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In general, 4 points define a 3 parameter set of axisymmetric quadrics while 5 and 6 given points reduce these 3 degrees of freedom to 2 and 1, respectively. Similarly, 7 supporting points confine members of the set to a finite number. By imposing 2 constraints on the quadric coefficient matrix the 5 points are sufficient to find the axis direction of up to 6 right cylinders. Imposing only 1 constraint allows 6 points to support up to 12 right cones. Without either constraint, that implies a singular coefficient matrix or singular conic submatrix, up to 4 quadrics of revolution, possibly of mixed species, can contain 7 points. Formal arguments and proofs are presented to substantiate these observations. Algorithms are developed and applied to exhibit cases with 6 right cylinders, 12 right cones and 4 quadrics of revolution, at least 3 of which are of different type. Spheres, being uniquely defined on 4 points, are specifically excluded from consideration. The cases of 12 cones and 4 quadrics of revolution are believed to be original revelations. Methods to fit quadrics of revolution to more than 7 points are suggested.

Introduction

Real time precision camera aided inspection in industrial production, [START_REF] Koller | Optical Servoing for Industrial Surface Machining[END_REF][START_REF] O'leary | Zsombor-Murray: Direct and Least Squares Fitting of Coupled Geometric Objects for Metric Vision[END_REF][START_REF] O'leary | Instrumentation and Analysis-Methods for the Measurement of Profiles using Light Sectioning[END_REF][START_REF] Pernkopf | Image Acquisition Techniques for Automatic Visual Inspection of Metallic Surfaces[END_REF][START_REF] Tratnig | Camera Calibration, Data Segmentation, and Fitting Approaches for a Visual Edge Inspection System[END_REF], by fitting pixels in digital camera images to conic curves is a process that continues to evolve as users gain confidence in achieving economic benefit. The next challenge is to reliably and accurately fit quadric surfaces via a similar technique. Previous work in this direction seems to have been confined to fitting cylinders of revolution. Results to date have established that, in general, up to six such cylinders may be disposed on five arbitrarily selected points. Some relevant references are listed in sequence of their appearance: [START_REF]Ein geometrisches Problem der metrischen Getriebesynthese[END_REF][START_REF]Konstruktion der Drehzylinder durch vier Punkte einer Ebene[END_REF][START_REF] Devillers | Trebuchet: Circular Cylinders by Four or Five Points in Space[END_REF][START_REF] Beder | Direct Solutions for Computing Cylinders from Minimal Sets of 3D Points[END_REF][START_REF] Lichtblau | Cylinders Through Five Points[END_REF][START_REF] Zsombor-Murray | El Fashny: A Cylinder of Revolution on Five Points[END_REF], from earliest to most recent. Remarkably, there is little backward cross citation, with the exception of Schaal, Strobel (see below) and Röschel [START_REF] Röschel | Drehflächen zweiter Ordnung durch einen Kegelschnitt[END_REF] who were aware of early contributions, of Laguerre [START_REF] Laguerre | Sur la courbe enveloppée par les axes des coniques qui passent par quatre points donnés et sur les axes des surfaces de révolution du second ordre qui passent par cinq points donnés. Sur les lignes spiriques[END_REF], Narasinga [START_REF] Rao | Quadrics of Revolution through a Given Conic[END_REF] and Narasinga & Srinivasachari [START_REF] Rao | Quadrics of Revolution through a Pair of Skew Lines[END_REF], but who were not trying to find a finite number of quadric surfaces on minimal point set specifications. Furthermore there is no evidence of a unified approach to this sort of problem. The quadric of revolution appears to be a good starting point in this regard. Herein the original approach introduced to define four on seven given points will be extended to include the cylinder problem, to show how it fits into the general analytical procedure, and to expose for the first time how twelve cones of revolution may be placed on six points.

