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GRADIENT FLOWS OF INTERACTING LAGUERRE CELLS AS

DISCRETE POROUS MEDIA FLOWS

ANDREA NATALE

Abstract. We study a class of discrete models in which a collection of particles
evolves in time following the gradient flow of an energy depending on the cell areas
of an associated Laguerre (i.e. a weighted Voronoi) tessellation. We consider the
high number of cell limit of such systems and, using a modulated energy argument,
we prove convergence towards smooth solutions of nonlinear diffusion PDEs of
porous medium type.

1. Introduction

Voronoi and Laguerre tessellations are a popular approach to describe the neigh-
borhood relations within particle systems, and therefore to model the particle inter-
actions and dynamics. For instance, they have been used as a model for biological
cells [13], to describe the regions of influence of different agents in territorial mod-
els in ecology [26], or also as discretization tools in continuum mechanics and fluid
dynamics [10, 17]. This article focuses on a specific class of models in which the
particles evolution in space is governed by the gradient flow of an energy depending
on a Laguerre decomposition of a given domain. Our primary interest is to investi-
gate the high number of particles limit of these models, and show how to interpret
the particle dynamics as a discrete version of porous media flow, reproducing its La-
grangian gradient flow structure [7]. Adopting this point of view, we will establish
quantitative estimates for the convergence of the discrete models to their continous
counterparts.

1.1. Problem description. Given N ∈ N, a tessellation L = {L1, . . . , LN} of a
measurable set A ⊂ Rd is a collection of a finite number of measurable subsets
Li ⊂ A, called cells, such that

int(Li) ∩ int(Lj) = ∅ ∀ i 6= j , and ∪i Li = A.

We call TN (A) the set of tessellations of A composed of N cells, and

TsN (A) := {L ∈ TN (B) : B ⊆ A} .

Given a compact domain Ω ⊂ Rd with Lipschitz boundary, we study the dynamics
of N interacting cells, represented by a tessellation in TsN (Ω), and whose location is

parameterized by a vector of cell centers (or particles) X = (x1, . . . , xN ) ∈ (Rd)N .
Specifically, for a given subset of admissible tessellations LN (Ω) ⊆ TsN (Ω) and a
fixed parameter ε > 0, we consider the following energy:

(1.1) Fε(X) := inf
L∈LN (Ω)

∑
i

∫
Li

|x− xi|2

2ε
dx+

∑
i

Ci(|Li|) .
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In practice, we will focus on the two cases where LN (Ω) is either TN (Ω) (the union
of the cells is fixed) or TsN (Ω) (the union of the cells is optimal). Loosely speaking,
the first term in (1.1) measures how close the tessellation is representative of the
particle distributions. The second term is the energy of the tessellation which we
suppose to depend only on the cell volumes, Ci : [0,∞)→ R being a given function
which might be different for each cell. For example, a common choice for Ci used to
model biological cells, is the (non)linear spring model

Ci(a) = C(a) = K(a)
|a− ā|2

2
∀ i ,

where K(a) > 0 is a scaling factor called bulk modulus and which might depend
on a, and ā > 0 is the target volume which is assumed common to all cells. The
dynamics of the cell centers on the time interval [0, T ] is governed by the gradient
flow of Fε, with respect to a weighted l2 metric on (Rd)N , defined as follows:

(1.2) 〈Ẋ, Ẏ 〉m0 :=
∑
i

m0
i 〈ẋi, ẏi〉

for all Ẋ, Ẏ ∈ (Rd)N and where m0 := {m0
1, . . . ,m

0
N} ∈ RN>0. More precisely the

evolution of the cell centers is given by a curve X : [0, T ]→ (Rd)N satisfying

(1.3) Ẋ(t) = −∇m0Fε(X(t))

for all t ∈ (0, T ), with a given initial condition X(0) = X0 = (x0
i ) ∈ ΩN , where ∇m0

denotes the gradient with respect to (1.2).

1.2. Relation with Laguerre tessellations and other discrete models. A
Laguerre tessellation (also called power diagram or weighted Voronoi tessellation) is a
tessellation of the domain L(X,w) = {Li(X,w)}i ∈ TN (Ω) parameterized by a set of
particles X = (x1, . . . , xN ) ∈ (Rd)N and associated weights w = (w1, . . . , wN ) ∈ RN ,
and in which the cells Li(X,w) ⊂ Ω are defined as follows

Li(X,w) := {x ∈ Ω : |x− xi|2 − wi ≤ |x− xj |2 − wj ∀j 6= i} .
We will also refer to xi as the cell center of the cell Li(X,w). Note that if w is a
constant vector then we retrieve the standard Voronoi tessellation of Ω.

The Voronoi tessellation can be shown to be the unique minimizer of the energy
(1.1) when Ci = 0 and LN (Ω) = TN (Ω). In this case, the remaining term in (1.1) is
sometimes referred to as centroidal Voronoi tessellation energy [18], and the resulting
model governed by (1.3) coincides with the Voronoi liquid described in [24], which
is a fluid dynamic interpretation of the Lloyd’s algorithm [19, 21].

In general, the optimal tessellations for problem (1.1) with LN (Ω) = TN (Ω) is
always a Laguerre tessellation, and when LN (Ω) = TsN (Ω) is contained in one (in
particular each cell of the optimal tessellation is the intersection of a Laguerre cell
with a ball); see Section 2. Our discrete model is therefore related to cell evolution
models based on Laguerre tessellations [14]. In Voronoi cell models, for example, one
imposes the tessellation to be Voronoi and the energy of the system only contains the
second term in (1.1) (plus extra energy terms often related to the cell perimeter or
nodes distance). Estabilishing continuous limit for such models is not trivial, partly
because the energies considered are usually more complex than those we treat here.
Available results are therefore limited to 1d [8] or formal calculations [1]. In this
light, the energy (1.1) leads to a modified dynamics which is however more amenable
to theoretical analysis, at least for the case of energies only depending on the cell
area.
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1.3. Relation with Lagrangian discretizations of porous media flow. In the
following, we focus on the case where

(1.4) Ci(a) :=

 U

(
m0
i

a

)
a if a > 0

+∞ otherwise

where U : [0,∞)→ R is a smooth strictly convex function with superlinear growth,
with U(0) = 0. For this energy, the particle dynamics generated by (1.3) can
be reinterpreted as a spatially discrete version of the Lagrangian formulation of the
porous medium equation, describing the evolution of a density ρ : [0, T ]×Ω→ [0,∞)
as the solution of the PDE:

(1.5)

 ∂tρ− div [ρ∇U ′(ρ)] = 0 on (0, T )× Ω ,

∇U ′(ρ) · n∂Ω = 0 on (0, T )× ∂Ω ,

where n∂Ω denotes the unit normal to the boundary ∂Ω, with given initial conditions
ρ(0, ·) = ρ0.

To make this precise, let us fix a smooth strictly-positive reference density ν : Ω→
(0,∞), and consider the energy F : Diff(Ω)→ R on the space of diffeomorphisms of
Ω, defined by

(1.6) F(ϕ) =

∫
Ω
U

(
ν

det(∇ϕ)

)
◦ ϕ−1 .

Given Φ ∈ Diff(Ω) such that

(1.7) ρ0 =
ν

det(∇Φ)
◦ Φ−1 ,

one can check that, at least formally, the flow ϕ : [0, T ]→ Diff(Ω) of the vector field
−∇U ′(ρ) solves the gradient flow system

(1.8)

{
∂tϕ(t) = −∇FF(ϕ(t))
ϕ(0) = Φ

and ρ(t) =
ν

det∇ϕ(t)
◦ ϕ(t)−1 ,

where F := L2
ν(Ω;Rd) and therefore ∇F is the gradient computed with respect to

the L2 inner product weighted by ν (see [7] for details on this interpretation, or also
Section 3).

Let us now fix a tessellation TN = {Ti}i ∈ TN (Ω), and let FN be the space of
piecewise constant functions on the triangulation with values in Rd, i.e.

FN := {ϕX ∈ F : ϕX(x) = xi ∈ Rd for a.e. x ∈ Ti}.

