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Abstract 

African countries are natural resource-rich. The continent has natural forests, homes of 

endemic biodiversity and various ores. This richness brings hope for sustainable and inclusive 

development in a continent whose population is rapidly growing. It also raises fears of 

environmental degradation. This article studies mining-driven deforestation using unique fine-

scale data from 2001 to 2019. The dataset covering all Sub-Saharan African countries entails 

2,207 polygons with an average size of about 12,000 square kilometres. 926 polygons were 

forested in 2001, of which 198 hosted industrial mines. A spatial autoregressive model allows 

taking dependence between deforestation decisions at the polygon level. The econometric 

results show that an additional mine increases deforestation by about 155 square kilometres. 

Protected areas mitigate deforestation poorly. One hundred square kilometres under 

protected areas enable only a 9.7 square kilometres reduction in forest loss. More than 

doubling protected areas would be necessary to offset mining-driven forest loss. Protected 

areas cannot alone mitigate the adverse effects of mining on forest loss and other 

environmental consequences. Moreover, the effectiveness of protected areas is not uniform 

across space: it vanishes in highly conflicted regions. 
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1 Introduction 

Many African countries are rich in natural resources and aspire to better livelihoods. With 

a steadily growing population expected to be just under four billion by the end of the 21st 

century, 1 African countries face a challenge: achieving inclusive and sustainable development. 

Tapping natural resources, particularly ores, can generate significant income and reduce 

poverty. Today, according to the World Development Indicators, mineral and forest rents are 

above the world averages as a percentage of GDP. Still, natural resource extraction can also 

irreversibly damage essential natural assets for sustainable development, especially the 

forest.  

21.7% of tropical African forests have been deforested since 1900 (Aleman, Jarzyna and 

Staver, 2018). West and East African forests have practically vanished. In recent years, while 

deforestation has slowed down worldwide, it seems to have accelerated in Africa, with a net 

forest loss of 3.94 million ha per year from 2010 to 2020 against 3.4 million ha per year in the 

previous decade (Mansourian and Berrahmouni, 2021). The deforestation and forest 

degradation drivers are multiple. The literature (Geist and Lambin, 2002) distinguishes 

between the proximate causes of deforestation (agriculture and pastoral expansion, wood 

extraction, infrastructure extension, mining activities) and underlying causes (macroeconomic 

variables, societal factors). On a global scale, agriculture is the main proximate driver of 

deforestation. A meta-analysis concludes that deforestation is more likely when the economic 

returns of agriculture are higher (Busch and Ferretti-Gallon, 2017). 

Africa is on the verge of a mining boom (Edwards et al., 2014). With its promise of high 

incomes, the mining sector is expected to grow in Africa. The 5th edition of the mining 

contribution index of the International Council on Mining and Metals (ICMM) evidences that 

five African countries, including the Democratic Republic of Congo and Madagascar, rank high 

in the list of mining-dependent countries. This dependency will likely endure as 30% of the 

world's total mineral reserves is in Africa (Adu and Dramani, 2018). The existing literature 

evidence several effects of mining development in Sub-Saharan African (SSA) countries. For 

instance, mining positively impacted African agricultural sectors though the authors also 

                                                           

1 United Nations, Department of Economic and Social Affairs, Population Division (2022). World Population 
Prospects 2022, Online Edition. 
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evidenced transient and gender-specific employment effects (Kotsadam and Tolonen, 2016). 

Several authors attracted attention to the fact that SSA countries could undertake a mineral-

fuelled forest transition (Rudel, 2013). There is also evidence that mining fosters conflicts 

(Berman et al., 2017) and deleteriously impacts local governance (Knutsen et al., 2017).  

This paper focuses on mining-driven deforestation in SSA countries. To the best of our 

knowledge, the link between deforestation and mining activities is still little studied (Maddox 

et al., 2019, p. xii), especially in Africa. Sub-Saharan countries' mineral resource occurrences 

are often located near or in forested areas harbouring outstanding endemic biodiversity. 

Mining is deemed to have a massive influence on the natural environment in Africa and 

especially on the forests (Edwards et al., 2014). Mining damages the environment through the 

prospection, extraction, transport of inputs and outputs, or use of environmentally harmful 

inputs. Arsenic, cyanide, and mercury generate a persistent detrimental effect on the forest. 

Also, these chemical compounds could impact surrounding areas through waterways, 

sediments, or the atmosphere (Eisler, 2004; Eisler and Wiemeyer, 2004). Hence, the process 

of reforestation after mining activities is long-lasting. However, perspectives from local 

communities provide a balanced view with positive impacts of providing improved water 

sources, healthcare facilities, roads and schools (Leuenberger et al., 2021). 

Mining activities trigger direct and indirect effects on deforestation. On the one side, 

mining activities directly fuel forest clearances. They generate population shifts: local people 

may be forced to leave and relocate, while new employment opportunities attract others. 

These new populations may increase the demand for fuelwood and agricultural land. Overall, 

these movements can contribute to the deforestation pressure. Indirect channels pertain to 

providing communication infrastructures and buildings needed to develop mining facilities.  

The literature on protected areas as an instrument for reducing deforestation in SSA usually 

concludes that they are effective (Bowker et al., 2017). Nevertheless, few studies assess the 

impact of protected areas in the context of deforestation accelerated by mining activities. 

However, the legal protection afforded by protected areas may differ depending on the nature 

of the economic activity that infringes on the forest. In the case of legal mining, mining 

companies may escape environmental regulations in the context of corruption. Artisanal-scale 

mining activities are often illegal and, therefore, not sensitive to environmental regulations. 
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This article studies the link between mining activities and deforestation and questions the 

effectiveness of protected areas in response to mining-induced deforestation. More precisely, 

we aim to answer the two following questions. How do mining activities contribute to 

deforestation? How do conservation instruments such as protected areas dampen mining-

driven deforestation?  

