) = 1 -ρ ρ 2 - (1 -ρ) (1 -2ρ) ρ 2 s -ρ , for s ∈ (0, 1) , (4.20)
and K ∆ * opt (s) = 0 otherwise. Note that this unction can be viewed as a mixture between two power kernels:

K 1 (s) := K(s) = I (0<s<1) and K 2 (s) := K 2,ρ (s) := (1 -ρ) s -ρ I (0<s<1) and ∆ * = (1 -ρ) 2 /ρ 2 is as in (4.18).
In that case, the minimal variance

γ 2 1 0 K 2 ∆ * opt (s)ds equals to γ 2 (1 -ρ) 2 /ρ 2 .
From a practical point of view, the unbiased tail index estimator with minimum variance γ 

(K ∆ * opt ) n,k
γ (K ∆ * opt ) n,k = 1 k k j=1 jK ∆ * opt j k + 1 log X n-j+1,n X n-j,n ,
where K ∆ * opt is defined as K ∆ * opt in (4.20) with ρ replaced by ρ.

Next, for the estimation of the rate a(•), we use the result in (4.16) from which we have, as n → ∞,

γ (K) n,k -γ (K2,ρ) n,k = -a(n/k) ρ 2 (1 -ρ)(1 -2ρ) + o P (1).
Thus, we can approximate

a(n/k) ρ 2 (1 -ρ)(1 -2ρ) by -γ (K) n,k -γ (K2,ρ) n,k
, which mean that a(n/k) can be estimated by;

a n,k ( ρ ) := - (1 -ρ)(1 -2 ρ) ρ 2 γ (K) n,k -γ (K 2, ρ ) n,k
.

Clearly, the estimators γ

(K ∆ * opt ) n,k
and a n,k ( ρ ) can be easily viewed as the least squared based estimators of γ and a(n/k) studied in [START_REF] Feuerverger | Estimating a tail exponent by modelling departure from a Pareto distribution[END_REF]]; [START_REF] Beirlant | Tail index estimation and an exponential regression model[END_REF]]; [START_REF] Beirlant | On exponential representations of log-spacings of extreme order statistics[END_REF]]

and [Deme et al. (2013a)]. This approach is based on the following exponential regression model:

j log X n-j+1,n X n-j,n ∼ γ + A(n/k) j k + 1 -ρ + ε j,k , 1 ≤ j ≤ k, (4.21)
where ε j,k are zero-centered error terms and in which ρ is substituted by ρ.

Finally, using the relation in (4.17), we arrive at the following unbiased estimator of the extreme quantile

Q(u), u → 1 : Q (K ∆ * opt ) n,k, ρ (u) = n k (1 -u) -γ (K ∆ * opt ) n,k X n-k,n 1 - a n,k ρ 1 - n k (1 -u) -ρ . (4.22)
In the spirit of (2.2), substituting the extreme quantile Q(u) with Q

(K ∆ * opt ) n,k, ρ
(u), we obtain the following unbiased estimator of the QSR index

η (K ∆ * opt ) n,k, ρ (α, β) : = 1 L n (α) n-k j=1 j n -β + - j -1 n -β + X j,n + (k/n) X n-k, n L n (α) 1 -γ (K ∆ * opt ) n,k      1 - a n,k ( ρ ) γ (K ∆ * opt ) n,k + ρ -1      . (4.23)
A possible choice for ρ kρ is one of the most performed estimator among those studied in [Gomez et al. (2005)], generalized in [Deme et al. (2013b)]) and defined by:

ρ kρ = 6S (2) kρ -4 + 3S (2) kρ -2 4S (2) kρ -3 , provided S (2) kρ ∈ 2 3 , 3 4 , (4.24)
where

S

(2)

kρ = 3 4 M (4) kρ -24 M (1) kρ 4 M (2) kρ -2 M (1) kρ 2 M (3) kρ -6 M (1) kρ 3 2
, and

M (r) kρ := 1 k ρ kρ j=1 log X n-j+1,n X n-kρ,n r , r > 0.
The consistency of ρ ( * ) kρ to ρ have been established in [Gomez et al. (2005)] and [Deme et al. (2013b)]) under the second order condition (R U ) and the assumptions k ρ → ∞, k ρ /n → 0 and k

1/2 ρ a(n/k ρ ) → ∞, as n → ∞.
Our next goal is to establish, under suitable assumptions, the asymptotic normality of η

(K ∆ * opt ) n,k, ρ
(α, β). This is done in the following theorem.

Theorem 4.2 Under the assumptions of Theorem 4.1, if ρ is either a canonical negative value ρ = ρ = ρ 0 or an external estimator ρ = ρ kρ , consistent in probability to ρ, with k ρ := k ρ (n), an intermediate sequence of integers greater than k, satisfying k ρ → ∞ and k ρ /n → 0, as n → ∞, then we have:

√ n η (K ∆ * opt ) n,k, ρ (α, β) -η(Q, α, β) (k/n) 1/2 X n-k,n d → N 0, AV(γ, ρ, α) ,
where

AV(γ, ρ, α) = γ 4 (γ -ρ) 2 (2γ -1)(1 -γ) 4 (γ + ρ -1) 2 L 2 (Q, α)
.