Any element ϕX ∈ FN can be identified with a collection of particles X = (xi)i ∈
(Rd)N given by the collection of images of the cells Ti. Then, a general strategy
to construct a particle discretization of equation (1.8) is to look for solutions ϕX :
[0, T ]→ FN of

(1.9) ∂tϕ
X(t) = −∇FN F̃(ϕX(t))

where F̃ : FN → R is an approrpiate discrete version of F , and with ϕX(0) being

an approximation of Φ in FN . Different choices of F̃ lead to different methods. We
refer to [4] for a review of possible strategies in this context (see in particular [5], for
an approach that is particularly close to the one we study in this article). Impor-
tantly, our discrete model (1.3) is equivalent to (1.9) for an appropriate variational
regularization of the energy (see again Section 3 for details). Such a regularization
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is related to recent approaches based on semi-discrete optimal transport recalled in
Section 1.4.

1.4. Relation with semi-discrete optimal transport. The energy in (1.1) ad-
mits a reformulation based on semi-discrete optimal transport [22]. In fact, de-
noting by W2(µ1, µ2) the L2-Wasserstein distance between two positive measures
µ1, µ2 ∈M+(Ω), one can show that if xi 6= xj for all i 6= j,

(1.10) Fε(X) = inf
a∈RN>0,η∈C

W 2
2

(∑
i aiδxi , η

)
2ε

+
∑
i

U

(
m0
i

ai

)
ai ,

where we used for Ci the expression given in (1.4), and where C is a convex subset
of M+(Ω): in particular, C = {dx} (where dx is the Lebesgue measure on Ω) if
LN (Ω) = TN (Ω), and C = {fdx : f : Ω→ [0, 1]} if LN (Ω) = TsN (Ω) (see Appendix
A for a proof).

Equation (1.10) highlights a link with a different approach which consists in re-
garding the energy of the system (1.6) as a function of the density, and considering
its Moreau-Yosida regularization on the space of positive measures measuresM+(Ω)
with fixed total mass, with respect to the W2 distance. This yields:

(1.11) F̃ε(X) := inf
ρ∈Mac

+ (Ω)

W 2
2

(∑
im

0
i δxi , ρ

)
2ε

+

∫
Ω
U(ρ) ,

where Mac
+ (Ω) is the set of absolutely continuous positive measures on Ω. The

orginal idea of these type of energy regularizations stems from the work of Brenier
in [3] for discretizing the incompressible Euler equations, and its more recent refor-
mulation using semi-discrete optimal transport in [20, 9]. The energy (1.11) was
then used in [10, 17] to discretize the same nonlinear diffusion models considered in
this article as well as the compressible (barotropic) Euler equations, and in [25] in
the context of mean field games.

Note that the advantage of using (1.10) with respect to (1.11) is that the first im-
plies a piece-wise constant density reconstruction (see equation (1.12) below) which
is easier to handle numerically than the minimizers of (1.11) whose structure strongly
depends on U . Moreover the variational definition (1.11) is also easier to generalize
to more complex energies (see Remark 3.1). Finally, we remark that another dis-
cretization strategy similar to ours, which also leads to piece-wise constant densities
on Laguerre cells, was proposed in [2], but the aim of this latter work was not to
derive quantitative convergence estimates as we do here.

1.5. Continuous limit. For a given initial condition X0 ∈ ΩN such that x0
i 6= x0

j

for all i 6= j, let t ∈ [0, T ] 7→ X(t) solve system (1.3) with energy (1.4) and

m0
i =

∫
Ti

ν =

∫
Φ(Ti)

ρ0

where ρ0 satisfies (1.7) as before. Consider the discrete density

(1.12) µ̄N (t, ·) :=
∑
i

m0
i

|Li(t)|
1Li(t)

where Li(t) is the unique (see Section 2.2) optimal tessellation for problem (1.1)
associated with the positions X(t), and where 1Li(t) is the indicator function of the
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set Li(t). Our main result states that µ̄N converges to sufficiently smooth solutions
ρ of (1.5) as long as the error in the initial conditions, measured by

(1.13) δ2
N :=

∑
i

∫
Ti

|Φ(x)− x0
i |2ν(x)dx ,

and ε go to zero with appropriate rates.

Theorem 1.1. Let U : [0,∞) → R be a smooth strictly convex function, with
U(0) = 0, verifying the assumptions of Lemma 4.1 and suppose that there exist
R,α > 1 and β > 0, such that

U(r)− inf U ≥ βrα ∀ r ≥ R .

Suppose that ρ : [0, T ] × Ω → [0,∞) is a strong solution to (1.5), such that ρ0 :
Ω → [ρmin,∞) with ρmin > 0 is of class C1,1 and verifies (1.7), and ∇U ′(ρ) is of
class C2,1 in space, uniformly in time. Moreover, let µ̄N : [0, T ]×Ω→ [0,∞) be the
discrete solution defined in (1.12) via system (1.3), with energy defined using (1.4).
Then

(1.14) max
t∈[0,T ]

∫
Ω
U(µ̄N (t, ·)|ρ(t, ·)) ≤ C

(
δ2
N

ε
+ εp−1

)
,

where p = min{2, α}, U(r|s) := U(r)− U(s)− U ′(s)(r − s) for all r ≥ 0 and s > 0,
and where the constant C > 0 only depends on supt∈[0,T ] ‖∇U ′(ρ(t, ·)‖C2,1, ‖ρ0‖C1,1,

ρmin, diam(Ω), U , T , and d.

The proof is contained in Section 4. Just as in [10], it relies on a Grönwall argu-
ment applied on an appropriately constructed modulated energy (as in the classical
approach to obtain weak strong stability results on (1.5); see, e.g., Chapter 5 in
[6]). The error estimate we prove is actually stronger than (1.14), and it is given
explicitly in equation (4.16) (see also Section 4.7 for an extension in the presence
of external potentials). In particular, the same bound holds for the error in the
L2
ν norm between the exact Lagrangian flow (according to the interpretation de-

scribed in Section 1.3) and the discrete one, given by the collection of the particle
trajectories. Finally, note that if for example we set

(1.15) x0
i = arg min

y∈Rd

∫
Ti

|Φ(x)− y|2ν(x)dx ,

then δN is just the L2
ν projection error of Φ onto FN , the space of piece-wise con-

stant vector fields on TN . Hence, denoting by hN = maxi diam(Ti) the largest cell

diameter, we have δN ≤ ‖∇Φ‖∞(ρ0[Ω])1/2hN , where ρ0[Ω] is the integral of ρ0 over
Ω.

2. Analysis of the discrete model

In this section, we describe in more detail the discrete model (1.3), in particular
we explain the link with Laguerre tessellations and provide an explicit formula for
the gradient of the energy with respect to the particle positions. While much of the
analysis follows the same lines as in [17], or is based on standard arguments from
semi-discrete optimal transport (see Appendix A or [22], for example), we provide
the proofs of the main statements without using directly optimal transport theory,
for the sake of clarity and to make the discussion self-contained.
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2.1. Internal energy. We suppose that the functions Ci defining the energy of the
tessellation are given by

Ci(a) :=

 U

(
m0
i

a

)
a if a > 0

+∞ otherwise

where U : [0,∞)→ R is a smooth strictly convex function with superlinear growth,
with U(0) = 0. From this, it is easy to deduce that Ci is strictly convex, decreasing
and

Ci(a)→ m0
iU
′(0) as a→ +∞.

As a consequence C∗i : R → (−∞,∞] is also strictly convex. More precisely,
dom(C∗i ) ⊆ (−∞, 0] and C∗i is an increasing diffeomorphism between (−∞, 0) and
(−∞,−miU

′(0)) and (C∗i )′(0) = +∞ (since Ci is finite on (0,∞)).
The pressure function associated with U is the strictly increasing function P :

[0,∞)→ [0,∞), defined by

(2.1) P (r) =

{
rU ′(r)− U(r) if r > 0
0 if r = 0

and satisfying P ′(r) = rU ′′(r) for all r > 0. This is related to C ′i and C∗i by

(2.2) C ′i(a) = −P
(
m0
i

a

)
and (C∗i )′(w) =

m0
i

P−1(−w)
,

for all a > 0 and w < 0.

2.2. Dual formulation. From now on we suppose that X = (x1, . . . , xN ) ∈ (Rd)N
is given and that xi 6= xj for all i 6= j. First we rewrite the energy (1.1) as follows:

(2.3) Fε(X) = inf
L∈LN (Ω),a∈RN

sup
w∈RN

∑
i

∫
Li

|x− xi|2

2ε
dx+ Ci(ai) +

wi
2ε

(ai − |Li|) .

