

Impact of Arterial CO(2) Retention in Patients With Moderate or Severe ARDS

Adel Maamar, Flora Delamaire, Florian Reizine, Mathieu Lesouhaitier, Benoit Painvin, Quentin Quelven, Valentin Coirier, Pauline Guillot, Yves Le Tulzo, Jean Marc Tadie, et al.

▶ To cite this version:

Adel Maamar, Flora Delamaire, Florian Reizine, Mathieu Lesouhaitier, Benoit Painvin, et al.. Impact of Arterial CO(2) Retention in Patients With Moderate or Severe ARDS. Respiratory Care, 2023, 68 (5), pp.582-591. 10.4187/respcare.10507 . hal-04061274

HAL Id: hal-04061274 https://hal.science/hal-04061274

Submitted on 12 Jul 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Impact of arterial CO₂ retention in patients with moderate or severe acute respiratory distress syndrome

Adel Maamar, MD^{1,2}, Flora Delamaire, MD^{1,2}, Florian Reizine MD^{1,2,3}, Mathieu Lesouhaitier, MD^{1,2,3}, Benoit Painvin, MD^{1,2}, Quentin Quelvin, MD^{1,2}, Valentin Coirier, MD^{1,2}, Pauline Guillot, MD^{1,2}, Yves Le Tulzo, MD, PhD^{1,2,3}, Jean Marc Tadié, MD, PhD^{1,2,3} and Arnaud Gacouin, MD 1,2,3

¹CHU Rennes, Maladies Infectieuses et Réanimation Médicale, F-35033 Rennes, France
²Université Rennes1, Faculté de Médecine, Biosit, F-35043 Rennes, France
³Inserm-CIC-1414, Faculté de Médecine, Université Rennes I, IFR 140, F-35033 Rennes, France

Corresponding Author:

Arnaud Gacouin, Service des Maladies Infectieuses et Réanimation Médicale, CHU Rennes, F-35033 Rennes, France.
16-digit ORCID: 0000-0003-0239-9900
Email: arnaud.gacouin@chu-rennes.fr
Telephone: +33-2-99284248, Fax: + 33-2-99284164

Conflict of interest:

Participating hospital obtained local ethic committee, and a waiver or informed consent was granted in all cases. The investigators declare that they have no conflicts of interest related to this manuscript, and have full control of all of the primary data. The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Financial support: None.

Author Contributions: All authors contributed to the study conception and design as well as to the acquisition, analysis, or interpretation of data. AG and AM conducted the statistical analysis. AM, FD, FR, AG and JMT drafted the manuscript, and all authors critically revised the manuscript and approved the final version.

Abstract

Background: Lung protective ventilation (LPV, reduced tidal volume and limited plateau pressure) may lead to carbon dioxide (CO2) retention. Data about the impact of hypercapnia in patients with acute respiratory distress syndrome (ARDS) are scarce and conflicting.

Methods: We performed a noninterventional cohort study with patients admitted from 2006 to 2021 with ARDS and a PaO2/FiO2 ratio \leq 150 mmHg. We examined the association between severe hypercapnia (PaCO2 \geq 50 mmHg) on the first five days after the diagnosis of ARDS and death in the intensive care unit (ICU) for 930 patients. All patients received LPV.

Results: Severe hypercapnia was noted in 552 patients (59%) on the first day of ARDS (Day 1), and 323 (34.7%) died in the ICU. Severe hypercapnia on Day 1 was associated with mortality in the unadjusted (odds ratio (OR) 1.54, 95% confidence interval (CI) 1.16-1.63, p= 0.003) and adjusted (OR 1.47, 95% CI 1.08-2.43, p= 0.04) models. In the Bayesian analysis, the posterior probability that severe hypercapnia was associated with ICU death was above 90% in four different priors, including a septic prior for this association. Sustained severe hypercapnia on Day 5, defined as severe hypercapnia present from Day 1 to Day 5 was noted, in 93 patients (12%). After propensity-score matching, severe hypercapnia on Day 5 remained associated with ICU mortality (OR = 1.73, 95% CI 1.02-2.97, p= 0.047).

Conclusions: Our results suggest that severe hypercapnia is associated with mortality in ARDS patients who receive LPV. Our results deserve further evaluation of the strategies and treatments aiming to control CO2 retention.

Key words: hypercapnia, ARDS, cohort study, mortality.

Introduction

Lung protective ventilation (LPV) is the cornerstone of management of acute respiratory distress syndrome (ARDS)¹ aiming for limited plateau pressures less than or equal to 28-30 cmH₂O and a reduced tidal volume (Vt) of 6 mL.kg⁻¹ predicted body weight (PBW). LPV may lead to carbon dioxide (CO₂) retention in some patients ². Unlike the deleterious effects of excessive tidal volume in ARDS patients, the effects of hypercapnia were not clearly established, allowing the emergence of permissive hypercapnia with LPV ^{2,3}, Therefore, hypercapnia should be considered as the witness of the mechanical ventilation settings, not a therapeutic goal to achieve. Several years ago, it has been hypothesized that inducing hypercapnia could have been beneficial in patients with acute respiratory failure by attenuating lung inflammation and injury ⁴. However, hypercapnia has been associated with impaired alveolar epithelial function, induced immunosuppression, pulmonary hypertension and diaphragmatic dysfunction ⁵⁻¹⁰. Along these lines, devices allowing extracorporeal CO₂ removal (ECCO2R) to facilitate ultraprotective ventilation have been recently developed ^{11–13}. The impact of CO₂ retention on the outcomes of ARDS patients has been mostly assessed in secondary analyses of multicentre studies with conflicting results ^{14 15 16}. Unfortunately, in these studies, patients were not managed uniformly for mechanical ventilation (MV) since patients received either MV with Vt set to 8 mL.kg⁻¹ or more, or noninvasive ventilation. Recently, the results of a systematic review and meta-analysis ¹⁷ suggested that, in patients managed similarly for MV, the development of hypercapnia was associated with worst prognosis compared to non hypercapnic patients. As a consequence, it has been suggested that pH should also be considered, since pH shift could lead to important organ dysfunction ¹⁸. Herein, we assessed the impact of hypercapnia and acidosis on the outcome of ARDS patients managed with LPV. Furthermore, since prone positioning ¹⁹ and neuromuscular blockades ²⁰ have been proven to be effective in patients with a PaO₂/FiO₂ ratio below 150 mmHg, the threshold of 150 mmHg

Respiratory Care

 PaO_2/FiO_2 is important to assess therapeutic approaches in ARDS patients ²¹ and has been selected to conduct our study.

Methods

Patients

Data were recorded prospectively in ARDS patients older than 18 years who were admitted to the ICU from January 2006 to June 2021, with a PaO_2/FiO_2 ratio ≤ 150 mmHg after at least 12 hours of lung-protective MV. All the patients had bilateral infiltrates on chest radiography, no criteria for heart failure according to catheterism and/or echocardiographic results, acute disease, and results of blood gas values obtained while ventilated with positive end expiratory pressure (PEEP) \geq 5 cm H₂O. Thus, patients were prospectively selected based on the 150 mmHg PaO₂/FiO₂ threshold used since 2006 and were classified retrospectively for severity based on the Berlin criteria defined in 2012²². The study was approved by the hospital's ethics committee (Number 21.105), and we followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) recommendations for cohort studies. Informed consent was not required in compliance with French legislation on observational studies of anonymized data. At least one blood gas value was available for each day of assessment for all patients. The patients were mechanically ventilated in assist-control mode with the initial Vt set at 6 mL.kg⁻¹ PBW. The PEEP level was selected from the PEEP-FiO₂ table proposed by the ARDS network ²³, and the end-inspiratory plateau pressure was measured at least every 2 hours to be kept < 28-30 cmH₂O, as long as the PaO₂/FiO₂ ratio remained below 200 mmHg. In addition, the respiratory rate was set to maintain the arterial pH between 7.20 and 7.45. Patients with a pH < 7.20 and a PaCO₂ > 60 mmHg and/or a plateau pressure > 32 cmH₂O were managed according to the ACURASYS protocol ²⁰, including an increase in the respiratory rate up to 35 breaths/minute and a decrease in tidal volume in steps of 1 mL.kg⁻¹ g

up to 4 mL.kg ⁻¹. Buffering of the acidosis induced by hypercapnia was not a practice, and ECCO2R was not available during the study period. ARDS due to pulmonary infection (i.e., bacterial and/or viral and/or fungal pneumonia) was distinguished from ARDS due to other causes (i.e., aspiration, non-pulmonary infection, and miscellaneous causes). There were no trauma patients.