Simulation study

In this section, the class of biased estimator η

(K)
n,k (0.2, 0.8) and the reduced-bias estimator η

(K ∆ * opt ) n,k, ρ (0.2, 0.8)
of the QSR index η(0.2, 0.8) are compared in a simulation study. To this end, N = 500 samples of size n := 1000; 1500; 2000 are simulated from a Burr distribution defined as F (x) = (1 + x -ρ/γ ) 1/ρ , with γ = 2/3 and different values of ρ := -0.5; -0.75; -1. It is known that this distribution is heavy-tailed and satisfies the second order condition (R U ) with a(t) = γt ρ . This kind of Burr distribution and its unidentified parameters were previously used by various authors such as [Deme et al. (2013a)], [START_REF] Deme | Reduced-biased estimators of the Conditional Tail Expectation for heavy-tailed distributions[END_REF]] and [START_REF] Deme | Estimation of risk measures from heavy-tailed distributions[END_REF]] to assess risk measures for heavy-tailed losses. [Kpanzou (2014)]

and [START_REF] Deme | Semi-parametric estimation of the Quintile Share Ratio index of inequality measure for heavy-tailed income distributions with index in the upper half of the unit interval[END_REF]] also used this kind of distribution to estimate the QSR index for heavy-tailed capital incomes.

The estimator η For the choice of the kernels K, we use the power kernel, which satisfies the assumption (K) and is defined by K(s) = (1 + τ )s τ I {0<s<1} , with τ := 0, 1. In the case where τ = 0, we denote

K := K 1 = K and η (K)
n,k (0.2, 0.8) corresponds to the QSR index estimator associated with the Hill's estimator γ (K) n,k . For τ = 1, the corresponding kernel is exactly the above mentioned K := K 2, ρ, with ρ = -1.

The estimator η

(K ∆ * opt ) n,k, ρ (0.2, 0.8) is computed with the tail index estimators γ (K ∆ * opt ) n,k
, for k = 10, ..., m n and

ρ := ρ k * ρ defined in (4.24),
where k * ρ is selected as follows: i.e, when ρ is close to 0.

k * ρ := sup k ρ : k ρ ≤ min n -1,
Morever, the above estimators depend all on the fractional number of top order statistics k whose choice is a serious challenge in practice. The algorithm of [START_REF] Reiss | Statistical Analysis of Extreme Values with Applications to Insurance[END_REF]], Page 137, gives an automatic choice of the number of top extremes k for tail index estimators in γ • n,k . According to these authors, an automatic choice of top extremes used in γ • n,k is as the value k * that minimizes (5.25) where 0 ≤ δ < 1/2. By the way, choosing δ = 1/4, we compute the optimal values k * as in (5.25)

1 k k j=1 j δ γ • n,j -median γ • n,1 , ..., γ • n,k , 10 ≤ k ≤ m n ,
for each tail index estimator used in the computation of their associated QSR index estimators. In the we opt to use a block bootstrapping method to construct a 95% confidence interval for the QSR index estimates. The block bootstrapping follows the routine boot of the package boot in R software. By repeating such bootstrapping procedure T = 10, 000 times, we obtain T bootstrapped estimates for each QSR index estimator. The sample standard deviation across the T estimates gives an estimate of the standard deviation of the underlying QSR index estimators for given k ∈ {10, ..., m n }. We construct the 95% confidence interval using the point estimate and the estimated standard deviation. This procedure is applied to all values of k of each estimator. The point estimates of QSR index at its optimal value k * as well as the lower and upper bounds of the confidence intervals are given in Table 5.1, Table 5.2 and Table 5.3.

After the inspection of the table, two conclusions can be drawn regardless of the situation. First, we notice that the absolute bias of both estimators increases as ρ goes to 0. Second, the reduction bias estimator is more efficient than the biased estimators regardless to the absolute bias, the median squared errors and the cover values when ρ is closer to 0. That illustrates well our conclusions drawn from the graphical analysis. 

(K ∆ * opt ) n,k, ρ (0.2, 0.8)
with their 95% confidence intervals, computed with and their associated optimal numbers of top statistics k * , based on N = 500 samples of size n = 1000, from a Burr distribution defined as 

F (x) = (1 + x -3ρ 2 ) 1/ρ .
(K ∆ * opt ) n,k, ρ (0.2, 0.8),
for n = 2000 and with their 95% confidence intervals, computed with their associated optimal numbers of top statistics k * , based on N = 500 samples of size n = 2000, from a Burr distribution defined as

F (x) = (1 + x -3ρ 2 ) 1/ρ .
The true values of the QSR index are η(Q, 0.2, 0.8) = 292.93 for ρ = -0.5, η(Q, 0.2, 0.8) = 73.47, for ρ = -0.75 and η(Q, 0.2, 0.8) = 37.70 for ρ = -1.

Proofs

Let Y1, ..., Yn be independent and identically distributed random variables from the unit Pareto distribution G, defined as G(y) = 1 -y -1 , y ≥ 1. For each n ≥ 1, let Y1,n ≤ ... ≤ Yn,n be the order statistics pertaining to Y1, ..., Yn. Clearly Xj,n d = U(Yj,n), j = 1, ..., n. In order to use the results from [START_REF] Csörgő | Weighted empirical and quantile processes[END_REF]], a probability space (Ω, A, P) is constructed carrying a sequence ξ1, ξ2, ... of independent random variables uniformly distributed on (0, 1) and a sequence of Brownian bridges Bn(s), 0 ≤ s ≤ 1, n = 1, 2... such that for all 0 ≤ ν < 1/2 and λ1 > 0 sup (6.26) where βn is the resulting empirical quantile function denoted by:

λ 1 /n≤ s ≤1-λ 1 /n |βn(s) -Bn(s)| (s(1 -s)) 1/2-ν = O P (n -ν ),
βn(t) = √ n (t -Vn(t))
with Vn(s) = ξj,n, j-1 n < s ≤ j n , j = 1, ..., n and Vn(0) = 0.