We obtain the dual problem by swapping the inf and the sup,

Dε(X) := sup
w∈RN

inf
L∈LN (Ω),a∈RN

∑
i

∫
Li

|x− xi|2

2ε
dx+ Ci(ai) +

wi
2ε

(ai − |Li|)

= sup
w∈RN

inf
L∈LN (Ω)

∑
i

∫
Li

|x− xi|2 − wi
2ε

dx− C∗i
(
−wi

2ε

)
.

Let φ(w; ·) : Ω → R be the function defined by φ(w;x) = mini|x − xi|2 − wi. If

LN (Ω) = TsN (Ω), then L ∈ TN (Ω̃) for some Ω̃ ⊆ Ω, and∑
i

∫
Li

|x− xi|2 − wi
2ε

dx ≥ 1

2ε

∫
Ω̃
φ(w;x) dx

≥ 1

2ε

∫
Ω

min(0, φ(w;x)) dx

=
∑
i

∫
Lsi (X,w)

|x− xi|2 − wi
2ε

dx ,

where

(2.4) Lsi (X,w) := Li(X,w) ∩B(xi, (w
+
i )1/2) ,
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√
wi

xi

Figure 1. An example of optimal tessellation with cells constructed
via equation (2.4).

where B(xi, (w
+
i )1/2) is the closed ball of radius w

1/2
i if wi ≥ 0, and ∅ otherwise.

On the other hand if LN (Ω) = TN (Ω), by the same argument we obtain∑
i

∫
Li

|x− xi|2 − wi
2ε

dx ≥
∑
i

∫
Li(X,w)

|x− xi|2 − wi
2ε

dx .

Therefore

(2.5) Dε(X) = sup
w∈RN

Dε(X;w) ,

where

Dε(X;w) :=
∑
i

∫
L∗
i (X,w)

|x− xi|2 − wi
2ε

dx− C∗i
(
−wi

2ε

)
.

and

L∗i (X,w) =

{
Li(X,w) if LN (Ω) = TN (Ω)
Lsi (X,w) if LN (Ω) = TsN (Ω)

.

A graphical representation of an optimal tessellation in the case LN (Ω) = TsN (Ω) is
given in Figure 1.

Proposition 2.1. The function Dε(X; ·) : RN → (−∞,∞] is concave and C1 on
its effective domain dom(Dε(X; ·)) ⊆ [0,∞)N . In particular for all w ∈ (0,∞)N ,

∂wiDε(X;w) =
1

2ε
(C∗i )′

(
−wi

2ε

)
− |L

∗
i (X,w)|

2ε
∀ i.

Furthermore there exists a unique w∗ ∈ (0,∞)N such that ∂wiDε(X;w∗) = 0 for all
i, or equivalently

(2.6) P

(
m0
i

|L∗i (X,w)|

)
=
wi
2ε

∀ i ,

and therefore maximising Dε(X; ·).
Proof. The concavity and C1 regularity of Dε(X; ·) can be proven using standard
arguments from the theory of semi-discrete optimal transport [22]. In particular,
consider the function

Q(w) :=
∑
i

∫
L∗
i (X,w)

|x− xi|2 − wi
2ε

dx

and observe that for any w, w̃ ∈ RN

Q(w̃) ≤
∑
i

∫
L∗
i (X,w)

|x− xi|2 − w̃i
2ε

dx = Q(w) +
∑
i

wi − w̃i
2ε

|L∗i (X,w)| .
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This shows that the super-differential of Q at w is not empty since the vector
(−|L∗i (X,w)|/(2ε))i ∈ ∂+Q(w), and therefore Q is concave. Furthermore, since
|L∗i (X,w)| is a continuous function of w (see, e.g., Proposition 38 in [22]), Q (and
therefore Dε(X; ·)) is necessarily C1. Existence of maximizers can be shown oberving
that the function Dε(X; ·) is coercive since for any j,∑

i

∫
L∗
i (X,wi)

|x− xi|2 − wi
2ε

dx ≤
∫

Ω

|x− xj |2 − wj
2ε

dx ≤ diam(Ω)2

2ε
|Ω| − |Ω|

2ε
wj .

Since (C∗i )′(0) = +∞ we get that necessarily wi > 0, so the optimality conditions
hold. Uniqueness of maximizers is a consequence of the strict convexity of the
functions C∗i . �

From Proposition 2.1, we can deduce the equivalence with the primal problem
(1.1), and the existence and uniquess of solutions for this latter. In fact, denoting
by w∗ the unique solution of ∂wiDε(X;w∗) = 0 for all i, then

Dε(X;w∗) =
∑
i

∫
L∗
i (X,w∗)

|x− xi|2

2ε
dx− w∗i

2ε
(C∗i )′

(
−w

∗
i

2ε

)
− C∗i

(
−wi

2ε

)
=
∑
i

∫
L∗
i (X,w∗)

|x− xi|2

2ε
dx+ Ci(|L∗i (X,w∗)|) ≥ Fε(X).

Since w∗ is the unique maximizer of the dual problem (2.5), this also implies that
the tessellation L∗(X,w∗) := {L∗i (X,w∗)}i is the unique solution to problem (1.1).

In the following we will need the optimality conditions in Proposition 2.1 in the
following alternative form:

Lemma 2.2. Let L = {Li}i solve problem (1.1), with LN (Ω) equal to either TN (Ω)
or TsN (Ω). Then for any smooth vector field u : Ω→ Rd with u · n∂Ω = 0 on ∂Ω,∑

i

∫
Li

x− xi
ε
· u(x) dx =

∑
i

∫
Li

[
P

(
m0
i

|Li|

)
− |x− xi|

2

2ε

]
divu(x) dx

Proof. Consider again the function φ(w; ·) : Ω → R defined by φ(w;x) = mini|x −
xi|2 − wi. If LN (Ω) = TN (Ω) we have∑

i

∫
Li

x− xi
ε
· u(x) dx =

∫
Ω

1

2ε
∇xφ(w;x) · u(x) dx

=
∑
i

∫
Li

[
wi
2ε
− |x− xi|

2

2ε

]
divu(x) dx

and we conclude using Proposition 2.1, and the relation between (C∗)′ and P in
(2.2). If LN (Ω) = TsN (Ω) we just need to replace φ(w; ·) with min{φ(w; ·), 0}. �

2.3. Discrete dynamical system. Let us introduce the set of particle configura-
tions where at least two particles share the same location:

∆N = {X = (x1, . . . , xN ) ∈ (Rd)N : ∃ i, j such that xi = xj , i 6= j} .

Proposition 2.3. The function X 7→ Fε(X) is C1 on (Rd)N \∆N . Moreover, for
any X ∈ (Rd)N \∆N ,

(∇m0Fε(X))i =
|Li|
m0
i

xi − bi
ε

, where bi :=
1

|Li|

∫
Li

xdx ,

and where L = {Li}i is the unique minimizer of problem (1.1).
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The proof is a slight adaptation of the arguments used in [17] to prove an analogous
result, and is therefore postponed to Section A.3 in the appendix.

In view of Proposition 2.3, the particle dynamics is governed by the system of
ODEs

(2.7) ẋi(t) = −|Li(t)|
m0
i

xi(t)− bi(t)
ε

where we denote by Li(t) the optimal tessellation associated with the particle config-
uration X(t) = (x1(t), . . . , xN (t)) ∈ (Rd)N . By Proposition 2.3 the right-hand side
of (2.7) is a continuous function of X(t) on the open set (Rd)N \∆N , and therefore
the system always admits solutions if X(0) ∈ (Rd)N \∆N . We now show that such
solutions are always defined for all times (again, adapting similar arguments from
[17]). For this, we will need the following lemma:

Lemma 2.4. Let L(X,w) the Laguerre tessellation of Ω associated with the position
vector X ∈ (Rd)N and the vector of weights w. If |Li(X,w)| > 0 for all i = 1, . . . , N ,
then for all i, j = 1, . . . , N ,

|wi − wj | ≤ 2diam(Ω)|xi − xj |

Proof. Since |Li(X,w)| > 0, there exists x ∈ Ω such that

|x− xi|2 − wi ≤ |x− xj |2 − wj ,
for all j. Rearranging terms we obtain,

wj −wi ≤ |xj |2−|xi|2− 2x · (xj −xi) = (xj +xi− 2x) · (xj −xi) ≤ 2diam(Ω)|xj −xi|
Swapping the role of i and j we get the result. �

Suppose that X(t) solves (2.7) on some interval [0, t∗) with X(0) ∈ ΩN \∆N , and
consider the decreasing function R(s) := P (1/s) for all s > 0. Then, with the same
notation as above,∣∣∣∣∣P

(
m0
i

|Li(t)|

)
− P

(
m0
j

|Lj(t)|

)∣∣∣∣∣ ≥ CN
∣∣∣∣∣ |Li(t)|m0

i

− |Lj(t)|
m0
j

∣∣∣∣∣
where CN := |R′(|Ω|/m̄0)| > 0, with m̄0 := minim

0
i , and by the optimality condi-

tions in Proposition 2.1 and then Lemma 2.4,∣∣∣∣∣ |Li(t)|m0
i

− |Lj(t)|
m0
j

∣∣∣∣∣ ≤ |wi(t)− wj(t)|2εCN
≤ diam(Ω)

εCN
|xi(t)− xj(t)| .