We estimate a deforestation spatial econometric model that allows us to consider 

interactions between neighbouring spatial units. Each spatial unit covers 12,070 square 

kilometres on average. Overall, we have 2,207 spatial units, namely polygons, from 2001 to 

2019, of which 926 are forested at the beginning of the study period. The dataset gathers 

information on deforestation, mining activities, protected areas and other relevant socio-

economic variables affecting deforestation. To our knowledge, our study is the first to address 

mining-driven deforestation using sub-national data. This level of analysis is the most relevant 

because clearing and land use conversion both take place at a fine spatial scale. Existing 

studies are conducted at the national level (Azomahou and Ouédraogo, 2021). We contribute 

to the literature on the effectiveness of protected areas in curbing deforestation since we 

examine the role of protected areas as a lever for mitigating deforestation induced by mining 

activity, which has never been investigated in SSA.  The estimation results show that mining 

activities increase deforestation while protected areas reduce deforestation. Moreover, it 

does not appear that the presence of protected areas dampens the impact of mining on 

deforestation. We highlight a spatial heterogeneity: the negative t impact of mines on forests 

and the poor effect of protected areas occur when the local institutional quality is poor. 

The remainder of the article is as follows. Section 2 reviews the existing literature. We 

present the econometric framework in Section 3. We detail the elaboration of the fine-scale 

data set from which we extract descriptive statistics in section 4. Section 5 successfully gives 

the main results and estimates how much mining drives forest losses in Sub-Saharan Africa. 

We provide concluding remarks in section 6. 
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2 Literature review 

We will first present the studies devoted to the impact of mining activities on deforestation. 

We will then review the main findings of studies dealing with the relationship between 

protected areas (and forest management) and deforestation. Finally, we will describe the few 

studies focusing on the role of protected areas as a tool for mitigating the effects of mining on 

forest cover and present our hypotheses. 

2.1 Mining activity and deforestation 

Several studies have studied the link between mining activities and deforestation. Most of 

them focus on the Amazonian forest and use high-resolution geospatial data. For instance, 

mining significantly increased deforestation in the Brazilian Amazon (Sonter et al., 2017). 

Moreover, forest losses extend well beyond the mining lease boundaries and account for 9% 

of deforestation between 2005-2015. In Colombia, the contribution of legal mining activities 

inside concessions to deforestation grew during the 2010s and reached a 5.6% peak in 2017. 

The two minerals mainly causing deforestation are gold and coal (González-González, Clerici 

and Quesada, 2021).  

Some artisanal-scale gold mining activities would be particularly detrimental to forest 

conservation. Indeed, these activities are often illegal and therefore do not comply with 

environmental regulations. This phenomenon is reported in several Latin American countries, 

for instance: Suriname (Peterson and Heemskerk, 2001) or Peru (Caballero Espejo et al., 2018). 

In the case of the Brazilian Amazon, deforestation of illegal gold mining increased by more 

than 90% from 2017 to 2020 (Siqueira-Gay and Sánchez, 2021). Furthermore, once 

abandoned, the mining area is not correctly restored, and therefore the regeneration of the 

primary forest is hampered. Periods of rising gold prices are particularly detrimental to forest 

conservation in the Peruvian Amazon (Swenson et al., 2011). In Latin America, the increase in 

the demand for gold after the international financial crisis fueled deforestation from 2007 to 

2013 (Alvarez-Berríos and Aide, 2015).  

Only a few studies have examined the impact of mining activities on deforestation in Asia. 

For instance, there is evidence of adverse effects of mining activities on forest cover at the 

district level in India (Ranjan, 2019). The effect is heterogeneous and depends on the mineral 

involved. In Indonesia, mining activities are increasingly responsible for the loss of forest cover 
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from 2001 to 2016 (Austin et al., 2019). However, palm oil plantations encroachments 

outweigh mining activities since the former represents 23% of deforestation compared to 2%.  

Africa has experienced lower deforestation rates than South America and South and South 

East Asia for several decades. For instance, oil and gas receipts substantially reduced 

deforestation from 2000 to 2005 (Rudel, 2013). The extractive sector's contribution to 

urbanisation may have hampered deforestation's proximate drivers. However, a recent study 

relying on panel data from 2001 to 2017 found a positive effect: a one-point percentage of 

GDP increase in mineral rents generated about 50 square kilometres of forest loss (Azomahou 

and Ouédraogo, 2021). An oil and mineral-fueled forest transition may have started in Africa, 

especially in the Congo Basin humid forest. Indirect effects of deforestation in the 

surroundings of mining areas are likely at work. Direct deforestation within the mining areas 

concerns few countries, while indirect deforestation is a problem for two-thirds of tropical 

countries. The indirect deforestation impact is remarkably high in some African countries, such 

as Gabon and Zambia (Giljum et al., 2022). 

2.2 Protected areas and deforestation 

"A protected area is a clearly defined geographical space, recognised, dedicated and 

managed, through legal or other effective means, to achieve the long-term conservation of 

nature with associated ecosystem services and cultural values." (IUCN Definition 2008).2  

14.6% of the land area was designated as protected, and 16% of the forest fell within a legally 

established protected area in 2015. In Africa (Democratic Republic of Congo), the proportion 

of forest areas with legally protected areas was 23.37% (12.38%) in 2000 and 25.73% (18.45%) 

in 2020 (Ritchie, Spooner and Roser, 2022).  