The purpose here is to clarify the way attributes of quadrics of revolution can be used to set up systems of equations whereby these surfaces can be determined on fewer than the nine given points required to uniquely define a general quadric. In the case of cylinders of revolution it has been known for some time, [START_REF] Devillers | Trebuchet: Circular Cylinders by Four or Five Points in Space[END_REF][START_REF] Beder | Direct Solutions for Computing Cylinders from Minimal Sets of 3D Points[END_REF][START_REF] Lichtblau | Cylinders Through Five Points[END_REF], and more recently demonstrated, [START_REF] Zsombor-Murray | El Fashny: A Cylinder of Revolution on Five Points[END_REF], that in general as many as six such cylinders may be located on five given points. Furthermore it is common knowledge that four arbitrarily located points will support a sphere. By examining the structure of the conic section of a quadric of revolution, where it intersects the absolute plane, one sees, via cunning reparametrization, that the equivalent of two conditions or constraint equations are implied by the specification that a pair of identical eigenvalues be imposed on a 3 × 3 symmetric matrix that represents the coefficients of this conic section of a quadric of revolution. Essentially the six unknown coefficients in the matrix are reduced to four by the parametrization. So a discrete number of axisymmetric quadrics will in general contain seven given points. Imposing the condition that the overall 4 × 4 coefficient matrix determinant be zero supplies one additional constraint allowing a number of cones of revolution to be defined on six points. Adding that the conic section coefficient matrix determinant vanishes as well obtains the cylinders of revolution on five points, but via a unified method that begins with the general quadric of revolution, rather than with a special vector construction [START_REF] Zsombor-Murray | El Fashny: A Cylinder of Revolution on Five Points[END_REF], used to find the cylinders' axial directions, that can be traced to early work by Schaal, [START_REF]Ein geometrisches Problem der metrischen Getriebesynthese[END_REF][START_REF]Konstruktion der Drehzylinder durch vier Punkte einer Ebene[END_REF], and Strobel, [START_REF] Strobel | Über die Drehkegel durch vier Punkte, Teil I. Sitzungsber[END_REF][START_REF] Strobel | Die Drehkegel durch vier Punkte[END_REF][START_REF] Strobel | Über die Drehkegel durch vier Punkte, Teil II. Sitzungsber[END_REF].

Quadrics of revolution

A quadric Q in 3-space always has an equation of the form

x ⊤ A x + 2c ⊤ x + c 0 = 0 ( 1 
)
where A is a real symmetric 3

× 3 matrix, c = [c 1 , c 2 , c 3 ] ⊤ ∈ R 3 , c 0 ∈ R and x = [x, y, z] ⊤
denotes the Cartesian position vector of any point on the surface. Eq. 1 can be written compactly as follows:

[1, x ⊤ ] Q 1 x = 0 (2) 
where

Q = c 0 c ⊤ c A . (3) 
The following well known facts, drawn from the theory of quadrics will be used:

Q is a quadric of revolution, but not a sphere1 , if and only if the symmetric matrix A has exactly two distinct eigenvalues λ 1 and λ 2 where λ 1 has multiplicity 1, λ 2 has multiplicity 2 and λ 2 = 0. The 1-dimensional2 eigenspace belonging to λ 1 represents the (direction of the) axis of Q whereas the 2-dimensional eigenspace belonging to λ 2 represents the planes perpendicular to this axis -the planes which intersect Q on circles. Proposition 1. Let A be a symmetric 3 × 3 matrix with eigenvalues λ 1 , λ 2 = λ 3 (two of them are identical); then A can be written as

A = (λ 1 -λ 2 ) a a ⊤ + λ 2 I 3 (4) 
where

a =   a 1 a 2 a 3   , a = 1, I 3 =   1 0 0 0 1 0 0 0 1   . (5) 
Proof. Since A is symmetric there exists a matrix3 

R = [a, b, c] =   a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3   with A = R   λ 1 0 0 0 λ 2 0 0 0 λ 2   R ⊤ ,
where R is orthogonal, i.e., R R ⊤ = I 3 . Hence,

A = [a, b, c] •   λ 2 + λ 1 -λ 2 0 0 0 λ 2 0 0 0 λ 2   •   a ⊤ b ⊤ c ⊤   = [a, b, c] •   λ 1 -λ 2 0 0 0 0 0 0 0 0   •   a ⊤ b ⊤ c ⊤   + λ 2 R R ⊤ = (λ 1 -λ 2 ) a a ⊤ + λ 2 I 3 .
Proposition 2. Let Q be a quadric of revolution different from a sphere or a pair of parallel planes, then Q has an equation of the form (2) where

A =   a 2 1 + b a 1 a 2 a 1 a 3 a 1 a 2 a 2 2 + b a 2 a 3 a 1 a 3 a 2 a 3 a 2 3 + b   (6) 
and b = 0.

