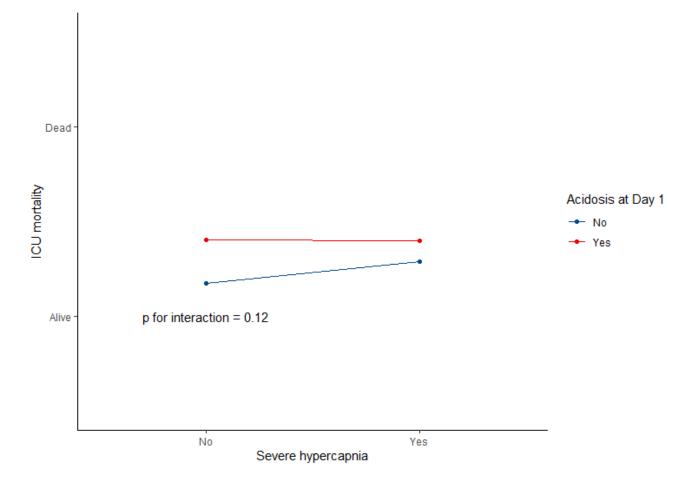
Impact of sustained arterial CO₂ retention in patients with moderate or severe acute respiratory distress syndrome

Adel Maamar, MD^{1, 2}, Flora Delamaire, MD^{1,2}, Florian Reizine MD^{1,2,3}, Mathieu Lesouhaitier, MD^{1,2,3}, Benoit Painvin, MD^{1,2}, Quentin Quelvin, MD^{1,2}, Valentin Coirier, MD^{1,2}, Pauline Guillot, MD^{1,2}, Yves Le Tulzo, MD, PhD^{1,2,3}, Jean Marc Tadié, MD, PhD^{1,2,3}, and Arnaud Gacouin, MD^{1,2,3}

¹CHU Rennes, Maladies Infectieuses et Réanimation Médicale, F-35033 Rennes, France
²Université Rennes1, Faculté de Médecine, Biosit, F-35043 Rennes, France
³Inserm-CIC-1414, Faculté de Médecine, Université Rennes I, IFR 140, F-35033 Rennes, France