From these bounds we can deduce a lower bound on the distance between particles.
In particular, using the fact that 〈xi − xj , bi − bj〉 ≥ 0, we obtain

(2.8)

d

dt

|xi − xj |2

2
=

〈
xi − xj ,−

xi − bi
ε

|Li|
m0
i

+
xj − bj
ε

|Lj |
m0
j

〉

≥ −|Li|
m0
i

|xi − xj |2

ε
− |xj − bj ||xi − xj |

∣∣∣∣∣ |Li|m0
i

− |Lj |
m0
j

∣∣∣∣∣ 1

ε

≥ −|Ω|
m̄0

|xi − xj |2

ε
− diam(Ω)2

ε2CN
|xi − xj |2 ,

where we omitted the time dependency of xi, bi and Li to simplify the notation. By
a Grönwall inequality, this shows the long time existence of discrete solutions:
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Lemma 2.5. If X(0) ∈ (Rd)N \∆N the solutions to (2.7) are defined for all times
t > 0. Moreover, if X(0) ∈ conv(Ω)N \ ∆N , then X(t) ∈ conv(Ω)N \ ∆N for all
t > 0, where conv(Ω) denotes the convex hull of Ω.

Proof. Denote by π : Rd → conv(Ω) the Euclidean projection of x onto conv(Ω) and
by d2(x) = |x− π(x)|2 the square distance of x from conv(Ω). Then since bi(t) ∈ Ω,

d

dt

d2(x)

2
= 〈ẋi, xi − π(xi)〉 ≤ −

|Ω|
m̄0ε

d2(x).

Using Grönwall’s lemma on this inequality and on (2.8), we obtain the result. �

3. Lagrangian formulation of porous media and link with the
discrete model

In this section we describe formally the gradient flow structure of the porous
medium equation (1.5) in Lagrangian variables [7]. We then use this to reinterpret
(1.3) as a discretization of such a system preserving its gradient flow structure.
Note that at the Eulerian level, the gradient flow interpretation of porous media
corresponds to the Wasserstein gradient flow formulation originally put forward by
Otto [23]. Note also that the discussion in this section is essentially independent of
the convergence proof in the next section, but it sheds light on the link between to
the continuous and discrete systems and justifies the construction of the modulated
energy in Section 4.2.

Let us denote by M+(Ω) the set of positive measures on Ω. Given a measurable
map Ψ : Ω → Rd, and a measure ρ ∈ M+(Ω) the pushforward of ρ by Ψ is the
measure Ψ#ρ ∈M+(Rd), satisfying∫

fdΨ#ρ =

∫
f(Ψ(x))dρ(x)

for all f ∈ C0(Rd), the space of continuous functions vanishing at infinity.
Consider now two reference measures σ, ν ∈ M+(Ω) with smooth and strictly

positive densities with respect to the Lebesgue measure on Ω, denoted dx in the
following, and let us define the energy F : L2

ν(Ω;Rd)→ R by

F(ϕ) =


∫

Ω
U

(
dϕ#ν

dσ

)
dσ if ϕ#ν � σ

+∞ otherwise
.

The gradient of this energy with respect to the L2
ν metric, at a given configuration

ϕ ∈ Diff(Ω), can be defined as follows. Consider a smooth curve s ∈ (−ε, ε) →
ϕ(s) ∈ Diff(Ω) ⊂ L2

ν(Ω;Rd) such that ϕ(0) = ϕ and dϕ(s)/ds|s=0 = δϕ. Then,

(3.1) 〈∇L2
ν
F(ϕ), δϕ〉 =

d

ds

∣∣∣
s=0
F(ϕs)

=
d

ds

∣∣∣
s=0

∫
U ′
(

dϕ#ν

dσ

)
◦ ϕ(s)dν = 〈∇U ′

(
dϕ#ν

dσ

)
◦ ϕ, δϕ〉 ,

where 〈·, ·〉 denotes the inner product on L2
ν(Ω;Rd). Then, we can interpret any

smooth curve of diffeomorphisms ϕ : [0, T ]→ Diff(Ω) satisfying ∂tϕ(t) = −∇U ′
(

d[ϕ(t)#ν]

dσ

)
◦ ϕ(t)

ϕ(0) = Φ
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as the gradient flow of F with respect to the L2
ν metric, starting at Φ ∈ Diff(Ω).

Denoting ρ(t) = ϕ(t)#ν and ρ0 = Φ#ν, then ρ(t) statisfies the continuity equation
with velocity field −∇U ′ (dρ(t)/dσ) tangent to the boundary, i.e.

∂tρ(t)− div

(
ρ(t)∇U ′

(
dρ(t)

dσ

))
= 0

∇U ′
(

dρ(t)

dσ

)
· n∂Ω = 0

ρ(0) = ρ0

.

In order to link this formulation with the discrete model, for any diffeomorphism
ϕ ∈ Diff(Ω), let us denote

λ :=
dϕ−1

# σ

dσ
,

or equivalently ϕ#(λσ) = σ. Then,

ϕ#ν = ϕ#

[
1

λ

dν

dσ
λσ

]
=

(
1

λ

dν

dσ

)
◦ ϕ−1σ ,

which implies

F(ϕ) =

∫
U

(
1

λ

dν

dσ

)
λdσ .

This suggests the definition of the following regularized energy

(3.2) Fε(ϕ) := inf
λ

W 2
2 (ϕ#(λσ), σ)

2ε
+

∫
U

(
1

λ

dν

dσ

)
λdσ ,

where W2(·, ·) denotes the L2-Wasserstein distance on between positive measures
with equal mass (see Appendix A for a precise definition). The main reason for
using the regularization (3.2) is that that this is well-defined on the whole space
L2
ν(Ω;Rd). In turn, this allows us to make sense of the variational structure of

the system without regularity assumptions on the flow, and reproduce this at the
discrete level. In order to do this, let us fix a tessellation T = {Ti}i of Ω, and for any
given vector X = (xi)i ∈ (Rd)N consider the piece-wise constant map ϕX : Ω→ Rd
such that ϕX(x) = xi ∈ Rd for a.e. x ∈ Ti. Then,

ϕX#λσ =
∑
i

aiδxi where ai =

∫
Ti

λdσ

and

(3.3) Fε(ϕX) := inf
λ

W 2
2 (
∑

i aiδxi , σ)

2ε
+

∫
U

(
1

λ

dν

dσ

)
λdσ .

Optimizing over λ we find that for any cell Ti there exist a constant ci such that
almost everywhere on Ti, dν/dσ = ciλ. This implies that

m0
i :=

∫
Ti

dν = ci

∫
Ti

λdσ = ciai =⇒ 1

λ

dν

dσ
=
∑
i

m0
i

ai
1Ti ,

which replaced into (3.3) gives

Fε(ϕX) := inf
a

W 2
2 (
∑

i aiδxi , σ)

2ε
+
∑
i

U

(
m0
i

ai

)
ai .

In the case where σ = dx this coincides with Fε(X) for the case LN (Ω) = TN (Ω).
The proof of the equivalence is contained in Appendix A.2.
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In the case where ϕ : Ω→ Ω̃ 6= Ω the constraint ϕ#(λσ) = σ is not appropriate,
as in this case we only have

dϕ#λσ

dσ
= 1Ω̃ .