Proof. Because Q is a quadric of revolution matrix A has exactly two different eigenvalues λ 1 and λ 2 where λ 1 has multiplicity 1, λ 2 has multiplicity 2 and λ 2 = 0. According to Proposition 1 matrix A can be written in the form (4). Since λ 1 = λ 2 one can divide the quadric equation by λ 1λ 2 which after having put b = λ 2 λ 1λ 2 yields matrix A according to Eq. 6.

Remark 1. The following items are emphasized: a) Vector a is a direction vector of the quadric of revolution's axis. The condition that a is normalized is optional because the matrix Q can be multiplied by an arbitrary factor = 0.

b) If b = 0 parabolic cylinders or pairs of parallel planes are obtained instead of quadrics of revolution. 4 Their intersection with the plane at infinity is the absolute line of the plane a 1 x + a 2 y + a 3 z = 0.

Due to Proposition 2 every quadric of revolution has an equation of the form (2) where the 3 × 3 submatrix A of Q can be parameterized according to Eq. 6. Conversely, every symmetric 4 × 4 matrix with A, Eq. 6 as its 3 × 3 lower right minor represents a quadric of revolution if b = 0.

It is easy to verify that the determinants of the matrices A and Q can be written as follows:

det A = b 2 • δ, det Q = b • ∆ where δ = b + a 2 1 + a 2 2 + a 2 3 , (7) 
∆ = b c 0 δ -c 2 1 (a 2 2 + a 2 3 + b) -c 2 2 (a 2 1 + a 2 3 + b) -c 2 3 (a 2 1 + a 2 2 + b) + 2(a 1 a 2 c 1 c 2 + a 1 a 3 c 1 c 3 + a 2 a 3 c 2 c 3 ). ( 8 
)
One can classify the quadrics of revolution where b = 0 by means of δ and ∆ as shown in Table 1.

Table 1: Quadrics of revolution; classification ∆ = 0, δ = 0 : ellipsoids or hyperboloids of revolution ∆ = 0, δ = 0 : paraboloids of revolution ∆ = 0, δ = 0 : cones of revolution ∆ = 0, δ = 0 : cylinders of revolution

Problem formulation

The aim is to find quadrics of revolution through n given points P i , i = 1, . . . , n. This means to find a solution to the equation system

[1, p ix , p iy , p iz ] •     c 0 c 1 c 2 c 3 c 1 a 2 1 + b a 1 a 2 a 1 a 3 c 2 a 1 a 2 a 2 2 + b a 2 a 3 c 3 a 1 a 3 a 2 a 3 a 2 3 + b     •     1 p ix p iy p iz     = 0, i = 1, . . . , n (9) 
in the 8 variables c 0 , c 1 , c 2 , c 3 , b, a 1 , a 2 , a 3 , where p ix , p iy , p iz denote the Cartesian coordinates of any given point P i . This system can also be written in the form of the fundamental equation system

P n,10 •                 c 0 c 1 c 2 c 3 a 2 1 + b a 2 2 + b a 2 3 + b a 2 a 3 a 1 a 3 a 1 a 2                 =    0 . . . 0    (10) 
where c) no solution if n > 7. The case where n = 4 is satisfied by a 3 parameter set is dealt with in Section 4. Section 5 addresses problems pertaining to 5 given points. Section 6 focuses on finding right cylinders on 5 points. Section 7 treats the case n = 6. An algorithm to determine the right cones on 6 points is presented in Section 8. Finally, how to find the general quadrics of revolution on n = 7 points is exposed in Section 9.