Preliminary results

From (3.8), (3.13), (3.14) and (4.23), the QRSR index η(Q, α, β), its biased estimator η

(K)
n,k (α, β) and its asymptotic unbiased estimator η

(K ∆ * opt ) n,k,ρ (α, β), 0 < α < β < 1 -k/n
, can be respectively rewritten as:

η(Q, α, β) := U n,k,1 (Q, β) L(Q, α) + U n,k,2 (Q) L(Q, α) , η (K) n,k (α, β) := U n,k,1 (Qn, β) Ln(α) + U n,k,2 Q (K) n,k Ln(α) , and 
η (K ∆ * opt ) n,k,ρ (α, β) := U n,k,1 (Qn, β) Ln(α) + U n,k,2 Q (K ∆ * opt ) n,k, ρ Ln(α) ,
where Ln(α) :=

α 0 Qn(s)ds = n -1 [nα]
j=1 Xj,n is the empirical estimator of the lower integral L(Q, α) = α 0 Q(s)ds and the U -functional integrals are defined as:

U n,k,1 (Q, t) := 1-k/n t Q(s)ds, for 0 ≤ t < 1 -k/n U n,k,2 (Q) := 1 1-k/n Q(s)ds, U n,k,1 (Qn, t) := 1-k/n t Qn(s)ds, for 0 ≤ t < 1 -k/n U n,k,2 Q (K) n,k := 1 1-k/n Q (K) n,k (s)ds = (k/n)X n-k,n 1 -γ (K) n,k , U n,k,2 Q (K ∆ * opt ) n,k, ρ := 1 1-k/n Q (K ∆ * opt ) n,k, ρ (s)ds = (k/n) X n-k,n 1 -γ (K ∆ * opt ) n,k      1 - a n,k ( ρ ) γ (K ∆ * opt ) n,k + ρ -1      . with Qn(•) (respectively, Q (K)
n,k is the empirical estimator (respectively, the Weissman's type estimator) of the quantile function Q(•) and k = k(n) is a sequence of integers satisfying k → ∞, k/n → 0 and as n → ∞.

The following preliminary results will be instrumental for our needs. Their proofs are postponed to Section 6.3. Lemma 6.1 Assume that the distribution F satisfies the regularly varying condition (2.5) with γ ∈ (1/2, 1). If

k = k(n) is a sequence of integers satisfying k → ∞, k/n → 0, as n → ∞, then for 0 < α < 1 -k/n, we have: √ n Ln(α) -L(Q, α) (k/n) 1/2 X n-k,n = o P (1), as n → ∞. (6.27)
Lemma 6.2 Assume that the distribution F satisfies the regularly varying condition (2.5) with γ ∈ (1/2, 1). If

k = k(n) is a sequence of integers satisfying k → ∞, k/n → 0, as n → ∞, then for 0 < α < β < 1 -k/n, we have: √ n U n,k,1 (Qn, β) Ln(α) - U n,k,1 (Q, β) L(Q, α) (k/n) 1/2 X n-k,n d = Wn,α,1 + o P (1), (6.28)
as n → ∞, where

Wn,α,1 := - 1-k/n 0 Bn(s)dQ(s) L(Q, α) (k/n) 1/2 Q(1 -k/n) .
Lemma 6.3 Under the assumptions of Theorem 4.1, we have for 0 < α < 1 -k/n:

√ n    U n,k,2 Q (K) n,k Ln(α) - U n,k,2 (Q) L(Q, α)    (k/n) 1/2 X n-k,n d = λAB (η) K (γ, ρ, α) + Wn,α,2 + Wn,α,3 + o P (1), (6.29)
as n → ∞, where AB

K (γ, ρ, α) is defined in Theorem 4.1 and

     Wn,α,2 := - γ (1 -γ) L(Q, α) n/k Bn(1 -k/n) Wn,α,3 := γ (1 -γ) 2 L(Q, α) n/k 1 0 s -1 Bn(1 -sk/n)d(sK(s)).
Lemma 6.4 Suppose that the distribution F satisfies the second order condition

(R U ). If k → ∞, k/n → 0 and √ k a(n/k) → λ ∈ R, as n → ∞
and ρ is either a canonical negative value ρ = ρ = ρ0 or an external estimator ρ = ρ kρ , consistent in probability to ρ, with kρ := kρ(n) an intermediate sequence of integers greater than k, satisfying kρ → ∞ and kρ/n → 0, as n → ∞, then we have

√ k   γ K ∆ * opt n,k -γ   d = γ n/k 1 0 s -1 Bn(1 -sk/n)d(sK ∆ * opt (s)) + o P (1)
and

√ k ( a n,k ( ρ ) -a(n/k)) d = γ (1 -ρ) n/k 1 0 s -1 Bn(1 -sk/n)d(s(K1(s) -K ∆ * opt (s))) + o P (1) .
Lemma 6.5 Under the assumptions of Theorem 4.2, we have for 0 < α < 1 -k/n:

√ n      U n,k,2 Q (K ∆ * opt ) n,k, ρ Ln(α) - U n,k,2 (Q) L(Q, α)      (k/n) 1/2 X n-k,n d = Wn,α,1 + Wn,α,2 + Wn,α,4 + Wn,α,5 + o P (1), (6.30) 
as n → ∞, where

       Wn,α,4 := ργ 2 (γ + ρ -1)(1 -γ) 2 L(Q, α) n/k 1 0 s -1 Bn(1 -sk/n)d(sK ∆ * opt (s)) Wn,α,5 := - (1 -γ)(1 -ρ) (γ + ρ -1)
Wn,α,3.

Proofs of main results

Proof of Theorem 4.1.

