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Summary: In the sawmill industry, to predict the set of lumber that would be sawed from specific wood logs is a difficult 

problem. Even if they exist many sawmill simulators able to simulate the sawing process in order to predict these quantities, 

they can be too slow for large scale industrial problems. Replacing these simulators with machine learning surrogate models, 

or metamodels, is a promising avenue of research to speed up predictions. One such research direction is based on the 

computation of pairwise dissimilarities between logs, used, for example, by k-nearest neighbor algorithms. Interesting results 

have been obtained with the so-called iterative closest point (ICP) dissimilarity who has, however, several undesirable 

properties. This paper explores another alternative based on ensemble of shape functions. 
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1. Introduction 
 

Sawmills are key elements of the forest product 

industry transforming wood logs into various lumber. 

Several factors, including heterogeneity of the raw 

material, introduce uncertainty on the mix of lumber 

that can be obtained from sawing a batch of logs. For 

this reason, academics and industrials have developed 

sawing simulators that are able to simulate the sawing 

of individual logs based on a description of their 

shapes, and sometimes internal defects. Shape 

information commonly comes in the form of 3D scans 

of the full profile of the logs, obtained using laser 

scanners (Fig. 1).  

 
Fig. 1 Full profile 3D scan of a log. The scale is in 

centimeters. 

 

These simulators can be used to support decision-

making by alleviating the uncertainty associated with 

the sawing process, by predicting sets of lumber that 

might be obtained from every individual log [1]. In the 

following of this article, this set of lumber sawed from 

one log is called its basket of products (BoP).  

However, the time taken by such simulation can be 

too long for practical use for decision problems 

involving thousands of logs. A single simulation can, 

indeed, take several minutes, or even more than one 

hour in some cases. 

For this reason, researchers have proposed to 

replace these simulators with machine learning 

metamodels, i.e, surrogate models based on machine 

learning algorithms trained on past simulation results 

to predict BoP of new logs [2]. 

  Few machine learning algorithms, however, allow 

making predictions based directly on 3D scans. These 

scans are, indeed, 3D points cloud, containing 

unordered points spanning the log surface. The number 

of points also varies from one scan to another.  

Two main approaches have been proposed in past 

works to predict BoP of logs. The first one, introduced 

in  [2], builds a structured representation of the logs 

based on a collection know-how features commonly 

used in the forest-product industry. The second 

approach, introduced in [3], is to compute a pairwise 

dissimilarity between 3D logs scans. These 

dissimilarities can then be used to predict BoP using, 

for example, a k nearest neighbors (kNN) algorithm. 

Such a dissimilarity is a real-valued function 

𝑑(𝑥1, 𝑥2), with 𝑥1, 𝑥2 two log scans, that intuitively 

measure how alike the two scans are. It is, in its usage, 

similar to a distance, but does not necessarily respect 

the properties of one, such as symmetry or positivity. 

The dissimilarity used in previous works [3]–[5] to 

predict logs BoP is the so-called Iterative Closest Point 

(ICP) dissimilarity. This dissimilarity is a consequence 

of the Iterative Closest Point algorithm [6], which is 

classically used to align 3D point clouds. While this 
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dissimilarity led to interesting experimental results, it 

has several undesirable properties. Most importantly, it 

is not symmetric, and its results may depend on the 

point cloud orientations at the algorithm's 

initialization. This fact motivates the study proposed in 

this paper, which considers an alternative dissimilarity 

based on an ensemble of shape functions (ESF) 

evaluated on the 3D scans. 

The remaining of this paper is structured as 

follows. Section 2 first introduces both the ICP and 

ESF-based dissimilarities, as well as their advantages. 

Numerical experiments comparing the performances 

of these dissimilarities to predict logs baskets of 

products are presented section 3. Section 4 concludes 

and proposes future research directions.   

 

 

2. Dissimilarities computation 
 

 

2.1. ICP dissimilarity 

 

The ICP dissimilarity is a consequence of the 

Iterative Closest Point algorithm, which is an iterative 

algorithm for the fine registration of 3D shapes. This 

algorithm starts with two points clouds; one usually 

called the source and the other the target. It then 

searches for a rotation and a translation to minimize a 

position-dependent dissimilarity between the point 

clouds and align the source on the target.  

The main steps of an iteration are as follows: 

• Pair every point in the sources with its closest 

neighbor in the target. Points from the target 

may be selected several times or not at all. This 

step yield 𝑁𝑆 pairs (𝑠, 𝑡𝑠), with 𝑁𝑆 the number 

of points in the source, s a point from the 

source and 𝑡𝑠 its closest neighbor in the target. 

• Find a rotation R and a translation T 

minimizing 𝐷(𝑅, 𝑇) = ∑ (𝑅𝑠 + 𝑇 − 𝑡𝑠)
2

𝑠 .  A 

closed-forms solution of this minimization 

problem can, in particular, be efficiently 

computed using quaternion theory [6]. 