Hence, we define the regularized energy by

Fε(ϕ) := inf
λ, dη

dσ
≤1

W 2
2 (ϕ#(λσ), η)

2ε
+

∫
U

(
1

λ

dν

dσ

)
λdσ .

In the case where σ = dx, by similar computations as above, we find Fε(ϕX) =
Fε(X), with LN (Ω) = TsN (Ω).

Finally, let us denote by FN := {ϕ ∈ L2
ν(Ω;Rd) : ϕ(x) = xi ∈ Rd for a.e. x ∈ Ti}

the space of piecewise constant flows on the reference triangulation equipped with
the L2

ν metric. Then, in both the cases described above, the discrete dynamics in
(1.3) coincides with the gradient flow

∂tϕ
X = −∇FNFε(ϕ

X) .

Remark 3.1 (Generalizations to models with advected quantites). The type of en-
ergy regularization considered here can be easily generalized to models where multiple
scalar functions and densities are advected by the flow, i.e. to the case where

F(ϕ) =

∫
U

(
a1 ◦ ϕ−1, . . . , an ◦ ϕ−1,

dϕ#ν1

dσ
, . . . ,

dϕ#νm
dσ

)
dσ ,

where now U : Rn+m → R, ai : Ω → R and νj ∈ M+(Ω) are given scalar functions
and positive measures, respectively. In fact, as before, this can be written as a single
function of λ, since by a change of variables

F(ϕ) =

∫
U

(
a1, . . . , an,

1

λ

dν1

dσ
, . . . ,

1

λ

dνm
dσ

)
λdσ .

Formally, writing the Hamiltonian equations corresponding to such energies,

∂2
ttϕ(t) = −∇FF(ϕ(t)) ,

one recovers, with appropriate choices of U , a large class of compressible fluid models
including, e.g., the thermal shallow water equations or the full compressible Euler
equations (see, e.g., [12, 15]). Then the same discretization strategy described in this
section leads naturally to simple Lagrangian schemes for all of these models as well.

4. Convergence towards smooth solutions

In this section we prove Theorem 1.1, i.e. the convergence of discrete solutions
associated to (1.3) towards smooth solutions of the equation

∂tρ− div
[
ρ∇U ′(ρ)

]
= 0.

The proof follows similar lines as the one used in [10] to analyze the system associated
to a different energy regularization, given by (1.11). It relies on the construction of
an appropriate relative entropy, based on the Lagrangian point of view described in
Section 3, and on two main technical lemmas.
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4.1. Preliminary lemmas. The first lemma we will need provides us with a way
to control the relative pressure

(4.1) P (r|s) := P (r)− P (s)− P ′(s)(r − s)

by U(r|s) := U(r) − U(s) − U ′(s)(r − s). In particular, we will make the following
assumption: there exists a constant A > 0 such that

(4.2) |P ′′(r)| ≤ AU ′′(r) ∀ r > 0 .

This assumption is trivially verified for the important case of power energies, i.e.
when U(r) = rγ/(γ − 1) with γ > 1, which corresponds to P (r) = rγ . It implies the
following lemma, which is extracted from Lemma 3.3 in [11].

Lemma 4.1. Let U and P be smooth functions on [0,∞) verifying (2.1) and (4.2).
Then

(4.3) |P (r|s)| ≤ AU(r|s) ∀ r, s > 0 .

Proof. We have P (r|s) = (r − s)2
∫ 1

0 (1 − θ)P ′′((1 − θ)s + θr) dθ and similarly for
U(r|s). Hence, using equation (4.2),

|P (r|s)| ≤ (r − s)2

∫ 1

0
(1− θ)|P ′′((1− θ)s+ θr)| dθ ≤ AU(r|s) .

�

The second lemma is necessary to deal with the fact that the particles may exit
the domain Ω, when this latter is not convex. For this reason, we will need to use
an extension of the continuous density ρ on the whole space. It will be clear in the
following that such an extension needs to verify the continuity equation with respect
to an appropriate velocity field also defined on the whole space. Here we just report
a simplified version of the statement of Lemma 4.1 in [10], which was used precisely
for this purpose.

Lemma 4.2. Let u : [0, T ]× Ω→ Rd be such that u · n∂M = 0 on [0, T ]× ∂Ω, and
ρ0 : Ω→ [ρmin,∞) with ρmin > 0. If u is of class C2,1 in space, uniformly in time,
and ρ0 is of class C1,1, then there exist ũ : [0, T ]×Rd → Rd and ρ̃ : [0, T ]×Rd → R
such that:

(1) ũ is an extension of u, i.e. ũ(t)|Ω = u(t) for all t ∈ [0, T ], and there exists a
constant C > 0 only depending on d such that

(4.4) sup
t∈[0,T ]

‖ũ(t)‖C2,1 ≤ C sup
t∈[0,T ]

‖u(t)‖C2,1 ;

(2) the couple (ρ̃, ũ) solves the continuity equation:

∂tρ̃+ div(ρ̃ũ) = 0 on [0, T ]× Rd,

and in particular the curve ρ : t ∈ [0, T ] → ρ̃(t)|Ω is the unique solu-
tion to the continuity equation on [0, T ] × Ω associated with u and initial
conditions ρ(0) = ρ0; ρ̃ ≥ ρ̃min > 0, where ρ̃min only depend on ρmin,
supt∈[0,T ] ‖u(t)‖C2,1, T and d; moreover, supt∈[0,T ] ‖ρ̃(t)‖C1,1 only depends

on ‖ρ0‖C1,1, supt∈[0,T ] ‖u(t)‖C2,1, T , d and on ρmin.
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4.2. Main assumptions and relative entropy. Suppose that ρ : [0, T ] × Ω →
(0,∞) is a sufficiently smooth solution to equation (1.5). In particular, we suppose
that u := −∇U ′(ρ) and ρ(0, ·) = ρ0 satisfy the assumptions of Lemma 4.2. We will
denote by ρ̃ : [0, T ]× Rd → [0,∞) and ũ : [0, T ]× Rd → Rd the extensions of ρ and
u, respectively, outside the domain. By construction these satisfy the continuity
equation on the whole space, but in general outside the domain Ω,

ṽ := −∇U ′(ρ̃) 6= ũ .

For any N > 0, let XN : t ∈ [0, T ]→ (xi(t))i ∈ (Rd)N be a solution to the discrete
model (1.3), with given initial conditions xi(0) = x0

i ∈ Ω. We suppose that for a
given diffeomorphism Φ : Ω → Ω and a smooth reference density ν : Ω → (0,∞),
the initial density can be written as follows:

ρ0 =
ν

det(∇Φ)
◦ Φ−1 .

Then, given a fixed tessellation TN = {Ti}i ∈ TN (Ω), we denote

(4.5) δN :=

∫
Ti

|Φ(x)− x0
i |2ν(x)dx , m0

i =

∫
Φ(Ti)

ρ0 =

∫
Ti

ν .

Let us introduce the time-dependent positive measures µN : [0, T ]→M+(Ω) and
µ̄N : [0, T ]→M+(Ω) defined as follows

(4.6) µN (t) :=
N∑
i=1

m0
i δxi(t) , µ̄N (t) :=

N∑
i=1

m0
i

|Li(t)|
1Li(t)dx .

For simplicity, in the following we will use µ̄N (t) to denote also its density with
respect to the Lebesgue measure dµ̄N (t)/dx. In order to define the relative entropy
between the smooth and discrete solutions, we first introduce the flow of u, which
is the curve of diffeomorphisms ϕ : [0, T ]× Ω→ Ω verifying

∂tϕ(t, x) = u(t, ϕ(t, x)) , ϕ(0, x) = Φ(x) .

Then let ϕN (t) := (ϕ(t,Φ−1(x0
i )))i ∈ ΩN be the collection of the exact trajectories

of the particles located at x0
i at time t = 0. The relative entropy of the discrete

solution with respect to the continuous one is defined as follows:

Fε(XN |ρ; t) :=
∑
i

∫
Li(t)

|x− xi(t)|2

2ε
dx+

∫
Ω
U(µ̄N (t)|ρ(t)) +

‖ϕN (t)−XN (t)‖2m0

2
.

4.3. Time derivative of the relative entropy. We now compute the time deriv-
ative of the relative entropy and isolate the terms that need to be estimated. It will
be useful to define the following quantity:

H(t) :=

∫
Rd
U ′(ρ̃(t))d(µN (t)− µ̄N (t)) ,

where µ̄N is extended by zero on Rd. We will keep using this convention in what
follows.

