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Local cyclic homology of group Banach algebras of
“non-positively curved” discrete groups

Michael Puschnigg

Abstract

We calculate the local cyclic homology of group Banach-algebras of discrete
groups acting properly, isometrically and cocompactly on a CAT(0)-space.

1 Introduction

Cyclic homology of Banach algebras was introduced by Connes [Co] as a ho-
mology theory which should allow, via the Chern-character, an approximative
calculation of Banach K-theory by means of classical homological algebra.
While the theory and its formal properties were amply and quite successfully
studied during the eighties and nineties of the last century, explicit calcula-
tions in cases not accesible by formal arguments remained rare.
Before going into details I want to give some explanation why the calculation
of cyclic homology theories for Banach algebras turned out to be so difficult.
Connes showed that cyclic homology may be viewed as a classical derived
functor [KS] and Nistor used this point of view to calculate the cyclic homol-
ogy of group rings and algebraic crossed products [Ni]. On the other hand
the strongest version of Bott’s Periodicity Theorem, due to Cuntz and Higson
[CMR],Theorem 7.24, states that every additive, stable and split exact homo-
topy functor on the category of Banach-algebras is 2-periodic. In particular, it
does not vanish in negative degrees and therefore cannot be a derived functor
unless it vanishes identically.
We view this as the reason why the extension of Nistor’s work to analytic and
local cyclic theory produces notoriously divergent formulas when applied to
group Banach algebras. Therefore a new algebraic framework will be used in
order to overcome these difficulties. We adapt the approach of [Pu1] to the pe-
riodic cyclic homology of group rings, based exclusively on Z/2Z-graded chain
complexes, to a topological setting, and use a notion of “non-commutative”
derived functor to obtain via a rather simple calculation our main result:

Theorem 1.1. Let Γ be a discrete group which either acts properly, isomet-
rically and cocompactly on a CAT (0)-space or which is word-hyperbolic.Then

HC loc∗ (`1(Γ)) ' H∗(Γ,CΓtors) (1.1)

where CΓtors denotes the submodule of CΓ spanned by the torsion elements,
equipped with the adjoint action.
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In fact the analytic cyclic bicomplex of `1(Γ) becomes isomorphic to the fi-
nite dimensional vector space H∗(Γ,CΓtors) in the derived ind-category [Pu2].

The right hand side of formula (1.1) is a classical derived functor, obtained by
taking the homology of the complex of Γ-coinvariants of C∗(Γ,C)⊗C CΓtors,
where C∗(Γ,C) is the projective standard or Bar-resolution of the constant
Γ-module C. We will identify the left hand side of formula (1.1) with a derived
functor in a “non-commutative” sense.

For us a “non-commutative” resolution of a Γ-algebra A is a surjective
homomorphism R→ A of Γ-algebras with nilpotent kernel such that R is pro-
jective as Γ-module. By Goodwillie’s Theorem or the homotopy invariance of
periodic/analytic cyclic homology the induced morphism CC∗(R) → CC∗(A)
of cyclic bicomplexes will be a chain-homotopy equivalence and CC∗(R) will
be a projective Γ-module. For details see [Pu1]. In our case A = C and we
choose as resolution the algebra R = C〈Γ〉, given by group ring CΓ, equipped
with the pathological multiplication

a ∗ b = ε(a) · b, ∀a, b ∈ C〈Γ〉, ε : CΓ→ C the trivial representation. (1.2)

A suitable completion of the complex of Γ-coinvariants of CC∗(C〈Γ〉)⊗CΓtors
equals the analytic cyclic bicomplex of the group Banach algebra `1(Γ) and
show that the latter calculates a“derived functor” in the non-commutative
sense. In order to establish the main theorem it suffices therefore to compare
the two resolutions. We show that the augmentation morphisms

CC∗(C〈Γ〉) ←− CC∗(C〈Γ〉)⊗ C∗(Γ,C) −→ C∗(Γ,C) (1.3)

extend to chain-homotopy equivalences of ind-Fréchet complexes of Γ-modules.
Passing to Γ-coinvariants and taking homology yields 1.1.

We want to point out that our method does not provide a distinguished chain
map of complexes inducing the isomorphism (1.1). The higher index theo-
rem of Connes-Moscovici [CM] implies however that (1.1) is compatible with
the assembly map in Banach K-theory under the Chern-character. Therefore
one may deduce from Lafforgues’ work [La] and our result that the Chern-
character gives rise to an isomorphism

ch : K∗(`
1(Γ))⊗Z C '−→ HC loc∗ (`1(Γ)) (1.4)

for the class of discrete groups considered here.

The content of the paper is as follows. Section 2 recalls the Bar- and Rips-
complexes attached to a discrete group and discusses some contracting homo-
topies of these resolutions. Section 3 introduces “standard” algebras and uses
them to construct the cyclic or “non-commutative” resolutions of the constant
Γ-algebra C. In section 4 various locally convex topologies on the considered
resolutions are introduced and it is shown that the homotopy equivalences in
(1.3) are continuous with respect to these topologies. In section 5 we deduce
our main theorems from the results of the previous sections. In a final remark
we indicate a correction of an error in [Pu4].
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2 The standard resolution

Definition 2.1. The Bar-complex ∆•(X) of a set X is the simplicial set
with n-simplices ∆n(X) = Xn+1, face maps

∂i([x0, . . . , xn]) = [x0, . . . , xi−1, xi+1, . . . , xn], (2.1)

and degeneracy maps

sj([x0, . . . , xn]) = [x0, . . . , xj , xj , . . . , xn] for 0 ≤ i, j ≤ n ∈ N. (2.2)

The support of a Bar-simplex is Supp([x0, . . . , xn]) = {x0, . . . , xn} ⊂ X.

Definition 2.2. Let (X, d) be a metric space and let R ≥ 0. The Rips-
complex ∆R

• (X) of (X, d) is the simplicial subset of the Bar-complex ∆•(X)
given by the Bar-simplices of diameter at most R :

∆R
n (X) = {[x0, . . . , xn] ∈ ∆n(X), d(xi, xj) ≤ R, 0 ≤ i, j ≤ n}. (2.3)

Every map of sets f : X → Y gives rise to a simplicial map

f• : ∆•(X)→ ∆•(Y ), [x0, . . . , xn] 7→ [f(x0), . . . , f(xn)]. (2.4)

In particular, every group action on the set X gives rise to a simplicial action
on the Bar-complex ∆•(X) and every isometric group action on a metric space
(X, d) gives rise to a simplicial action on the Rips-complexes ∆R

• (X) for any
R > 0.

Definition 2.3. The Bar chain complex C∗(X,C) of a set X is given
by the complex vector space with basis ∆∗(X). Its differentials are given by
the alternating sum of the linear operators induced by the face maps. It is
augmented by

ε : C∗(X,C) → C, [x] 7→ 1, x ∈ X. (2.5)

The Rips chain complexes CR∗ (X,C) of a metric space are defined similarly.
They are subcomplexes of the Bar chain complex.

Lemma 2.4. Let ϕ∗, ψ∗ : C∗(X,C) → C∗(Y,C) be chain maps of Bar com-
plexes such that εY ◦ ϕ = εY ◦ ψ, where εY : C∗(Y,C) → C denotes the
augmentation. Then the linear operator

hBar(ϕ,ψ) : C∗(X,C) → C∗+1(Y,C)

[x0, . . . , xn] 7→
n∑
i=0

(−1)i [ϕi(x0, . . . , xi), ψn−i(xi, . . . , xn)]

(2.6)
defines a natural chain homotopy between ϕ and ψ:

ψ∗ − ϕ∗ = ∂ ◦ hBar(ϕ,ψ) + hBar(ϕ,ψ) ◦ ∂. (2.7)

In particular, if G is a group acting on X and Y , and if ϕ∗ and ψ∗ are
G-equivariant, then h(ϕ,ψ) is G-equivariant as well.
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The lemma implies that the augmentation map εX : C∗(X,C) → C is a
chain homotopy equivalence.

Lemma 2.5. The antisymmetrization operator

πalt : C∗(X,C) → C∗(X,C)

[x0, . . . , xn] 7→ 1
(n+1)!

∑
σ∈Σn+1

(−1)ε(σ) [xσ(0), . . . , xσ(n)]
(2.8)

is a chain map which preserves the Rips subcomplexes and equals the identity
in degree zero. In particular it is canonically chain homotopic to the identity
by the previous lemma.

Definition 2.6. a) The alternating Bar chain complex C∗(X,C)alt of
X is the image of the full Bar chain complex under the antisymmetriza-
tion operator.

b) Similarly the alternating Rips chain complexes CR∗ (X,C)alt, R > 0,
are the images of the corresponding full Rips chain complexes under the
antisymmetrization operator.

The alternating Bar- and Rips-chain complexes are at the same time quo-
tients and subcomplexes (deformation retracts) of the full Bar- and Rips chain
complexes.

Let ϕ : C0(X,C) → C0(Y,C) be a linear map which commutes with aug-
mentations, i.e. εY ◦ ϕ0 = εX . Then ϕ0 extends to a chain map of Bar
chain-complexes given by

ϕn = ϕ⊗
n+1

0 : Cn(X,C) ' C0(X,C)⊗
n+1 → C0(Y,C)⊗

n+1 ' Cn(Y,C), n ≥ 0.
(2.9)

In the sequel we will deal with two classes of discrete groups [BH]:

� Groups acting properly, isometrically and cocompactly on a CAT (0)-
space.

� Word-hyperbolic groups.

Let Γ be a discrete group acting properly, isometrically and cocompactly on
the CAT (0)-space X. This implies that X is proper, i.e. every closed bounded
subset of X is compact. Fix once and for all a relatively compact fundamental
domain D of the Γ-action on X, i.e. a relatively compact Borel subset D ⊂ X
such that every Γ-orbit of X intersects D in a single point. We choose a base
point x ∈ D of X and equip Γ with the proper, left-Γ-invariant pseudo-metric

dΓ : Γ× Γ→ R+, dΓ(g, h) = dX(gx, hx). (2.10)

It is a metric if the (finite) stabilizer Γx of x is trivial.