We collected the following baseline characteristics: the Simplified Acute Physiology Score (SAPS) II ²⁴ (calculated within 24 hours after admission) and the daily Sequential Organ Failure Assessment (SOFA) score ²⁵ (calculated for the first 5 days after ARDS diagnosis); comorbidities including liver cirrhosis, obesity, diabetes mellitus, aplasia and/or recent chemotherapy for a solid tumour or haematologic disease; previous coronary artery and/or valvular disease with treatment; and organ support used in the ICU. The highest PaCO₂ and lowest pH values within the first 5 days of MV were recorded. The additional respiratory parameters recorded and included in the analysis were the lowest values of the PaO₂/FiO₂ ratio, the highest values of expiratory Vt, PEEP applied and ventilator-measured end-inspiratory plateau pressure.

Definitions

From Day 1 to Day 5, we calculated the driving pressure, respiratory compliance, and ventilatory ratio. The driving pressure was defined as the plateau airway pressure minus the PEEP. Respiratory system compliance (RSC, ml/cmH₂O) was defined as the Vt divided by the difference between the plateau pressure and PEEP. The ventilatory ratio (VR) [minute ventilation (mL/mn) x PaCO₂ (mmHg)]/(PBW x 100 x 37.5)] was calculated because it is a simple index that correlates well with the dead space fraction in ARDS patients ²⁶. The base excess was calculated on Day 1 using the Siggard-Anderson equation ²⁷ (Base excess = 0.02786 x PaCO₂ x 10 ^(pH-6.1) + 13.77 x pH – 124.58). To compare our results with those of previous

Respiratory Care

studies, the patients were assessed for mortality in the ICU and were dichotomized according to whether their PaCO₂ was less than 35 mmHg (hypocapnia) ^{7,14,16} or greater than or equal to 50 mmHg (severe hypercapnia) ¹⁵. Sustained severe hypercapnia was defined as a PaCO₂ \geq 50 mmHg for 5 consecutive days (from Day 1 to Day 5).

Statistical analysis

Data are expressed as counts and percentages for categorical variables. Continuous variables were initially assessed for normality and are presented as the means and standard deviations (SDs) and as medians and interquartile ranges (IQRs, 25-75%) when not normally distributed. The chi-square test was used to compare categorical variables, and the Mann–Whitney U test was used to compare continuous variables.

We first analysed data recorded on Day 1 of admission for ARDS. In the first step, we performed a frequentist analysis to assess whether severe hypercapnia was independently associated with ICU mortality. Thus, we performed a multivariable logistic regression model by entering ICU mortality with the following a priori defined variables: age, sex, SAPS II score, SOFA at day 1, pH at day1, respiratory rate (RR), BMI, PaO₂/FiO₂ ratio, respiratory system compliance (RSC), driving pressure (DP), and ventilatory ratio. These variables were chosen based on the results of previous studies ^{15,16}. To make the comparisons of the results easier, the PaO₂/FiO₂ ratio, RSC, DP, and ventilator ratio were calculated using values recorded on Day 1. Because patients were admitted over a 15-year period, the year of admission was entered in the model as a continuous variable. For adjustments, variables were removed in a backwards stepwise selection process based on a significance level with a P value of 0.10. We tested for an interaction between acidosis (pH < 7.35) and severe hypercapnia. COPD, pneumonia, and a plateau pressure above 28 cmH₂O on Day 1 were also entered in the multivariable logistic regression. COPD was forced in the model because patients may have been previously exposed

to prolonged periods of hypercapnia. Pneumonia was forced in the model because the effect of hypercapnia on pulmonary infection remains a matter of debate ^{5,9}. A plateau pressure greater than 28 cmH₂O, rather than 30 cmH₂O, was also forced in the model to assess the possible association of increased CO₂ retention with a decreased plateau pressure. The results were expressed as odds ratios (ORs) with 95% confidence intervals (CIs). Correlations between variables were assessed using spearman test.

In addition, we used a Bayesian logistic regression model to estimate the posterior probability for severe hypercapnia on Day 1 of admission for ARDS to be associated with ICU mortality. The results were expressed using ORs and 95% credible intervals (CrIs). We first created four priors: a prior in which severe hypercapnia was associated with the highest risk of mortality (OR of 1.48, slightly lower than the one calculated in the frequentist analysis (95% CrI, 0.68-3.26; mean log (OR) of 0.4 and SD of 0.4), a neutral prior (OR of 1(95% CrI, 0.37-2.75; mean log (OR) of 0 and SD of 0.5)), a null prior, and a prior in which severe hypercapnia was associated with the lowest risk of mortality (OR of 0.67 (95% CrI, 0.31-1.45; mean log (OR) of - 0.4 and SD of 0.4)).

In the second step, a propensity score (PS) near neighbour with 0.25 caliper matching (2/1 ratio) method was applied to assess whether sustained hypercapnia was associated with prognosis. For this, patients were assessed on Day 5 after the diagnosis of ARDS. For calculation of the propensity score, we used the same variables as those entered in the multivariable logistic regression model (i.e., age, sex, SAPS II score, respiratory rate on Day 1, PaO₂/FiO₂ ratio on Day 1, respiratory system compliance on Day 1, driving pressure on Day 1, and ventilatory ratio on Day 1). Tests were two-sided, and we considered a p < 0.05 to be significant. Statistical analyses were performed using R 3.3.3 (R Foundation for Statistical Computing, Vienna, Austria).

Results

8

Study population

Overall, 930 consecutive patients with ARDS and a PaO₂/FiO₂ ratio \leq 150 mmHg admitted from January 2006 to June 2021 who received LPV were included in the analysis (see Additional file 1 for Study flow chart). Among them, 323 patients (34.7%) died in the ICU. Of note, rates of mortality in the ICU varied from one year to another all along the study period but no significant trend was observed (see Additional file 1, Table 1). All patients received neuromuscular blocking agents planned for at least the first 48 hours of invasive MV ²⁰. On Day 1, the plateau pressure was less than or equal to 28 cmH₂O in 710 (76%) patients. The baseline characteristics of the patients were distinguished based on whether severe hypercapnia was noted on Day 1 are shown in Table 1. Hypercapnia was more frequent in patients with a plateau pressure lower than 28 cmH₂O (Figure 1A). Hypocapnia was noted in 34 patients (4%), and severe hypercapnia was noted in 552 patients (59%).