Let us start by rewriting the relative entropy as follows:

(4.7) Fε(XN |ρ; t) = Fε(XN (t)) +

∫
Ω
P (ρ(t))−

∫
Rd
U ′(ρ̃(t))dµN (t)

+H(t) +
‖ϕN (t)−XN (t)‖2m0

2
.
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We compute the time derivative of the terms of the right-hand side separately. For
the first term, we write

d

dt
Fε(XN (t)) =

∑
i

∫
Li(t)

xi(t)− x
ε

· ẋi(t)dx

= − 〈ẊN (t), ẊN (t)− ũ(t,XN (t))〉m0

+
∑
i

∫
Li(t)

xi(t)− x
ε

· (ũ(t, xi(t))− ũ(t, x))dx

+
∑
i

∫
Li(t)

xi(t)− x
ε

· u(t, x) dx ,

and by Lemma 2.2 we can write the last term on the right-hand side as follows:∑
i

∫
Li(t)

xi(t)− x
ε

· u(t, x)dx =
∑
i

∫
Li(t)

|x− xi(t)|2

2ε
dx−

∫
Ω
P (µ̄N (t))divu(t) .

For the second term, using the continuity equation −∂tρ = ∇ρ · u + ρdivu, we
obtain

d

dt

∫
Ω
P (ρ(t)) = −

∫
Ω
P ′(ρ(t))ρ(t)divu(t)−

∫
∇P (ρ(t)) · u(t)

=

∫
Ω

[
P (ρ(t))− P ′(ρ(t))ρ(t)

]
divu(t) .

Finally, for the third term, using again the continuity equation −∂tρ̃ = ∇ρ̃·ũ+ρ̃divũ,
this time on Rd, we have

d

dt

∫
Rd
U ′(ρ̃(t))dµN (t) =

∑
i

∇U ′(ρ̃(t, xi)) · ẋim0
i +

∫
Rd
U ′′(ρ̃(t))∂tρ̃dµN (t)

=
∑
i

∇U ′(ρ̃(t, xi)) · (ẋi − ũ(t, xi))m
0
i −

∫
Rd
P ′(ρ̃(t))divũ(t)dµN (t)

= −〈ṽ(t,XN (t)), ẊN (t)− ũ(t,XN (t))〉m0 −
∫
Rd
P ′(ρ̃(t))divũ(t)dµN (t) .

Reinserting these expressions into the time derivative of (4.7) and rearranging terms
we obtain

(4.8)
d

dt
Fε(XN |ρ; t) +

d

dt
H(t) + ‖ẊN (t)− ũ(t,XN (t))‖2m0 =

5∑
j=1

Ij(t) ,

where the terms in the sum on the right-hand side are defined as follows:

I1(t) :=
∑
i

∫
Li(t)

xi(t)− x
ε

· (ũ(t, xi(t))− ũ(t, x))dx ,

I2(t) :=
∑
i

∫
Li(t)

|x− xi(t)|2

2ε
divu(t, x)dx−

∫
Ω
P (µ̄N (t)|ρ(t))divu(t) ,

I3(t) :=

∫
Rd
P ′(ρ̃(t))divũ(t)d(µN (t)− µ̄N (t)) ,

I4(t) := 〈ṽ(t,XN (t))− ũ(t,XN (t)), ẊN (t)− ũ(t,XN (t))〉m0 ,

I5(t) := 〈u(t, ϕN (t))− ẊN , ϕN (t)−XN (t)〉m0 .
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4.4. Uniform estimates. In the following, for any given Lipchitz function f ∈
C0,1(Ω), we will denote by Lip(f) its Lipschitz constant, and for any time-dependent
function g ∈ C([0, T ];C0,1(Ω)) we denote by LipT g := supt∈[0,T ] Lip(g(t, ·)), and
similarly for vector-valued functions.

We estimate separately the terms on the right-hand side of (4.8). We have

I1(t) ≤ LipT (ũ)
∑
i

∫
Li(t)

|xi(t)− x|2

ε
dx

and using Lemma 4.1,

I2(t) ≤ (LipT (u) +A)
∑
i

∫
Li(t)

|x− xi(t)|2

2ε
dx+

∫
Ω
U(µ̄N (t)|ρ(t))divu(t) ,

To bound I3, let us introduce h := P (ρ̃)div(ũ). Then, for any λ > 0,

I3(t) =
∑
i

[
h(t, xi(t))m

0
i −

m0
i

|Li(t)|

∫
Li(t)

h(t, x)dx

]

≤
∑
i

LipT (h)
m0
i

|Li(t)|

∫
Li(t)
|xi(t)− x|dx

≤ LipT (h)

[∑
i

∫
Li(t)

|xi(t)− x|q

λqqε
dx+

εp−1λp

p

∑
i

(
m0
i

|Li(t)|

)p
|Li(t)|

]
where p, q > 1 are conjugate exponents, i.e. 1/p+ 1/q = 1. Recall that we supposed
that there exist R,α > 1 and β > 0, such that

U(r)− inf U ≥ βrα ∀ r ≥ R .

Then, choosing p = min{2, α} we get q ≥ 2, and therefore

I3(t) ≤ LipT (h)
2diam(Ω)q−2

qλq

∑
i

∫
Li(t)

|xi(t)− x|2

2ε
dx+

LipT (h)
εp−1λp

p

(
|Ω|Rp + β−1

∫
Ω
U(µ̄N (t))− β−1|Ω| inf U

)
where we used the fact that, since XN (0) ∈ ΩN \∆N , by Lemma 2.5 xi(t) ∈ conv(Ω)
(the convex hull of Ω) for all times t ≥ 0. Hence,

(4.9) I3(t) ≤ LipT (h)

(
C1

λq
Fε(X|ρ; t) + C2λ

pεp−1

)
where

(4.10) C1 :=
2diam(Ω)q−2

q
, C2 :=

β−1Fε(X(0)) + |Ω|(Rp − β−1 inf U)

p
.

In the following we will use (4.9) with λ = 1. However, using the same arguments
to bound H(t) and choosing λ appropriately, we get

(4.11) |H(t)| ≤ 1

2
Fε(X|ρ; t) + C2λ̄

pεp−1

where

λ̄ =

(
2

C1 max{LipT (h), 1}

) 1
q

.
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Finally we observe that

I4(t) + I5(t) = 〈ṽ(t,XN (t))− ṽ(t, ϕN (t)), ẊN (t)− ũ(t,XN (t))〉m0

+ 〈ũ(t, ϕN (t))− ũ(t,XN (t)), ẊN (t)− ũ(t,XN (t))〉m0

+ 〈ϕN (t)−XN (t), ẊN (t)− ũ(t,XN (t))〉m0

≤ 3

2

(
Lip(ṽ)2 + Lip(ũ)2 + 1

)
‖XN (t)− ϕN (t)‖2m0 +

‖ẊN (t)− ũ(t,XN (t))‖2m0

2
.

Remark 4.3. The dependence on εp−1 of the final estimate (1.14) is essentially due
to the bounds on I3 and H given in (4.9) and (4.11), respectively. Both bounds can be
directly related to the natural requirement that two possible Eulerian reconstructions
given in (4.6) converge (weakly) to the same limit.

4.5. Grönwall argument. Reinserting the estimates above into (4.8), we obtain

(4.12)
d

dt
Fε(XN |ρ; t) +

d

dt
H(t) +

‖ẊN (t)− ũ(t,XN (t))‖2m0

2

≤ C3Fε(XN |ρ; t) + C4ε
p−1

Let G(t) := Fε(XN |ρ; t) +H(t) and observe that equation (4.11) implies

−Fε(XN |ρ; t) ≤ 2H(t) + 2C2λ̄
pεp−1

and adding 2Fε(XN |ρ; t) on both sides we obtain

Fε(XN |ρ; t) ≤ 2G(t) + 2C2λ̄
pεp−1

Substituting this into (4.12), we obtain

d

dt
G(t) +

‖ẊN (t)− ũ(t,XN (t))‖2m0

2
≤ 2C3G(t) + C5ε

p−1

Hence by Grönwall’s inequality we get

(4.13) Fε(XN |ρ; t) +

∫ t

0

‖ẊN (s)− ũ(t,XN (s))‖2m0

2
ds

≤ exp(2C3t)G(0) +
C5

2C3
εp−1(exp(2C3t)− 1)−H(t) ,

and using again the bound on H(t) in (4.11) we find that for some constant C6 > 0,

Fε(XN |ρ; t)

2
+

∫ t

0

‖ẊN (s)− ũ(t,XN (s))‖2m0

2
ds ≤ exp(2C3t)[G(0)+C6ε

p−1]+C6ε
p−1 .