Let (X, d) be a complete CAT (0)-space. Let Y ⊂ X be a closed, convex
subset. Let

π′Y : X → Y
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be the canonical projection which sends a point x′ ∈ X to the unique point
of Y at minimal distance from x. The projection does not increase distances,
i.e.

d(π′Y (x′), π′Y (x′′)) ≤ d(x′, x′′), ∀x′, x′′ ∈ X. (2.11)

For v ∈ Γx let Xv ⊂ X be the set of v-fixed points in X. It is closed, convex
and not empty [BH] II.2.8. Denote by C∗(Γ, v) the subcomplex of C∗(Γ,C)
spanned by

∆•(Γ, v) = {α ∈ ∆•(Γ), gD ∩Xv 6= ∅, ∀g ∈ Supp(α)} (2.12)

and put CR∗ (Γ, v) = C∗(Γ, v) ∩ CR∗ (Γ,C). For y ∈ Xv and n ∈ N let

π(y,v,n) : C0(Γ,C)→ C0(Γ,C) (2.13)

be the linear map characterized by

π(y,v,n)([g]) =
1

|S(y,v,n)(g)|
·

∑
h∈S(y,v,n)(g)

[h] (2.14)

for all g ∈ Γ, where

S(y,v,n)(g) = {h ∈ Γ, π′Xv ◦ π′B(y,n)(gx) ∈ hD}. (2.15)

It is equivariant with respect to the action of the finite cyclic subgroup U ⊂ Γ
spanned by v ∈ Γ because every ball B(y, r)centered at y and the fixed point
set Xv are invariant under U . As it commutes with augmentations it gives
rise to a U -equivariant chain map

(π(y,v,n))∗ : C∗(Γ, v) −→ C∗(Γ, v). (2.16).

Because “orthogonal” projections do not increase distances [BH] II.2.5 one
has

dΓ(h, h′) ≤ dΓ(g, g′) + |n− n′|+ 2 diam(D) (2.17)

for all h ∈ S(y,v,n)(g), h′ ∈ S(y,v,n′)(g
′), g, g′ ∈ Γ. Therefore (2.16) restricts to

(π(y,v,n))∗ : CR∗ (Γ, v) −→ C
R+2 diam(D)
∗ (Γ, v), ∀R > 0. (2.18)

Lemma 2.7. The chain map

(π(y,v))∗ : C∗(Γ, v) −→ C∗(Γ, v) (2.19)

induced by the linear projection

π(y,v) : C0(Γ,C) → C0(Γ, v)

[g] 7→ 1
|Γy |

∑
h∈Γy

[hh̃],
(2.20)

where h̃ ∈ Γ is any element satisfying y ∈ h̃D, is U -equivariantly chain-
homotopic to the identity. The same holds for alternating Bar chain com-
plexes.
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Proof: In the notations of (2.6) and (2.16) put

h(y,v) =
∞∑
n=0

hBar(π(y,v,n), π(y,v,n+1)) : C∗(Γ, v) −→ C∗+1(Γ, v). (2.21)

Note that hBar(π(y,v,r), π(y,v,r+1))(α) = 0 for Bar-simplices α ∈ ∆•(Γ, v)

supported in B(y, r), so that this operator is well defined. It defines a U -
equivariant chain homotopy between (π(y,v))∗ = (πy,v,0)∗ and the identity.
Using the homotopy operator

halt(y,v) = πalt ◦ h(y,v) : C∗(Γ, v)alt −→ C∗+1(Γ, v)alt, (2.22)

one gets the corresponding assertion for alternating Bar-complexes. �
The homotopy operator (2.21) restricts for all R > 0 to a linear map

h(y,v) : CR∗ (Γ, v) −→ C
R+2 diam(D)+1
∗+1 (Γ, v). (2.23)

Let (Γ, S) now be a δ-hyperbolic group, i.e. Γ is a group with finite
symmetric set S of generators such that the Cayley-graph G(Γ, S) is a δ-
hyperbolic geodesic metric space [BH]. Hyperbolicity does not depend on the
choice of S (but the hyperbolicity constant δ ≥ 0 does). For a subset Y ⊂ X
let

πY : C0(Γ,C) → C0(Γ,C)

[g] 7→ 1
|S′Y (g)|

∑
h∈S′Y (g)

[h]
(2.24)

where S′Y (g) = {h ∈ Y, d(g, h) = d(g, Y )}. One has

dS(h, h′) ≤ dS(g, g′) + |n− n′|+ 2δ (2.25)

for all h ∈ S′B(y,n)(g), h′ ∈ S′B(y,n′)(g
′), g, g′ ∈ Γ, where B(y, r) denotes the

closed r-ball around y ∈ Zv. Therefore

(πB(y,n))∗ : CR∗ (Γ,C) −→ CR+2δ
∗ (Γ,C), ∀R ≥ 0. (2.26)

The linear operator

h(y,v) =

∞∑
n=0

hBar(πB(y,n), πB(y,n+1)) : C∗(Γ,C) −→ C∗+1(Γ,C). (2.27)

is a chain homotopy between the identity and the constant map onto {y}. It
restricts for every R > 0 to a linear map

h(y,v) : CR∗ (Γ,C) −→ CR+2δ+1
∗+1 (Γ,C). (2.28)

In all cases we have for g, v ∈ Γ, |v| <∞, y ∈ Xv or y ∈ Zv the identities

g ◦ π(y,v) ◦ g−1 = π(gy,gvg−1), g ◦ h(y,v) ◦ g−1 = h(gy,gvg−1) g ◦ halt(y,v) ◦ g
−1 = halt(gy,gvg−1).

(2.29)
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3 The cyclic resolution

3.1 The cyclic bicomplex

Let R be a unital and associative complex algebra. An R-algebra is a unitary
R-bimodule A, equipped with an R-bimodule homomorphism m : A⊗RA →
A, turning A into a (not necessarily unital) complex algebra [Pu1]. A ho-
momorphism of R-algebras is a homomorphism of the underlying complex
algebras, which is at the same time a homomorphism of R-bimodules.

Recall that the graded R-bimodule of algebraic differential forms of A
over R is defined as

Ωn(A : R) ' A⊗
n+1
R ⊕A⊗nR

a0da1 . . . dan ↔ a0 ⊗ a1 ⊗ . . .⊗ an

da1 . . . dan ↔ a1 ⊗ . . .⊗ an

(3.1)

with R-bimodule-structure induced by the natural one on the tensor powers
of A. The commutator quotient with respect to this bimodule structure is the
graded vector space

Ω∗(A : R)\ = Ω∗(A : R)/[Ω∗(A : R), R]. (3.2)

Under the canonical projection

Ω∗A → Ω∗(A : R)\ (3.3)

the well known Hochschild- and Connes-operators

b : Ω∗A → Ω∗−1A, B : Ω∗A → Ω∗+1A (3.4)

descend to linear operators

b : Ω∗(A : R)\ → Ω∗−1(A : R)\, B : Ω∗(A : R)\ → Ω∗+1(A : R)\, (3.5)

satisfying the usual identities

b2 = B2 = bB +Bb = 0. (3.6)

The Z/2Z-graded cyclic bicomplex of A over R is given by

CC∗(A : R) = (Ω∗(A : R)\, b+B) . (3.7)

It is graded by the parity of differential forms. The canonical projection (3.3)
gives rise to an epimorphism

π : CC∗(A) −→ CC∗(A : R) (3.8)

of cyclic bicomplexes.

The chain maps of cyclic bicomplexes induced by two smoothly homotopic
R-algebra homomorphisms are naturally chain homotopic by a well known
homotopy formula which we recall now [Lo], 4.1.8.
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Proposition 3.1. Let Ft : A→ B, 0 ≤ t ≤ 1, be a family of R-algebra homo-
morphisms depending smoothly on a parameter t. Then the Cartan homotopy
formula

∂

∂t
CC∗(Ft) = (b+B)(ht +Ht) + (ht +Ht)(b+B) (3.9)

holds for the linear operators

ht : Ω∗(A : R)\ → Ω∗−1(A : R)\ and Ht : Ω∗(A : R)\ → Ω∗+1(A : R)\

given by the formulas

ht(a
0da1 . . . dan) = (−1)n−1

•
Ft(a

n)Ft(a
0)dFt(a

1) . . . dFt(a
n−1) (3.10)

and
Ht(a

0da1 . . . dan) =∑
1≤i≤j≤n

(−1)in+1dFt(a
i)dFt(a

i+1) . . . dFt(a
j−1)d

•
Ft(a

j)dFt(a
j+1) . . . dFt(a

n)dFt(a
0) . . . dFt(a

i−1).

(3.11)

3.2 Standard algebras

Let X be a set and let C〈X〉 be the complex vector space over X. The
projection

p : X ×X → X, (x, y) 7→ y (3.12)

turns C〈X〉 into an associative complex algebra with multiplication

m : C〈X〉 ⊗C C〈X〉 = C〈X ×X〉 Cp−→ C〈X〉. (3.13)

If X consists of a single element the algebra thus obtained is canonically
isomorphic to the complex field. Every map of sets f : X → Y gives rise to
an algebra homomorphism

C〈f〉 : C〈X〉 → C〈Y 〉. (3.14)

In particular the constant map to a point induces an augmentation homomor-
phism

εX : C〈X〉 → C (3.15)

The multiplication in C〈X〉 is characterized by the identity

a · b = εX(a)b, ∀a, b ∈ C〈X〉. (3.16)

Lemma 3.2. a) Let ϕ : C〈X〉 → C〈Y 〉 be a linear map. Then ϕ is a
non-vanishing homomorphism of algebras iff it is compatible with aug-
mentations, i.e. if

εY ◦ ϕ = εX . (3.17)

b) Any two non-vanishing algebra homomorphisms ϕ,ψ : C〈X〉 → C〈Y 〉
are smoothly homotopic via the affine homotopy

Ft = (1− t)ϕ+ tψ, 0 ≤ t ≤ 1 (3.18)

of algebra homomorphisms.
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Proof: Let ϕ : C〈X〉 → C〈Y 〉 be a linear map and let x, x′ ∈ X. Then

ϕ(x · x′) = ϕ(εX(x)x′) = εX(x)ϕ(x′) and ϕ(x) · ϕ(x′) = εY (ϕ(x))ϕ(x′).

So on the one hand the condition εY ◦ ϕ = εX implies that ϕ is a homo-
morphism of algebas. Moreover it does not vanish because εX 6= 0. If on
the other hand ϕ is a homomorphism of algebras and x′ ∈ X is chosen such
that ϕ(x′) 6= 0 the two equations above imply that εY ◦ ϕ = εX . The second
assertion follows immediately from the first one by verifying the compatibility
of the linear maps Ft, 0 ≤ t ≤ 1, with augmentations. �

It follows that the augmentation map from C〈X〉 to the complex field is a
smooth homotopy equivalence.

3.3 The cyclic resolution

The integrated version of the Cartan homotopy formula 3.1 for the affine
homotopy (3.18) between non-vanishing homomorphisms of standard algebras
looks as follows.