Assume that the assumptions in Theorem 4.1 hold. We have:

η (K) n,k (α, β) -η(Q, α, β) = U n,k,1 (Qn, β) Ln(α) - U n,k,1 (Q, β) L(Q, α) +    U n,k,2 Q (K) n,k Ln(α) - U n,k,2 (Q) L(Q, α)    := An,1 + An,2. (6.31)
For all values of n large enough, we get respectivly from Lemma 6.2 and Lemma 6.3:

√ n An,1 (k/n) 1/2 X n-k,n d = Wn,α,1 + o P (1), and √ nAn,2 (k/n) 1/2 X n-k,n d = λAB (η) K (γ, ρ, α) + Wn,α,2 + Wn,α,3 + o P (1). This leads to √ n η (K) n,k (α, β) -η(Q, α, β) (k/n) 1/2 X n-k,n d = λAB (η) K (γ, ρ, α) + Wn,α,1
+ Wn,α,2 + Wn,α,3 + o P (1). (6.32) Now, our next step is to compute the asymptotic variance of the process Wn,α,1+ Wn,α,2+Wn,α,3. The computations are tedious but quite direct. We only give below the main arguments, i.e.

EW 2 n,α,1 = 1-k/n 0 (1 -t) t 0 sdQ(s) dQ(t) L 2 (Q, α) k/n Q 2 (1 -k/n) + 1-k/n 0 t 1-k/n t (1 -s)dQ(s) dQ(t) L 2 (Q, α) k/n Q 2 (1 -k/n) = 1 k/n u 1 u dQ(1 -v) dQ(1 -u) L 2 (Q, α) k/n Q 2 (1 -k/n) - 1 k/n u 1 u vdQ(1 -v) dQ(1 -u) L 2 (Q, α) k/n Q 2 (1 -k/n) + 1 k/n u k/n vdQ(1 -v) dQ(1 -u) L 2 (Q, α) k/n Q 2 (1 -k/n) - 1 k/n u u k/n vdQ(1 -v) dQ(1 -u) L 2 (Q, α) k/n Q 2 (1 -k/n) =: Qn,α,1 + Qn,α,2 + Qn,α,3 + Qn,α,4. Recall now that Q(1 -s) = s -γ ℓ Q (s)
with ℓ Q a slowly varying function at 0. By integration by parts and using Lemma 6 in [Deme et al. (2013a)]

Qn,α,1 = 1 2 L 2 (Q, α) 1 + 1 k/n Q 2 (1 -u)du k/nQ 2 (1 -k/n) -→ γ (2γ -1) L 2 (Q, α)
.

Now remark that d 1 u vdQ(1 -v) = -u dQ(1 -u) which implies that Qn,α,2 = - 1 2 L 2 (Q, α) k n 1 k/n vdQ(1 -v) k/n Q(1 -k/n) 2 = o(1) (6.33)
this last result coming from the fact that, according to Proposition 1.3.6 in [START_REF] Bingham | Regular variation[END_REF]] for all ε > 0,

x -ε ℓ(x) -→ ∞ as x → 0. Thus, choosing 0 < ε < γ -1 2 entails 0 ≤ s 1 s td(Q(1 -t)) sQ(1 -s) 2 = s 1 + 1 s t -γ ℓ Q (t)dt s 1-γ ℓ Q (s) 2 ≤ s 1 + Cs γ-1-ε 2 = O s 1+2[γ-1-ε] = o(1)
where C is a suitable constant. Consequently, Qn,α,2 -→ 0. The two others terms, Qn,α,3 and Qn,α,4, can be treated similarly, leading to

Qn,α,3 = Qn,α,1 -→ γ (2γ -1) L 2 (Q, α) Qn,α,4 = Qn,α,2 -→ 0. Finally, EW 2 n,α,1 -→ 2γ (2γ -1) L 2 (Q, α) ,
and direct computations now lead to

E(W 2 n,α,2 ) -→ γ 2 (1 -γ) 2 L 2 (Q, α) EW 2 n,α,3 -→ γ 2 (1 -γ) 4 L 2 Q, α) 1 0 K 2 (s)ds by Corollary 1 in [Deme et al. (2013a)] E(Wn,α,1Wn,α,2) -→ γ (1 -γ)L 2 (Q, α)
by (6.33)

E(Wn,α,1Wn,α,3) = 0 E(Wn,α,2Wn,α,3) = 0.
Combining all these results, Theorem 4.1 follows.

Proof of Theorem 4.2.

Assume that the assumptions in Theorem 4.2 hold. We have:

η (K ∆ * opt ) n,k (α, β) -η(Q, α, β) = U n,k,1 (Qn, β) Ln(α) - U n,k,1 (Q, β) L(Q, α) +        U n,k,2 Q K ∆ * opt ) n,k Ln(α) - U n,k,2 (Q) L(Q, α)        := Bn,1 + Bn,2. (6.34)
For all values of n large enough, we get respectively from Lemma 6.2 and Lemma 6.5:

√ n Bn,1 (k/n) 1/2 X n-k,n d = Wn,α,1 + o P (1), and √ nBn,2 (k/n) 1/2 X n-k,n d = Wn,α,2 + Wn,α,4 + Wn,α,5 + o P (1). This leads to √ n η (K) n,k (α, β) -η(Q, α, β) (k/n) 1/2 X n-k,n d = Wn,α,1 + Wn,α,2 + Wn,α,4 + Wn,α,5 + o P (1). (6.35)
We only have to compute the asymptotic variance of the sum of process in the right term of (6.35).