A bulk of econometric studies study the effectiveness of protected areas. Early studies date 

back to the early 2000s (Joppa and Pfaff, 2010; Nelson and Chomitz, 2011). The main challenge 

is the location bias of protected areas (Cropper, Puri and Griffiths, 2001; Joppa and Pfaff, 

                                                           

2 Protected areas can also be managed locally, nationally, or internationally. Moreover, the degree of legal 
protection provided by the protected area depends on their category. The different categories are the following: 
strict nature reserve (Ia); wilderness area (Ib); national park (II); natural monument of feature (III); 
habitat/species management area (IV); protected landscape/seascape (V); protected areas with sustainable use 
of natural resources (VI).  The most restrictive categories are I, II and III. Categories IV, V and VI allow a 
sustainable use of resources. Source: IUCN available at https://www.iucn.org/theme/protected-areas/about.  

https://www.iucn.org/theme/protected-areas/about
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2009). Authors usually address this issue by implementing matching methods with control 

groups. Once the location bias is controlled for, the authors found that protected areas reduce 

deforestation. Most existing results pertain to Latin America: Costa Rica (Andam et al., 2008; 

Pfaff et al., 2009; Robalino et al., 2015; Robalino, Pfaff and Villalobos, 2017), Guatemala and 

Mexico (Bray et al., 2008), the Brazilian state of Acre (Pfaff et al., 2014) or Sumatra in South 

East Asia (Gaveau et al., 2009).  

Heterogeneity effects in the impact of protected areas on deforestation may occur. For 

example, in the case of the legal Amazon, the protected areas with the highest impact are 

those located near cities and roads (Pfaff et al., 2015). Strictly protected areas are more 

effective. Existing studies on Brazil support that claim once accounting for location bias (Nolte 

et al., 2013; Kéré et al., 2017). The results hold with considering contextual bias and spatial 

dependence (Kéré et al., 2017). 

Spatial interactions are another critical issue. Deforestation in one location could impact 

deforestation in neighbouring areas, for instance, through transportation infrastructure 

development (Angelsen, 2001; Schwartz et al., 2022). These spatial interactions are likely at 

work in the "arc of deforestation" in Brazil. In addition, protected areas can foster 

deforestation leakages. Deforestation leakage occurred into forests from concession areas in 

the Peruvian Amazon (Oliveira et al., 2007). Parks facing tremendous deforestation pressure 

show more significant leakage in Costa Rica (Robalino, Pfaff and Villalobos, 2017). However, 

the proximity to a protected area can also contribute to reducing forestry activity, for example, 

by creating more difficulties in accessing the forest resource. Indigenous lands raise 

deforestation nearby, contrary to federal-protected areas in the Brazilian Pará State (Herrera, 

Pfaff and Robalino, 2019). Strictly protected areas and indigenous lands allow reducing 

deforestation, unlike sustainable protected areas in the Brazilian Legal Amazonia (Amin et al., 

2019). Moreover, these two types of protected areas generate a positive spillover effect: they 

reduce deforestation in their vicinity. 

There are similar questions about the effectiveness of forest management plans which are 

considered a step towards sustainable forest management, particularly in the Congo Basin 

(Democratic Republic of Congo), which represents the second largest primary forest in the 

world (Karsenty et al., 2008). These plans entail selective logging to ensure maximum harvest 

rates while at the same time preserving the resource. Protected areas surrounded by logging 
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concessions operated with a forest management plan ("unified conservation landscape") 

could be considered as means to both achieve economic development and biodiversity 

conservation (Brandt, Nolte and Agrawal, 2016). Deforestation and timber production are 

higher in concessions with registered forest management (Brandt, Nolte and Agrawal, 2016, 

2018) though the results are questioned (Karsenty et al., 2017). Between 2000 and 2010, 

deforestation was also found to be significantly lower in concessions operating under a forest 

management plan (Tritsch et al., 2020).  

2.3 Mining, protected areas and deforestation 

A very understudied issue is the effectiveness of protected areas in the face of mining-

induced deforestation. (Weisse and Naughton-Treves, 2016) studied the effect of protected 

area buffer zones on formal and informal mining extent in the Peruvian Amazon. These buffer 

zones have been poorly studied because of the ambiguity of their management rules and their 

sometimes-informal status. Nevertheless, these buffer zones cover more than 10% of the 

country and positively impact forest cover by limiting the extent of mining concessions. 

However, they could be more efficient in mitigating the development of illegal mining 

activities. 

Expanding mining concessions increased the forest cover loss from 1990 to 2010 in the 

Democratic Republic of Congo (DRC) (Butsic et al., 2015). One of the particularities of the 

Congo Basin is the prevalence of conflicts. It appears that they fuel deforestation, but in times 

of conflict, the impact of mining concession on deforestation was mitigated. Moreover, 

protected areas reduced deforestation, even in times of conflict. 

In this article, we seek to answer two questions. Is mining a driver of deforestation in Sub-

Saharan Africa? Are protected areas an effective tool for mitigating the effects of mining on 

deforestation? These questions are relevant in the SSA context, where low institutional quality 

prevails and where mining companies can use corruption to circumvent environmental 

regulation.   
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3 Methodology 

We present first the econometric framework. It takes advantage of fine-scale data, allowing 

the investigation of spatial dependence in activities potentially contributing to deforestation. 

Then we discuss the identification of neighbours and how we intend to interpret the results. 

3.1 Econometric framework 

The spatial lag model is theoretically appropriate for investigating spatial dependence (e.g. 

(Ndiaye, 2018).3 In this paper, we claim that deforestation in one area interacts with 

neighbours’ deforestation. Following the literature, the spatial dependence of deforestation 

between polygons is theoretically interpreted as evidence that the decisions conducing to 

deforestation are strategic complements (Brueckner, 2003; Schwartz et al., 2022). 4 

Deforestation in one area favours deforestation in its vicinity by facilitating access to the forest 

and thus reducing the costs of deforestation. 

Building on this theoretical intuition, we estimate a spatial panel data model in which the 

level of deforestation in a spatial unit (see the definition of spatial units, namely polygons in 

section 4.1) depends on the level of deforestation in neighbouring units and on a set of 

observed local characteristics. Formally, let the index 𝑖 =  1, … , 𝑁 denotes a spatial unit and 

𝑡 =  1, … , 𝑇 denotes a time period. 𝑡 = 2005 for the 2001-2005 period, 𝑡 = 2010 for the 

2006-2010 period, 𝑡 = 2015 for the 2011-2015 period and 𝑡 = 2019 for the 2016-2019 

period. Using average years rather than yearly data allows us to grasp the medium-term 

effects of mining activities and protected areas on deforestation.5 Our identification strategy 

is based on a panel spatial autoregressive model (SAR) with spatial units and period-fixed 

effects. This model writes as follows:  

                                                           

3 Early examples of the spatial econometric models date back to the 2000s (Brueckner and Saavedra, 2001; Solé 
Ollé, 2003). 