Lemma 3.3. Let f, g : C〈X〉 → C〈Y 〉 be non-vanishing algebra homomor-
phisms. Then

CC(C〈g〉)−CC(C〈f〉) = (b+B)◦(h+H)(f, g)+(h+H)(f, g)◦(b+B) (3.19)

with h(f, g) : Ω∗(C〈X〉)→ Ω∗−1(C〈Y 〉) and H(f, g) : Ω∗(C〈X〉)→ Ω∗+1(C〈Y 〉)
given for all x0, x1, . . . , xn ∈ X and all n ∈ N by the formulas

h(f, g)(dx1 . . . dxn) =
(−1)n−1

n

n−1∑
k=0

(
n− 1
k

)−1 ∑
S⊂{1,...,n−1}

|S|=k

(g(xn)−f(xn))duS(x1) . . . duS(xn−1),

(3.20)
and

H(f, g)(x0dx1 . . . dxn) =
∑

1≤i≤j≤n

1

n+ 1

n∑
k=0

(
n
k

)−1 ∑
S⊂{0,...,n}\{j}

|S|=k

ωi,j,S (3.21)

with

ωi,j,S = (−1)ni+1duS(xi) . . . duS(xj−1)d(g(xj)−f(xj))duS(xj+1) . . . duS(xn)duS(x0) . . . duS(xi−1)
(3.22)

where

uS(xj) =

{
f(xj) j ∈ S,
g(xj) j /∈ S.

(3.23)

Moreover
h(f, g)(x0dx1 . . . dxn) = 0 (3.24)

and
H(f, g)(dx1 . . . dxn) = 0. (3.25)

Here we identify elements of X with the corresponding basis vectors in C〈X〉.
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This follows from a straightforward calculation by noting that for integers
0 ≤ k ≤ n

(n+ 1)

(
n
k

) 1∫
0

(1− t)ktn−kdt = 1.

In the sequel the notations of Section 2 will be understood.

Lemma 3.4. Let Γ be an isometry group of a CAT (0)-space as in Section 2
or let Γ be word-hyperbolic. The endomorphism of standard algebras induced
by the constant map of Γ onto {g′} ⊂ Γ gives rise to a chain map

πcycg′ : CC∗(C〈Γ〉) −→ CC∗(C〈Γ〉)

of cyclic bicomplexes which is chain homotopic to the identity.

Proof: For an isometry group of a CAT (0)-space put

hcycg′ = (h+H)(πg′ , π(g′x,e,0)) +
∞∑
n=0

(h+H)(π(g′x,e,n), π(g′x,e,n+1)) (3.26)

(see (2.14.)-(2.16)). This defines an operator hcycg′ : CC∗(C〈Γ〉) −→ CC∗+1(C〈Γ〉)
because h(π(g′x,e,r), π(g′x,e,r+1))(β) = H(π(g′x,e,r), π(g′x,e,r+1))(β) = 0 for β ∈
Ω∗(C〈Γ〉) supported in B(g′x, r), so that the formal sum (3.26) becomes fi-
nite when evaluated on a given cyclic simplex. It defines a chain homotopy
between πcycg′ and the identity. In the case of word-hyperbolic groups we use
the homotopy operator

hcycg′ =
∞∑
n=0

(h+H)(π(g′,n), π(g′,n+1)) (3.27)

instead (the notations being those of (2.24)-(2.26)). �
These operators are compatible with the Γ-action in the sense that for all

g ∈ Γ

g ◦ πcycg′ ◦ g
−1 = πcycgg′ and g ◦ hcycg′ ◦ g

−1 = hcycgg′ respectively. (3.28)

4 The tilting complexes

4.1 Ind-complexes

Recall that a category I is filtrant if

� For any two objects i, j ∈ ob(I) there exists a diagram i→ k ← j in I.

� For any two morphisms α, β ∈ morI(i, j) there exists a morphism γ ∈
morI(j, k

′) such that γ ◦ α = γ ◦ β.
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Recall the ind-category ind(C) associated to a given category C. It has the
family of covariant functors from filtrant categories to C as objects, and the
set of morphisms between two ind-objects is given by

Morind(C)(”lim
i∈I

”Xi, ”lim
j∈J

”Yj) = lim
←−
i∈I

lim
−→
j∈J

MorC(Xi, Yj), (4.1)

where the limits on the right hand side are taken in the category of sets. Note
that the ind-category admits small filtrant colimits.

An ind-Fréchet-complex is an object in the ind-category of Z/2Z-graded chain
complexes of complex Fréchet spaces. A chain homotopy between to mor-

phisms ϕ,ψ : ”lim
i∈I

”C
(i)
∗ → ”lim

j∈J
”C̃

(j)
∗ is an odd morphism h : ”lim

i∈I
”C

(i)
∗ →

”lim
j∈J

”C̃
(j)
∗+1 of Z/2Z-graded ind-Fréchet spaces satisfying ψ−ϕ = ∂ ◦h+h ◦∂.

4.2 Some locally convex topologies

Let Γ be a discrete group acting properly, isometrically and cocompactly on
the CAT (0)-space X, or suppose that Γ is word-hyperbolic. In the first case
let x ∈ X be a base point, and let D ⊂ X be a relatively compact fundamental
domain of the Γ-action containing x. In the second case let dΓ be the word-
metric associated to a finite symmetric set of generators of Γ. Let v ∈ Γx
(resp. v ∈ Γ) be an element of finite order, let Zv ⊂ Γ be its centralizer, and
let U = vZ ⊂ Γ be the finite cyclic subgroup generated by v. The notations
of sections 2 and 3 are understood.

Definition and Lemma 4.1. a) Let Γ be a discrete isometry group of a
CAT (0)-space as in Section 2. For R > 0 let

CR∗ (Γ, v) = CR∗ (Γ, v) ⊂
(
`1(∆•(Γ)), ∂bar

)
(4.2)

and denote by CR∗ (Γ, v)alt its image under antisymmetrization.

b) For a word-hyperbolic group Γ and R > 0 put

CR∗ (Γ, v) = CR∗ (Zv, dΓ) ⊂
(
`1(∆•(Γ)), ∂bar

)
(4.3)

and denote by CR∗ (Γ, v)alt its image under antisymmetrization.

c) Put
C∗(Γ, v) = ” lim

R→∞
” CR∗ (Γ, v), (4.4)

and
Calt∗ (Γ, v) = ” lim

R→∞
” CR∗ (Γ, v)alt. (4.5)

These are ind-Banach chain complexes of Zv-modules.

Definition and Lemma 4.2. Let Γ be a discrete isometry group of a CAT (0)-
space as in Section 1 or let Γ be word-hyperbolic. Let v ∈ Γ be an element of
finite order.
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a) Denote by
∆cyc
n (Γ) = ∆cyc

n (Γ)′ ∪∆cyc
n (Γ)′′ (4.6)

= {〈g0〉d〈g1〉 . . . d〈gn〉, g0, . . . , gn ∈ Γ} ∪ {d〈g1〉 . . . d〈gn〉, g1, . . . , gn ∈ Γ}

the canonical basis of Ωn(C〈Γ〉), n ≥ 0. Its elements are called cyclic
n-simplices. The support of cyclic simplices is the set of its vertices.

b) The v-weight of cyclic simplices is given by

|〈g0〉d〈g1〉 . . . d〈gn〉|v = dΓ(g0, g1)+. . .+dΓ(gn−1, gn)+dΓ(gn, vg0) (4.7)

and

|d〈g1〉 . . . d〈gn〉|v = dΓ(g1, g2) + . . .+ dΓ(gn−1, gn) + dΓ(gn, vg1), (4.8)

respectively. The weight is invariant under left translation by Zv.

c) For λ,N > 1 and an integer k ≥ 0 let ‖ − ‖(λ,N,k) be the largest norm
on CC∗(C〈Γ〉) given on cyclic n-simplices by

‖ ωn ‖(λ,N,k) =
(1 + n)kN−n

c(n)!
λ|ωn|v . (4.9)

where c(2n) = c(2n+ 1) = n.

d) The linear map

χv : CC∗(C〈Γ〉) −→ CC∗(C〈Γ〉o U : Co U){v}

〈g0〉d〈g1〉 . . . d〈gn〉 7→ uv〈g0〉d(ue〈g1〉) . . . d(ue〈gn〉)

d〈g1〉 . . . d〈gn〉 7→ d(uv〈g1〉)d(ue〈g2〉) . . . d(ue〈gn〉)
(4.10)

is invariant under the U -action on the left and induces an isomorphism

CC∗(C〈Γ〉)U ' CC∗(C〈Γ〉)U
'−→ CC∗(C〈Γ〉o U : Co U){v}. (4.11)

e) The seminorms (4.9), restricted to the subcomplex
CC∗(C〈Γ〉)U of U -invariants of CC∗(C〈Γ〉), give therefore rise, via (4.11),
to seminorms on CC∗(C〈Γ〉oU : CoU){v}, denoted by the same letters.

f) Let CC∗(C〈Γ〉oU : CoU)(v,λ,N) be the completion of CC∗(C〈Γ〉oU :
C o U){v} with respect to ‖ − ‖(λ,N,k), k ≥ 0. It is a Fréchet chain
complex of Zv-modules.

g) Introduce finally the ind-Fréchet complex of Zv-modules

CC′∗(C〈Γ〉oU : CoU){v} = ” lim
(λ,N)→(1,∞)

CC∗(C〈Γ〉oU : CoU)(v,λ,N)”.

(4.12)

Definition and Lemma 4.3. Let Γ be a discrete isometry group of a CAT (0)-
space as in Section 2 or let Γ be word-hyperbolic. Let v ∈ Γ be an element of
finite order.
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a) For real numbers λ,N > 1, and integers k, l ≥ 0 let ‖ − ‖(λ,N,k,l)
be the largest norm on C∗(Γ, v)⊗CC∗(C〈Γ〉) given on standard genera-
tors αm ⊗ ωn, αm ∈ ∆m(Γ), ωn ∈ ∆cyc

n (Γ) by

‖ αm⊗ωn ‖(λ,N,k,l) = (1 + dΓ(Supp(αm), Supp(ωn)) + |ωn|v)l · ‖ ωn ‖(λ,N,k) .
(4.13)

b) The norms of a), restricted to the subcomplex C∗(Γ, v) ⊗ CC∗(C〈Γ〉)U
yield, via (4.11), norms ‖ − ‖(λ,N,k,l) on the complex

C∗(Γ, v)⊗ CC∗(C〈Γ〉o U : Co U){v}.

c) For R ≥ 0, λ,N > 1 let CCtilt∗ (Γ, v)(R,λ,N) be the completion of

CR∗ (Γ, v)alt ⊗ CC∗(C〈Γ〉o U : Co U){v}

with respect to the seminorms ‖ − ‖(λ,N,k,l), k, l ∈ N. This is a Z/2Z-
graded complex of Fréchet-spaces.

d) Put

CCtilt∗ (Γ, v) = ” lim
(R,λ,N)→(∞,1,∞)

”CCtilt∗ (Γ, v)(R,λ,N). (4.14)

This is a Z/2Z-graded ind-complex of Fréchet-spaces.

e) The diagonal action of Zv on C∗(Γ, v) ⊗ CC∗(C〈Γ〉)U is isometric with
respect to the norms ‖ − ‖(λ,N,k,l) and descends to an isometric action on

the Fréchet complexes CCtilt∗ (Γ, v)(R,λ,N) and on the ind-Fréchet complex

CCtilt∗ (Γ, v).