4.6. Estimates on the initial datum. In order to conclude we only need to esti-
mate G(0) and the initial energy Fε(0), since C6 is an affine function of this latter,
due to (4.10). Recall the definition of δN in (4.5). Using Jensen’s inequality and the
expression for ρ0 in (1.7), we obtain

(4.14)

Fε(XN (0)) ≤
∑
i

∫
Φ(Ti)

|x− x0
i |2

2ε
dx+

∑
i

U

(
m0
i

|Φ(Ti)|

)
|Φ(Ti)|

≤
∑
i

∫
Ti

|Φ(x)− x0
i |2

2ε

ν(x)

(ρ0 ◦ Φ)(x)
dx+

∫
Ω
U(ρ0)

= C7
δ2
N

2ε
+

∫
Ω
U(ρ0) ,
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where C7 = ρ−1
min. Moreover,

(4.15)

∣∣∣∣∫
Rd
U ′(ρ0)d(µN (0)− ρ0)

∣∣∣∣ =

∣∣∣∣∣∑
i

∫
Φ(Ti)

(U ′(ρ0(xi))− U ′(ρ0))ρ0

∣∣∣∣∣
≤ Lip(U ′(ρ0))

∑
i

∫
Ti

|x0
i − Φ(x)|ν(x)dx

≤ Lip(U ′(ρ0))2

2
ρ0[Ω]ε+

δ2
N

2ε
.

where ρ0[Ω] is the integral of ρ0 over Ω. Hence, combining (4.14) and (4.15) we
obtain

G(0) = Fε(XN (0))−
∫

Ω
U(ρ0)−

∫
Rd
U ′(ρ0)d(µN (0)− ρ0)

≤ (C7 + 1)
δ2
N

2ε
+

Lip(U ′(ρ0))2

2
ρ0[Ω]ε .

Combining the estimates above we finally find

(4.16)
Fε(XN |ρ; t)

2
+

∫ t

0

‖ẊN (s)− ũ(t,XN (s))‖2m0

2
ds

≤ exp(2C3t)

(
(C7 + 1)

δ2
N

2ε
+

Lip(U ′(ρ0))2

2
ρ0[Ω]ε+ C6ε

p−1

)
+ C6ε

p−1 ,

where C6 is an affine function of δ2
N/ε, which concludes the proof of Theorem 1.1.

4.7. External potentials. We now consider a slight modification of the original
system where the total energy is given by

Zε(X) := Fε(X) +
∑
i

V (xi)m
0
i ,

where V : Rd → R is a Lipschitz function. The gradient flow of this energy, i.e. the
trajectories satisfying Ẋ = −∇m0Zε(X) solve the following modified system ODEs

(4.17) ẋi(t) = −|Li(t)|
m0
i

xi(t)− bi(t)
ε

−∇V (xi(t))

In this case the limit PDE is given by

(4.18)

 ∂tρ− div [ρ(∇U ′(ρ) +∇V )] = 0 on (0, T )× Ω

(∇U ′(ρ) +∇V ) · n∂Ω = 0 on (0, T )× ∂Ω
.

The proof above also apply to this case with some minor changes. First of all, we
observe that the velocity field is now u = −∇U ′(ρ) − ∇V . We assume that this is
sufficiently smooth so that the extension Lemma 4.2 applies. Then, using the same
modulated energy as above, the only different term in equation (4.8) is I4(t) which
should be replaced by

Ĩ4(t) := 〈ṽ(t,XN (t))−∇V (XN (t))− ũ(t,XN (t)), ẊN (t)− ũ(t,XN (t))〉m0

where as before ṽ = −∇U ′(ρ̃). This can be controlled exactly as above, leading
to the same convergence result as in Theorem 1.1, but with ∇U ′(ρ) replaced by
∇U ′(ρ) +∇V .
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5. Time discretization and numerical tests

5.1. Time discretization. In order to compute numerically the solution to discrete
model (1.3) on a given time interval [t0, T ], we will consider the same explicit time
discretization used in [10] and originally proposed by Brenier in [3]. Given a time

step τ = |T − t0|/NT > 0 with NT ∈ N, define the discrete solution (Xn)NTn=0 as

follows: given X0, compute Xn+1 = (xn+1
i )Ni=1 for n ≥ 0 by

(5.1) xn+1
i = bni + exp

(
−|L

n
i |

m0
i ε
τ

)
(xni − bni )

where Lni and bni are the ith cell of the optimal tessellation at the nth step and its
barycenter, respectively. This scheme can be obtained by following on each time
interval [nτ, (n+ 1)τ ] the gradient flow of the energy

F̃nε (X) =
∑
i

∫
Lni

|x− xi|2

2ε
dx+

∑
i

U

(
m0
i

|Lni |

)
|Lni | ,

where Lni is fixed. As a consequence of the definition of the discrete energy (1.1),
this latter is dissipated by the discrete process defined by (5.1):

Fε(X
n+1) ≤ F̃nε (Xn+1) ≤ F̃nε (Xn) = Fε(X

n) .

5.2. Numerical tests. In this section we present some numerical tests to verify
the convergence estimates of Section 4. All the experiments correspond to the case
where LN (Ω) = TsN (Ω). The computation of the energy and optimal tessellation is
perfermed using Newton’s method applied on the system of optimality conditions
for the vector of weights w ∈ RN given in (2.6), similarly to the case of semi-discrete
optimal transport described in [16]. Computationally, this is simpler than the case
of the Moreau-Yosida regularization (1.11) considered in [10, 17], as the optimality
conditions in (2.6) do not require computing integrals of nonlinear functions over
the cells. The code that generated the tests in this section is available at https:

//github.com/andnatale/gradient_flows_of_interacting_cells, and is based
on the open-source library sd-ot, which is available at https://github.com/sd-ot.

5.2.1. Barenblatt test case. We consider the case where U(r) = rγ/(γ − 1) and
P (r) = rγ with γ > 1, in which case the corresponding PDE (1.5) is the porous
medium equation. For this energy, we have an exact solution on Rd which is given
by the Barenblatt profile:

(5.2) ρ(t, x) =
1

tα

(
C2 − k

t2β
|x|2
) 1
γ−1

+

where

α =
d

d(γ − 1) + 2
, β =

α

d
, k =

β(γ − 1)

2γ
,

The exact flow is given by

ϕ(t, x) =

(
t

t0

)β
x .

Note that this case falls outside the hypotheses of our theorem, due to lack of a
positive lower bound on the density. Note also that since the solution has a compact
support the choice of the domain Ω, if sufficiently large, has no impact on the results.

We solve the discrete system on the interval [t0, T ] with t0 = 1/16, T = 1, and
C = 1/3, and using ε = 10/N and τ = 10/N2. The initial conditions for the particle

https://github.com/andnatale/gradient_flows_of_interacting_cells
https://github.com/andnatale/gradient_flows_of_interacting_cells
https://github.com/sd-ot
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γ = 1.5

1/
√
N ∆ϕ rate

1.00e-01 4.54e-02
5.00e-02 3.81e-02 2.54e-01
2.50e-02 3.03e-02 3.27e-01
1.25e-02 2.28e-02 4.10e-01
6.25e-03 1.64e-02 4.80e-01

γ = 2

∆ϕ rate
8.23e-02
5.32e-02 6.30e-01
3.40e-02 6.45e-01
2.11e-02 6.85e-01
1.28e-02 7.23e-01

γ = 4

∆ϕ rate
2.07e-01
1.21e-01 7.75e-01
6.84e-02 8.23e-01
3.88e-02 8.19e-01
2.12e-02 8.69e-01

Table 1. Error and rate of convergence for the Barenblatt test case.

model are defined via equations (1.7), (1.13) and (1.15), where Φ is a radial map
from a reference ball of given radius (on which we set ν = 1) to the support of ρ0,
which can be computed explicitly from (5.2), and TN is a Voronoi tessellation of the
reference ball. For all tests we will monitor the weighted l2 error on the flow, at the
final time T , defined as in the last section as

∆ϕ := ‖XN (T )− ϕN (T )‖m0 ,

where ϕN (t) = ϕ(t,XN (0)) and where ϕ is the exact flow associated with the vector
field −∇U ′(ρ). The results in table 1 show generally a faster convergence than that
predicted by Theorem 1.1 but confirm a dependence of the convergence rates on the
growth rate of the internal energy function U .