P n,10 =     1 
To avoid digression too far into the maze of special or pathological cases it is assumed that the n given points are in general position defined as follows.

Definition 1. Let P 1 , . . . , P n be points in the Euclidean 3-space then we say that P 1 , . . . , P n are in general position if in case of n = 4 the four points are not coplanar and in case of n ≥ 5 the n points are mutually distinct and neither coplanar nor cospherical.

Quadrics of revolution on four non coplanar points

Let P 1 , P 2 , P 3 , P 4 be non coplanar points then we rewrite Eq. 10 as

M 4,4 •     c 0 c 1 c 2 c 3     = -N 4,6 •         a 2 1 + b a 2 2 + b a 2 3 + b a 2 a 3 a 1 a 3 a 1 a 2         . ( 12 
)
Since P 1 , P 2 , P 3 , P 4 are non coplanar the matrix

M 4,4 =     1 2p 1x 2p 1y 2p 1z 1 2p 2x 2p 2y 2p 2z 1 2p 3x 2p 3y 2p 3z 1 2p 4x 2p 4y 2p 4z    
is regular and thus Eq. 12 is equivalent to

    c 0 c 1 c 2 c 3     = -M -1 4,4 • N 4,6 •         a 2 1 + b a 2 2 + b a 2 3 + b a 2 a 3 a 1 a 3 a 1 a 2         . ( 13 
)
So we have the following Result 1. If P 1 , P 2 , P 3 , P 4 are four non coplanar points, then for any choice of an axis direction [a 1 , a 2 , a 3 ] ⊤ and any b = 0 one obtains exactly one quadric of revolution on P 1 , P 2 , P 3 , P 4 .

Remark 2. Note the following two items: a) Choosing a fixed axis direction [a 1 , a 2 , a 3 ] ⊤ and varying b produces a pencil of quadrics of revolution on P 1 , P 2 , P 3 , P 4 . This case is described in detail by Strobel [16,. b) The unique sphere determined by P 1 , P 2 , P 3 , P 4 is obtained by setting a 1 = a 2 = a 3 = 0 and choosing an arbitrary value b = 0 in Eq. 13.

Quadrics of revolution on five given points in general position

Lemma 1. Let P 1 , . . . , P 5 be five points in general position and let M 

5,5 and M denote the sub-matrices of P 5,10 established by the first four and one of the fifth, sixth and seventh columns, respectively, then at least one of these matrices is regular.

Proof. Suppose that all three matrices are singular; then there exist vectors

[α 0 , α 1 , α 2 , α 3 , α 4 ] ⊤ = [0, 0, 0, 0, 0] ⊤ , [β 0 , β 1 , β 2 , β 3 , β 4 ] ⊤ = [0, 0, 0, 0, 0] ⊤ , [γ 0 , γ 1 , γ 2 , γ 3 , γ 4 ] ⊤ = [0, 0, 0, 0, 0] ⊤ , so that α 0 + α 1 p ix + α 2 p iy + α 3 p iz + α 4 p 2 ix = 0, β 0 + β 1 p ix + β 2 p iy + β 3 p iz + β 4 p 2 iy = 0, γ 0 + γ 1 p ix + γ 2 p iy + γ 3 p iz + γ 4 p 2 iz = 0    (14) 
for i = 1, 2, 3, 4, 5.

If one of the values α 4 , β 4 or γ 4 is zero then the five points lie in a plane contradicting the assumption of being not coplanar. Hence α 4 , β 4 , γ 4 = 0 and we may multiply the three equations of Eq. 14 by α -1 4 , β -1

4
and γ -1 4 , respectively, and then add them to show that P 1 , . . . , P 5 belong to a sphere which again contradicts our assumption of the points being in general position.