Proof: It has to be shown that the differentials in the complexes are
bounded with respect to the associated norms. The differential of the Bar-
complex is bounded because it is bounded degree-wise in the `1-norm, and the
complex CR∗ (Γ,C)alt equals zero in large degrees. One easily verifies that the
Hochschild- and Connes-differentials of the Fréchet complexes CC∗(C〈Γ〉oU :
Co U)(λ,N), λ,N > 1, are bounded as well. �

Remark 4.4. Already in the simplest case v = e the complex CC′∗(C〈Γ〉)
defined in 4.2 is rather different from the known analytic cyclic complexes as
its topology is not related to any topology on the underlying abstract algebra
C〈Γ〉.

4.3 The basic retractions

Lemma 4.5. The Zv-equivariant chain map

C∗(Γ, v)alt ⊗ CC∗(C〈Γ〉)U
ε⊗id−→ CC∗(C〈Γ〉o U : Co U){v} (4.15)

is a chain homotopy equivalence of complexes of Zv-modules.
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Proof: We begin with the case of an isometry group of a CAT (0)-space.
The mapping cone of ε : CBar∗ (X, v)alt → C equals (up to a shift of degrees)
the augmented Bar-complex C̃Bar∗ (X, v)alt = CBar∗ (X, v)alt ⊕ C[−1] with dif-
ferential ∂ = ∂Bar in strictly positive degrees and ∂ = ε in degree zero. Extend
the homotopy operators (2.21) , y ∈ Xv, to a contracting chain homotopy

halt(y,v) : C̃∗(Γ, v)alt → C̃∗+1(Γ, v)alt, (4.16)

of the augmented Bar-complex by putting halt(y,v)(1) = π(y,v)([e]) in degree -1.
Define a strictly Zv-equivariant linear map

µ′∗ : C̃∗(Γ, v)alt ⊗ CC∗(C〈Γ〉) −→ C̃∗+1(Γ, v)alt ⊗ CC∗(C〈Γ〉) (4.17)

by

αm ⊗ ω′n 7→ halt(π′Xv (g0x),v)(αm)⊗ ω′n, αm ⊗ ω′′n 7→ halt(π′Xv (g1x),v)(αm)⊗ ω′′n
(4.18)

for ω′n = 〈g0〉d〈g1〉 . . . d〈gn〉, ω′′n = d〈g1〉 . . . d〈gn〉 and αm ∈ ∆R
m(Γ, v), m ≥

−1.
Let

πU : CC∗(C〈Γ〉)→ CC∗(C〈Γ〉)U

be the canonical projection onto the U -fixed points given by averaging over
the finite cyclic group U . The identification (4.11) allows to define the Zv-
equivariant linear map

µ = (id⊗ χv) ◦ (id⊗ πU ) ◦ µ′ ◦ (id⊗ χ−1
v ) : (4.19)

C̃∗(Γ, v)alt⊗CC∗(C〈Γ〉oU : CoU){v} → C̃∗+1(Γ, v)alt⊗CC∗(C〈Γ〉oU : CoU){v}.

Let
ϕ = id− (µ ◦ ∂ + ∂ ◦ µ) : (4.20)

C̃∗(Γ, v)alt⊗CC∗(C〈Γ〉oU : CoU){v} → C̃∗(Γ, v)alt⊗CC∗(C〈Γ〉oU : CoU){v}

This is a Zv-equivariant chain map of the underlying Z/2Z-graded complexes
which is Zv-equivariantly chain homotopic to the identity and satisfies

ϕ
(
C̃∗(Γ, v)alt ⊗ CC∗(C〈Γ〉o U : Co U){v}

)
∩

C̃∗+1(Γ, v)alt ⊗ CC∗(C〈Γ〉o U : Co U){v}

(4.21)

for all n ∈ N.

The alternating Bar-complex yields a projective resolution of the constant
Γ-module C. As Γ acts cocompactly on X this module possesses also a
projective resolution of finite length. As any two resolutions are chain ho-
motopy equivalent it follows that there exists a Γ-equivariant linear map
η′ : C̃∗(Γ,C)alt → C̃∗+1(Γ,C)alt such that ∂ ◦ η′ + η′ ◦ ∂ = id in sufficiently
large degrees ∗ ≥ N0. Put

η = πXv ◦ η′ + hBar(πXv , id) : C̃∗(Γ, v)alt → C̃∗+1(Γ, v)alt. (4.22)
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Then

htilt0 = (η ⊗ id) ◦ ϕN0+1 +

N0∑
k=0

µ ◦ ϕk (4.23)

is a Zv-equivariant contracting chain homotopy of

C̃∗(Γ, v)alt ⊗ CC∗(C〈Γ〉o U : Co U){v} = Cone(ε⊗ id)[1].

In the case of a word-hyperbolic group the same argument applies with the
following modifications. We set h(y)(1) = [y] in degree -1 and put

µ′ : C̃∗(Γ, v)alt ⊗ CC∗(C〈Γ〉) −→ C̃∗+1(Γ, v)alt ⊗ CC∗(C〈Γ〉)

αm ⊗ ω′n 7→ 1
|S′v(g0)|

∑
h∈S′v(g0)

halt(h)(αm)⊗ ω′n,

αm ⊗ ω′′n 7→ 1
|S′v(g1)|

∑
h′∈S′v(g1)

halt(h′)(αm)⊗ ω′′n,

(4.24)
where

S′v(g) = {h ∈ Zv, d(g, h) = d(g, Zv)}, ∀g ∈ Γ. (4.25)

The centralizer Zv of an element of a word-hyperbolic group is word-hyperbolic
itself [BH] III.Γ, 4.7, 4.9. The alternating Rips-complexes CR∗ (Zv,C)alt pro-
vide then finite resolutions of Zv by finitely generated projective Zv-modules
for R >> 0. We let η = η′ : C̃∗(Γ, v)alt → C̃∗(Γ, v)alt be any Zv-equivariant
linear map such that ∂ ◦ η + η ◦ ∂ = id in sufficiently high degrees. �

Lemma 4.6. Let(
C̃R∗ (Γ, v)alt ⊗ CC∗(C〈Γ〉), ‖ − ‖(λ,N,k,l)

)
=

=
(
CR∗ (Γ, v)alt ⊗ CC∗(C〈Γ〉), ‖ − ‖(λ,N,k,l)

)
⊕
(
CC∗(C〈Γ〉), ‖ − ‖(λ,N,k)

)
a) In the CAT (0) case the Zv-equivariant linear map (4.17) satisfies

µ′(C̃R∗ (Γ, v)alt ⊗ CC∗(C〈Γ〉)) ⊂ C
R+2 diam(D)+1
∗ (Γ, v)alt ⊗ CC∗(C〈Γ〉)

(4.26)
and

‖ µ′(ξ) ‖(λ,N,k,l)≤ C(|v|, R, diam(D), l) ‖ ξ ‖(λ,N,k,l+1) (4.27)

for all ξ ∈ C̃R∗ (Γ, v)alt ⊗ CC∗(C〈Γ〉).
b) In the CAT (0) case the Zv-equivariant linear map (4.19) satisfies

µ(C̃R∗ (Γ, v)alt ⊗ CC∗(C〈Γ〉o U : Co U){v})

⊂ C
R+2 diam(D)+1
∗+1 (Γ, v)alt ⊗ CC∗(C〈Γ〉o U : Co U){v} (4.28)

and

‖ µ(ξ′) ‖(λ,N,k,l)≤ C ′(|v|, R, diam(D), l) ‖ ξ′ ‖(λ,N,k,l+1), (4.29)

for all ξ′ ∈ C̃R∗ (Γ, v)alt ⊗ CC∗(C〈Γ〉o U : Co U){v}.
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c) In the CAT (0) case there exists for each R > 0 an R′ >> R such that
the Zv-equivariant linear map (4.22) satisfies

(η ⊗ id)(CR∗ (Γ, v)alt ⊗CC∗(C〈Γ〉)) ⊂ CR
′
∗ (Γ, v)alt ⊗CC∗(C〈Γ〉) (4.30)

and
‖ (η ⊗ id)(ξ) ‖(λ,N,k,l)≤ C(η,R) ‖ ξ ‖(λ,N,k,l) (4.31)

for all ξ ∈ C̃R∗ (Γ, v)alt ⊗ CC∗(C〈Γ〉).
Similar estimates hold in the case of a word-hyperbolic group with universal
constants depending now on [v], R, l and δ.

Proof: The norms ‖ − ‖(λ,N,k,l), λ,N > 1, k, l ∈ N, are weighted `1-norms
on the complex Cone(ε⊗ id) spanned by the bisimplicial set (∆•(Γ)∪ {1})×
∆cyc
• (Γ). It suffices therefore to majorize the norm on bi-simplices.

a) We find for αm = [h0, . . . , hm] ∈ ∆R
m(Γ, v), ω′n = 〈g0〉d〈g1〉 . . . d〈gn〉 ∈

∆cyc
n (Γ)′

µ′(αm⊗ω′n) = halt(π′Xv (g0x),v)(αm)⊗ω′n =

(
πalt ◦

∞∑
k=0

hBar(π(π′Xv (g0x),v,k), π(π′Xv (g0x),v,k+1))(αm)

)
⊗ω′n

where

hBar(π(π′Xv (g0x),v,k), π(π′Xv (g0x),v,k+1))(αm) =
m∑
i=0

(−1)iα(k,i)
m (4.32)

with

α(k,i)
m = [π(π′Xv (g0x),v,k)(h0), . . . , π(π′Xv (g0x),v,k)(hi), π(π′Xv (g0x),v,k+1)(hi), . . . , π(π′Xv (g0x),v,k+1)(hm)].

Note that d(g, g′) ≤ d(h, h′)+|k−k′|+2 diam(D) for all g ∈ Supp(π(π′Xv (g0x),v,k)(h))

and g′ ∈ Supp(π(π′Xv (g0x),v,k′)(h
′)) by (2.17) so that

halt(π′Xv (g0x),v)(αm) ∈ CR+2 diam(D)+1
∗ (Γ, v). (4.33)

We estimate now the distance of α
(k,i)
m ⊗ ω′n from the diagonal.