Severe hypercapnia on Day 1 and ICU mortality

The results for comparisons between patients who died in the ICU and those who survived are shown in **Additional file 1, Table 2.** $PaCO_2$ values recorded on the first day of ARDS were significantly higher in patients who died in the ICU than in patients who survived their ICU stay. Locally estimated scatterplot smoothing (LOESS) analysis of the relationship between mortality and the highest $PaCO_2$ on Day 1 showed an increase in mortality with increasing $PaCO_2$ (**Figure 1B**). In the unadjusted (OR 1.54, 95% CI 1.16-1.63, p= 0.003) and adjusted analyses (OR 1.47, 95% CI 1.08-2.43, p= 0.04), severe hypercapnia was associated with ICU mortality, while no statistically significant interaction was found between severe hypercapnia and acidosis defined by a pH < 7.35 (P for interaction= 0.12). The variance inflation factor between severe hypercapnia and the ventilator ratio calculated on Day 1 was 1.41. The results for the Bayesian analysis are shown in **Table 2**. The posterior probability of an OR greater than

1 was above 90% for all priors. The four prior and posterior distributions are shown in **Additional file, Figure 2**.

Severe sustained hypercapnia and ICU mortality

The proportions of patients with sustained severe hypercapnia decreased progressively from Day 1 to Day 5 but remained present on Day 5 in 12% of our patients. ICU mortality was significantly higher when patients with sustained severe hypercapnia were compared with those without sustained hypercapnia on Day 2 (39% vs. 29%, respectively), Day 3 (42% vs. 27%), Day 4 (46% vs. 24%), and Day 5 (42% vs. 24%); mortality rates increased with time in patients with sustained hypercapnia (Cochrane Armitage test for trend, p< 0.01) (**Figure 2**). After propensity-score matching, patients with severe hypercapnia on Day 5 (OR = 1.73, 95% CI 1.02-2.97, p<0.05) (**Table 3**). Of note, non-pulmonary SOFA scores were significantly higher in patients with sustained hypercapnia (see **Additional file, Figure 3**).

Ventilatory management of the patients

PaCO2 was correlated with Vt according to PDW but not PH (Supplemental figure 4A and 4B). In addition, there was no significant change in Vte/PBW, RR, and PP noted on day 1 of ARDS during the study period (Supplemental Table 3). Extensive results for ventilator variables recorded from Day 1 to Day 5 for the ARDS patients are shown in **Additional file, Table 3**. After comparisons between patients with and without severe hypercapnia, Vte/PBW did not differ significantly between the groups. Plateau pressures were higher in patients with sustained severe hypercapnia than in patients without sustained severe hypercapnia.

Discussion

In our study, we found that severe hypercapnia during the first 24 hours of ICU stay was independently associated with mortality in the ICU in ARDS patients with $P/F \le 150$ mmHg who

Respiratory Care

received LPV. The results of the propensity score analysis performed for sustained severe hypercapnia on Day 5 reinforced the observation that a significant retention of CO₂ still present after a few days of MV was associated with the worst outcomes in the ICU. In addition, sustained severe hypercapnia was associated with increased non-pulmonary SOFA scores. Since all patients included in our study were ventilated as recommended (a tidal volume of 6 mL.kg⁻¹ PBW and plateau pressure less than or equal to 28 cmH₂O), we believe that sustained hypercapnia could be considered an independent risk factor for mortality.

In a large database of ARDS and non-ARDS mechanically ventilated patients for acute respiratory failure from 2000 to 2013, Tiruvoipati et al.²⁸ found that hypercapnic acidosis and compensated hypercapnia during the first 24 hours of ICU admission were associated with increased hospital mortality. However, the study population included an unknown proportion of ARDS patients since the most common reasons for MV were post cardiac surgery, cardiac arrest, or cardiogenic shock. To the best of our knowledge, only three clinical studies ^{14–16} have focused on the relationship between CO₂ retention and prognosis in ARDS patients, which reported conflicting results. The ARMA trial ¹⁴ compared 12 to 6 mL.kg⁻¹ PBW of Vt and reported that 1) hypercapnic acidosis had no effect on mortality in patients who received 6 mL.kg⁻¹ PBW of Vt and that 2) hypercapnic acidosis was associated with reduced 28-day mortality in the group that received 12 mL.kg⁻¹ PBW of Vt. The authors suggested that hypercapnic acidosis had no harmful effect and could protect against ventilator-induced lung injury. In an ancillary study performed from LUNG SAFE population ²⁹, Madotto F et al. ¹⁶ reported an association between ICU mortality and hypocapnia within the first two days of MV. Significant differences in the ventilator management strategies could be responsible for these discrepant results. For instance, in the LUNG SAFE study, patients with a $PaO_2/FiO_2 > 150$ mmHg were included and could be under non-invasive ventilation or ventilated with 8 mL.kg ⁻¹ or more of tidal volume. Furthermore, less than one-third of the included patients had their

11

plateau pressure recorded; 21.7% of the patients received neuromuscular blockades and less than 10% were in prone positioning. Finally, our findings are in accordance with those previously published by Nin N et al. ¹⁵, who assessed the impact of hypercapnia on the first 48 hours of MV only while in more than 10% of the patients Vt was greater than 8 ml/kg.

In a recent meta-analysis, Gendreau et al found also that hypercapnia was associated with mortality in ARDS patients receiving identical ventilation strategies ¹⁷. However, because of the observational and retrospective nature of the study, we cannot determine causal relationship between severe hypercapnia and ICU mortality. Nevertheless, the question is raised to determine whether severe hypercapnia is a causal agent for mortality or only a marker of ARDS severity. Ventilatory ratio, a surrogate of dead space which is a prognostic factor in ARDS was significantly higher in patients with severe hypercapnia. This result suggests that hypercapnia was only a marker of severity. Nevertheless, severe hypercapnia on day 1 of ARDS remained associated with mortality after adjustment on ventilator ration and was also associated on day 5 after that patients were matched on variables including ventilator ratio. Consequently, harmful effects of hypercapnia cannot be excluded. The use of different animal models has led to the publication of contradictory results on the effects of hypercapnia ^{2,5,6,9,3031–34}. The main reported short-term harmful effect of hypercapnia was alveolar epithelial cell dysfunction through inhibition of the NF-KB pathway 35. This impaired cell function leads to decreased alveolar fluid reabsorption and tissue repair 36,37. As reported in a randomized animal study, prolonged hypercapnic acidosis was associated with more structural damage and lower static compliance than normocapnia and worsened bacterial infection-induced lung injury ³⁸.

Interestingly, it has been suggested that acidosis may have more deleterious effects than hypercapnia, leading authors to suggest to conduce LPV with pH for target in patients with respiratory acidosis ¹⁸. However unlike PaCO2, pH was not correlated with Vt in our patients.

We believe that our findings have clinical implications. In accordance with the results previously reported by Nin et al. ¹⁵, PaCO₂ values above 50 mmHg should alert physicians. Therefore, strategies to control CO₂ retention, based on ventilator management or the extracorporeal elimination of carbon dioxide may have a positive impact on outcomes. However, it remains to be demonstrated that the sustained normalization of PaCO2 may improve the prognosis of patients with ARDS ³⁹.

Strengths and limitations

We report a large population of patients with moderate to severe ARD manage homogeneously for mechanical MV. Employing frequentist analysis and Bayesian analysis, we found that severe hypercapnia was associated with ICU mortality. In addition, patients were assessed for hypercapnia on the first five days MV, longer than most previous studies. Because of its observational nature, our study has a number of limitations. First, only associations, and not causal inference, can be drawn from the findings. The study period is long and an historical bias cannot be excluded, especially because of changes in the management of MV. However, year of admission was taken into account in analyses and we did not observe changes in Vt during the study period. Secondly, the study was conducted in a single centre; thus, the results may not be applicable to other hospitals. Despite adjustments for variables that are potentially associated with prognosis and CO₂ retention, we cannot exclude the possibility that unmeasured confounders could have influenced the relationship between severe hypercapnia and ICU mortality. Ventilator parameters were documented several times daily but not the results of arterial blood gases; consequently, we were unable to determine if severe hypercapnia was seen throughout the day of sampling or only during a short period of the day. The highest, but not the lowest, PaCO₂ values were recorded; consequently, the impact of hypocapnia was probably underestimated.