5.2.2. Quadratic potential. We consider again the internal energy function U(r) =
r2, but with an additional quadratic potential V (x) = |x−x̄|2/2, driving the particles
towards x̄ ∈ Rd. As described in Section 4.7, the discrete model is now defined by
the system of ODEs (4.17), and we can apply the same time discretization strategy
described in Section 5.1, which leads to the scheme:

xn+1
i = cni + exp (−λni τ) (xni − cni ) ,

where

λni =
|Lni |
m0
i ε

+ 1 and cni = bni +
x̄− bni
λni

.

In this case the density in the continuous model (4.18) converges exponentially

towards the Barenblatt profile ρ∞(x) = max((M2π )1/2 − 1
4 |x − x̄|2, 0) where M is

the total mass. Here, we consider as initial condition a configuration where the
particles are equally spaced within a cross of unit height and width, with barycenter
at x̄ = 0, and share the same mass, m0

i = M/N for all i. In particular we set
M = 0.12, N = 1.23 · 104, τ = 1/3 · 10−2, ε = 2/3 · 10−2. Figures 2 and 3 show the
particle distribution at different times and the energy evolution, respectively, and
show the exponential decay of the density towards the equilibrium distribution.
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Appendix A. Optimal transport tools and proof of Proposition 2.3

A.1. Optimal transport. Given two positive measures ρ, µ ∈ M+(Ω) with fixed
total mass ρ[Ω] = µ[Ω], the L2-Wasserstein distance between ρ and µ, is defined via
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Figure 2. Scatter plot of the particle positions at different times
(from left to right, t = 0, 0.05, 0.2, 8) for the quadratic potential test
case. The color scale refers to the density, computed for each particle
as m0

i /|Li|.

Figure 3. Energy evolution for the quadratic potential test case: (a)
Fε(X); (b)

∑
i U(m0

i /|Li|)|Li|; (c) internal energy of the equilibrium
density

∫
U(ρ∞).

the following minimization problem

(A.1) W 2
2 (ρ, µ) = min

{∫
Ω×Ω
|x− y|2dγ(x, y) ; γ ∈ Π(ρ, µ)

}
where Π(ρ, µ) is the set of coupling plans γ ∈M+(Ω× Ω) verifying∫

Ω×Ω
ψ(x)dγ(x, y) =

∫
Ω
ψ(x)dρ(x) ,

∫
Ω×Ω

ψ(y)dγ(x, y) =

∫
Ω
ψ(y)dµ(y) ,

for all functions ψ ∈ C(Ω). Problem (A.1) always admits at least a solution γ, and
we call this optimal transport plan from ρ to µ.

Semi-discrete optimal transport refers to the case one of the two measures is dis-
crete and the other is absolutely continuous. In this case, it can be shown that
(A.1) admits a dual formulation which can be expressed in terms of Laguerre tes-
sellations. Suppose that µ =

∑
imiδxi where X = (xi)i ∈ (Rd)N and mi > 0, and

that ρ ∈M+(Ω) is absolutely continuous and satisfies ρ[Ω] =
∑

imi, then

(A.2) W 2
2 (ρ, µ) = max

w∈RN

∑
i

(∫
Li(X,w)

(
|x− xi|2 − wi

)
dρ(x) + wimi

)
.
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The maximum is always attained and the maximizer w ∈ RN is related to the
optimal plan γ by∫

Ω×Ω
ψ(x, y)dγ(x, y) =

∑
i

∫
Li(X,w)

ψ(x, xi)dρ(x) ∀ψ ∈ C(Ω× Ω) .

A.2. Energy reformulation. Let us show the equivalence between (1.1) and (1.10).
Suppose that X ∈ Rd \∆N . Then, by definition of the W2 distance,

(A.3) Fε(X) ≥ inf
a∈RN>0,η∈C

W 2
2

(∑
i aiδxi , η

)
2ε

+
∑
i

Ci(ai) =: Eε(X)

where Fε(X) is given by (1.1), and where C = {dx} if LN (Ω) = TN (Ω), and C =
{fdx : f : Ω→ [0, 1]} if LN (Ω) = TsN (Ω). Note that the minimization on the right
hand side of (A.3) is implicitely taken under the constraint

∑
i ai = η[Ω], and we

will keep using this convention in the following. Using the dual formulation (A.2)
and exchanging inf and sup we find

Eε(X) ≥ sup
w∈RN

inf
a∈RN>0,η∈C

∑
i

(∫
Li(X,w)

|x− xi|2 − wi
2ε

dη(x) +
wi
2ε
ai + Ci(ai)

)
Optimizing over η and a, we find that the right-hand side is equal to Dε(X) = Fε(X)
and thereofore Fε(X) = Eε(X).

A.3. Proof of Proposition 2.3. Let X,Y ∈ (Rd)N \ ∆N and L ∈ LN (Ω) the
optimal tessellation associated with X. Then

Fε(Y ) ≤
∑
i

∫
Li

|x− xi + xi − yi|2

2ε
+ C(|Li|)

≤ Fε(X) + 〈Gε(X), Y −X〉m0 + |Ω|
∑
i

|xi − yi|2

2ε
,

where

(Gε(X))i :=
|Li|
m0
i

xi − bi
ε

, bi :=
1

|Li|

∫
Li

x dx .

This shows that Gε(X) ∈ ∂+Fε(X), the Fréchet superdifferential of Fε at X. We
now prove that Gε(X) is continuous, which is implies that Fε(X) is C1 and that
Gε(X) is its gradient at x with respect to the inner product 〈·, ·〉m0 . For this, we
will use the following expression for Fε(X) (shown in Section A.2):

(A.4) Fε(X) = min
a∈RN ,η∈C

W 2
2 (η,

∑
i aiδxi)

2ε
+
∑
i

Ci(ai)

where C is a convex subset of M(Ω) defined as above. If X ∈ (Rd)N \ ∆N , then
problem (A.4) admits a unique solution which is linked to the solution L(X) =
{Li(X)}i of problem (1.1) by

η(X) =
∑
i

1Li(X)dx , ai(X) = |Li(X)| .

Since the function minimized in (A.4) is continuous with respect to a and η (with
respect to the narrow topology) on the set {(a, η) :

∑
i ai = η[Ω]}, then the optimal

η(X) and ai(X) are continuous functions of X on (Rd)N \∆N . In particular, given
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a sequence (Xn)n ⊂ (Rd)N \ ∆N , such that Xn = (xni )i → X ∈ (Rd)N \ ∆N for
n→∞, we have

η(Xn) ⇀ η(X) ,
∑
i

ai(X
n)δxni ⇀

∑
i

ai(X)δxi .

Denoting by γn ∈M(Rd,Rd) the optimal transport plan from η(Xn) to
∑

i ai(X
n)δxni ,

by the stability of optimal transport plans γn ⇀ γ, the optimal plan from η(X)
to
∑

i ai(X)δx. Now, for any ε > 0 and n sufficiently large we can assume that
|xni − xnj | ≥ 3ε for all i 6= j, and |xi − xni | ≤ ε. Then let B(xi, δ) the closed ball of

radius δ > 0 centered at xi, and consider a continuous function ψ : Rd → R such
that ψ(x) = 1 for x ∈ B(xi, ε), and ψ(x) = 0 for x ∈ Rd \ B(xi, 2ε). Then, for
n→ +∞,∫

Li(Xn)
xdx =

∫
Rd×Rd

xψ(y)dγn(x, y)→
∫
Rd×Rd

xψ(y)dγ(x, y) =

∫
Li(X)

xdx ,

which shows that Gε(X) is continuous.
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[16] Jun Kitagawa, Quentin Mérigot, and Boris Thibert. Convergence of a Newton algorithm for
semi-discrete optimal transport. Journal of the European Mathematical Society, 21(9):2603–
2651, 2019.
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