For g ∈ Supp(π(π′Xv (g0x),v,k)(h0)) we find on the one hand

d(gx, π′Xv(g0x)) ≤ d(π′Xv ◦ π′B(π′Xv (g0x),k)(h0x), π′Xv(g0x)) + diam(D)

≤ d(h0x, g0x) + diam(D)

and on the other hand d(π′Xv(g0x), g0x) ≤ d(h0x, g0x) + diam(D) as h0D ∩
Xv 6= ∅, so that

d(Supp(α(k,i)
m ), Supp(ω′n)) ≤ d(gx, g0x) ≤ 2d(h0x, g0x) + 2 diam(D). (4.34)

Concerning `1-norms we note that

‖ hBar(π(π′Xv (g0x),v,k), π(π′Xv (g0x),v,k+1))(αm) ‖`1(∆•(Γ))≤ m+ 1 (4.35)
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As hBar(π(π′Xv (g0x),v,k), π(π′Xv (g0x),v,k+1))(αm) vanishes as soon as

Supp(αm) · x ⊂ B(π′Xv(g0x), k)

one only gets contributions to the sum (4.32) for

k ≤ d(π′Xv(g0x), h0x) +R ≤ d(π′Xv(g0x), π′Xv(h0x)) + d(π′Xv(h0x), h0x) +R

≤ d(g0x, h0x) + diam(D) +R. (4.36)

Finally

d(h0x, g0x) ≤ d(Supp(αm), Supp(ω′n)) + diam(Supp(αm)) + diam(Supp(ω′n))

≤ d(Supp(αm), Supp(ω′n)) +R+ |ω′n|v. (4.37)

Altogether this shows that

µ′ : CR∗ (Γ, v)alt ⊗ CC∗(C〈Γ〉)→ C
R+2 diam(D)+1
∗+1 (Γ, v)alt ⊗ CC∗(C〈Γ〉)

satisfies

‖ µ′(αm ⊗ ω′n) ‖(λ,N,k,l)≤ C(R, diam(D), l,m)· ‖ αm ⊗ ω′n ‖(λ,N,k,l+1)

as was to be shown. The proofs of the remaining cases are similar. For hy-
perbolic groups one uses the fact that Zv is a quasi-convex subset of G(Γ, S)
[BH],III,Γ,3.9.

b) By construction the linear maps id ⊗ χ−1
v and id ⊗ χv are isometric with

respect to the given seminorms. Concerning the averaging operator id ⊗ πU
we observe for the generator v ∈ U

‖ (id⊗v)(αm⊗ω′n) ‖(λ,N,k,l) =
(
1 + d(Supp(αm), Supp(vω′n)) + |vω′n|v

)l · ‖ vω′n ‖(λ,N,k)

≤
(
1 + d(Supp(αm), Supp(ω′n)) + 2|ω′n|v

)l · ‖ ω′n ‖(λ,N,k)≤ 2l· ‖ αm⊗ω′n ‖(λ,N,k,l)
which follows from (g, vg) ≤ |ω′n|v, ∀g ∈ Supp(ω′n), and the Zv-invariance of
the norms ‖ − ‖(λ,N,k). Together with part a) this shows our claim.

c) The Γ-equivariance of η′ : C∗(Γ,C)alt → C∗+1(Γ,C)alt and the fact that
CR∗ (Γ,C)alt is a finitely generated projective Γ-module imply that

η(CR∗ (Γ,C)alt) ⊂ CR′∗+1(Γ,C)alt

for R′ >> R large enough. It is easily seen that η⊗id is bounded with respect
to each of the seminorms ‖ − ‖(λ,N,k,l), λ,N > 1, k, l ∈ N. �

Lemma 4.7. The Zv-equivariant chain map

C∗(Γ, v)alt ⊗ CC∗(C〈Γ〉o U : Co U){v}
id⊗CC(ε)−→ C∗(Γ, v)alt ⊗ CC∗(C〈{∗}〉o U : Co U){v}

(4.38)
is a chain homotopy equivalence in the category of complexes of Zv-modules.
Here {∗} is the one point set equipped with the trivial Zv-action.
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Proof: Recall that the cone of a chain map f : C → C ′ of complexes is
given by the complex Cone(f) = C[1]⊕ C ′ with differential

∂Cone =

(
−∂C 0
f ∂C′

)
(4.39)

and that f is a chain-homotopy equivalence iff Cone(f) is contractible. We
consider the chain map

id⊗ CC(ε) : C∗(Γ, v)⊗ CC∗(C〈Γ〉) −→ C∗(Γ, v)⊗ CC∗(C〈{∗}〉)

of complexes of Zv-modules and define a Zv-equivariant linear operator

ν =

(
h′ j′

0 0

)
: Cone(id⊗ CC(ε))∗ −→ Cone(id⊗ CC(ε))∗+1 (4.40)

by putting (in the notations of 3.4)

h′(αm ⊗ ωn) = (−1)m−1πalt(αm)⊗ 1

|U |
·
∑
u∈U

hcycuh0(ωn) (4.41)

and

j′(αm ⊗ ω̃) = πalt(αm)⊗ 1

|U |
·
∑
u∈U

(πuh0 ◦ i)∗(ω̃) (4.42)

for αm = [h0, . . . , hm] ∈ ∆m(Γ), ωn ∈ ∆cyc
n (C〈Γ〉), and ω̃ ∈ ∆cyc

∗ (C〈{∗}〉).
Here j : {∗} → Γ sends ∗ to e. The Zv-equivariant chain map

ψ = id− (∂ ◦ ν + ν ◦ ∂) : Cone(id⊗ CC(ε)) −→ Cone(id⊗ CC(ε)) (4.43)

satisfies then

ψ (C∗(Γ, v)⊗ Cone(CC(ε))∗) ⊂ C∗−1(Γ, v)⊗ Cone(CC(ε))∗, (4.44)

so that

htilt1 =

∞∑
n=0

ν ◦ ψn : Cone(id⊗ CC(ε))∗ −→ Cone(id⊗ CC(ε))∗+1 (4.45)

is a well defined Zv-equivariant contracting chain homotopy of Cone(id ⊗
CC(ε))∗. By construction htilt1 preserves the subcomplex given by the cone of

id⊗ CC(ε) : C∗(Γ, v)alt ⊗ CC∗(C〈Γ〉)U −→ C∗(Γ, v)alt ⊗ CC∗(C〈{∗}〉)

so that it provides, via (4.11), a Zv-equivariant contracting homotopy of the
cone of

C∗(Γ, v)alt⊗CC∗(C〈Γ〉oU : CoU){v}
id⊗CC(ε)−→ C∗(Γ, v)alt⊗CC∗(C〈{∗}〉oU : CoU){v}

as claimed. �
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Lemma 4.8. The chain map

ĈC∗(C〈{∗}〉o U : Co U){v} −→ C (4.46)

which sends uv〈∗〉 to 1 and vanishes on Ω≥1(C〈{∗}〉o U : Co U)\ is a chain

homotopy equivalence. Here ĈC∗ =

( ∞∏
n=0

Ωn
\ , b+B

)
is the periodic cyclic

bicomplex.

A chain homotopy inverse is given by the linear map sending 1 ∈ C to
uv · ch(〈∗〉) where ch denotes the Chern-character [Lo] of the idempotent
〈∗〉 ∈ C〈{∗}〉.

We let

ε′ : CC∗(C〈Γ〉oU : CoU){v} −→ CC∗(C〈{∗}〉oU : CoU){v} −→ C (4.47)

be the composition of the Zv-equivariant chain maps (4.38) and (4.46).

Lemma 4.9. In the notations of 4.7 we have the estimates

‖ h′(αm⊗ωn) ‖(λ,λ2 diam(D)+1N,k,l)≤ C(λ,R, diam(D), k, l) ‖ αm⊗ωn ‖(λ,N,k+l+2,l+1)

(4.48)
and

‖ j′(αm ⊗ ω̃n) ‖(λ,N,k,l)≤ C(λ, diam(D), l) ‖ ω̃n ‖(λ,N,k) (4.49)

for suitable constants C(λ,R, diam(D), k, l) and C(λ, diam(D), l) and all
αm ∈ ∆R

m(Γ, v), ωn ∈ ∆cyc
n (C〈Γ〉), and ω̃n ∈ ∆cyc

n (C〈∗〉).

Proof: Suppose at first that Γ acts on a CAT (0)-space.
Let αm = [h0, . . . , hm], ωn = 〈g0〉d〈g1〉 . . . d〈gn〉 and let k ∈ N. Then we find,
according to (4.41) and (3.26)

h′(αm⊗ωn) = (−1)m−1πalt(αm)⊗ 1

|U |
∑
u∈U

∞∑
d=0

(h+H)(π(uh0x,e,d), π(uh0x,e,d+1))(ωn)

where (h + H)(π(uh0x,e,d), π(uh0x,e,d+1))(ω
′
n) = H(π(uh0x,e,d), π(uh0x,e,d+1))(ω

′
n)

is a linear combination of cyclic simplices

ω′n = d〈g′i〉 . . . d〈g′n〉d〈g′0〉 . . . d〈g′i−1〉

with

g′j ∈ Supp(π(uh0x,e,d)(gj)) ∪ Supp(π(uh0x,e,d+1)(gj)), 0 ≤ j ≤ n.

Thus dΓ(g′j , g
′
j′) ≤ dΓ(gj , gj′) + 2 diam(D) + 1 and

|ω′n|v ≤ d(gi, gi+1)+. . .+d(gn, g0)+. . .+d(gi−1, gi)+d(g′i, vg
′
i)+(n+1)(2 diam(D)+1)

The convexity of the distance function and the fact that uh0D∩Xv 6= ∅ imply

d(g′i, vg
′
i) ≤ d(π′B(uh0x,d′)

(gix), vπ′B(uh0x,d′)
(gix))+2 diam(D) ≤ d(gi, vgi)+d(uh0x, vuh0x)+2 diam(D)
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so that

|ω′n|v ≤ |ωn|v+d(g0, vg0)+d(gi, vgi)+(n+3)(2 diam(D)+1) ≤ 3|ωn|v+(n+3)(2 diam(D)+1)
(4.50)

The vertices of ω′n lie at distance at most diam(D) from a geodesic segment
joining an element of u ·Supp(αm) and an element of Supp(ωn). Consequently

d(Supp(αm), Supp(ω′n)) ≤ d(Supp(αm), Supp(ωn)) +R+ 3 diam(D) (4.51)

for all hi ∈ Supp(αm) and u ∈ U . For the `1-norms one finds

‖ H(π(uh0x,d), π(uh0x,d+1))(ωn) ‖`1(∆cyc
• (Γ)≤ n(n+ 1). (4.52)

Moreover H(π(uh0x,d), π(uh0x,d+1))(ωn) = 0 unless

d < d(Supp(αm), Supp(ωn)) + |ωn|v + 2 diam(D). (4.53)

as π(uh0x,d)(ωn) = π(uh0x,d+1)(ωn) = ωn otherwise. Altogether we obtain

‖ h′(αm⊗ωn) ‖(λ,λ2 diam(D)+1N,k,l)≤ C(λ,R, diam(D), k, l) ‖ αm⊗ωn ‖(λ,N,k+l+2,l+1)

as claimed. For cyclic simplices ωn ∈ ∆cyc
n (Γ)′′ the reasoning is similar. The

second estimate (4.49) is trivial. The argument is almost verbatim the same
for hyperbolic groups with constants depending on (λ,R, δ, `S(v), k, l) and
(λ, `S(v), l), respectively. �

Theorem 4.10. Let Γ be a discrete group acting properly, isometrically and
cocompactly on a CAT (0) or suppose that Γ is word-hyperbolic. Let v ∈ Γ be
an element of finite order and let U ⊂ Γ be the subgroup generated by v. Then
the chain maps

CC∗(C〈Γ〉o U : Co U){v}
ε⊗id←− C∗(Γ, v)alt ⊗ CC∗(C〈Γ〉o U : Co U){v}

id⊗ε′−→ C∗(Γ, v)alt

induce bounded chain-homotopy equivalences

CC′∗(C〈Γ〉o U : Co U){v}
∼←− CCtilt∗ (Γ, v)

∼−→ Calt∗ (Γ, v) (4.54)

in the ind-category of Fréchet-complexes of Γ-modules.