Given five points P 1 , . . . , P 5 in general position, then according to the Lemma 1 above, one of the matrices M 5,5 , is invertible. As a consequence the fundamental equation system Eq. 10 can be rewritten in the form

      c 0 c 1 c 2 c 3 a 2 1 + b       = -M -1 5,5 • N 5,5 •       a 2 2 + b a 2 3 + b a 2 a 3 a 1 a 3 a 1 a 2       . ( 15 
)
The last line of these five equations has the structure

kb + q(a 1 , a 2 , a 3 ) = 0 ( 16 
)
where k is a real non-zero5 number and q(a 1 , a 2 , a 3 ) is a non-trivial6 quadratic homogeneous polynomial in a 1 , a 2 , a 3 . In conclusion we can determine b uniquely from Eq. 16 for every prescribed axis direction [a 1 , a 2 , a 3 ] ⊤ and then c 0 , c 1 , c 2 , c 3 via Eq. 15. So we have the following Result 2. If P 1 , . . . , P 5 are points in general position then for any choice of an axis direction [a 1 , a 2 , a 3 ] ⊤ one gets exactly one quadric of revolution containing the five points. Only the directions which null the polynomial q(a 1 , a 2 , a 3 ) (Eq. 16) yield parabolic cylinders or pairs of parallel planes instead of quadrics of revolution.

Remark 3. Since we have assumed that the points are in general position we excluded the cases where they lie on a common sphere or in a common plane. In case of P 1 , . . . , P 5 lying in a common plane ε each quadric passing through the five points has to intersect ε along the second order curve determined by the points. This case was studied in detail by Narasinga [START_REF] Rao | Quadrics of Revolution through a Given Conic[END_REF] and Röschel [START_REF] Röschel | Drehflächen zweiter Ordnung durch einen Kegelschnitt[END_REF]. Remark 4. Laguerre [START_REF] Laguerre | Sur la courbe enveloppée par les axes des coniques qui passent par quatre points donnés et sur les axes des surfaces de révolution du second ordre qui passent par cinq points donnés. Sur les lignes spiriques[END_REF] proved the following theorem for a generic quintuple P 1 , P 2 , P 3 , P 4 , P 5 of points: The axis of each quadric of revolution passing through the five points is an asymptote of a twisted cubic containing the centers M k of the five circumspheres of P i 1 , P i 2 , P i 3 , P i 4 , (i j ∈ {1, 2, 3, 4, 5} mutually distinct).

Conversely, any point on the plane of infinity determines an axis direction and together with the five sphere centers M k a twisted cubic c, in general. The tangent of c at M k , i.e., asymptote of c, is the axis of a quadric of revolution on the five given points P 1 , P 2 , P 3 , P 4 , P 5 .

Right cylinders on five given points in general position

Cylinders of revolution are characterized by the conditions ∆ = δ = 0 where δ and ∆ are determined according to Eq. 7 and Eq. 8. If δ = 0 we have

b = -a 2 1 -a 2 2 -a 2 3 ( 17 
)
and after substitution into the condition ∆ = 0:

a 1 c 1 + a 2 c 2 + a 3 c 3 = 0 (18)
Hence, the right cylinders among all quadrics of revolution can be extracted by requiring that the two Eqs. 17 and 18 are fulfilled.

Determining the right cylinders on five given points P 1 , . . . , P 5 in general position is accomplished as follows. Substituting the condition expressed by Eq. 17 into Eq. 15 yields

      c 0 c 1 c 2 c 3 -a 2 2 -a 2 3       = -M -1 5,5 • N 5,5 •       -a 2 1 -a 2 3 -a 2 1 -a 2 2 a 2 a 3 a 1 a 3 a 1 a 2       . ( 19 
)
The last of these five equations has the form

-a 2 2 -a 2 3 + k 1 (a 2 1 + a 2 3 ) + k 2 (a 2 1 + a 2 2 ) + k 3 a 2 a 3 + k 4 a 1 a 3 + k 5 a 1 a 2 = 0. ( 20 
)
The left hand side of this equation is a quadratic homogeneous polynomial in a 1 , a 2 , a 3 which again is non-trivial as one can easily check. Hence, Eq. 20 represents a second order curve c ∞ on the plane at infinity. Real solutions can occur only in the case where c ∞ is a pair of real lines or a real double line or a unipartite conic. In the first two cases one can always find linear homogeneous parametrizations