4 Providing theoretical foundations for spatial interactions allows addressing the criticisms of the last 10 years 
concerning these  models (McMillen, 2010; Corrado and Fingleton, 2012; Gibbons and Overman, 2012).   

5 Moreover, five-year panel data are justified for other reasons: i) Some observations are not available every 
year. ii) This strategy allows to smooth out yearly variations in deforestation data that may be driven by 
measurement issues; iii) The inter-annual variability of some variables is low; iv) Not using annual data allows to 
neutralize the problems specific to time series: presence of a cointegration relationship or unit roots. 
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𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠𝑖𝑡 =  𝜌 ∑

𝑁

𝑗=1,𝑗≠𝑖

𝑤𝑖𝑗𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠𝑗𝑡 + 𝛽1𝑀𝑖𝑛𝑒𝑖𝑡 + 𝛽2𝐿𝑎𝑔𝑃𝐴𝑖𝑡 + 𝛽3𝐿𝑎𝑔𝑃𝐴𝑖𝑡 × 𝑀𝑖𝑛𝑒𝑖𝑡

+ 𝛾𝑘𝑥𝑖𝑡
𝑘 + 𝜇𝑖 + 𝜂𝑡 + 𝜀𝑖𝑡  

            (1) 

Where 𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠𝑖𝑡  refers to the level of forest loss observed for the spatial unit 𝑖 at 

period 𝑡. 𝑤𝑖𝑗 corresponds to the spatial weight's matrix that is an 𝑁 × 𝑁 pre-specified row-

normalised weights matrix with zeros on the diagonal. ∑𝑁
𝑗=1,𝑗≠𝑖 𝑤𝑖𝑗𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠𝑗𝑡   thus refers 

to the spatially lagged deforestation variable and represents the average deforestation of 

neighbouring spatial units. The spatial scalar parameter 𝜌 reflects the endogenous spatial 

interaction between a spatial unit and its neighbours. 𝜌 = 0 means no spatial interaction. If 𝜌 

is positive, the level of deforestation in a spatial unit tends to mimic the neighbours’, 

suggesting a complementarity effect. On the other hand, a negative 𝜌 means a substitution in 

deforestation levels that may result from deforestation leakage. 

𝐿𝑎𝑔𝑃𝐴𝑖𝑡 and 𝑀𝑖𝑛𝑒𝑖𝑡 are respectively the one-year-lagged value of protected areas and the 

number of mines for unit 𝑖 at period 𝑡. The interactive variable 𝐿𝑎𝑔𝑃𝐴𝑖𝑡 × 𝑀𝑖𝑛𝑒𝑖𝑡 assesses 

the specific influence of protected areas on mining-driven forest loss. 𝑥𝑖𝑡
𝑘  is the 𝑘-th control 

variable for unit 𝑖 at period 𝑡. We add spatial unit-fixed effects 𝜇𝑖 to capture time-invariant 

spatial unit-specific attributes such as natural endowments or distance to markets, and 

period-fixed effects 𝜂𝑡 to capture common trends in deforestation or the influence of other 

variables, such as international commodity prices. The omission of these characteristics might 

bias the estimates in a panel data analysis (Elhorst, 2010; Baltagi, 2021). 

Besides the simultaneity bias generated by the spatial lag of the dependent variable, 

namely the lagged forest loss, another issue comes from potential additional endogenous 

variables. In particular, we use the one-year-lagged value of the protected areas variable to 

avoid simultaneity bias between protected areas and forest loss.6 𝜀𝑖𝑡 is the spatially correlated 

error term such as 𝜀𝑖𝑡 = λ ∑𝑁
𝑗=1,𝑗≠𝑖 𝑤𝑖𝑗𝜀𝑗𝑡 + 𝑢𝑖𝑡 where 𝑢𝑖𝑡 represents idiosyncratic shocks 

uncorrelated across spatial units and over time.  

                                                           

6 In the robustness check, we consider a spatial lag for each explanatory variable to reduce the finite-sample bias 
of endogeneity implied by measurement error and simultaneity (Fingleton and Le Gallo, 2010). 
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According to our hypotheses, one should observe the following: 

𝛽1 > 0 namely mining activities favour deforestation; 𝛽2 < 0, namely protected areas 

dampen deforestation. Moreover, if protected areas mitigate mining-induced deforestation, 

then we have 𝛽3 < 0, which means that the impact of mining on deforestation should be 

lower in the larger protected areas. 

The previous specification is the benchmark model to uncover spatial interactions in the 

deforestation process. We add another specification to check the validity of the results by 

allowing for strong cross-sectional dependence under the form of common factors (Pesaran, 

2006; Chudik, Pesaran and Tosetti, 2011).7 As a robustness check, we, therefore, have the 

following equation: 

𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠 = 

𝜌 ∑

𝑁

𝑗=1,𝑗≠𝑖

𝑤𝑖𝑗𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠𝑗𝑡 + 𝛽1𝑀𝑖𝑛𝑒𝑖𝑡 + 𝛽2𝐿𝑎𝑔𝑃𝐴𝑖𝑡 + 𝛽3𝐿𝑎𝑔𝑃𝐴𝑖𝑡  𝑀𝑖𝑛𝑒𝑖𝑡 + 𝛾𝑘𝑥𝑖𝑡
𝑘

+ Γ1𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑡 + Γ2𝑀𝑖𝑛𝑒̅̅ ̅̅ ̅̅ ̅

𝑡 + Γ3𝐿𝑎𝑔𝑃𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑡 + Γ4𝐿𝑎𝑔𝑃𝐴 × 𝑀𝑖𝑛𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑡 + Γ5𝑥̅𝑡
𝑘 + 𝜇𝑖 + 𝜂𝑡

+ 𝜀𝑖𝑡 

            (2) 

where 𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑡 = 1/𝑁 ∑𝑁

𝑖=1 𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠𝑖𝑡 is the cross-sectional average of the 

deforestation variable. 𝑀𝑖𝑛𝑒̅̅ ̅̅ ̅̅ ̅
𝑡, 𝐿𝑎𝑔𝑃𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑡, 𝐿𝑎𝑔𝑃𝐴 × 𝑀𝑖𝑛𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑡 and 𝑥̅𝑡

𝑘 are the cross-sectional 

averages of the independent variables at time 𝑡. These common factors are parameters to be 

estimated (Shi and Lee, 2018).   