Conclusions

13

Our results suggest that severe hypercapnia in moderate to severe ARDS patients receiving LPV is associated with ICU mortality and that mortality increases with the duration of severe hypercapnia. Our results deserve further evaluation of the strategies and treatments aiming to control CO_2 retention.

References

- 1. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998;338(6):347–54.
- 2. Barnes T, Zochios V, Parhar K. Re-examining Permissive Hypercapnia in ARDS: A Narrative Review. Chest 2018;154(1):185–195.
- 3. Hickling KG, Walsh J, Henderson S, Jackson R. Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 1994;22(10):1568–1578.
- 4. Laffey JG, Kavanagh BP. Carbon dioxide and the critically ill--too little of a good thing? Lancet Lond Engl 1999;354(9186):1283–1286.
- 5. Masterson C, Otulakowski G, Kavanagh BP. Hypercapnia: clinical relevance and mechanisms of action. Curr Opin Crit Care 2015;21(1):7–12.
- 6. Repessé X, Vieillard-Baron A. Hypercapnia during acute respiratory distress syndrome: the tree that hides the forest! J Thorac Dis 2017;9(6):1420–1425.
- 7. Tiruvoipati R, Gupta S, Pilcher D, Bailey M. Management of hypercapnia in critically ill mechanically ventilated patients-A narrative review of literature. J Intensive Care Soc 2020;21(4):327–333.
- 8. O'Croinin D, Ni Chonghaile M, Higgins B, Laffey JG. Bench-to-bedside review: Permissive hypercapnia. Crit Care Lond Engl 2005;9(1):51–59.
- 9. Morales-Quinteros L, Camprubí-Rimblas M, Bringué J, Bos LD, Schultz MJ, Artigas A. The role of hypercapnia in acute respiratory failure. Intensive Care Med Exp 2019;7(Suppl 1):39.
- 10. Marhong J, Fan E. Carbon dioxide in the critically ill: too much or too little of a good thing? Respir Care 2014;59(10):1597–1605.

- 11. Fitzgerald M, Millar J, Blackwood B, Davies A, Brett SJ, McAuley DF, et al. Extracorporeal carbon dioxide removal for patients with acute respiratory failure secondary to the acute respiratory distress syndrome: a systematic review. Crit Care Lond Engl 2014;18(3):222.
- Combes A, Fanelli V, Pham T, Ranieri VM, European Society of Intensive Care Medicine Trials Group and the "Strategy of Ultra-Protective lung ventilation with Extracorporeal CO2 Removal for New-Onset moderate to severe ARDS" (SUPERNOVA) investigators. Feasibility and safety of extracorporeal CO2 removal to enhance protective ventilation in acute respiratory distress syndrome: the SUPERNOVA study. Intensive Care Med 2019;45(5):592–600.
- Bein T, Weber-Carstens S, Goldmann A, Müller T, Staudinger T, Brederlau J, et al. Lower tidal volume strategy (≈3 ml/kg) combined with extracorporeal CO2 removal versus "conventional" protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensive Care Med 2013;39(5):847–856.
- 14. Kregenow DA, Rubenfeld GD, Hudson LD, Swenson ER. Hypercapnic acidosis and mortality in acute lung injury. Crit Care Med 2006;34(1):1–7.
- 15. Nin N, Muriel A, Peñuelas O, Brochard L, Lorente JA, Ferguson ND, et al. Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome. Intensive Care Med 2017;43(2):200–208.
- 16. Madotto F, Rezoagli E, McNicholas BA, Pham T, Slutsky AS, Bellani G, et al. Patterns and Impact of Arterial CO2 Management in Patients With Acute Respiratory Distress Syndrome: Insights From the LUNG SAFE Study. Chest 2020;158(5):1967–1982.
- 17. Gendreau S, Geri G, Pham T, Vieillard-Baron A, Mekontso Dessap A. The role of acute hypercapnia on mortality and short-term physiology in patients mechanically ventilated for ARDS: a systematic review and meta-analysis. Intensive Care Med doi:10.1007/s00134-022-06640-1.
- 18. Fortuna P, Rodeia S, Morais R. What about permissive acidosis? Intensive Care Med doi:10.1007/s00134-022-06696-z.
- 19. Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013;368(23):2159–68.
- 20. Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 2010;363(12):1107–16.
- Maiolo G, Collino F, Vasques F, Rapetti F, Tonetti T, Romitti F, et al. Reclassifying Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2018;197(12):1586– 1595.
- 22. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012;307(23):2526–2533.

- 23. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 2000;342(18):1301–8.
- Le Gall J-R, Lemeshow S, Saulnier F. A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. Jama 1993;270(24):2957–2963.
- 25. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 1996;22(7):707–10.
- 26. Sinha P, Calfee CS, Beitler JR, Soni N, Ho K, Matthay MA, et al. Physiologic Analysis and Clinical Performance of the Ventilatory Ratio in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2019;199(3):333–341.
- 27. Siggaard-Andersen O. An acid-base chart for arterial blood with normal and pathophysiological reference areas. Scand J Clin Lab Invest 1971;27(3):239–245.
- 28. Tiruvoipati R, Pilcher D, Buscher H, Botha J, Bailey M. Effects of Hypercapnia and Hypercapnic Acidosis on Hospital Mortality in Mechanically Ventilated Patients. Crit Care Med 2017;45(7):e649–e656.
- 29. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016;315(8):788–800.
- Marongiu I, Spinelli E, Scotti E, Mazzucco A, Wang Y-M, Manesso L, et al. Addition of 5% CO2 to Inspiratory Gas Prevents Lung Injury in an Experimental Model of Pulmonary Artery Ligation. Am J Respir Crit Care Med 2021;204(8):933–942.
- Wang N, Gates KL, Trejo H, Favoreto S, Schleimer RP, Sznajder JI, et al. Elevated CO2 selectively inhibits interleukin-6 and tumor necrosis factor expression and decreases phagocytosis in the macrophage. FASEB J Off Publ Fed Am Soc Exp Biol 2010;24(7):2178–2190.
- 32. Vadász I, Dada LA, Briva A, Trejo HE, Welch LC, Chen J, et al. AMP-activated protein kinase regulates CO2-induced alveolar epithelial dysfunction in rats and human cells by promoting Na,K-ATPase endocytosis. J Clin Invest 2008;118(2):752–762.
- 33. Briva A, Vadász I, Lecuona E, Welch LC, Chen J, Dada LA, et al. High CO2 levels impair alveolar epithelial function independently of pH. PloS One 2007;2(11):e1238.
- 34. Lang JD, Chumley P, Eiserich JP, Estevez A, Bamberg T, Adhami A, et al. Hypercapnia induces injury to alveolar epithelial cells via a nitric oxide-dependent pathway. Am J Physiol Lung Cell Mol Physiol 2000;279(5):L994-1002.
- 35. O'Toole D, Hassett P, Contreras M, Higgins BD, McKeown STW, McAuley DF, et al. Hypercapnic acidosis attenuates pulmonary epithelial wound repair by an NF-kappaB dependent mechanism. Thorax 2009;64(11):976–982.