a i (s, t) = α i0 s + α i1 t, i = 1, 2, 3 (21) 
and in the case where c ∞ being a regular conic with real points a quadratic homogeneous parametrization

a i (s, t) = α i0 s 2 + α i1 st + α i2 t 2 , i = 1, 2, 3 (22) 
of c ∞ . The parameters are s and t while α ij are constants. By substitution of this parametrization into the first four lines of Eq. 19 one either gets a quadratic parametrization

c i (s, t) = γ i0 s 2 + γ i1 st + γ i2 t 2 , i = 0, 1, 2, 3 (23) 
or a quartic parametrization

c i (s, t) = 4 j=0 γ ij s 4-j t j , i = 0, 1, 2, 3 (24) 
of the unknowns c i . After substituting the (linear or quadratic) parametrization of a i and the (quadratic or quartic) parametrization of c i into the condition Eq. 18 one obtains a homogeneous polynomial in s, t whose degree is ≤ 6. The real zeroes s * , t * of this polynomial yield possible values for a 1 , a 2 , a 3 , c 0 , c 1 , c 2 , c 3 with the help of Eq. 21 or Eq. 22 and Eq. 23 or Eq. 24. This uniquely determines the equation of the corresponding solution cylinder.

Result 3. The task of determining the right cylinders on 5 given points in general position is a sextic problem.

This confirms a result of Zsombor-Murray and El Fashny [START_REF] Zsombor-Murray | El Fashny: A Cylinder of Revolution on Five Points[END_REF]. Applying this method to finding the right cylinders on the five points 

Quadrics of revolution on six given points in general position

Let now six points P 1 , . . . , P 6 in general position be given. In this section we will discuss how to determine all quadrics of revolution on these points.

Since the six points are in general position (mutually distinct and neither coplanar nor cospherical) one can re-enumerate them always in a way that the quadruple P 1 , P 2 , P 3 , P 4 is not coplanar and the points of the quintuples {P 1 , P 2 , P 3 , P 4 , P 5 } and {P 1 , P 2 , P 3 , P 4 , P 6 } are also in general position. (This can be easily checked by elementary considerations.)

Because P 1 , P 2 , P 3 , P 4 , P 5 are in general position we have

b = q 1 (a 1 , a 2 , a 3 ) (25) 
where q 1 is a quadratic homogeneous and non-trivial polynomial according to the results of Section 5. Analogously, we find

b = q 2 (a 1 , a 2 , a 3 ) (26) 
with another quadratic homogeneous and non-trivial polynomial q 2 by applying the results of Section 5 to the quintuple P 1 , P 2 , P 3 , P 4 , P 6 . In conclusion the axis direction numbers a 1 , a 2 , a 3 have to fulfill the homogeneous quadratic condition f (a 1 , a 2 , a 3 ) = q 2 (a 1 , a 2 , a 3 )q 1 (a 1 , a 2 , a 3 ) = 0 which represents a second order curve c ∞ on the plane at infinity. The only exception occurs if the two polynomials q 1 (a 1 , a 2 , a 3 ) and q 2 (a 1 , a 2 , a 3 ) are identical in which case the condition on a 1 , a 2 , a 3 vanishes.

As in the previous section c ∞ can be linearly parameterized as shown by Eq. 21 when c ∞ is a pair of real lines or a double line or quadratically as shown by Eq. 22 if c ∞ is a unipartite conic.

Substituting this parametrization into Eq. 25 or Eq. 26 yields a quadratic or quartic homogeneous parametrization of b in s and t:

b = b(s, t) (27) 
Finally, since P 1 , P 2 , P 3 , P 4 are not coplanar Eq. 13 can be used to obtain quadratic or quartic parameterizations of c 0 , . . . , c 3 by substituting Eq. 21 or Eq. 22 and Eq. 27:

    c 0 (s, t) c 1 (s, t) c 2 (s, t) c 3 (s, t)     = -M -1 4,4 • N 4,6 •         a 2 1 (s, t) + b(s, t) a 2 2 (s, t) + b(s, t) a 2 3 (s, t) + b(s, t) a 2 (s, t) • a 3 (s, t) a 1 (s, t) • a 3 (s, t) a 1 (s, t) • a 2 (s, t)         (28) 
Thus a homogeneous parametrization of the set of all quadrics of revolution on the given six points P 1 , . . . , P 6 is available.