• Apply the transformation obtained, go back to 

the first step, and loop until some ending 

criterium, such as a maximum number of 

iterations, is obtained. 

It can be shown that the value of 𝐷(𝑅, 𝑇) decreases 

at every iteration of the algorithm. It, therefore, 

converges to a local minimum. The value of 𝐷(𝑅, 𝑇) 
obtained at the end of the last iteration of the algorithm 

is what is kept as the ICP dissimilarity 𝑑𝐼𝐶𝑃. Several 

inconveniences of this dissimilarity should, however, 

be noticed. Firstly, due to the non-symmetric roles of 

the target and source in the ICP algorithm, the ICP 

dissimilarity isn’t symmetric, and in general 

𝑑𝐼𝐶𝑃(𝑥1, 𝑥2) is not equal to 𝑑𝐼𝐶𝑃(𝑥2, 𝑥1). Secondly, the 

computation of 𝑑𝐼𝐶𝑃 is highly dependent on the number 

of points in the source 𝑁𝑆 and target 𝑁𝑇. More 

precisely, the complexity of one iteration of the ICP 

algorithm ranges from 𝑂(𝑁𝑆𝑁𝑇) to  𝑂(𝑁𝑆log(𝑁𝑇)) 

depending on the implementation of the closest 

neighbor search.  

 

 

2.2. ESF dissimilarity 

 

The ESF dissimilarity, 𝑑𝐸𝑆𝐹 ,  is based on the 

representation of the logs scan as a collection of q 

normalized histograms ℎ1, … , ℎ𝑞. These histograms 

have to be computed only once for every log, and can 

be stored and reused for multiple dissimilarities 

computation.  

Every histogram ℎ𝑗 approximates the distributions 

of values taken by a shape function 𝑓𝑗 evaluated over 

groups of points sampled at random from a scan. 

Various shape functions can be used. Three common 

functions were selected to be used in this paper. The 

first is the Euclidean distance between 2 points, the 

second is the angle defined by three points, and the 

third is the area of the triangle defined by three points. 

An example of these three histograms computed for 

one log is presented Fig 2. 

 

 

 
Fig 2. Histograms of the three shapes functions of a log 

scan used to compute the ESF dissimilarities. 

 

The ESF dissimilarity between two logs is then 

defined as the sum of the 𝐿2 distance between the 

histograms of both logs:  

 

𝑑𝐸𝑆𝐹(𝑥1, 𝑥2) = ∑ ∥ h1j − ℎ2𝑗 ∥2

𝑞

𝑗=1

, (1) 
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with h1j and h2j the histograms of the first and second 

log respectively. 

Interestingly, the complexity of computing 𝑑𝐸𝑆𝐹  

does not depend on the number of points in the scans. 

It is, instead, governed by two parameters selected by 

the user. The first one is the number of pair or triplet of 

points selected at random to estimate the histogram 

representation of the scan. This parameter was set to 

217 ,in this paper, by trial and error in order to stabilize 

the histogram estimates. The second is the number of 

bins in the histograms, fixed to 64 here. 

 

3. Experiments  
 

This section presents numerical experiments 

comparing the performances of kNN algorithms based 

on either the ESF or ICP dissimilarity to predict BoP 

of logs. The dataset and evaluation scores are presented 

first, followed by the results. 

 

 

3.1. Dataset 

 

The dataset used for the experiments described in 

this paper originates from the Canadian sawmill 

industry. It contains information over 2219 real 

softwood logs. The 3D scan of every log is available, 

as well as their basket of products simulated by the 

sawing simulator optitek [7].  

The scans of logs are composed of rough ellipsoids 

spanning the log surface. All scans are i initially 

oriented around the z-axis, with the first ellipsoid 

starting at z=0. This original orientation was kept as 

initial position when running the ICP algorithm to 

compute dissimilarities.     

The sawmill modeled by the simulator could 

produce up to 74 types of lumber, characterized by 

their length, width, thickness, and grade (an evaluation 

of their quality). To simplify the prediction problem, 

the products were aggregated by grade, which reduce 

their number to 47, characterized only by their 

dimensions. A basket of products is, therefore, 

modeled as a vector of size 47. The ith component 

represents the number of lumber of type I presents in 

the basket of products. 

For experimental purpose, this dataset was 

repeatedly divided into a training set containing 1500 

logs and a test set containing the remaining 719 logs. 

This dividing was repeated independently 30 times, the 

training set used as examples set by a kNN regressor 

algorithm, which is then evaluated on the test set. 