As in Theorem 4.1, the computations are quite direct and the desired asymptotic variance can be obtained by noticing that Wn,α,1Wn,α,4) = 0 Wn,α,2Wn,α,5) = 0

EW 2 n,α,5 -→ γ 2 (1 -ρ) 2 (1 -γ) 2 (γ + ρ -1) 2 L 2 (Q, α) E(
E(Wn,α,5) = 0 EW 2 n,α,4 = γ 4 (1 -ρ) 2 (1 -γ) 4 (γ + ρ -1) 2 L 2 (Q, α) E(
E(Wn,α,Wn,α,4) = 0 E(Wn,α,4Wn,α,5) = - ργ 3 (1 -ρ) (1 -γ) 3 (γ + ρ -1) 2 L 2 (Q, α) .
Combining all these results, Theorem 4.2 follows.

Proofs of preliminary results

Proof of Lemma 6.1. Let t ∈ |0, 1 -k/n), we have:

√ n U n,k,1 (Qn, t) -U n,k,1 (Q, t) (k/n) 1/2 X n-k,n = 1-k/n t √ n Qn(s) -Q(s) ds (k/n) 1/2 X n-k,n .
Since Q(1 -•) is a regularly varying function at zero with index -γ, then from Theorem 2.4.1 in [de Haan and

Ferreira (2006)], X n-k,n = Qn(1 -k/n) = Q(1 -k/n)(1 + o P (1)
), as n → ∞. Using the approach in (6.26) and the Vervaat process (see [Zitikis (1998)]), [START_REF] Necir | Estimating the conditional tail expectation in the case of heavy-tailed losses[END_REF]] showed in Statement 4.3, p. 8, for all t ∈ (0; 1), that (6.36) Also note that this result in (6.36) [when t = 0] is equivalent to that of [Peng (2001)]. More precisely, we have (6.37) This concludes that for 0 ≤ t < 1 -k/n, we have, as n → ∞ :

1-k/n t √ n(Qn(s) -Q(s))ds (k/n) 1/2 X n-k,n d = - 1-k/n 0 Bn(s)dQ(s) (k/n) 1/2 Q(1 -k/n) + o P (1).
1-k/n 0 √ n(Qn(s) -Q(s))ds (k/n) 1/2 X n-k,n d = - 1-k/n 0 Bn(s)dQ(s) (k/n) 1/2 Q(1 -k/n) + o P (1).
√ n U n,k,1 (Qn, t) -U n,k,1 (Q, t) (k/n) 1/2 X n-k,n d = - 1-k/n 0 Bn(s)dQ(s) (k/n) 1/2 Q(1 -k/n) + o P (1). (6.38)
Next, we remark also that, L(Q, α) := U n,k,1 (Q, 0) -U n,k,1 (Q, α) and Ln(α) := U n,k,1 (Qn, 0) -U n,k,1 (Q, α). This leads to:

√ n Ln(α) -L(Q, α) (k/n) 1/2 X n-k,n = √ n U n,k,1 (Qn, 0) -U n,k,1 (Q, 0) (k/n) 1/2 X n-k,n - √ n U n,k,1 (Qn, α) -U n,k,1 (Q, α) (k/n) 1/2 X n-k,n . 
From (6.38), we get for all large values of n:

√ n Ln(α) -L(Q, α) (k/n) 1/2 X n-k,n = o P (1). (6.39)
The Lemma 6.1 follows.

Proof of Lemma 6.2. We first have:

U n,k,1 (Qn, β) Ln(α) - U n,k,1 (Q, β) L(Q, α) = U n,k,1 (Qn, β) Ln(α) - U n,k,1 (Qn, β) L(Q, α) + U n,k,1 (Qn, β) L(Q, α) - U n,k,1 (Q, β) L(Q, α) = 1 L(Q, α) U n,k,1 (Qn, β) -U n,k,1 (Q, β) - U n,k,1 (Qn, β) Ln(α)L(Q, α) Ln(α) -L(Q, α) .
This leads to:

√ n U n,k,1 (Qn, β) Ln(α) - U n,k,1 (Q, β) L(Q, α) (k/n) 1/2 X n-k,n = 1 L(Q, α) × √ n (U n,k,1 (Qn, β) -U n,k,1 (Q, β)) (k/n) 1/2 X n-k,n - U n,k,1 (Qn, β) Ln(α)L(Q, α) × √ n (Ln(α) -L(Q, α)) (k/n) 1/2 X n-k,n . 
Next, from (6.38), we have for all large values of n,

√ n (U n,k,1 (Qn, β) -U n,k,1 (Q, β)) L(Q, α)(k/n) 1/2 X n-k,n d = 1-k/n 0 Bn(s)dQ(s) L(Q, α)(k/n) 1/2 Q(1 -k/n) + o P (1). (6.40)
Since the right term in (6.40) is bounded in probability, we get for all large values of n,

U n,k,1 (Qn, β) = U n,k,1 (Q, β) + o P (1). Remarking that U n,k,1 (Q, β) = 1-k/n β Q(s)ds and k/n → 0, as n → ∞, we have U n,k,1 (Qn, β) = 1 β Q(s)ds 1 + o P (1) .
In the other hand, from Lemma 6.1, we have Ln(α) = L(Q, α) + o P (1), as n → ∞. Therefore, using again the Lemma 6.1 and the fact that the lower integral L(Q, α) and the upper integral 1 β Q(s)ds are finite, we get for all n large enough:

U n,k,1 (Qn, β) Ln(α)L(Q, α) × √ n (Ln(α) -L(Q, α)) (k/n) 1/2 X n-k,n = o P (1). (6.41)
Finally, by combining (6.40) and (6.41), the Lemma 6.2 follows.

Proof of Lemma 6.3.