Result 4. In general, there is a one-parametric set of quadrics of revolution on six points P 1 , . . . , P 6 in general position. The points at infinity on the axes of these quadrics lie on a second order curve c ∞ .

Right cones on six given points in general position

Based on Section 7 the quadrics of revolution on six given points in general position will usually establish a family determined by the parameterizations Eq. 21 or Eq. 22 of a 1 , a 2 , a 3 , Eq. 27 of b and Eq. 28 of c 0 , c 1 , c 2 , c 3 . In order to select the right cones from this one degree of freedom family one must substitute these parameterizations into the condition

∆ = b c 0 (b + a 2 1 + a 2 2 + a 2 3 ) -c 2 1 (a 2 2 + a 2 3 + b) -c 2 2 (a 2 1 + a 2 3 + b) -c 2 3 (a 2 1 + a 2 2 + b) + 2(a 1 a 2 c 1 c 2 + a 1 a 3 c 1 c 3 + a 2 a 3 c 2 c 3 ) = 0. ( 29 
)
This yields a homogeneous bivariate polynomial in s, t of degree ≤ 12. Every real solution s * , t * of this polynomial yields a solution cone.

Result 5. The problem of finding the right cones on 6 given points in general position can be reduced to the task of determining the zeroes of a univariate polynomial of degree 12, in general. Every real solution of this polynomial corresponds to exactly one solution cone.

in general. Analogously, each quadric of revolution on P 1 , P 2 , P 3 , P 4 , P 5 , P 7 has an axis whose point at infinity generally lies on another second order curve c 2,∞ : f 2 (a 1 , a 2 , a 3 ) = 0 (31) Hence, we have Result 6. The points at infinity of the axes of the quadrics of revolution on seven given points in general position lie in general on the intersection of two second order curves c 1,∞ and c 2,∞ .

In conclusion there are at most four possible intersection points if c 1,∞ and c 2,∞ are not coincident in whole or in part; the latter in the case of distinct line pairs sharing a line.

If a * 1 , a * 2 , a * 3 are the coordinates of an axis' point at infinity satisfying Eq. 30 and Eq. 31 then the corresponding values for b and c 0 , c 1 , c 2 , c 3 can be determined uniquely by applying the method described in Section 7.

Result 7. In general there are at most four quadrics of revolution on seven given points in general position. 

Conclusions and unresolved problems for future research

The following list describes some relevant topics that remain to be investigated.

• Omitted cases where points lie on a sphere might be considered in the light of Remark 4, i.e., Laguerre's work [START_REF] Laguerre | Sur la courbe enveloppée par les axes des coniques qui passent par quatre points donnés et sur les axes des surfaces de révolution du second ordre qui passent par cinq points donnés. Sur les lignes spiriques[END_REF].

• Quadrics of revolution on n = 5, 6 or 7 given coplanar points exist only if these lie on c a proper conic in that plane. This is generally the case where n = 5. It was treated by Narasinga [START_REF] Rao | Quadrics of Revolution through a Given Conic[END_REF] and Röschel [START_REF] Röschel | Drehflächen zweiter Ordnung durch einen Kegelschnitt[END_REF] but the special case where c degenerates to a line pair or a double line has not received attention.

• In Section 7 (quadrics of revolution on 6 points) the case where the two quadratic polynomials q 1 (a 1 , a 2 , a 3 ) and q 2 (a 1 , a 2 , a 3 ) are identical was excluded. How can this case be geometrically characterized?

• An infinite number of quadrics might contain 7 given points (Section 9) if the two second order curves c 1,∞ and c 2,∞ have a common component. What are the geometric characteristics of this case?

• Moreover methods to discriminate among the types of quadrics of revolution, i.e., ellipsoids, paraboloids and hyperboloids of one and two sheets, have yet to be formulated.