Considering that the prediction problem is, here, 

modeled as a regression problem, the kNN prediction 

is the average of the baskets of the input log neighbors, 

and not necessarily a feasible basket. In particular, the 

kNN can predict non integer lumber quantities. This 

might not be a problem depending on the usage of the 

prediction, especially if, has done in [1], the 

predictions of individual logs are aggregated and used 

as input to a mix-integer programming problem. 

 

 

3.2 Evaluation scores 

 

Several evaluation scores are used in this study to 

evaluate and compare the predictive performances of 

the kNN algorithms using either dissimilarity.  

The first one is the usual root mean squared error 

between real and predicted baskets: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ ∑ (�̂�𝑙𝑖 − 𝑦𝑙𝑖)

247
𝑖=1

𝑁
𝑙=1 , (2) 

 

with N the size of the training set, �̂�𝑙𝑖  the predicted 

quantity of lumber of type i for the log l, and 𝑦𝑙𝑖  the 

real quantity. 

Several researchers, however, have stressed that 

such classic evaluation scores would be difficult to 

interpret for field experts from the industry and have 

proposed alternatives, in particular, the prediction-

production score (𝑠𝑝𝑟𝑒×𝑝𝑟𝑜) [2] and a variation of the 

𝐹1 score adapted to this problem [8]. 

In order to define the prediction-production scores, 

both the prediction score 𝑠𝑝𝑟𝑒 and production score 

𝑠𝑝𝑟𝑜 need to be defined. Both are defined on a log-per-

log basis. 

The prediction score, 𝑠𝑝𝑟𝑒, is the per-product 

average of the predicted lumber quantity over the real 

lumber quantity:  

 

𝑠𝑙
𝑝𝑟𝑒

=
1

𝑝
∑min(1,

�̂�𝑙𝑖
max(𝑦𝑙𝑖 , 𝜀)

)

𝑝

𝑖=1

. (3) 

 

𝜀  is, here, a very small quantity introduced to avoid 

dividing by 0. The index l in 𝑠𝑙
𝑝𝑟𝑒

 is added to stress the 

dependency over a specific log. Considering that this 

score is extremely sensible to (0, 0) predicted-

produced pairs which might make this score too 

optimistically biaised due to the sparsity of the 

produced and predicted basket of product, all such 

pairs are removed before computing this score. 𝑝 is the 

number of non filtered products, which can vary from 

one log to another.  

The production score, 𝑠𝑝𝑟𝑜, is similarly defined as 

the per-product average of the real lumber quantity 

over the predicted lumber quantity: 

 

𝑠𝑙
𝑝𝑟𝑜

=
1

𝑝
∑min(1,

𝑦𝑙𝑖
max(�̂�𝑙𝑖 , 𝜀)

)

𝑝

𝑖=1

. (4) 

 

The prediction-production score is then naturally 

defined as: 

 

𝑠𝑝𝑟𝑒×𝑝𝑟𝑜 = 
1

𝑁
∑𝑠𝑙

𝑝𝑟𝑒
× 𝑠𝑙

𝑝𝑟𝑜

𝑁

𝑙=1

. (5) 

 

Similarly to the prediction-production scores, a 

variant of the 𝐹1 score has been defined by [8] based 

on redefinitions of the numbers of True Positive (TP), 
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False Positive (FP) and False Negative (FN) computed 

on a log per log basis. 

• The number of true positives 𝑇𝑃𝑙  is the number 

of lumber predicted and produced. 𝑇𝑃𝑙 =
∑ min(�̂�𝑙𝑖 , 𝑦𝑙𝑖)
47
𝑖=1 . 

• The number of false positives 𝐹𝑃𝑙  is the 

number of lumber predicted but not produced. 

𝐹𝑃𝑙 = ∑ max(�̂�𝑙𝑖 −𝑦𝑙𝑖 , 0)
47
𝑖=1 . 

• The number of false negatives 𝐹𝑁𝑙 is the 

number of lumber produced but not predicted. 

𝐹𝑁𝑙 = ∑ max(𝑦𝑙𝑖 − �̂�𝑙𝑖 , 0)
47
𝑖=1 . 

 

The 𝐹1 score is then redefined as: 

 

𝑠𝑝𝑟𝑒×𝑝𝑟𝑜 =
1

𝑁
∑

2× 𝑇𝑃𝑙
2 × 𝑇𝑃𝑙 + 𝐹𝑃𝑙 + 𝐹𝑁𝑙

𝑁

𝑙=1

. (6) 

 

 

3.3 Results 

 

As detailed previously, the dataset was divided 30 

times into a training and a test sets. For every dividing, 

two kNN algorithms searching neighbors with the ICP 

dissimilarity and ESF dissimilarity were trained on the 

train set and evaluated on the test set. In each case, the 

parameter k was tuned by 5 folds cross-validation on 

the training set, using the RMSE as basis for 

comparisons. k was selected among [1, 5, 10, 20]. All 

experiments were run on an Intel Core i7 vPRO 10th 

generation CPU at 2.70 GHz. 