Proof: Lemma 4.5 and 4.6 show that the linear endomorphism (4.23) of

Cone
(
ε⊗ id : C∗(Γ, v)alt ⊗ CC∗(C〈Γ〉o U : Co U){v} −→ CC∗(C〈Γ〉o U : Co U){v}

)
gives rise to a Zv-equivariant contracting chain homotopy of the ind-Fréchet-
complex

Cone
(
ε⊗ id : CCtilt∗ (Γ, v) −→ CC′∗(C〈Γ〉o U : Co U){v}

)
.
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This shows that the morphism

ε⊗ id : CCtilt∗ (Γ, v) −→ CC′∗(C〈Γ〉o U : Co U){v}

is a chain homotopy equivalence in the category of ind-Fréchet-complexes of
Zv-modules. Similarly lemma 4.7 and 4.9 show that the linear endomorphism
(4.45) of the cone of

C∗(Γ, v)alt ⊗ CC∗(C〈Γ〉o U : Co U){v}

id⊗ CC(ε) ↓

C∗(Γ, v)alt ⊗ CC∗(C〈∗〉o U : Co U){v}

gives rise to a Zv-equivariant contracting chain homotopy of the ind-Fréchet-
complex

Cone
(
id⊗ CC(ε) : CCtilt∗ (Γ, v) −→ Calt∗ (Γ, v)⊗π CC′∗(C〈∗〉o U : Co U){v}

)
.

Together with 4.8 this shows that the composition

id⊗ ε′ : CCtilt∗ (Γ, v) −→ Calt∗ (Γ, v)⊗π CC′∗(C〈∗〉oU : CoU){v} −→ Calt∗ (Γ, v)

is a homotopy equivalence in the category of ind-Fréchet-complexes of Zv-
modules. �

5 Analytic and local cyclic cohomology

Before we come to our main results let us recall the definition of analytic and
local cyclic cohomology of Banach algebras.

Definition 5.1. [Pu2] Let A be a complex Banach algebra. For N > 1 and
k ∈ N let ‖ − ‖(N,k) be the largest norm on the cyclic bicomplex CC∗(A)
satisfying

‖ a0da1 . . . dan ‖(N,k)≤
(1 + n)k

c(n)!
N−n ‖ a0 ‖A · . . . · ‖ an ‖A (5.1)

and

‖ da1 . . . dan ‖(N,k)≤
(1 + n)k

c(n)!
N−n ‖ a1 ‖A · . . . · ‖ an ‖A (5.2)

with c(2n) = c(2n + 1) = n for all a0, a1, . . . , an ∈ A and all n ∈ N. The
completion of the cyclic bicomplex CC∗(A) with respect to the seminorms ‖
− ‖(N,k), k ∈ N is a Fréchet-chain complex denoted by CC∗(A)N . The formal
inductive limit of these complexes is denoted by

CCω∗ (A) = ” lim
N→∞

”CC∗(A)N (5.3)

It is a natural ind-Fréchet-complex attached to A.
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Definition 5.2. Let A be a separable (not necessarily unital) Banach alge-
bra. Denote by Alg → A the essentially small, filtrant category with compact
homomorphisms ϕA′ : A′ → A of separable Banach algebras as objects and
morphisms
(A′, ϕA′)→ (A′′, ϕA′′) given by homomorphisms f : A′ → A′′ of Banach alge-
bras compatible with the structure maps, i.e. satisfying ϕA′′ ◦ f = ϕA′.

The analytic cyclic bicomplex of the Banach algebra A is the ind-complex

CC∗(A) = lim
Alg→A

CCω∗ (A′) = ” lim
Alg→A

lim
N→∞

CC∗(A
′)N” (5.4)

Strictly speaking the formal inductive limit has to be taken over a small, co-
final, filtrant subcategory of Alg → A. It is, up to canonical isomorphism,
independent of the choice of this subcategory. The bivariant analytic cyclic
cohomology of a pair (A,B) of separable complex Banach algebras is defined
as

HCan∗ (A,B) = MorHo(ind(FC))(CC∗(A), CC∗(B)), (5.5)

the vector space of chain-homotopy classes of morphisms in the category of
ind-Fréchet-complexes between the analytic cyclic bicomplexes of A and B,
respectively.

Definition 5.3. Let Ho(ind(FC)) be the chain-homotopy category of Z/2Z-
graded ind-Fréchet complexes. It is triangulated by declaring a triangle dis-

tinguished iff it is isomorphic to a triangle C′∗
f→ C∗ → Cone(f)∗ → C′∗[1].

An ind-complex is constant if it is labeled by the filtrant category with a single
morphism. An ind-complex C∗ is weakly contractible if every morphism
from a constant ind-complex to it is null-homotopic. The weakly contractible
ind-Fréchet-complexes form a null-system [KS] in the triangulated chain ho-
motopy category Ho(ind(FC)). Its localization with respect to this null-system
is called the derived ind-category ind(D). The bivariant local cyclic co-
homology of the pair (A,B) of complex, separable Banach algebras is defined
as

HC loc∗ (A,B) = Morind(D)(CC∗(A), CC∗(B)), (5.6)

the vector space of morphisms in the derived ind-category between the analytic
cyclic bicomplexes of A and B, respectively.

Let Γ be a finitely generated discrete group with word-length function
`. For λ > 1 we let `1λ(Γ, `) be the completion of the group ring C o Γ
with respect to the largest norm ‖ − ‖λ satisfying ‖ g ‖λ≤ λ`(g) for all
g ∈ Γ. It is a Banach algebra. The identity map induces a homomorphism
`1λ(Γ, `) → `1λ′(Γ, `) for λ < λ′ and the topological direct limit of this family
equals lim

λ→1
`1λ(Γ, `) = `1(Γ).

Let v ∈ Γ and denote by [v] ⊂ Γ its conjugacy class. The cyclic bicomplex of
the group ring CΓ decomposes into a direct sum

CC∗(CΓ) =
⊕
[v]

CC∗(CΓ)[v], (5.7)
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labeled by the conjugacy classes of Γ, of the subcomplexes CC∗(CΓ)[v] spanned
by differential forms g0dg1 . . . dgn, g0 . . . gn ∈ [v] and dh1 . . . dhn, h1 . . . hn ∈
[v], n ∈ N. This is called the homogeneous decomposition of the cyclic bi-
complex of a group ring. The contribution of the conjugacy classes of the unit,
the torsion elements and the elements of infinite order are called the homo-
geneous, elliptic and hyperbolic part of the cyclic bicomplex, respectively.
The homogeneous decomposition gives rise to an isometric isomorphism of
normed vector spaces(

CC∗(CΓ), ‖ − ‖(λ,N,k)

)
'
⊕
[v]

(
CC∗(CΓ)[v], ‖ − ‖(λ,N,k)

)
(5.8)

and an isometric isomorphism(
CC∗(`

1
λ(Γ))N , ‖ − ‖(N,k)

)
'
⊕̂
[v]

(
(CC∗(`

1
λ(Γ))[v])N , ‖ − ‖(N,k)

)
(5.9)

of Banach-spaces for all λ,N > 1 and k ∈ N. Consequently the ind-Fréchet
complexes CCω∗ (`1λ(Γ)) decompose into a topological direct sum

CCω∗ (`1λ(Γ)) '
⊕̂
[v]

CCω∗ (`1λ(Γ))[v], (5.10)

labeled by the conjugacy classes of Γ.

5.1 The homogeneous and the elliptic part

Theorem 5.4. Let Γ be a discrete group acting properly, isometrically and
cocompactly on a CAT (0)-space or suppose that Γ is word-hyperbolic. Let
v ∈ Γ be an element of finite order and let [v] ⊂ Γ be its conjugacy class.
Then there exists a chain-homotopy equivalence

lim
λ→1

CCω∗ (`1λ(Γ))[v]
∼−→ H∗(Γ,C[v]) (5.11)

in the category of ind-Fréchet-complexes. Here the right hand side equals the
constant, finite dimensional ind-complex with vanishing differentials given by
the direct sum of the homology of even, respectively odd, degrees of Γ with
coefficient in the Γ-module C[v], equipped with the adjoint action.

.
Proof:
Step 1:
For a Fréchet Γ-module M let MΓ be the associated space of Γ-coinvariants,
i.e. the quotient of M by the closure of the linear subspace spanned by the
elements gξ − ξ, g ∈ Γ, ξ ∈ M . The quotient norms on MΓ associated to
a family of seminorms defining the Fréchet-structure on M turn MΓ into a
Fréchet space.
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.
Step 2:
Theorem 4.10 yields, after passing to coinvariants, chain homotopy equiva-
lences(
CC′∗(C〈Γ〉o U : Co U){v}

)
Zv

∼←−
(
CCtilt∗ (Γ, v)

)
Zv

∼−→
(
Calt∗ (Γ, v)

)
Zv

of ind-Fréchet-complexes.
Step 3:
It is easily verified that the canonical chain map

pv : CC∗(C〈Γ〉o U : Co U){v} −→ CC∗(Co Γ)[v]

uv〈g0〉d〈g1〉 . . . d〈gn〉 7→ (g−1
n vg0)d(g−1

0 g1) . . . d(g−1
n−1gn)

uvd〈g1〉 . . . d〈gn〉 7→ d(g−1
n vg1)d(g−1

1 g2) . . . d(g−1
n−1gn).