- Doerr CH, Gajic O, Berrios JC, Caples S, Abdel M, Lymp JF, et al. Hypercapnic acidosis impairs plasma membrane wound resealing in ventilator-injured lungs. Am J Respir Crit Care Med 2005;171(12):1371–1377.
- 37. Shigemura M, Lecuona E, Sznajder JI. Effects of hypercapnia on the lung. J Physiol 2017;595(8):2431–2437.
- O'Croinin DF, Nichol AD, Hopkins N, Boylan J, O'Brien S, O'Connor C, et al. Sustained hypercapnic acidosis during pulmonary infection increases bacterial load and worsens lung injury. Crit Care Med 2008;36(7):2128–2135.
- 39. McNamee JJ, Gillies MA, Barrett NA, Perkins GD, Tunnicliffe W, Young D, et al. Effect of Lower Tidal Volume Ventilation Facilitated by Extracorporeal Carbon Dioxide Removal vs Standard Care Ventilation on 90-Day Mortality in Patients With Acute Hypoxemic Respiratory Failure: The REST Randomized Clinical Trial. JAMA 2021;326(11):1013–1023.

Figure legends

Figure 1

Density probability function of PaCO2 stratified by plateau pressure (A) and PaCO2 LOESS

curves of the relationship between ICU mortality and PaCO2 on Day 1 of ARDS (B)

Figure 2

Patients compared for ICU mortality rates based on whether sustained severe hypercapnia was noted on each of the first five days after ARDS diagnosis

17

Quick Look

Current knowledge:

Recent evidence suggests that hypercapnia could have harmful clinical effects in patients with ARDS. The impact of hypercapnia on the outcomes of ARDS patients has been mostly assessed in studies including patients not managed uniformly for mechanical ventilation.

What This Paper Contributes To Our Knowledge: In ARDS patients who all received lung protective ventilation, PaCO2 equal or higher than 50 mmHg on the first day of ARDS is associated with mortality in the Intensive care Unit.

	$PaCO_2 \ge 50$	mmHg Day 1	P value	
_	Yes n= 552	No n= 378		
Baseline characteristics	•-			
SAPS II score, points median	48 (36-65)	46 (34-63)	0.36	
(IQR)	× ,			
SOFA score, points median (IQR)	9 (7-12)	8 (6-12)	0.01	
Age, years mean (SD)	58 (15)	57 (15)	0.25	
Male gender, n (%)	349 (63)	252 (67)	0.23	
Base excess, mEq/L median (IQR)	-1.70 (-6.39-2.06)	-2.26 (-7.16-0.88)	0.01	
BMI, kg/m^2 median (IQR)	27 (23-32)	27 (23-31)	0.20	
Coexisting condition, n (%)	27 (20 02)	27 (20 01)	0.20	
Diabetes mellitus	79 (14)	47 (12)	0.47	
Liver cirrhosis	44 (8)	36 (9)	0.48	
Valvular and/or coronary disease with treatment	73 (19)	106 (19)	0.99	
Aplasia and/or recent	95 (17)	46 (12)	0.04	
chemotherapy for solid tumor or				
haematologic disease				
COPD	129 (23)	71 (19)	0.11	
Obesity	200 (36)	122 (32)	0.24	
Ventilatory management				
oH, median (IQR)	7.22 (7.13-7.30)	7.34 (7.27-7.40)	< 0.0001	
PaO ₂ /FiO ₂ , mmHg median (IQR)	88 (66-115)	97 (75-121)	0.008	
PEEP, cmH ₂ O median (IQR)	10 (8-12)	10 (8-12)	0.34	
Plateau pressure, cmH ₂ O median	26 (22-29)	25 (21-28)	< 0.001	
(IQR)				
Driving pressure, cmH ₂ O median (IQR)	15 (12-18)	14 (11-17)	< 0.001	
RSC,ml/cmH ₂ O median (IQR)	27.5 (21.7-35.0)	30.8 (24.3-39.3)	< 0.001	
Ventilatory ratio, median (IQR)	2.8 (2.4-3.4)	1.8 (1.6-2.2)	< 0.0001	
Reason for ARDS				
Pneumonia	347 (63)	253 (67)	0.23	
Aspiration	72 (13)	47 (12)	0.86	
Non-pulmonary sepsis	38 (7)	28 (7)	0.86	
Miscellaneeous	95 (17)	50 (13)	0.12	
Interventions, n (%)	7 (1 (17)	170 (15)	0.52	
Prone positioning	261 (47)	170 (45)	0.53	
Extra corporeal membrane	48 (9)	29 (8)	0.66	
oxygenation	110 (22)	47 (12)	~0.001	
Inhaled nitric oxyde Glucocorticoids	119 (22) 356 (64)	47 (12) 265 (70)	<0.001 0.09	
	356 (64)	265 (70)		
Vasopressors Repair replacement therapy	493 (89)	315 (83)	0.008 0.22	
Renal-replacement therapy	181 (33)	109 (29)	0.22	

Table 1: Baseline characteristics of patients, reason for ARDS, and interventions

Death in the ICU, n (%)	213 (38)	110 (29)	0.004	
Abbreviations: ARDS, acute respirat	ory distress syndrome; IQR,	, interquartile range; RS	SC,	
respiratory system compliance; SAPS, simplified acute physiology score; SD, standard				
deviation; SOFA, sequential organ failure assessment; COPD, chronic obstructive pulmonary				
disease.				

	Death in the ICU			
Prior	OR (95% Credible Interval)	Probability OR > 1		
Optimistic prior:	1.56 (1.10-2.20)	98%		
(Severe hypercapnia is associated				
with mortality)				
Neutral prior	1.49 (1.03-2.18)	98%		
Null prior	1.59 (1.07-2.37)	98%		
Sceptic prior:	1.33 (1.05-1.89)	96%		
(Severe hypercapnia is not				
associated with mortality)				

Table 2: Odds ratio, 95% Credible Interval, and probability that severe hypercapnia is greater than specified thresholds

Abbreviations: OR, odds ratio.

P value

Yes No n= 93 n= 186 **Baseline characteristics** SAPS II score, points median 42 (34-56) 41 (32-57) 0.57 (IOR) SOFA score, points median (IQR) 0.93 8 (6-12) 8 (6-11) 0.84 Age, years mean (SD) 60 (14) 59 (15) Male gender, n (%) 65 (68) 0.50 117 (66) Base excess, mEq/L median (IQR) -1.70 (-6.39-2.06) -2.26 (-7.16-0.88) 0.01 **Coexisting condition**, n (%) **Diabetes** mellitus 8 (8) 23 (12) 0.41 Liver cirrhosis 5 (5) 11 (6) 0.48 Valvular and/or coronary disease 17 (18) 44 (24) 0.32 with treatment Aplasia and/or recent 0.47 15 (16) 37 (20) chemotherapy for solid tumor or haematologic disease COPD 32 (33) 41 (22) 0.06 Obesity 30 (31) 69 (37) 0.40 Ventilatory management pH, median (IQR) 7.34 (7.32-7.35) 7.35 (7.35-7.36) 0.15 PaO₂/FiO₂, mmHg median (IQR) 92 (72-117) 96 (69-130) 0.60 PEEP, cmH₂O median (IOR) 10(7-12)10 (9-12) 0.07 Plateau pressure, cmH₂O median 28 (23-30) 28 (25-29) 0.28 (IQR) Driving pressure, cmH₂O median 0.88 15 (12-18) 14 (11-17) (IOR) RSC, ml/cmH₂O median (IQR) 25.4 (18.7-32.1) 24.5 (20.2-30.0) 0.65 Ventilatory ratio, median (IQR) 3.0 (2.4-3.7) 2.9 (2.3-3.5) 0.48 **Reason for ARDS** Pneumonia 71 (74) 124 (67) 0.26 Aspiration 6 (6) 21 (11) 0.25 Non-pulmonary sepsis 4 (4) 9 (5) 0.99 Miscellaneeous 15 (16) 32 (17) 0.89 Interventions, n (%) Prone positioning 0.97 50 (52) 95 (51) Extra corporeal membrane 10(10)17 (9) 0.89 oxygenation Inhaled nitric oxyde 26 (27) 27 (14) 0.02 Glucocorticoids 80 (83) 166 (89) 0.23 80 (83) 166 (89) 0.22 Vasopressors Renal-replacement therapy 55 (57) 130 (70) 0.13 Death in the ICU, n (%) 38 (43) 56 (30) 0.048

Table 3: Comparison of patients according to severe hypercapnia on day 5 after matching*

Sustained $PaCO_2 \ge 50 \text{ mmHg at Day 5}$

Abbreviations: ARDS, acute respiratory distress syndrome; IQR, interquartile range; RSC, respiratory system compliance; SAPS, simplified acute physiology score; SD, standard

deviation; SOFA, sequential organ failure assessment; COPD, chronic obstructive pulmonary disease.