We use the following decomposition:

U n,k,2 Q (K) n,k Ln(α) - U n,k,2 (Q) L(Q, α) = U n,k,2 Q (K) n,k Ln(α) - U n,k,2 Q (K) n,k L(Q, α) + U n,k,2 Q (K) n,k L(Q, α) - U n,k,2 (Q) L(Q, α) = 1 L(Q, α) U n,k,2 Q (K) n,k -U n,k,2 (Q) - U n,k,2 Q (K) n,k Ln(α)L(Q, α) Ln(α) -L(Q, α) .
This implies that:

√ n    U n,k,2 Q (K) n,k Ln(α) - U n,k,2 (Q) L(Q, α)    (k/n) 1/2 X n-k,n = 1 L(Q, α) × √ n U n,k,2 Q (K) n,k -U n,k,2 (Q) (k/n) 1/2 X n-k,n - U n,k,2 Q (K) n,k Ln(α)L(Q, α) × √ n Ln(α) -L(Q, α) (k/n) 1/2 X n-k,n . (6.42) Recall that U n,k,2 Q (K) n,k = k/n 1 -γ (K) n,k X n-k,n .
According to Theorem 1 in [Deme et al. (2013a)], we have as n → ∞:

√ k γ (K) n,k -γ d = √ k a (n/k) 1 0 s -ρ K(s)ds + γ n k 1 0 s -1 Bn 1 -s k n d (sK(s)) + o P (1) (6.43)
This leads to the consistency in probability of γ

(K) n,k to γ. Since Q(1 -•
) is a regularly varying function at zero with index -γ, then from Theorem 2.4.1 in [de Haan and Ferreira (2006)

], X n-k,n = Q(1 -k/n)(1 + o P (1)), as n → ∞ and (k/n)Q(1 -k/n) = (k/n) 1-γ ℓ Q (k/n).
Since γ ∈ (1/2, 1), we have from Proposition 1.3.6 in [START_REF] Bingham | Regular variation[END_REF]

], (k/n) 1-γ ℓ Q (k/n) → 0, as n → ∞. Therefore U n,k,2 Q (K) n,k P → 0, as n → ∞.
Finally, according to the Lemma 6.1, the second right term of the Equation 6.42 is equal to o P (1). Now, it allows us to look at the first right term of the Equation 6

.42. Clearly X n-k,n d = U(Y n-k,n ) with U(x) = Q(1 -1/x) and U n,k,2 Q (K) n,k d = k/n 1 -γ (K) n,k U (Y n-k,n ) . By remarking that X n-k,n = U(n/k)(1 + o P (1)) with U (n/k) = Q(1 -k/n), we have: √ n U n,k,2 Q (K) n,k -U n,k,2 (Q) L(Q, α)(k/n) 1/2 X n-k,n d = √ n U n,k,2 Q (K) n,k -U n,k,2 (Q) L(Q, α)(k/n) 1/2 U (n/k) 1 + o P (1) .
As a consequence, the following expansion holds:

√ n U n,k,2 Q (K) n,k -U n,k,2 (Q) L(Q, α)(k/n) 1/2 U (n/k) d = 4 j=1 Tn,j, where 
Tn,1 := √ k L(Q, α) (1 -γ (K) n,k ) U (Y n-k,n ) U(n/k) - k n Y n-k,n γ , Tn,2 := √ k L(Q, α)(1 -γ (K) n,k ) k n Y n-k,n γ -1 , Tn,3 := 1 L(Q, α) (1 -γ (K) n,k )(1 -γ) √ k γ (K) n,k -γ , Tn,4 := √ n L(Q, α) (k/n) 1/2 U(n/k) k/n 1 -γ U(n/k) -U n,k,2 (Q, β) .
We study each term separately.

Term Tn,1. According to [de Haan and Ferreira (2006)] Theorem 2.3.9) , for any δ > 0, we have

√ k U (Y n-k,n ) U(n/k) - k n Y n-k,n γ = √ k a n k k n Y n-k,n γ k n Y n-k,n ρ -1 ρ + o P (1) k n Y n-k,n γ+ρ±δ ,
We study each term separately.

Term Tn,1. According to [de Haan and Ferreira (2006)] Theorem 2.3.9) , for any δ > 0, we have

√ k U (Y n-k,n ) U(n/k) - k n Y n-k,n γ = √ k a n k k n Y n-k,n γ k n Y n-k,n ρ -1 ρ + o P (1) k n Y n-k,n γ+ρ±δ , Thus, since kY n-k,n /n → 1, √ k a(n/k) → λ ∈ R and γ (K) n,k P → γ, as n → ∞, it readily follows that
Tn,1 = o P (1). (6.44)

Term Tn,2. The equality

Y n-k,n d = (1 -ξ n-k,n ) -1 yields √ k k n Y n-k,n γ -1 d = √ k n k (1 -ξ n-k,n ) -γ -1 = -γ √ k n k (1 -ξ n-k,n ) -1 (1 + o P (1)) by a Taylor expansion = -γ n k βn 1 - k n (1 + o P (1)) = -γ n k Bn 1 - k n + O P (n -ν ) k n 1/2-ν (1 + o P (1)),
for 0 ≤ ν < 1/2, by [START_REF] Csörgő | Weighted empirical and quantile processes[END_REF]]. Thus, using again that γ

(K) n,k P → γ, it follows that Tn,2 d = - γ L(Q, α)(1 -γ) n k Bn 1 - k n (1 + o P (1)) = Wn,α,2 + o P (1). (6.45)
Term Tn,3. By using again the consistency in probability of γ (K)

n,k to γ and the equation 6.43, we get

Tn,3 d = 1 L(Q, α)(1 -γ) 2 √ k a (n/k) 1 0 s -1 K(s)ds + γ n k 1 0 s -1 Bn 1 -s k n d (sK(s)) + o P (1) = 1 L(Q, α) (1 -γ) 2 √ k a (n/k) 1 0
s -1 K(s)ds + Wn,α,3 + o P (1). (6.46)

Term Tn,4. A change of variables and an integration by parts yield

Tn,4 = √ k L(Q, α) 1 1 -γ - ∞ 1 x -2 U(nx/k) U(n/k) dx = - √ k L(Q, α) ∞ 1 x -2 U(nx/k) U(n/k) -x γ dx.
Theorem 2.3.9 in [de Haan and Ferreira (2006)] entails that, for γ ∈ (1/2, 1),

Tn,4 = - √ ka n k L(Q, α) ∞ 1 x γ-2 x ρ -1 ρ dx (1 + o P (1)) = √ ka n k L(Q, α) 1 (1 -γ)(γ + ρ -1)
(1 + o P (1)). (6.47)

Combining (6.44)-(6.47), Lemma 6.3 follows.