(5.12)
induces isomorphisms

CC∗(C〈Γ〉o U : Co U){v}/Zv
'−→ CC∗(Co Γ)[v] (5.13)

of complexes of vector spaces. The norms ‖ − ‖(λ,N,k) on CC∗(C〈Γ〉 o U :
CoU){v} are weighted `1-norms on the linear space spanned by the set ∆cyc

• (Γ)
of cyclic simplices. The group Zv acts on this set and the v-weights of its
elements are constant along the Zv-orbits. This implies that the quotient norm
on the space CC∗(C〈Γ〉 o U : C o U){v}/Zv of Zv-coinvariants is a weighted
`1-norm on the set of orbits, the weight of an orbit being equal to the weight of
any of its elements. Thus the quotient norm on CC∗(C〈Γ〉oU : CoU){v}/Zv
equals the norm ‖ − ‖(N,k) on CC∗(`

1
λ(Γ))[v] under (5.12) and we obtain an

isomorphism

CC∗(C〈Γ〉o U : Co U)(v,λ,N)/Zv
'−→ (CC∗(`

1
λ(Γ))N )[v], λ,N > 1,

of Fréchet-complexes and finally an isomorphism

CC′∗(C〈Γ〉o U : Co U){v}/Zv
'−→ lim

λ→1
CCω∗ (`1λ(Γ))[v] (5.14)

of the corresponding ind-Fréchet complexes.
Step 4:
We claim that the complexes of coinvariants CR∗ (Γ, v)alt/Zv are finite dimen-
sional for all R > 0. For word-hyperbolic groups this is clear as C∗(Γ, v) =
C∗(Zv,C) by definition. For Γ a discrete isometry group of a CAT (0)-space
we show, in the notations of Section 2, that the set

∆0(Γ, v) = {g ∈ Γ, g ·D ∩Xv 6= ∅}

is the union of finitely many Zv-orbits. Clearly ∆0(Γ, v) is stable under left
translation by Zv because the fixed point set Xv is so. Its image under the
map

Γ −→ Zv\Γ ' [v] ⊂ Γ, g 7→ g−1vg

is contained in the closed ball of center e and radius 2 diam(D) and is thus
finite. The ind-complex

(
Calt∗ (Γ, v)

)
Zv

is therefore independent of the chosen
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norms on it.
Step 5:
The previous argument also shows that the proper and isometric Zv-action on
the non-empty and complete CAT (0)-space Xv is cocompact. It is well known
that under these assumption the constant Zv-module C admits a finite resolu-
tion P∗ by finitely generated, projective Zv-modules (take the nerve of a Zv-
invariant Leray-cover of Xv, obtained from a finite Leray-cover of Xv/Zv). As
any two projective resolutions of the constant Zv-module are chain-homotopy
equivalent there is a chain homotopy equivalence Calt∗ (Γ, v) → P∗ of com-
plexes of Zv-modules which restricts to a homotopy equivalence

Calt∗ (Γ, v) = ” lim
R→∞

”CR∗ (Γ, v)alt
∼−→ P∗

of ind-complexes of Γ-modules. Passing to coinvariants one obtains a chain-
homotopy equivalence (

Calt∗ (Γ, v)
)
Zv

∼−→ P∗/Zv.

The right hand side is a constant, finite dimensional ind-complex. It is chain-
homotopy equvalent to the constant ind-complex with vanishing differentials
which equals the direct sum of the homology groups of P∗/Zv (graded by the
parity of degrees). Altogether we obtain

lim
λ→(1,∞)

CCω∗ (`1λ(Γ))[v]
∼−→
(
Calt∗ (Γ, v)

)
Zv

∼−→

∼−→ H∗(P∗/Zv)
'−→ H∗(Zv,C)

'−→ H∗(Γ, Ind
Γ
ZvC)

'−→ H∗(Γ,C[v]),

where the isomorphism in the middle follows from Shapiro’s lemma. In the
case of a word-hyperbolic group one may take P∗ = CR∗ (Zv,C)alt for R >> 0
large. �

5.2 The hyperbolic part

Suppose that Γ acts properly, isometrically and cocompactly on a CAT (0)-
space. The notations of Section 2 will be understood. Let v ∈ Γ be an element
of infinite order. Its stable length or minimal displacement

`s(v) = Inf
y∈X

dX(y, vy) (5.15)

is strictly positive. The stable length is invariant under conjugation and

Inf
v∈Γ
|v|=∞

`s(v) > 0 (5.16)

because Γ acts cocompactly on X. The set Min(v) ⊂ X of minimal displace-
ment

Min(v) = {x′ ∈ X, d(x′, vx′) = `s(v)} (5.17)

is non-empty by the cocompactness of the action, convex and closed. It is
the disjoint union of infinite geodesics which are stable under the action of v.
After the choice of a base point y ∈Min(v) one obtains a canonical isometry

Φy : Min(v) ' R× Y
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of the set of minimal displacement with the metric product of the real line
and a complete CAT (0)-space Y [BH]. It is characterized by the following
facts:

� If π : Min(v) → Ly is the “orthogonal” projection of Min(v) onto the
unique v-stable geodesic passing through y, then Φy(π

−1(y0)) = {0}×Y .

� The v-stable geodesics of Min(v) correspond under Φy to the fibres of
the canonical projection of R× Y onto Y .

The action of v on Min(v) corresponds to the action (t, y) 7→ (t+ `s(v), y) on
R× Y . We let c(v,y) : Γ→ R be the map given by the composition

c(v,y) : Γ
−·x−→ X

π′
Min(v)−→ Min(v)

Φy−→ R× Y π1−→ R ·`s(v)−1

−→ R. (5.18)

Suppose now that (Γ, S) is a δ-hyperbolic group. Let v be an element of
infinite order which is of minimal word length in its conjugacy class. Fix a
geodesic segment σ joining the vertices e and v in the Cayley-graph G(Γ, S)
and let L ⊂ |G(Γ, S)| be the infinite segment given by the union of all U -
translates of σ. We equip L with the maximal metric for which each edge is
isometric to the unit interval and let σ′ : L→ R be the isometry which sends
e to 0 and v to its word-length. Put

c(v,L) : Γ
πL−→ C0(L,C)

σ′−→ C0(R,C)
·`S(v)−1

−→ C0(R,C), (5.19)

where `s(v) = lim
n→∞

`(vn)
n > 0. The maps c(v,y) and c(v,L) intertwine the action

of the infinite cyclic subgroup U of Γ generated by v and the translation action
of Z on the real line and descend therefore to algebra homomorphisms

〈c(v,y)〉, 〈c(v,L)〉 : C〈Γ〉o U −→ C〈R〉o Z.

Lemma 5.5. Let the subgroup Z ⊂ R act on the real line by translations.
Let τ1 be the trace on C o Z corresponding to the characteristic function of
{1} ⊂ Z. Then the linear functional χ : CC1(C〈R〉 o Z : C o Z){1} −→ C
given on one-forms by

u1d〈t1〉 7→ 1,

u1〈t0〉d〈t1〉 7→ t1 − t0
(5.20)

and vanishing on forms of higher degrees satisfies bχ = 0 and Bχ = (ε o
id)∗(τ1) where εoid : C〈R〉oZ −→ CoZ is the augmentation homomorphism.

Proof:

bχ(u1〈t0〉d〈t1〉d〈t2〉) = χ(u1〈t0〉〈t1〉d〈t2〉)−χ(u1〈t0〉d(〈t1〉〈t2〉)) +χ(〈t2〉u1〈t0〉d〈t1〉)

= χ(u1〈t1〉d〈t2〉) − χ(u1〈t0〉d〈t2〉) + χ(u1〈t0〉d〈t1〉)
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= (t2 − t1)− (t2 − t0) + (t1 − t0) = 0,

bχ(u1d〈t1〉d〈t2〉) = χ(u1〈t1〉d〈t2〉) − χ(u1d(〈t1〉〈t2〉)) + χ(〈t2〉u1d〈t1〉)

= χ(u1〈t1〉d〈t2〉) − χ(u1d〈t2〉) + χ(u1〈t2 − 1〉d〈t1〉)

= (t2 − t1)− 1 + (t1 − (t2 − 1)) = 0,

Bχ(u1〈t0〉) = χ(u1d〈t0〉) = 1 = τ1((εo id)(u1〈t0〉)).
�

Lemma 5.6. Let v ∈ Γ be an element of infinite order, let [v] be its conjugacy
class, and let U be the infinite cyclic group generated by v.

a) Suppose that Γ is a discrete isometry group of a CAT (0)-space as in
Section 2 and fix a base point y ∈Min(v) ⊂ X. The cochain

χv = χ(v,y) = 〈c(v,y)〉∗(χ) ∈ CC1(C〈Γ〉o U : Co U){v} (5.21)

is Zv-invariant.

b) Suppose that Γ is word-hyperbolic and that v is of minimal word length
in its conjugacy class. Let L be an infinite quasi-geodesic segment as
constructed above. Then the cochain

χv = χ(v,L) =
1

|Nv|
∑
g∈Nv

g∗(〈c(v,L)〉∗(χ)) (5.22)

is Zv-invariant. Here the average is taken over the finite group Nv =
Zv/U .

c) The Zv-invariant cochains of a) and b) descend via (5.12) to cochains

χv ∈ CC1(Co Γ)[v]. (5.23)

Their coboundary equals the trace on the group algebra corresponding to
the characteristic function of the conjugacy class [v].

Proof: The non-empty, closed and convex set Min(v) of points of min-
imal displacement under v is invariant under the action of Zv. Therefore
the “orthogonal” projection of X onto Min(v) commutes with the Zv-action.

Under the identification Φy : Min(v)
'−→ R × Y the Zv-action on Min(v)

corresponds to a product action on R× Y (see [BH],II,6.8), where the action
on the first factor is given by orientation preserving isometries, i.e. by trans-
lations. This implies that the cochain χ(v,y) is Zv-invariant. Suppose now
that Γ is word-hyperbolic. It is well known that the infinite cyclic subgroup
U generated by v is of finite index in its centralizer [BH],III,3.10. The cochain
〈c∗(v,L)〉(χ) is U -invariant, so that one may average it over the finite group

Nv = Zv/U and arrives at a Zv-invariant functional. In both cases the Zv-
invariant cochain χv descends, via (5.12), to a cochain on the group algebra
Co Γ as claimed. Lemma 5.5 shows that its coboundary equals the trace on
the group ring associated to the characteristic function of the conjugacy class
[v]. �
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Lemma 5.7. The notations of Lemma 5.6 are understood.

a) Let Γ be an isometry group of a CAT (0)-space as in Section 2. Then

|χv(ξ)| ≤
C(λ,N)

`s(v)
· ‖ ξ ‖(λ,N,k) (5.24)

for all λ,N > 1, k ∈ N and ξ ∈ CC1(C〈Γ〉o U : Co U){v}.

b) Let Γ be word-hyperbolic. Then

|χv(ξ′)| ≤ C(Γ, S, δ, λ,N)· ‖ ξ′ ‖(λ,N,k) (5.25)

for all λ,N > 1, k ∈ N and ξ′ ∈ CC1(C〈Γ〉o U : Co U){v}.

Proof: a) For 〈g0〉d〈g1〉 ∈ ∆cyc
1 (Γ)′ we find

|χy(〈g0〉d〈g1〉)| =
1

`s(v)
|π1 ◦ Φy ◦ π′Min(v)(g1x)− π1 ◦ Φy ◦ π′Min(v)(g0x))|

≤ 1

`s(v)
d(π′Min(v)(g1x), π′Min(v)(g0x)) ≤ 1

`s(v)
d(g1x, g0x) ≤ |〈g0〉d〈g1〉|v

`s(v)

because orthogonal projections do not increase distances, while for d〈g1〉 ∈
∆cyc

1 (Γ)′′

|χv,y(d〈g1〉)| = 1 ≤ d(g1, vg1)

`s(v)
=
|d〈g1〉|v
`s(v)

.