3.2 Identification of neighbours and interpretation of the results 

Building the spatial weight matrix is crucial in identifying spatial neighbours. We rely on the 

𝑘-nearest matrix with 𝑘 = 5. Hence, 𝑤𝑖𝑗 is equal to 1 if 𝑗 is one of 𝑖's five nearest neighbours 

                                                           

7 Initially, in panel data, a common strategy to deal with unobservable heterogeneity set about (i) using a 
transformation of variables (fixed effects model) or (ii) by setting out assumptions about the structure of the 
error term (random effects model). However, in these both cases, a restriction is made on the form of 
heterogeneity for each individual that is constant in the temporal dimension. By definition, common factors and 
spatial panels make it possible to capture interactions between individuals (Bouayad Agha, Le Gallo and Védrine, 
2018). In addition, the presence of common factor allows to considering residual unobserved effects. In spatial 
econometrics, (Shi and Lee, 2018) proposed a decomposition of the error term in SAR panel into a common 
factor component (strong spatial dependence) and an idiosyncratic component (weak spatial dependence). In 
our study, as additive individual and time effects can potentially not be explained entirely the heterogeneity 
effects, we also add common factor component in order to verify the robustness of our results in presence of 
weak and strong cross-section dependence (Chudik, Pesaran and Tosetti, 2011).  
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and 0 otherwise. We also consider two alternative weight matrices: Gabriel neighbours and 

the inverse distance.8 

The spatial lag variable does not allow directly interpreting the coefficients from equations 

(1) and (2). We, therefore, compute partial derivatives, i.e. marginal effects (LeSage and Pace, 

2009). The matrix of partial derivatives of 𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠𝑖𝑡  with respect to an explanatory 

variable 𝑧𝑖𝑡 is: 

𝜕𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠𝑖𝑡

𝜕𝑧𝑖𝑡
= ((𝐼 − 𝜌 ∑

𝑁

𝑗=1,𝑗≠𝑖

𝑤𝑖𝑗)−1) δ 

            (3) 

Where 𝛿 is the coefficient of the explanatory variable 𝑧𝑖𝑡. 

A change in an explanatory variable in a spatial unit directly affects that spatial unit and 

indirectly affects the neighbouring ones. The total effect of the variable on deforestation is 

the sum of the direct and indirect effects.9 

                                                           

8 Gabriel neighbours are defined by a Gabriel graph (Gabriel and Sokal, 1969).  Inverse distance weight matrix is 
a geographical definition of neighbourhood based on the inverse geographical distance between spatial units. 

9 From a technical point of view, the direct effects are measured by the average of the diagonal entries of the 
spatial weight matrix whereas the average of non-diagonal elements measures the indirect effects. 
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4 Data 

We build an original panel dataset. The following subsections describe the observation 

units, namely the spatial units that are polygons. We then present the variables and give 

descriptive statistics.  

4.1 Polygons in Africa 

We relied on geolocalised data from (Hansen et al., 2013) to build the most comprehensive 

dataset from 2000 to 2019. These data define the spatial units of study that are square 

polygons covering all SSA countries.10 Each polygon has an area of approximately 12,070 

square kilometres. It is the finest possible subdivision which allows obtaining units with 

available observations. Overall we have 2,207 polygons in SSA, 926 of which were forested in 

2001. Forested polygons in 2001 had at least 10% of their area covered by the forest (Figure 

A.1 in Appendix). We take advantage of the time dimension to define four five-year periods. 

We eventually have 926 × 4 = 3,704 observations.  

We use raster files containing the necessary information for each variable to extract the 

geolocated data belonging to each polygon. These high-definition image files containing 

geolocated information for each variable came from various sources. Table A- 1 in Appendix 

overviews our variables and their sources. 

4.2 Study variables 

We present below the dependent variable, our interest variables and other controls. 

4.2.1 Dependent and interest variables 

𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠 is our measure of deforestation that we borrow from the Hansen et al. 

database (Hansen et al., 2013).11 The variable covers the 2000 to 2019 period. Measures are 

                                                           

10 Gridded data is quite widespread in econometrics when faced with a lack of data at the micro level. For 
example, (Buys et al., 2009), studying the determinants of digital division in SSA countries, used 993,401 square 
polygons. Interplay between pastoralism, climate change and conflict in Africa is another example (McGuirk and 
Nunn, 2020). 

11 https://glad.earthengine.app/view/global-forest-change#dl=1;old=off;bl=off;lon=20;lat=10;zoom=3. The data 
set comes from a collaboration between the GLAD (Global Land Analysis Discovery) lab, USGS, Google, and NASA. 
The global database consists of files with a spatial resolution of one arc-second per pixel, corresponding to 
approximately 30 meters per pixel at the equator. The data was generated using multispectral satellite imagery 
from Landsat 5, Landsat 7, and Landsat 8 satellites. 

https://glad.earthengine.app/view/global-forest-change#dl=1;old=off;bl=off;lon=20;lat=10;zoom=3
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at an approximately 30 × 30-meter resolution. In this database, tree cover is any vegetation 

taller than 5 metres. Thus, the tree cover could represent natural forests or plantations. The 

loss of vegetation cover can refer to deforestation due to human activities or natural causes 

such as extreme weather events or forest fires. The deforestation variable is the cumulated 

tree cover loss over each period in the polygon. 