Experimental results are exposed Table 1. This 

table exposes the average and standard deviation over 

the repetitions of the experiments of the RMSE, 

prediction-production and F1 scores for the kNN 

algorithms based on the ICP and on the ESF 

dissimilarities respectively. 

The kNN based on the ESF dissimilarity has, in 

average, lower RMSE and higher prediction-

production score and F1 than the kNN based on the ICP 

dissimilarity. The poor performances of the ICP 

dissimilarity is, in part, due to the fact that it is not 

symmetric. In particular, replacing 𝑑𝐼𝐶𝑃(𝑥1, 𝑥2) by 

𝑑𝐼𝐶𝑃(𝑥1, 𝑥2) + 𝑑𝐼𝐶𝑃(𝑥2, 𝑥1) give a far lower RMSE, at 

2.17. It, however, double the number of ICP 

computations needed to yield a prediction and is, 

therefore, not considered in the following. 

To comfirm this difference between ICP and ESF 

dissimilarities, scores of both methods were compared 

by using student statistical test with Nadeau and 
Bengio correction [9]. This correction aim to take 
into account the dependency between results 
obtained for various dividing of the same dataset 
into a training and test sets. Given two prediction 
method A and B yielding evaluations 𝑎𝑗  and 𝑏𝑗  over 

J independent dividing of a dataset, the statistic of 
this test is:  
 

𝑡 = 
∑ 𝑎𝑗 − 𝑏𝑗𝑗

√(
1
𝐽
+
𝑛2
𝑛1
)�̂�2

, 
(7) 

 

with 𝑛1 the size of the training set, 𝑛2 the size of the 

test set and �̂�2 an estimate of the variance of the 

differences 𝑎𝑗 − 𝑏𝑗. The p-value of the test is then 

computed from the usual student distribution with J-1 

degrees of freedom. 

This test yield, here, a p-value of 3 × 10−3 when 

applied to the RMSE, 0.6 when applied to the 

prediction-production scores, and 5 × 10−15 when 

applied to the  F1. Therefore, the difference can be 

considered statistically significant for two of the three 

evaluation scores.  

 
Table 1. Average and standard deviation of the 

evaluation scores of kNN regressors based on the ICP and 

ESF dissimilarities, taken over the 30 dividing of the 

datasets. The best model for each score is highlighted in 

bold. 

 

Dissimilarity RMSE 𝐬𝐩𝐫𝐞×𝐩𝐫𝐨 𝐅𝟏  

ICP 
3.05  

(0.34) 

34.8 

 (7.1) 

35.3 

(1.2) 

ESF 
2.18  

(0.25) 

39.3 

(8.0) 

50.2 

(1.0) 

 

The ESF dissimilarity might also appear interesting 

in terms of computational cost. The scan of logs used 

during the experiments exposed in this paper contains, 

in average, 18 452 points, and the average ICP 

dissimilarity computation time is 0.1 seconds, with 10 

iterations of the algorithm. The implementation was 

based on Open3D library for python. The ESF 

dissimilarity was implement from scratch using the 

numpy python library. The computation of the 

collection of histograms for each logs took, in average, 

5.8s per scan. These histograms, however, need to be 

computed only once for every log. In particular, when 

predicting the BoP of a log, only its own histograms 

need to be computed, because the others can be 

considered to have been computed and stored 

previously. Computing the ESF dissimilarity from pre-

computed histograms is, then, extremely fast. In 

particular, it tooks only 0.0014s in average for the 

implementation used during experiments. Whether the 

ICP or ESF dissimilarities would be faster in practice 

would then depends on the specific user 

implementation, ability to parallelize the ICP 

computations and size of the kNN algorithm example 

set. The ESF dissimilarity appears, however, 

preferable for large example sets.  

 

 

4. Conclusion 
 

 This paper explores an alternative to the ICP 

dissimilarity to predict BoP of logs based on their 3D 

scans. More precisely, it proposes the use of the ESF 

dissimilarity, based on the computation of an 

intermediary representation of the scans as an 

ensemble of histograms. The computation of this 

representation can take several seconds, but only needs 

to be computed once for every log. Computation of the 
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distance between the histograms is then far faster than 

computation of the ICP dissimilarity, which is 

advantageous for kNN algorithms with large example 

sets. 

Additionally, when predicting BoP of logs with a 

kNN algorithm, the ESF dissimilarity leads to lower 

RMSE error and higher F1 than the ICP dissimilarity. 

Others machine learning algorithms, however, 

have been explored to predict BoP of logs from their 

3D scans. These algorithms use a representation of a 

scan as a vector of dissimilarity toward a small set of 

preselected representative scans. Whether or not the 

ESF would still compare favorably for these 

algorithms needs to be explored in future works.    
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