Proof of Lemma 6.4.

Note that the first quantity of interest can be expanded as

√ k   γ K ∆ * opt n,k -γ   = √ k   γ K ∆ * opt n,k -γ K ∆ * opt n,k   + √ k   γ K ∆ * opt n,k -γ   = √ k 1 k k j=1 K ∆ * opt j k + 1 -K ∆ * opt j k + 1 j log Xn-j+1,n Xn-j,n + √ k   γ K ∆ * opt n,k -γ   ,
where

K ∆ * opt (s) = (1 -ρ) 2 ρ 2 2 - (1 -ρ) (1 -2ρ) ρ 2 s -ρ , t ∈ (0, 1), and K ∆ * opt (s) = 0 otherwise, K ∆ * opt is defined as K ∆ *
opt with ρ replaced by ρ. We have all ready mentioned that the function K ∆ * opt is viewed as a mixture between two power kernels: K1(s) := I (0<s<1) and K2,ρ(s) := (1 -ρ) s -ρ I (0<s<1) with and ∆ * = (1 -ρ) 2 /ρ 2 . Thus, according to the proof of Theorem 3.2 of [START_REF] Beirlant | On exponential representations of log-spacings of extreme order statistics[END_REF]], we have

√ k 1 k k j=1 K ∆ * opt j k + 1 -K ∆ * opt j k + 1 j log Xn-j+1,n Xn-j,n = o P (1), and √ k   γ K ∆ * opt n,k -γ   = √ k   γ K ∆ * opt n,k -γ   + o P (1). Recall now that γ K ∆ * opt n,k = (1 -ρ) 2 ρ 2 γ (K 1 ) n,k - (1 -2ρ) ρ 2 γ (K2,ρ) n,k
We use the following decomposition,

√ k   γ K ∆ * opt n,k -γ   = (1 -ρ) 2 ρ 2 √ k γ (K 1 ) n,k -γ - (1 -2ρ) ρ 2 √ k γ (K2,ρ) n,k -γ From (6.43), it is clear that √ k γ (K 1 ) n,k -γ = √ k a (n/k) 1 -ρ + γ n k 1 0 s -1 Bn 1 -s k n d (sK1(s)) + o P (1) and √ k γ (K2,ρ) n,k -γ = 1 -ρ 1 -2ρ √ ka (n/k) + γ n k 1 0 s -1 Bn 1 -s k n d (sK2,ρ(s)) + o P (1).
Finally, combining these two previews expansions, we get: The first part of Lemma 6.4 follow.

√ k   γ K ∆ * opt n,k - 
Focussing on the second part and we have

a n,k ( ρ ) := - (1 -ρ)(1 -2 ρ) ρ 2 γ (K 1 ) n,k -γ (K 2, ρ ) n,k . Thus, √ k ( a n,k ( ρ ) -a(n/k)) = (1 -ρ) √ k γ (K 1 ) n,k -γ - a(n/k) 1 -ρ -(1 -ρ) √ k   γ K ∆ * opt n,k -γ   + √ k a(n/k) (1 -ρ) (1 -ρ) -1 .
Since ρ is a consistent estimator of ρ, this leads to the desired result.

Proof of Lemma 6.5.

Following the same approach as in the Proof of Lemma 6.3, we have

U n,k,2 Q (K ∆ * opt ) n,k, ρ Ln(α) - U n,k,2 (Q) L(Q, α) = U n,k,2 Q (K ∆ * opt ) n,k, ρ Ln(α) - U n,k,2 (Q) L(Q, α) + U n,k,2 Q (K ∆ * opt ) n,k, ρ L(Q, α) - U n,k,2 (Q) L(Q, α) = 1 L(Q, α) U n,k,2 Q (K ∆ * opt ) n,k, ρ -U n,k,2 (Q) - U n,k,2 Q (K ∆ * opt ) n,k, ρ
Ln(α)L(Q, α) Ln(α) -L(Q, α) .

This implies that:

√ n        U n,k,2 Q (K ∆ * opt ) n,k, ρ Ln(α) - U n,k,2 (Q) L(Q, α)        (k/n) 1/2 X n-k,n = 1 L(Q, α) × √ n U n,k,2 Q (K ∆ * opt ) n,k, ρ -U n,k,2 (Q) (k/n) 1/2 X n-k,n - U n,k,2 Q (K ∆ * opt ) n,k, ρ Ln(α)L(Q, α) × √ n Ln(α) -L(Q, α) (k/n) 1/2 X n-k,n . (6.48) Recall that U n,k,2 Q (K ∆ * opt ) n,k, ρ = (k/n) X n-k,n 1 -γ (K ∆ * opt ) n,k      1 - a n,k ( ρ ) γ (K ∆ * opt ) n,k + ρ -1     
. Now, it allows us to look at the first right term of the Equation 6.48. Thus, we have the following decomposition:

√ n L(Q, α) (k/n) 1/2 U (n/k) U n,k,2 Q (K ∆ * opt ) n,k, ρ -U n,k,2 (Q) = 6 i=1
Sn,i

where

Sn,1 = 1 L(Q, α) 1 -γ (K ∆ * opt ) n,k   1 - a n,k ( ρ ) γ (K ∆ * opt ) n,k + ρ -1    √ k U (Y n-k,n ) U(n/k) - k n Y n-k,n γ Sn,2 = 1 L(Q, α) 1 -γ (K ∆ * opt ) n,k   1 - a n,k ( ρ ) γ (K ∆ * opt ) n,k + ρ -1    √ k k n Y n-k,n γ - 1 
Sn,3 = 1 L(Q, α) 1 -γ (K ∆ * opt ) n,k 1 -γ √ k γ (K ∆ * opt ) n,k -γ Sn,4 = √ ka(n/k) L(Q, α)     1 (1 -γ)(γ + ρ -1) - 1 1 -γ (K ∆ * opt ) n,k γ (K ∆ * opt ) n,k + ρ -1     Sn,5 = - 1 L(Q, α) 1 -γ (K ∆ * opt ) n,k γ (K ∆ * opt ) n,k + ρ -1 √ k ( a n,k ( ρ ) -a(n/k)) Sn,6 = √ n L(Q, α)(k/n) 1/2 U(n/k) k/n 1 -γ 1 - a(n/k) γ + ρ -1 U(n/k) -U n,k,2 (Q) .
Next, we are going to study separately the terms Sn,1, ..., Sn,6.

Term Sn,1. Note that

Sn,1 = 1 -γ (K) n,k 1 -γ (K ∆ * opt ) n,k   1 - a n,k ( ρ ) γ (K ∆ * opt ) n,k + ρ -1    Tn,1
where Tn,1 is defined in the Proof of Lemma 6.3. Thus combining Lemma 6.4 with the consistency of ρ and (6.44), we obtain that Sn,1 = o P (1). (6.49)

Term Sn,2. Similarly, we observe that Sn,2 = Tn,2(1 + o P (1)) where Tn,2 is defined in the proof of Lemma 6. where Tn,4 is defined in the proof of Lemma 6.3. Thus using (6.47) and the assumption that √ k a(n/k) → λ ∈ R, as n → ∞. We deduce that Sn,6 = o P (1). (6.54)

Combining (6.49)-(6.54), Lemma 6.5 follows.

  cannot be obtained directly, since it depends on the unknown parameters and expressions: γ, ρ, a(n/k) and K ∆ * opt are unknown. To solve this issue, we propose to replace ρ by ρ, where ρ is either a canonical negative value ρ = ρ = ρ 0 or an external estimator ρ = ρ kρ , consistent in probability to ρ, with k ρ := k ρ (n) an intermediate sequence of integers greater than k, satisfying k ρ → ∞ and k ρ /n → 0, as n → ∞. Finally, as in (3.11), we arrive to the following tail index estimator:

  is computed with the tail index estimators γ (K) n,k , for different sample fractional numbers of top order statistics k = 10, ..., m n , where m n is the integer part of 0.2 × n, which ensures the validity of the condition β = 0.8 < 1 -k/n.

,(

  2n log log n and ρ kρ exists . Next, we compare on the one hand the performance of the mentioned QSR index estimators by computing the absolute value of the median together with the median squared errors (MSE) based on the N samples, where η := η(Q, 0.2, 0.8) is the true value of the QSR index and η (i) is the i-th value (i = 1, ..., N ) of an estimator of η(Q, 0.2, 0.8) evaluated at different sample fractional numbers of top order statistics k as mentioned above. The results are displayed on Figure 5.1 and Figure 5.2. It appears on Figure 5.2 that the closer ρ is to 0, the more important is the bias of η (K ∆ * opt ) n,k, ρ (0.2, 0.8). The effect of the bias correction on the MSE is illustrated on Figure 5.2. We can observe that the MSE of the reduced-bias estimator η
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 51 Figure 5.1: Absolute bias of the median of η (K) n,k (0.2, 0.8) (black line), η (K2,ρ) n,k (0.2, 0.8) (blue line) and
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 5 Figure 5.2: Median Squared Errors of the median of η (K) n,k (0.2, 0.8) (black line), η (K2,ρ) n,k (0.2, 0.8) (blue

  confidence intervals, computed with their associated optimal numbers of top statistics k * , based on N = 500 samples of size n = 1500, from a Burr distribution defined as F (x) = (1 + x -3ρ 2 ) 1/ρ . The true values of the QSR index are η(Q, 0.2, 0.8) = 292.93 for ρ = -0.5, η(Q, 0.2, 0.8) = 73.47, for ρ = -0.75 and η(Q, 0.2, 0.8) = 37.70 for ρ = -1.

  ∆ * opt (s) + o P (1).

For a given ρ(

  be either a canonical negative value ρ = ρ = ρ0 or an external estimator ρ = kρ , consistent in probability to ρ, with kρ := kρ(n) an intermediate sequence of integers greater than k, satisfying kρ → ∞ and kρ/n → 0, as n → ∞, we have from Lemma 6.4, γ a n,k ( ρ) P → 0, as n -→ ∞. Since (k/n) X n-kas n -→ 0.Consequently, according to the Lemma 6.1, the second right term of the Equation6.48 is equal to o P (1).

(

  Sn,4. Under the assumption that √ k a(n/k) → λ ∈ R, as n → ∞ and by the consistency of ρ and γ
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 5 1, Table 5.2 and Table 5.3, we present the results of the estimated values of the above mentioned QSR index estimators with respect to the sample size. Remarking that from Theorem 4.1 and Theorem 4.2, the asymptotic variances of the QSR index estimators under study depend on unknown parameters,