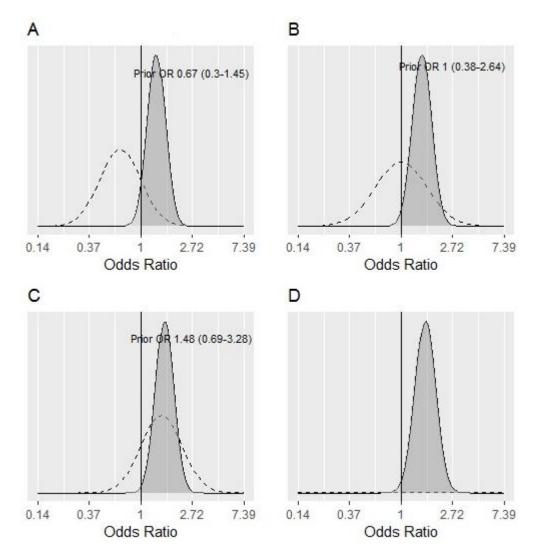
Supplementary Appendix

	Item No	Recommendation		
Title and abstract	1	Indicate the study's design with a commonly used term in the title or		
		the abstract		
		Cohort study		
		Provide in the abstract an informative and balanced summary of what		
		was done and what was found: Done		
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being		
		reported		
		Lung protective ventilation (PV) is the cornerstone of management of ARDS		
		Lung protective ventilation may lead to important CO2 retention		
		There is uncertainty regarding the beneficial or harmful effect of hypercapnia.		
		Impact of CO2 retention on the outcome of ARDS patients has been assessed		
		only in three previous cohorts of patients not managed uniformly for		
		mechanical ventilation.		
Objectives	3	State specific objectives, including any prespecified hypotheses		
		To determine whether severe hypercapnia (PaCO2≥ 50 mmHg) is associated		
		with ICU mortality is in patients receiving invasive ventilation with tidal		
		volume set to 6 mL.kg-1 predictive body weight as required in LPV. We		
		suspected that severe hypercapnia could be associated with worst outcome in		
		these patients		
Methods				
Study design	4	Present key elements of study design early in the paper		
, ,		Retrospective analysis of data collected prospectively with no missing data.		
		Assessment for ICU survival on the whole population and after matching		
		process		
Setting	5	Describe the setting, locations, and relevant dates, including periods of		
C		recruitment, exposure, follow-up, and data collection		
		Setting: a mixed 21-bed ICU in a university hospital		
		Study period: from January 2006 to June 2021		
		Follow-up period: from diagnosis of ARDS until ICU discharge		
Participants	6	Give the eligibility criteria, and the sources and methods of selection of		
F	-	participants. Describe methods of follow-up		
		Patients with ARDS and PaO2/FiO2 ratio \leq 150 mmHg (n= 930)		
		Data base started in 2006		
		Short-term follow-up (ICU discharge)		
		(b) For matched studies, give matching criteria and number of exposed and		
		unexposed		
		Patients assessed on Day 5 of ARDS. The following variables were used for		
		calculation of the propensity score: age, sex, SAPS II score, respiratory rate on		
		Day 1, PaO2/FiO2 ratio on Day 1, respiratory system compliance on Day 1,		
		driving pressure on Day 1, and ventilatory ratio on Day 1		
	7	Clearly define all outcomes, exposures, predictors, potential confounders, and		
Variables	/	Clearly define an outcomes, exposures, bredictors, botential comounders, and		
Variables	7	effect modifiers. Give diagnostic criteria, if applicable		


		discussed.
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if
		there is more than one group
		Source of data: data base of our ICU
		Statistical tests used for comparisons were described in the statistical section
Bias	9	Describe any efforts to address potential sources of bias
		Frequentist analysis including non-adjusted and adjusted analysis. In addition a
		Bayesian analysis was performed.
Study size	10	Explain how the study size was arrived at
		No sample-size calculation. The high number of patients limited the risk to
		perform an underpowered study.
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why
		Comparisons between proportions of patients. Patients alive at Day 5 of ARDS
		were included in a matched study with the aim to assess the impact of
		sustained severe hypercapnia.
Statistical methods	12	Describe all statistical methods, including those used to control for
		confounding
		First step: unadjusted and adjusted analysis was performed to determine the
		impact of severe hypercapnia noted on Day 1 of ARDS. In addition a Bayesian
		analysis was performed with four different priors, including a septic prior for
		this association. Second step, matched analysis to assess the impact of
		sustained hypercapnia on Day 5.
		(b) Describe any methods used to examine subgroups and interactions
		Interaction between acidosis and hypercapnia was assessed.
		(c) Explain how missing data were addressed
		No missing data
		If applicable, explain how loss to follow-up was addressed
		No patients loss to follow-up for the day of end-point
		(<u>e</u>) Describe any sensitivity analyses
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers
1 articipants	15	potentially eligible, examined for eligibility, confirmed eligible, included in the
		study, completing follow-up, and analysed: Done
		(b) Give reasons for non-participation at each stage: NA
		(c) Consider use of a flow diagram: Done
Descriptive data	14*	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)
		and information on exposures and potential confounders: Done
		(b) Indicate number of participants with missing data for each variable of
		interest: NA
		(c) Summarise follow-up time (eg, average and total amount): ICU length of
0		stay
Outcome data	15*	Report numbers of outcome events or summary measures over time: Done in
		figure 2

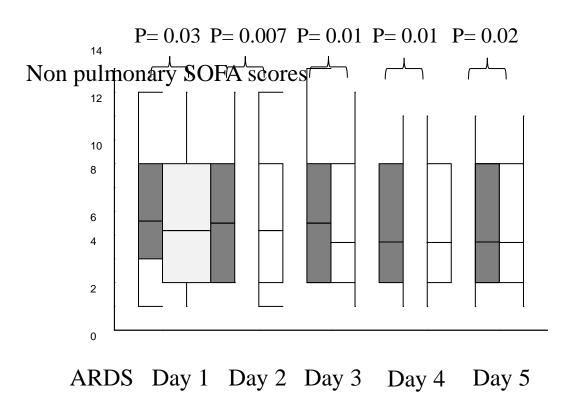
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates
		and their precision (eg, 95% confidence interval). Make clear which
		confounders were adjusted for and why they were included: Done (including
		pneumonia end COPD forced in models)
		(b) Report category boundaries when continuous variables were categorized:
		Done
		(c) If relevant, consider translating estimates of relative risk into absolute risk
		for a meaningful time period
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and
		sensitivity analyses
Discussion		
Key results	18	Summarise key results with reference to study objectives: Done
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
		imprecision. Discuss both direction and magnitude of any potential bias: Done
Interpretation	20	Give a cautious overall interpretation of results considering objectives,
		limitations, multiplicity of analyses, results from similar studies, and other
		relevant evidence: Done
Generalisability	21	Discuss the generalisability (external validity) of the study results
		Done
Other information		
Funding	22	Give the source of funding and the role of the funders for the present study
		and, if applicable, for the original study on which the present article is based