Thus

|χv,y(ω)| ≤ C(λ,N)
2k

N
λ|ω|v = C(λ,N)· ‖ ω ‖(λ,N,k)

for all cyclic simplices ω ∈ ∆cyc
∗ (Γ).

b) Recall [BH],IIIH,1.13, that there exist constants C1(δ), C2(δ) with the
following properties. If an element v ∈ Γ of infinite order and minimal length
in its conjugacy class satisfies `(v) > C1(δ), then any geodesic segment joining
vN and v−N , N >> 0, is at Hausdorff distance at most C2(δ) from the
corresponding segment in L. Consequently one finds, in the notations of
Section 2,

d(g′, h′) ≤ d(g, h) + C3(δ), ∀ g′ ∈ S′L(g), h′ ∈ S′L(h),

for some C3(δ) >> 0 and all g, h ∈ Γ. A similar estimate holds for each
indvidual conjugcy class by [BH],III,3.9,3.11, and takes care of the finitely
many conjugacy classes not covered by the previous argument. Therefore the
reasoning of a) carries over (with modified constants) to hyperbolic groups.
�

Corollary 5.8. The trace τhyp on `1(Γ) associated to the characteristic func-
tion of the set of hyperbolic elements in Γ is a coboundary in lim

←
λ

CC∗ω(`1λ(Γ)).

Proof: The infimum of the stable lengths of non-torsion elements in Γ
(5.16) is strictly positive because the action of Γ on X is cocompact. As
the bicomplex CC∗(`

1
λ(Γ))N is the topological direct sum of the bicomplexes
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(CC∗(`
1
λ(Γ))N )[v], labeled by the conjugacy classes of Γ, it follows from 5.6

and 5.7 that the cochain
χ =

∑
[v]

χv (5.26)

obtained by summation of the cochains (5.21) or (5.22) over all conjugacy
classes [v] of hyperbolic elements in Γ, defines a bounded cochain on CC∗(`1λ(Γ))N
for all λ,N > 1 and thus on the ind-Fréchet complex lim

λ→1
CC∗ω(`1λ(Γ)) as well.

Lemma 5.5 shows that its coboundary equals the trace τhyp associated to the
characteristic function of the set of hyperbolic elements in Γ. �

Proposition 5.9. The inhomogeneous part of the ind-Fréchet complex

lim
λ→1

CCω∗ (`1λ(Γ)) (5.27)

is contractible.

Proof: Recall the Eilenberg-Zilber Theorem in cyclic homology [Pu3],
which states the existence of a natural chain-homotopy equivalence

∇ : CCω∗ (A⊗π B)
∼−→ CCω∗ (A)⊗π CCω∗ (B) (5.28)

for unital complex Banach-algebras A,B. If α ∈ CC∗ω(A) is a cochain in the
topologically dual chain complex of CCω∗ (A), then the slant product

\α : CCω∗ (A⊗π B)
∇−→ CCω∗ (A)⊗π CCω∗ (B)

α⊗id−→ CCω∗ (B) (5.29)

is a bounded linear map. It is a chain map iff α is a cocycle. If α = τ happens
to be a trace, then a chain map representaing the slant product is given by

\τ : CCω∗ (A⊗π B) −→ CCω∗ (A)

(a0 ⊗ b0)d(a1 ⊗ b1) . . . d(an ⊗ bn) 7→ τ(a0a1 . . . an) · b0db1 . . . dbn.
(5.30)

Consider the diagonal homomorphism

∆ : `1λ2(Γ) −→ `1λ(Γ)⊗π `1λ(Γ)

and the induced chain map

∆∗ : lim
λ→1

CCω∗ (`1λ(Γ)) −→ lim
λ→1

CCω∗ (`1λ(Γ)⊗π `1λ(Γ))

of ind Fréchet complexes. The “cap-product”

∩χ : lim
λ→1

CCω∗ (`1λ(Γ))
∆∗−→ lim

λ→1
CCω∗ (`1λ(Γ)⊗π `1λ(Γ))

\χ−→ lim
λ→1

CCω∗+1(`1λ(Γ))

(5.31)
is then a bounded linear map of ind-Fréchet-complexes. Its coboundary equals

δ(∩χ) = ∩δ(χ) = ∩τhyp : lim
λ→1

CCω∗ (`1λ(Γ)) → lim
λ→1

CCω∗ (`1λ(Γ)).

As
∩τhyp : lim

λ→1
CCω∗ (`1λ(Γ)) −→ lim

λ→1
CCω∗ (`1λ(Γ))

equals the canonical projection onto lim
λ→1

CCω∗ (`1λ(Γ))inhom the latter is con-

tractible. �
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5.3 Conclusion

Theorem 5.10. Let Γ be a discrete group acting properly, isometrically and
cocompactly on a CAT (0)-space or suppose that Γ is word-hyperbolic. Let
Γtors ⊂ Γ be the subset of elements of finite order, equipped with the adjoint
Γ-action. There is an isomorphism

lim
λ→1

CCω∗ (`1λ(Γ))
'−→ H∗(Γ,CΓtors) (5.32)

in the chain-homotopy category of ind-Fréchet-complexes, where the right hand
side is viewed as constant, finite dimensional ind-complex with vanishing dif-
ferentials.

Proof: This follows from Prop 5.4, Prop 5.9, and the fact that the groups
studied here contain only finitely many conjugacy classes of torsion elements
[BH],III,1.1,3.2. �

Theorem 5.11. Let Γ be a discrete group acting properly, isometrically and
cocompactly on a CAT (0)-space or suppose that Γ is word-hyperbolic. Let
CC∗(`1(Γ)) be the analytic cyclic bicomplex of the group Banach algebra `1(Γ).
Then there is an isomorphism

CC∗(`1(Γ))
'−→ H∗(Γ,CΓtors) (5.33)

in the derived ind-category.

Proof: The canonical homomorphisms `1λ(Γ) → `1λ′(Γ) → `1(Γ) are com-
pact for 1 < λ′ < λ. Thus one obtains a canonical morphism

lim
λ→1

CCω∗ (`1λ(Γ)) −→ CC∗(`1(Γ))

in the chain-homotopy category of ind-Fréchet complexes. The Approximation
Theorem [Pu2], 6.13, and in particular its proof show that it becomes an
isomorphism in the derived ind-category. The assertion follows then from the
previous theorem. �

Theorem 5.12. Let Γ,Γ′ be discrete groups satisfying the hypothesis of the
previous theorem and let A,B be separable Banach algebras. Then

HC loc∗ (`1(Γ)⊗πA, `1(Γ′)⊗πB) ' Hom(H∗(Γ,CΓtors), H∗(Γ
′,CΓ′tors))⊗HC loc∗ (A,B).

(5.34)

Proof: By the previous theorem there is an isomorphism

Ψ : CC∗(`1(Γ))
'−→ H∗(Γ,CΓtors)

in the derived ind-category. It follows that

Ψ⊗ id : CC∗(`1(Γ))⊗π CC∗(A)
'−→ H∗(Γ,CΓtors)⊗ CC∗(A) (5.35)

is an isomorphism in ind(D) as well (the tensor product of a weakly con-
tractible ind-complex with an auxiliary one is weakly contractible again).
Composing with the Eilenberg-Zilber morphism

∆ : CC∗(`1(Γ)⊗π A)
∼−→ CC∗(`1(Γ))⊗π CC∗(A),
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which is a chain-homotopy equivalence, we arrive at an isomorphism

CC∗(`1(Γ)⊗π A)
'−→ H∗(Γ,CΓtors)⊗ CC∗(A) (5.36)

in the derived ind-category. The same argument applies to the couple (Γ′, B).
The theorem follows then from the fact that the set of morphisms between
to objects of ind(D) is a complex vector space and that the composition of
morphisms is bilinear. �

Theorem 5.13. Let Γ be a discrete group acting properly, isometrically and
cocompactly on a CAT (0) space or suppose that Γ is word-hyperbolic. Then
the Chern-character [Lo] from topological K-theory to local cycllic homology
induces an isomorphism

ch : K∗(`
1(Γ))⊗Z C '−→ HC loc∗ (`1(Γ)). (5.37)

Proof: By the higher index theorem of Connes-Moscovici there is a com-
mutative diagram of “assembly maps”

Ktop
∗ (EΓ)⊗Z

µ−→ K∗(`
1(Γ))⊗Z C

chtop ↓ ↓ ch

H∗(Γ,CΓtors) −→ HC loc∗ (`1(Γ))

(5.38)

The vertical arrow on the left is an isomorphism by a classical theorm of Atiyah
and Hirzebruch, the upper horizontal arrow is an isomorphism by Vincent
Lafforgue’s Thesis [La], and the lower horizontal arrow is an isomorphism by
Theorem 5.11. It follows that the vertical arrow on the right is an isomorphism
as well. �

Remark 5.14. The only (partial) calculation of the local cyclic cohomology
of a group Banach algebra prior to the present work was done in [Pu4], where
its homogeneous part was determined for word-hyperbolic groups and used to
verify the Kadison-Kaplansky idempotent conjecture for these groups. I want
to point out that this paper contains an error. Proposition 2.9 is wrong so
that a modified proof for Corollary 2.10 is needed. It goes as follows. Replace
the equivariant morphism of resolutions Φ′ : C∗(Γ,C)→ CR∗ (Γ,C) in Lemma
2.5.a) by the equivariant morphism ϕ : C∗(Γ,C) → C∗(X,C) of [Mi], Propo-
sition 12 (for X = |∆R

• (Γ)|). Then corollary 2.10 holds for given λ1 > 1 and
λ0 > 1 close enough to 1. The rest of the paper remains unchanged and all
results of chapters 3, 4 and 5 remain valid.
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nach et conjecture de Baum-Connes, Invent. Math. 149 (2002),
1-95

[Lo] J.L. Loday, Cyclic Homology, Springer Grundlehren 301
(1992)

[Mi] I. Mineyev, Straightening and bounded cohomology of hy-
perbolic groups, Geom. Funct. Anal. 11 (2001), 807-839

[Ni] V. Nistor, Group cohomology and the cyclic cohomology of
crossed products, Invent. Math. 99 (1990), 411-424

[Pu1] M. Puschnigg, Periodic cyclic homology of crossed products,
Proc. Symp. Pure Math. 105 (2023), 435-455

[Pu2] M. Puschnigg, Diffeotopy functors of ind-algebras and local
cyclic cohomology, Docum. Math. 8 (2003), 143-245

[Pu3] M. Puschnigg, Explicit Product structures in cyclic homol-
ogy
theories, K-Theory 15 (1998), 323-345

[Pu4] M. Puschnigg, The Kadison-Kaplansky conjecture for
word-hyperbolic groups, Invent. Math. 149 (2002), 153-194

32