*variables used for propensity score matching: age, sex, SAPS II score, and respiratory rate, PaO2/FiO2 ratio, respiratory system compliance, driving pressure, and ventilator ratio recorded or calculated at day 1 of ARDS.

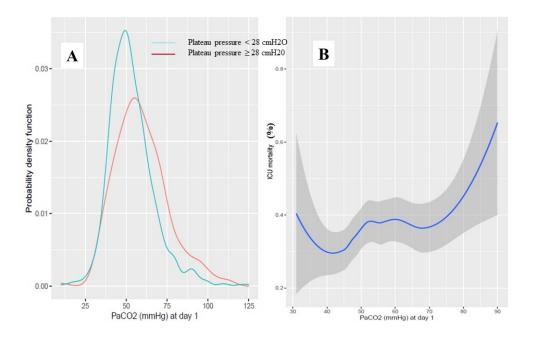
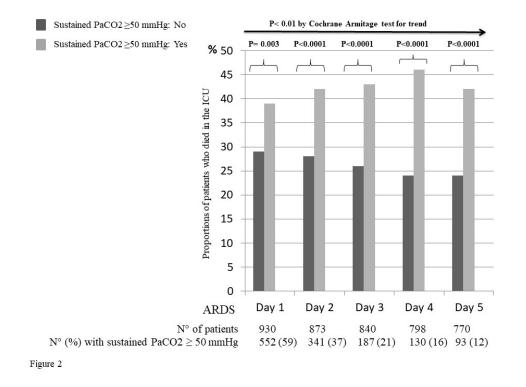



Figure 1:

Density probability function of PaCO2 stratified by plateau pressure (A) and PaCO2 LOESS curves of the relationship between ICU mortality and PaCO2 on Day 1 of ARDS (B)

254x190mm (96 x 96 DPI)

Patients compared for ICU mortality rates based on whether sustained severe hypercapnia was noted on each of the first five days after ARDS diagnosis

254x190mm (96 x 96 DPI)

Impact of sustained arterial CO₂ retention in patients with moderate or severe acute respiratory distress syndrome

Adel Maamar, MD ^{1, 2}, Flora Delamaire, MD ^{1,2}, Florian Reizine MD ^{1,2,3}, Mathieu Lesouhaitier, MD ^{1,2,3}, Benoit Painvin, MD ^{1,2}, Quentin Quelvin, MD ^{1,2}, Valentin Coirier, MD ^{1,2}, Pauline Guillot, MD ^{1,2}, Yves Le Tulzo, MD, PhD ^{1,2,3}, Jean Marc Tadié, MD, PhD ^{1,2,3}, and Arnaud Gacouin, MD ^{1,2,3}

¹CHU Rennes, Maladies Infectieuses et Réanimation Médicale, F-35033 Rennes, France
²Université Rennes1, Faculté de Médecine, Biosit, F-35043 Rennes, France
³Inserm-CIC-1414, Faculté de Médecine, Université Rennes I, IFR 140, F-35033 Rennes, France

Supplemental Appendix

	Item No	Recommendation
Title and abstract	1	Indicate the study's design with a commonly used term in the title or
		the abstract
		Cohort study
		Provide in the abstract an informative and balanced summary of what
		was done and what was found: Done
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being
		reported
		Lung protective ventilation (PV) is the cornerstone of management of ARDS
		Lung protective ventilation may lead to important CO2 retention
		There is uncertainty regarding the beneficial or harmful effect of hypercapnia.
		Impact of CO2 retention on the outcome of ARDS patients has been assessed
		only in three previous cohorts of patients not managed uniformly for
		mechanical ventilation.
Objectives	3	State specific objectives, including any prespecified hypotheses
		To determine whether severe hypercapnia (PaCO2 > 50 mmHg) is associated
		with ICU mortality is in patients receiving invasive ventilation with tidal
		volume set to 6 mL.kg-1 predictive body weight as required in LPV. We
		suspected that severe hypercapnia could be associated with worst outcome in
		these patients
Methods		
Study design	4	Present key elements of study design early in the paper
		Retrospective analysis of data collected prospectively with no missing data.
		Assessment for ICU survival on the whole population and after matching
		process
Setting	5	Describe the setting, locations, and relevant dates, including periods of
		recruitment, exposure, follow-up, and data collection
		Setting: a mixed 21-bed ICU in a university hospital
		Study period: from January 2006 to June 2021
		Follow-up period: from diagnosis of ARDS until ICU discharge
Participants	6	Give the eligibility criteria, and the sources and methods of selection of
		participants. Describe methods of follow-up
		Patients with ARDS and PaO2/FiO2 ratio≤150 mmHg (n= 930)
		Data base started in 2006
		Short-term follow-up (ICU discharge)
		(b) For matched studies, give matching criteria and number of exposed and
		unexposed
		Patients assessed on Day 5 of ARDS. The following variables were used for
		calculation of the propensity score: age, sex, SAPS II score, respiratory rate on
		Day 1, PaO2/FiO2 ratio on Day 1, respiratory system compliance on Day 1,
		driving pressure on Day 1, and ventilatory ratio on Day 1
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and
		effect modifiers. Give diagnostic criteria, if applicable

STROBE Statement—Checklist of items that should be included in reports of *cohort studies*