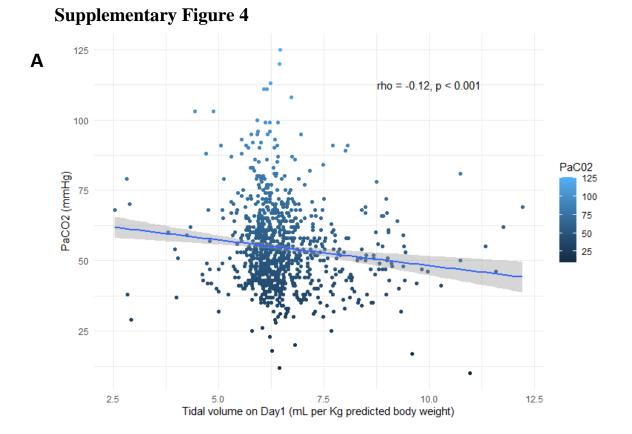
*Give information separately for exposed and unexposed groups.

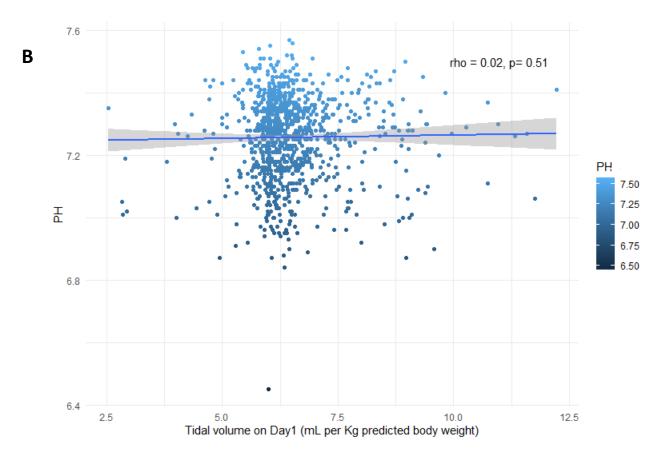

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

Supplementary Figure 1

Supplementary Figure 1: Interaction plot between severe hypercapnia and acidosis at day 1 defined by a pH < 7.35 according to ICU mortality.


Supplementary figure 2


Supplementary Figure 2: Graphical representation of reference priors (dashed lines) and data-derived priors (thicked lines). Each prior distribution represents a belief about the probability that severe hypercapnia is associated with death in the ICU. A: "sceptic" prior (severe hypercapnia is not associated with ICU mortality); B, neutral prior; C, "optimistic" prior (hypercapnia is associated with mortality in the ICU); D, null prior in which all effects size were equally plausible.


Supplementary Figure 3

Severe sustained hypercapnia on the day of assessment: Yes Severe sustained hypercapnia on the day of assessment No

Supplementary Figure 3: Non-pulmonary SOFA scores compared between patients with and without sustained severe hypercapnia ($PaCO_2 \ge 50 \text{ mmHg}$)

Supplemental Figure 4: Respective correlations between PaCO2 and Tidal volume at day 1 (A), and between PH and tidal volume at day 1 (B).