The World Database on Protected Areas (WDPA) gives the surface of protected areas.12 It 

allows identifying other effective area-based conservation measures (OECM). 13 These 

databases are products of the UN Environment Program and IUCN (International Union for 

Conservation of Nature).  

The Minex Consulting14 database delivers information about the geolocalisation of each 

industrial mining operation, its state of operation, and its year of opening or discovery. Thus, 

for each unit, we have the number of industrial mines present for each period, irrespective of 

their status.15 

4.2.2 Control variables 

We control for other drivers of deforestation, such as climate conditions (𝑇𝑒𝑚𝑝 and 𝑅𝑎𝑖𝑛), 

night-time luminosity (𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦) population density (𝑃𝑜𝑝) and violence (𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑖𝑒𝑠). Climatic 

conditions influence the profitability of agricultural activity and, thus, land use (Nelson and 

Chomitz, 2011). It is also possible that temperatures and rainfall affect the occurrence and 

intensity of forest fires. Economic activity and population density are underlying drivers of 

deforestation. Night-time luminosity is a proxy of economic activity at the subnational level 

(Chen and Nordhaus, 2011). The effect of the population could be ambiguous: on the one side, 

population density fuels the demand for cultivated land, but on the other side, it could favour 

the demand for forest products (Amin et al., 2019). The impact of violence and conflicts on 

deforestation is also ambiguous. On the one hand, insecurity could lead to more 

deforestation: the poor institutional quality that translates into violent events fosters 

                                                           

12 https://www.iucn.org/theme/protected-areas/our-work/world-database-protected-areas  

13 https://www.iucn.org/commissions/world-commission-protected-areas/our-work/oecms  

14 https://minexconsulting.com/useful-links/ 

15 The number of artisanal mines is unknown. 

https://www.iucn.org/theme/protected-areas/our-work/world-database-protected-areas
https://www.iucn.org/commissions/world-commission-protected-areas/our-work/oecms
https://minexconsulting.com/useful-links/
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deforestation while downgrading environmental protection. Furthermore, deforestation 

provides a source of funding for armed insurrection. On the other hand, insecurity penalises 

economic activity, which can slow down deforestation (Prem, Saavedra and Vargas, 2020). 

𝑇𝑒𝑚𝑝 is the absolute value of the temperature deviation from the period average. It comes 

from the GISS Surface Temperature Analysis (GISTEMPv4) database. We extract 𝑅𝑎𝑖𝑛 from 

the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) database. 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 comes from the Defense Meteorological Program -Operational Line-Scan System 

(DMSP-OLS) dataset. 𝑃𝑜𝑝 is the population density from the Gridded Population of the World, 

Version 4 (GPWv4) database. We consider the death toll related to conflicts from the ACLED 

database to build 𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑖𝑒𝑠. 

4.3 Descriptive statistics 

Figure 1 provides the location of forested polygons, protected areas and mining activities. 

We report descriptive statistics in Table 1 and Table 2. 

Table 1 gives the essential characteristics of our dataset. The statistics pertain to the 3,704 

polygons. Namely, they cover all polygons over the four-year periods. Considering that a 

polygon’s average area is 12,070 square kilometres, the forest loss amounts to 1.1% of the 

polygon's surface, while the figure for protected areas is 11.4%. It aligns with the percentages 

of protected areas released in the literature (Chape et al., 2005). 

In Table 2, we report the total number of observations, the number of polygons on which 

these variables are observed, the probability of observing a non-zero value of the variable, the 

totalled and disaggregated values over the four periods, the mean of the variable per polygon.  

The probability of forest loss close to one tells us that forest loss concerns almost all 

polygons over the period. When we break down by sub-period, we also see an increase in 

forest loss. One-fifth of the polygons contain mines. Protected areas are present in three-

quarters of the observed units. In the last six rows, we see the level of deforestation in the 

spatial units below and above the protected areas (mines) median. We observe that the 

polygons with an area of protected areas above the median experience less deforestation on 

average. Deforestation is higher in polygons with mining activities on average. This 
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observation concerning the deforestation impact of mining activities is still valid even in 

polygons where protected areas are above the median. 

Considering the pairwise correlations (Table A- 2 in Appendix), we observe a significant and 

positive correlation between the number of mines and the extent of deforestation. Moreover, 

the surface of protected areas correlates negatively with mining activities and deforestation. 

Figure 1. Forest losses, Protected areas and Mines 2000 2019 

 

Source: authors calculation; Hansen et al. 2013 database, Minex Consulting Datasets and World 

Database on Protected Areas. 

Table 1. Descriptive Statistics - Overview 

Variables Observations Mean 
Standard 
Deviation 

Min Max Measurement unit 

𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠 3,704 139.640 184.698 0 1,927 Square kilometres 

𝑃𝐴 3,704 1,371.197 2,276.034 0 11,793 Square kilometres 

𝑀𝑖𝑛𝑒 3,704 0.423 1.160 0 12 Integer 

𝑇𝑒𝑚𝑝 3,704 297.211 2.586 286 303 Kelvin degrees 

𝑅𝑎𝑖𝑛 3,704 1,202.968 559.936 0 3,321 Millimetres 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 3,704 0.313 1.285 0 15 Pixel (luminosity) 

𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑖𝑒𝑠 3,704 22.584 210.191 0 7,630 Units, number of deaths 

𝑃𝑜𝑝 3,704 57.063 113.776 0 1,562 
Inhabitants per square 
kilometer 
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Table 2. Descriptive Statistics – Mines and Protected Areas in the Forest 

    
Whole 
period 

Sub-
periods 

    

Variable Obs. 
Nb of 
polygons 

Prob. 2001 2019 
2001-
2005 

2006-
2010 

2011-
2015 

2016-
2019 

Polygon 
mean 

𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠 3,704 926 0.999 517,227 67,930 98,142 156,120 195,034 140 