• Another task, pertinent to application in camera aided inspection, is to find the most suitable quadric of revolution through an overdetermined set of points {P 1 , . . . , P n }, n > 7. Using a setup with the parametrization Eq. 6 it can be shown that this problem can be reduced to a pair of homogeneous quartic equations in the axis direction numbers a 1 , a 2 , a 3 . Alternatively, one could choose various subsets of 7 points from a given set of n > 7 points and then apply the method described in Section 9 to determine a quadric of revolution. This quadric could then be taken as a starting point in, e.g., a leastsquares Gauss-Newton fit optimization procedure. Deficiencies or defects stemming from singularity of the involved matrices M k,k are easy to detect. In such a case the chosen 7-tupel of points can be easily replaced by another. After all, camera data contain a great many points.

It is believed that the unified treatment of the three types of quadrics of revolution exposed herein is original and constitutes a solid foundation upon which to build effective, precise methods to quickly fit overdetermined point sets to such surfaces. This will be invaluable in camera aided inspection of manufactured structural and machine elements of such cross section, a fruitful extension of this research that will have important industrial applications.

P 1 .

 1 . . [0.0, 0.0, 0.0] ⊤ , P 2 . . . [1.0, 0.0, 0.0] ⊤ , P 3 . . . [0.0, 1.0, 0.0] ⊤ , P 4 . . . [0.0, 0.0, 1.0] ⊤ , P 5 . . . [0.8, 0.8, 1.0] ⊤ produces a solution with the six cylinders shown in Fig. 1.

Figure 1 :

 1 Figure 1: Six right cylinders on five given points

Figure 3 :

 3 Figure 3: Four quadrics of revolution on seven given points

  

  1, -1.2, 2.2] ⊤ , P 2 . . . [3.5, 1.4, 2.4] ⊤ , P 3 . . . [3.3, -2.5, -0.5] ⊤ , P 4 . . . [4.2, 3.1, -0.9] ⊤ , P 5 . . . [-2.2, 4.3, 0.36] ⊤ , P 6 . . . [-1.9, 3.2, 2.5] ⊤ , P 7 . . . [-2.6, -3.8, 2.8] ⊤

Spheres are characterized by a single eigenvalue λ = 0 whose multiplicity is then 3.

In case of symmetric matrices the algebraic multiplicity of an eigenvalue is the same as the geometric multiplicity, i.e., the dimension of its corresponding eigenspace.

The first, second and third column of R contains an eigenvector of A belonging to λ 1 , λ 2 and λ 3 = λ 2 , respectively.

Of course, pairs of parallel planes can also be considered as special quadrics of revolution.

The assumption k = 0 leads to a contradiction as follows: If k = 0 then Eq. 16 is fulfilled for a 1 = a 2 = a 3 = 0 and any choice of b = 0. Substitution of these values in Eq. 15 yields unique values of c 0 , c 1 , c 2 and c 3 . Therefore the 5 points lie on a sphere and are not in the required general configuration.

The polynomial q(a 1 , a 2 , a 3 ) is non-trivial because the coefficient of a 2 1 is 1.
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 [START_REF] Müller | Durch vier Punkte einen Drehkegel von vorgegebener Achsenrichtung zu legen[END_REF]studied the problem of finding the right cones with prescribed axis direction on four points. The algorithm described above was applied to the following six given points:

In this case the twelve solution cones displayed in Fig. 2 were obtained.

Quadrics of revolution on seven given points in general position

If 7 points P 1 , . . . , P 7 in general position are given then it is easy to verify that one can always find sextuples of this set, say, {P 1 , P 2 , P 3 , P 4 , P 5 , P 6 } and {P 1 , P 2 , P 3 , P 4 , P 5 , P 7 } whose points are also in general position.

Then, according to Section 7 the axes' points at infinity of the quadrics of revolution on P 1 , P 2 , P 3 , P 4 , P 5 , P 6 are situated on a second order curve c 1,∞ : f 1 (a 1 , a 2 , a 3 ) = 0, (30)