	Death in the ICU		P value
	Yes	No	_
	n= 323	n= 607	
Baseline characteristics			
SAPS II score, points mean (SD)	62 ± 21	46 ± 18	< 0.001
SOFA score, points median (IQR)	12 (9-15)	8 (6-11)	< 0.001
Age, years mean (SD)	61 ± 14	56 ± 15	< 0.001
Male gender, n (%)	219 (68)	382 (63)	0.14
Base excess, mEq/L median (IQR)	-4.35 (-9.640.72)	-1.21(-5.21-1.80)	< 0.001
BMI, kg/m ² median (IQR)	26 (23-31)	27 (23-32)	0.37
Coexisting condition, n (%)		× /	
Diabetes mellitus	41 (13)	85 (14)	0.58
Liver cirrhosis	50 (15)	30 (5)	< 0.001
Valvular and/or coronary disease with treatment	75 (23)	104 (17)	0.020
Aplasia and/or recent chemotherapy for	77 (24)	64 (11)	< 0.001
solid tumor or haematologic disease	(= .)		
COPD	60 (19)	140 (22)	0.11
Obesity	107 (33)	215 (35)	0.48
Ventilatory management on the first	107 (00)	210 (00)	0.10
day of ARDS			
PaCO ₂ , mmHg median (IQR)	54 (47-64)	51 (44-61)	0.002
pH, median (IQR)	7.22 (7.13-7.30)	7.34 (7.27-7.40)	< 0.001
PaO ₂ /FiO ₂ , mmHg median (IQR)	86 (63-109)	94 (74-121)	< 0.001
PEEP, cmH_2O median (IQR)	10 (8-13)	10 (8-12)	0.027
Plateau pressure, cmH ₂ O median (IQR)	27 (22-29)	25 (22-28)	< 0.001
Driving pressure, cmH_2O median (IQR)	15 (13-19)	14 (11-17)	< 0.001
RSC, ml/cmH ₂ O median (IQR)	27 (21-35)	29 (24-38)	0.002
Ventilatory ratio, median (IQR)	2.55 (2.02-3.18)	2.29 (1.82-2.91)	< 0.001
Reason for ARDS			
Pneumonia	177 (55)	423 (70)	< 0.001
Aspiration	37 (11)	82 (14)	0.37
Non-pulmonary sepsis	39 (12)	27 (5)	< 0.001
Miscellaneeous	70 (22)	75 (12)	< 0.001
Interventions, n (%)			
Prone positioning	135 (42)	296 (49)	0.038
Extra corporeal membrane oxygenation	37 (11)	40 (7)	0.01
Inhaled nitric oxyde	102 (32)	64 (11)	< 0.001
Glucocorticoids	234 (72)	387 (64)	0.007
Vasopressors	305 (94)	503 (83)	< 0.001
Renal-replacement therapy	163 (50)	127 (21)	< 0.001

Supplemental Table 1: Baseline characteristics of patients, reason for ARDS, and interventions compared for death in the ICU

Abbreviations: ARDS, acute respiratory distress syndrome; BMI, body mass index; IQR, interquartile range; RSC, respiratory system compliance; SAPS, simplified acute physiology score; SD, standard deviation; SOFA, sequential organ failure assessment; COPD, chronic obstructive pulmonary disease.

Supplemental Table 2: Expiratory tidal volume (Vte) according to predicted body weight (PBW), respiratory rate, and plateau pressure recorded on day 1 of ARDS each year of the study period. Data are presented as medians and interquartile ranges (IQR).

Year of	Mortality rate in	Vte/PBW (ml/kg)	Breathing	Plateau pressure	
study the ICU (%)			frequency	(cmH ₂ O)	
			(breaths/minute)		
2006	38	6.63 (6.16-7.73)	24 (21-26)	28 (22-30)	
2007	30	6.44 (6.00-7.43)	24 (21-26)	26 (21-30)	
2008	47	6.29 (6.00-6.84)	25 (22-27)	24 (20-29)	
2009	38	6.38 (6.05-6.68)	28 (24-30)	25 (22-29)	
2010	42	6.60 (6.04-7.73)	28 (24-32)	27 (20-29)	
2011	42	6.56 (6.12-7.40)	28 (25-31)	26 (23-27)	
2012	46	6.43 (6.06-7.42)	27 (24-30)	25 (22-30)	
2013	37	6.19 (5.85-6.73)	28 (24-30)	26 (22-29)	
2014	45	6.44 (6.16-6.83)	28 (25-30)	27 (24-29)	
2015	35	6.13 (5.91-6.53)	26 (25-30)	25 (21-28)	
2016	30	6.31 (5.82-6.70)	28 (25-30)	23 (23-28)	
2017	33	6.41 (5.97-6.63)	28 (24-30)	25 (20-28)	
2018	43	6.18 (5.97-6.63)	28 (24-30)	25 (22-27)	
2019	45	6.22 (5.92-6.51)	29 (25-30)	27 (24-30)	
2020	29	6.20 (5.99-6.59)	28 (25-30)	25 (21-28)	
2021	28	6.22 (5.98-6.44)	26 (24-26)	24 (22-27)	