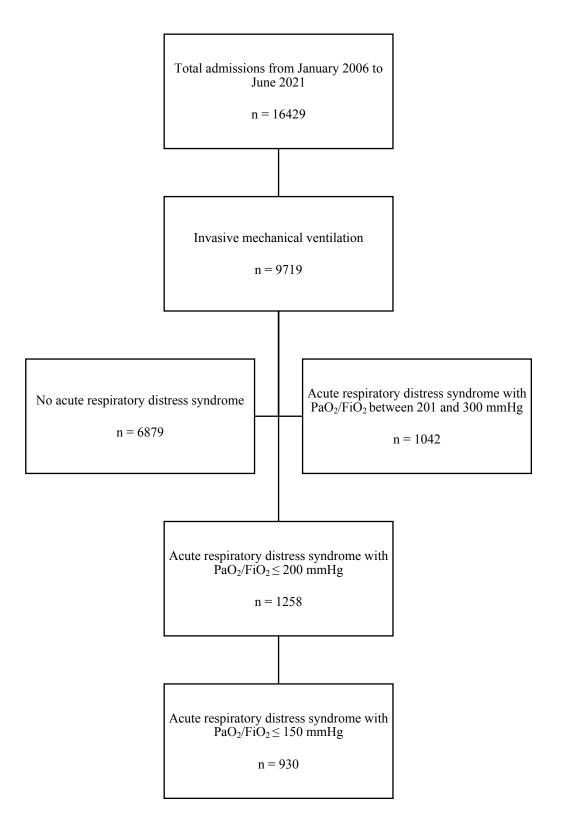

		Outcomes and predictors were described and defined; potential confounders discussed.
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group Source of data: data base of our ICU
		Statistical tests used for comparisons were described in the statistical section
Bias	9	Describe any efforts to address potential sources of bias
		Frequentist analysis including non-adjusted and adjusted analysis. In addition a Bayesian analysis was performed.
Study size	10	Explain how the study size was arrived at
2		No sample-size calculation. The high number of patients limited the risk to
		perform an underpowered study.
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why
		Comparisons between proportions of patients. Patients alive at Day 5 of ARDS
		were included in a matched study with the aim to assess the impact of
		sustained severe hypercapnia.
Statistical methods	12	Describe all statistical methods, including those used to control for
		confounding
		First step: unadjusted and adjusted analysis was performed to determine the
		impact of severe hypercapnia noted on Day 1 of ARDS. In addition a Bayesian
		analysis was performed with four different priors, including a septic prior for
		this association. Second step, matched analysis to assess the impact of
		sustained hypercapnia on Day 5.
		(b) Describe any methods used to examine subgroups and interactions
		Interaction between acidosis and hypercapnia was assessed.
		(c) Explain how missing data were addressed
		No missing data
		If applicable, explain how loss to follow-up was addressed
		No patients loss to follow-up for the day of end-point
		(<u>e</u>) Describe any sensitivity analyses
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers
		potentially eligible, examined for eligibility, confirmed eligible, included in the
		study, completing follow-up, and analysed: Done
		(b) Give reasons for non-participation at each stage: NA
		(c) Consider use of a flow diagram: Done
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)
		and information on exposures and potential confounders: Done
		(b) Indicate number of participants with missing data for each variable of
		interest: NA
		(c) Summarise follow-up time (eg, average and total amount): ICU length of
		stay

		figure 2
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates
		and their precision (eg, 95% confidence interval). Make clear which
		confounders were adjusted for and why they were included: Done (including
		pneumonia end COPD forced in models)
		(b) Report category boundaries when continuous variables were categorized:
		Done
		(c) If relevant, consider translating estimates of relative risk into absolute risk
		for a meaningful time period
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and
		sensitivity analyses
Discussion		
Key results	18	Summarise key results with reference to study objectives: Done
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
		imprecision. Discuss both direction and magnitude of any potential bias: Done
Interpretation	20	Give a cautious overall interpretation of results considering objectives,
		limitations, multiplicity of analyses, results from similar studies, and other
		relevant evidence: Done
Generalisability	21	Discuss the generalisability (external validity) of the study results
		Done
Other information		
Funding	22	Give the source of funding and the role of the funders for the present study
		and, if applicable, for the original study on which the present article is based
		None

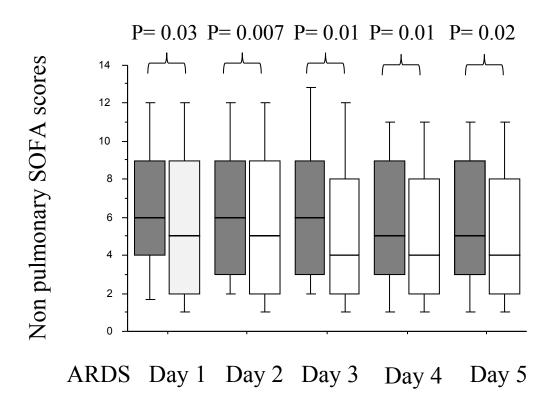
*Give information separately for exposed and unexposed groups.


Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

Supplemental Figure 1

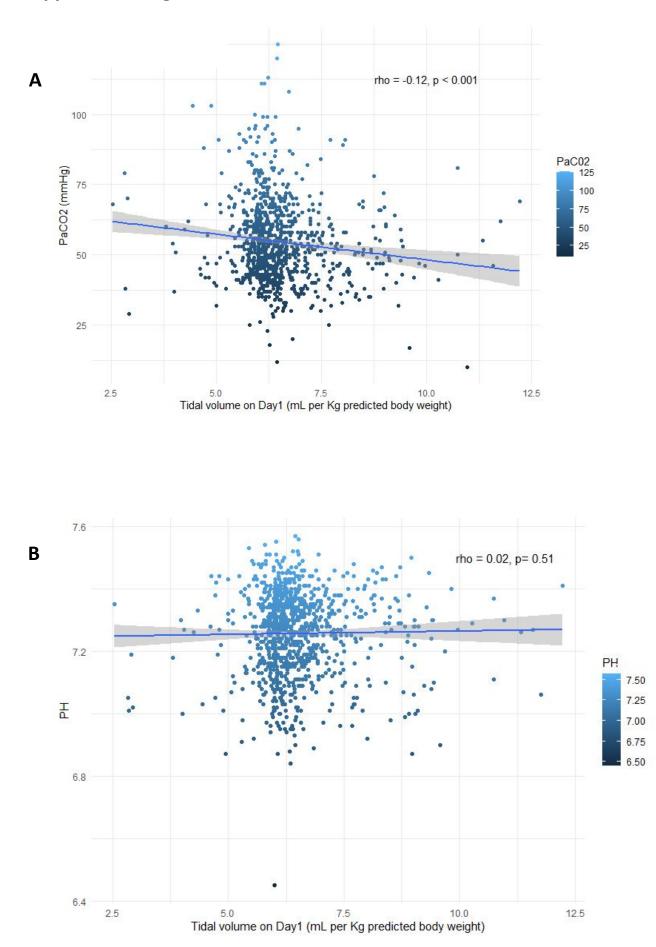
Supplemental Figure 1: diagram flowchart of patients.

Supplemental figure 2



Supplemental Figure 2: Graphical representation of reference priors (dashed lines) and data-derived priors (thicked lines). Each prior distribution represents a belief about the probability that severe hypercapnia is associated with death in the ICU. A: "sceptic" prior (severe hypercapnia is not associated with ICU mortality); B, neutral prior; C, "optimistic" prior (hypercapnia is associated with mortality in the ICU); D, null prior in which all effects size were equally plausible.

Supplemental figure 3


Severe sustained hypercapnia on the day of assessment: Yes

Severe sustained hypercapnia on the day of assessment No

Supplemental Figure 3: Non-pulmonary SOFA scores compared between patients with and without sustained severe hypercapnia ($PaCO_2 \ge 50$ mmHg)

Supplemental figure 4

Supplemental Figure 4 : Respective correlations between PaCO2 and Tidal volume at day 1 (A), and between PH and tidal volume at day 1 (B) ACCEPTED MANUSCRIPT / CLEAN COPY

Supplemental table 1

Supplemental Table 1: Baseline characteristics of patients, reason for ARDS, and interventions compared for death in the ICU