𝑀𝑖𝑛𝑒 3,704 926 0.197 1,566 303 383 435 445 0.4 

𝑃𝐴 3,704 926 0.759 5,078,915 1,246,554 1,270,489 1,279,934 1,281,938 1,371 

          

𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠 If 
𝑃𝐴 > 𝑀𝑒𝑑𝑖𝑎𝑛 

1,850 468 0.999 218,503 29,962 43,991 65,663 78,887 118 

𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠 If 
𝑃𝐴 < 𝑀𝑒𝑑𝑖𝑎𝑛 

1,854 477 0.999 298,722 37,968 54,151 90,457 116,147 157 

          

𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠 if 
𝑀𝑖𝑛𝑒 > 0 

728 198 1 141,347 13,913 22,355 45,538 59,540 194 

𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠 if 
𝑀𝑖𝑛𝑒 = 0 

2976 772 0.999 375,879 54,017 75,787 110,582 135,494 126 

          

𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠 if 
𝑃𝐴 > 𝑀𝑒𝑑𝑖𝑎𝑛 
and 𝑀𝑖𝑛𝑒 > 0 

341 94 1 55,198 6,871 10,143 17,352 20,832 162 

𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠 if 
𝑃𝐴 < 𝑀𝑒𝑑𝑖𝑎𝑛 
and 𝑀𝑖𝑛𝑒 = 0 

1,467 394 0.999 212,575 30,926 41,939 62,271 77,439 145 
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5 Results 

We first evidence the relevance of the spatial econometric model. Then, we assess the 

marginal impact of mines and protected areas on forest loss. Finally, we implement a 

robustness check and consider different heterogeneities. 

5.1 The relevance of the spatial econometric model 

Table 3 displays the evolution of the standardised value of Moran's I statistic over the 

period for each spatial weight matrix. These results suggest that immediate proximity matters 

more for deforestation interactions. In particular, the Moran's I statistic is increasing over 

time, thus suggesting that the levels of deforestation are positively and significantly clustered 

in SSA areas. The computed statistics are consistent with the hypothesis of a positive spatial 

clustering of deforestation among nearby SSA polygons.  

Table 3. Standardised Moran’s I statistics 
Year std_nn5 std_dinverse std_gabriel 

2005 1,233.179∗∗∗ 1,327.680∗∗∗ 1,438.183∗∗∗ 

2010 1,081.750∗∗∗ 1,187.847∗∗∗ 1,261.682∗∗∗ 

2015 1,345.908∗∗∗ 1,431.672∗∗∗ 1,544.010∗∗∗ 

2019 1,438.017∗∗∗ 1,534.271∗∗∗ 1,663.758∗∗∗ 

*** p<0.001, ** p<0.01, * p<0.05 

We estimate equations (1) and (2). We gradually introduce explanatory variables in the 

model to control for multicollinearity bias (Models 1 to 8). Table 4 reports the estimated 

spatial parameters 𝜌 and  for the standard spatial autoregressive model (Eq. 1). 

Table 4. Estimation results for the benchmark spatial autoregressive model.  
 Model1 Model2 Model3 Model4 Model5 Model6 Model7 Model8 

𝜌 0.798*** 0.791*** 0.790*** 0.790*** 0.789*** 0.789*** 0.789*** 0.789*** 

 (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) 

 -0.228*** -0.228*** -0.230*** -0.230*** -0.228*** -0.228*** -0.226*** -0.228*** 

 (0.050) (0.050) (0.050) (0.050) (0.050) (0.050) (0.050) (0.050) 

Dependent variable: 𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠; *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05; Standard errors in 

parentheses; the list of variables in the different specifications are given in Table 6 
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 Table 5 reports estimated 𝜌 and  for the spatial autoregressive model with common 

factors (Eq. 2). The estimated values of 𝜌 and  are consistent, whatever the specifications 

(Table 4 and Table 5). 16 

Table 5. Estimation results for the spatial autoregressive model with common factors 
Dependent variable: Deforestation 

 Model1 Model2 Model3 Model4 Model5 Model6 Model7 Model8 

𝜌 0.798*** 0.791*** 0.790*** 0.790*** 0.789*** 0.789*** 0.789*** 0.789*** 

 (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) 

 -0.229*** -0.229*** -0.230*** -0.230*** -0.229*** -0.228*** -0.226*** -0.228*** 

 (0.050) (0.050) (0.050) (0.050) (0.050) (0.050) (0.050) (0.050) 

Dependent variable: 𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠; *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05;  Standard errors in 

parentheses; the list of variables in the different specifications are given in Table 7 

The spatial autocorrelation is positive and statistically significant, corroborating that 

deforestation decisions are complements. The coefficients range from 78.9% to 79.1%. The 

smallness of the finest spatial units, namely the polygon, could explain this high level of 

interaction. When including strong cross-sectional dependence with common factors (Table 

5), the autoregressive coefficients are unchanged results. Overall, our spatial interaction 

results align with previous studies on deforestation determinants outside Sub-Saharan African 

countries (Amin et al., 2019). The evidence in Africa is scanter. Interestingly, (Heß, Jaimovich 

and Schündeln, 2021) found that Community-Driven Development (CDD) programs generated 

positive spillover effects of deforestation in West African drylands.  

5.2 Impact measures 

We find that all explanatory variables' estimated direct, indirect and total effects are very 

similar without (Table 6) or with common factors (Table 7). We only interpret the total effects. 