Supplemental Table 3: Ventilatory variables compared each day from day 1 to day 5 of ARDS whether patients presented or not the day of assessment severe sustained hypercapnia

	ARDS Day 1	ARDS Day 2	ARDS Day 3	ARDS Day 4	ARDS Day 5
Plateau Pressure (cmH ₂ O)					
Sustained severe hypercapnia : yes	26.00 [22.00, 29.00]	26.00 [22.00, 28.00]	26.00 [23.00, 29.00]	26.00 [23.50, 29.00]	26.50 [24.00, 30.00]
Sustained severe hypercapnia : no	25.00 [21.00, 28.00]	24.00 [21.00, 27.00]	24.00 [21.00, 26.00]	23.00 [20.00, 26.00]	23.00 [20.00, 26.00]
Vte/PBW (ml/kg)					
Sustained severe hypercapnia : yes	6.25 [6.00, 6.71] NS	6.21 [5.88, 6.61]	6.28 [5.92, 6.72] NS	6.34 [5.89, 6.88]	6.34 [5.84, 6.90]
Sustained severe hypercapnia : no	6.30 [6.01, 6.84]	6.26 [6.00, 6.76]	6.29 [5.97, 6.68]	6.42 [6.06, 7.01]	6.57 [6.12, 7.46]
Driving pressure (cmH_2O)					
Sustained severe hypercapnia : yes	15.00 [12.00, 18.00]	14.00 [11.00, 18.00]	14.00 [11.00, 18.25]	15.00 [12.00, 19.00]	16.00 [12.00, 19.25]
Sustained severe hypercapnia : no	14.00 [11.00, 17.00]	13.00 [10.00, 16.00]	13.00 [11.00, 16.00]	13.00 [10.00, 16.00]	13.00 [10.00, 16.00]
Ventilatory ratio					
Sustained severe hypercapnia : yes	2.84 [2.37, 3.38]	2.72 [2.40, 3.19]	2.76 [2.47, 3.17]	2.82 [2.48, 3.24]	2.91 [2.49, 3.42]
Sustained severe hypercapnia : no	1.85 [1.59, 2.16]	1.87 [1.58, 2.21]	1.91 [1.58, 2.24]	1.98 [1.65, 2.34]	2.05 [1.68, 2.40]
Respiratory system compliance					
(ml/cmH_2O)					
Sustained severe hypercapnia : yes	27.47 [21.76, 35.00]	28.39 [21.42, 37.09]	28.29 [21.23, 37.22]	27.56 [20.44, 33.81]	26.77 [19.62, 33.77]
Sustained severe hypercapnia : no	30.85 [24.36, 39.35]	31.65 [25.06, 39.68]	31.08 [24.75, 39.10]	32.18 [25.73, 40.45]	32.92 [25.83, 42.00]
PaO ₂ /FiO ₂ (mmHg)					
Sustained severe hypercapnia : yes	88.00 [65.75, 115.00]	111.00 [83.00, 147.00]	128.00 [92.75, 165.25]	133.00 [101.00, 173.00]	124.00 [90.75, 162.00]
Sustained severe hypercapnia : no	97.00 [75.00, 121.00]	142.00 [103.00, 193.50]	164.00 [118.00, 222.00]	179.00 [134.50, 232.00]	183.00 [138.00, 228.00]

All comparisons differed significantly (p< 0.05) between patients with or without severe hypercapnia defined by $PaCO_2 \ge 50$ mmHg, except for Vte/PBW at day 1 of ARDS.

Abbreviations: ARDS, acute respiratory distress syndrome; Vte, expiratory tidal volume; PBW, predicted body weight.