	Death in the ICU		P value
	Yes	No	
	n= 323	n= 607	
Baseline characteristics			
SAPS II score, points mean (SD)	62 ± 21	46 ± 18	< 0.000
SOFA score, points median (IQR)	12 (9-15)	8 (6-11)	< 0.000
Age, years mean (SD)	61 ± 14	56 ± 15	< 0.000
Male gender, n (%)	219 (68)	382 (63)	0.14
Base excess, mEq/L median (IQR)	-4.35 (-9.640.72)	-1.21(-5.21-1.80)	< 0.000
BMI, kg/m ² median (IQR)	26 (23-31)	27 (23-32)	0.37
Coexisting condition, n (%)			
Diabetes mellitus	41 (13)	85 (14)	0.58
Liver cirrhosis	50 (15)	30 (5)	< 0.000
Valvular and/or coronary disease with	75 (23)	104 (17)	0.02
treatment			
Aplasia and/or recent chemotherapy for	77 (24)	64 (11)	< 0.000
solid tumor or haematologic disease			
COPD	60 (19)	140 (22)	0.11
Obesity	107 (33)	215 (35)	0.48
Ventilatory management on the first			
day of ARDS			
PaCO ₂ , mmHg median (IQR)	54 (47-64)	51 (44-61)	0.002
pH, median (IQR)	7.22 (7.13-7.30)	7.34 (7.27-7.40)	< 0.000
PaO_2/FiO_2 , mmHg median (IQR)	86 (63-109)	94 (74-121)	<0.000
PEEP, cmH_2O median (IQR)	10 (8-13)	10 (8-12)	0.03
Plateau pressure, cmH_2O median (IQR)	27 (22-29)	25 (22-28)	< 0.000
Driving pressure, cmH ₂ O median (IQR)	15 (13-19)	14 (11-17)	< 0.000
RSC, ml/cmH ₂ O median (IQR)	27 (21-35)	29 (24-38)	0.002
Ventilatory ratio, median (IQR)	2.55 (2.02-3.18)	2.29 (1.82-2.91)	< 0.000
Reason for ARDS	177 (55)	422 (70)	<0.000
Pneumonia	177 (55)	423 (70)	< 0.000
Aspiration	37 (11)	82 (14)	0.37
Non-pulmonary sepsis Miscellaneeous	39 (12) 70 (22)	27 (5)	<0.000 0.000
Interventions, n (%)	70 (22)	75 (12)	0.000.
	125 (42)	206 (40)	0.04
Prone positioning	135 (42)	296 (49)	0.04
Extra corporeal membrane oxygenation	37 (11)	40 (7)	0.01
Inhaled nitric oxyde	102 (32)	64 (11) 287 (CA)	< 0.000
Glucocorticoids	234 (72)	387 (64)	0.007

Vasopressors	305 (94)	503 (83)	< 0.0001
Renal-replacement therapy	163 (50)	127 (21)	< 0.0001
			<u>, </u>

Abbreviations: ARDS, acute respiratory distress syndrome; BMI, body mass index; IQR, interquartile range; RSC, respiratory system compliance; SAPS, simplified acute physiology score; SD, standard deviation; SOFA, sequential organ failure assessment; COPD, chronic obstructive pulmonary disease.

Supplemental table 2:

Expiratory tidal volume (Vte) according to predicted body weight (PBW), respiratory rate, and plateau pressure recorded on day 1 of ARDS each year of the study period. Data are presented as medians and interquartile ranges (IQR).

Year of	Mortality rate in	Vte/PBW (ml/kg)	Respiratory rate	Plateau pressure
study	the ICU (%)		(breaths/minute)	(cmH20)
2006	38	6.63 (6.16-7.73)	24 (21-26)	28 (22-30)
2007	30	6.44 (6.00-7.43)	24 (21-26)	26 (21-30)
2008	47	6.29 (6.00-6.84)	25 (22-27)	24 (20-29)
2009	38	6.38 (6.05-6.68)	28 (24-30)	25 (22-29)
2010	42	6.60 (6.04-7.73)	28 (24-32)	27 (20-29)
2011	42	6.56 (6.12-7.40)	28 (25-31)	26 (23-27)
2012	46	6.43 (6.06-7.42)	27 (24-30)	25 (22-30)
2013	37	6.19 (5.85-6.73)	28 (24-30)	26 (22-29)
2014	45	6.44 (6.16-6.83)	28 (25-30)	27 (24-29)
2015	35	6.13 (5.91-6.53)	26 (25-30)	25 (21-28)
2016	30	6.31 (5.82-6.70)	28 (25-30)	23 (23-28)
2017	33	6.41 (5.97-6.63)	28 (24-30)	25 (20-28)
2018	43	6.18 (5.97-6.63)	28 (24-30)	25 (22-27)
2019	45	6.22 (5.92-6.51)	29 (25-30)	27 (24-30)
2020	29	6.20 (5.99-6.59)	28 (25-30)	25 (21-28)

2021	28	6.22 (5.98-6.44)	26 (24-26)	24 (22-27)

Supplemental Table 3

Supplemental Table 3: Ventilatory variables compared each day from day 1 to day 5 of ARDS whether patients presented or not the day of assessment severe sustained hypercapnia

	ARDS Day 1	ARDS Day 2	ARDS Day 3	ARDS Day 4	ARDS Day 5
Plateau Pressure (cmH ₂ O)					
Sustained severe hypercapnia : yes	26.00 [22.00, 29.00]	26.00 [22.00, 28.00]	26.00 [23.00, 29.00]	26.00 [23.50, 29.00]	26.50 [24.00, 30.00]
Sustained severe hypercapnia : no	25.00 [21.00, 28.00]	24.00 [21.00, 27.00]	24.00 [21.00, 26.00]	23.00 [20.00, 26.00]	23.00 [20.00, 26.00]
Vte/PBW (ml/kg)					
Sustained severe hypercapnia : yes	6.25 [6.00, 6.71] NS	6.21 [5.88, 6.61]	6.28 [5.92, 6.72] NS	6.34 [5.89, 6.88]	6.34 [5.84, 6.90]
Sustained severe hypercapnia : no	6.30 [6.01, 6.84]	6.26 [6.00, 6.76]	6.29 [5.97, 6.68]	6.42 [6.06, 7.01]	6.57 [6.12, 7.46]
Driving pressure (cmH ₂ O)					
Sustained severe hypercapnia : yes	15.00 [12.00, 18.00]	14.00 [11.00, 18.00]	14.00 [11.00, 18.25]	15.00 [12.00, 19.00]	16.00 [12.00, 19.25]
Sustained severe hypercapnia : no	14.00 [11.00, 17.00]	13.00 [10.00, 16.00]	13.00 [11.00, 16.00]	13.00 [10.00, 16.00]	13.00 [10.00, 16.00]
Ventilatory ratio					
Sustained severe hypercapnia : yes	2.84 [2.37, 3.38]	2.72 [2.40, 3.19]	2.76 [2.47, 3.17]	2.82 [2.48, 3.24]	2.91 [2.49, 3.42]
Sustained severe hypercapnia : no	1.85 [1.59, 2.16]	1.87 [1.58, 2.21]	1.91 [1.58, 2.24]	1.98 [1.65, 2.34]	2.05 [1.68, 2.40]
Respiratory system compliance					
(ml/cmH ₂ O)					
Sustained severe hypercapnia : yes	27.47 [21.76, 35.00]	28.39 [21.42, 37.09]	28.29 [21.23, 37.22]	27.56 [20.44, 33.81]	26.77 [19.62, 33.77]
Sustained severe hypercapnia : no	30.85 [24.36, 39.35]	1.87 [1.58, 2.21]	31.08 [24.75, 39.10]	32.18 [25.73, 40.45]	32.92 [25.83, 42.00]
PaO ₂ /FiO ₂ (mmHg)					
Sustained severe hypercapnia : yes	88.00 [65.75, 115.00]	111.00 [83.00, 147.00]	128.00 [92.75, 165.25]	133.00 [101.00, 173.00]	124.00 [90.75, 162.00]
Sustained severe hypercapnia : no	97.00 [75.00, 121.00]	142.00 [103.00, 193.50]	164.00 [118.00, 222.00]	179.00 [134.50, 232.00]	183.00 [138.00, 228.00]

All comparisons differed significantly (p< 0.05) between patients with or without severe hypercapnia defined by $PaCO_2 \ge 50$ mmHg, except for Vte/PBW at day 1 of ARDS.

Abbreviations: ARDS, acute respiratory distress syndrome; Vte, expiratory tidal volume; PBW, predicted body weight.