As expected, 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 has a positive and significant impact on deforestation (Models 4 to 8 in 

                                                           

16 Following (Pesaran, 2015), we find evidence for strong spatial dependence while computing the correlation 
coefficients between the observations of each pair of spatial polygons in SSA. Pesaran's null hypothesis of cross-
sectional dependence is that the values are only weakly cross-sectionally dependent. The test yields a statistic 
value of 442.28, which is strongly significant. We conclude that the spatial estimator should include both weak 
and strong spatial dependence. Although the coefficients vary slightly, the results are robust when common 
factors are included. In particular, significance and the sign of both the spatial parameters and the marginal 
effects of the different specifications remain broadly the same. 
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Table 6 and Table 7). 𝑇𝑒𝑚𝑝, 𝑅𝑎𝑖𝑛, 𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑖𝑒𝑠 and 𝑃𝑜𝑝 remain statistically insignificant 

(Models 5 to 8 in Table 6 and Table 7).17, 18  

Protected areas (𝐿𝑎𝑔𝑃𝐴) have a significant negative effect at the 5% or 1% level, depending 

on the specification) on forest loss: models 4 to 8 in Table 6 and Table 7. Second, regarding 

mining activity, estimation results show a positive and significant (at the 0.1% level) effect of 

𝑀𝑖𝑛𝑒 on deforestation, regardless of the specification. This result is consistent with previous 

findings in DRC (Butsic et al., 2015). This result also suggests that mines impact deforestation 

in their location polygons and neighbouring polygons. An additional mine leads to a forest loss 

of 39.8 km2 directly and 115.5 km2 indirectly (Table 6, model 4). The total effect is, therefore, 

impressive since an additional mine leads to a 155.4 km2 increase in forest loss. It is interesting 

to compare this result with that obtained for protected areas. An additional mine results in 

155.4 km2 of forest loss in a polygon, whereas 1 km2 of an additional protected area only 

prevents 0.097 km2 of forest cover loss. Put differently, an additional 1598 km2 in a protected 

area would be required to offset the effect of an additional mine. Avoiding mining-driven 

forest loss, therefore, would at least necessitate a twice-fold increase in the average protected 

area if we assume that each extra square kilometre of protected area delivers the same 

reduction in forest loss. 

We can assess whether protected areas dampen the harmful role of mining activities by 

considering the interactive variable: 𝐿𝑎𝑔 𝑃𝐴 × 𝑀𝑖𝑛𝑒. The sign of the interactive variable is 

                                                           

17 We regress the error terms of our benchmark model (Eq. 1) on the set of explanatory variables. Results validate 
the hypothesis of no correlation between the error term and explanatory variables suggesting the effectiveness 
of our procedure in controlling for endogeneity. These results are presented in Table A- 5 in Appendix. 

18 In addition, to (i) Moran test for spatial autocorrelation and (ii) Pesaran test for cross-section dependence, we 
also perform additional tests in order to validate our empirical specification (Table A- 6 in Appendix for the full 
model including spatially lagged independent variables). First, using the robust version of the Hausman test to 
spatial autocorrelation of errors, the result leads to rejection of the null hypothesis of absence of correlation 
between individual effects and explanatory variables. Hence this test confirms that fixed effect models are 
statistically required. Second, we also test for spatial autocorrelation into account by SAR (LM_lag) or SEM 
(LM_error), the results confirm the rejection of the null hypothesis (taken independently) suggesting the 
inclusion of spatial parameter in lag form of the dependent variable (forest loss level) or via a spatial error 
component. In a more credible way, we also add robust versions of LM_lag, LM_error to test for the absence of 
a spatial autoregressive term when the model already contains a spatial autoregressive term in the error (Robust 
LM_lag), or vice versa (Robust LM_error). These robust versions are highly significant suggesting the choice of a 
fixed-effect model with both an autoregressive spatial process in the dependent variable and in the errors 
(SARAR). However, it should be noted that the test statistic for a Robust LM_lag version is higher than that for a 
Robust LM_error version.  
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negative but not significant, regardless of the specification used. In other words, the impact 

of mining on the forest does not decrease with protected areas. However, interpreting the 

coefficients on the mines and protected variables as the average effect of these variables on 

deforestation can be questioned (Brambor, Clark and Golder, 2006). We decided to study the 

evolution of the impact of mines on deforestation according to the distribution of protected 

areas. We consider here the model including all explanatory variables (model 8 in Table 6). 

Figure 2(A) shows that the impact of mining on deforestation does not change significantly 

with the size of protected areas whose distribution is given in Figure 2(B). The impact of mining 

on forest loss is only slightly decreasing according to the distribution of protected areas, with 

values ranging between 155 to 150 km². Mining activities do not condition the dampening 

effect of protected areas on deforestation. 
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Table 6. Marginal effects of covariates on deforestation; Spatial autoregressive model 
without common factors 

 Model1 Model2 Model3 Model4 Model5 Model6 Model7 Model8 

  Direct                

𝐿𝑎𝑔_𝑃𝐴 -0.014 -0.019 -0.017 -0.025** -0.025* -0.026** -0.026* -0.026* 
 (0.012) (0.012) (0.013) (0.013) (0.014) (0.012) (0.012) (0.012) 

𝑀𝑖𝑛𝑒   39.052*** 40.670*** 39.834*** 39.843*** 39.771*** 39.550*** 39.488*** 
    (5.788) (6.335) (6.721) (6.068) (6.690) (6.709) (5.970) 

𝐿𝑎𝑔_𝑃𝐴 × 𝑀𝑖𝑛𝑒     -0.002 -0.001 -0.001 -0.001 -0.001 -0.001 
     (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦       16.328*** 16.148*** 16.362*** 16.274*** 15.343*** 
       (4.577) (4.825) (4.495) (4.233) (5.008) 

𝑇𝑒𝑚𝑝         2.297 2.420 2.374 2.522 
          (5.829) (5.844) (5.963) (5.498) 

𝑅𝑎𝑖𝑛           -0.011 -0.011 -0.012 
           (0.010) (0.010) (0.010) 

𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑖𝑒𝑠             -0.008 -0.007 
              (0.008) (0.007) 

𝑃𝑜𝑝               0.041 
               (0.082) 

  Indirect  
 

            

𝐿𝑎𝑔_𝑃𝐴 -0.042 -0.055 -0.048 -0.072** -0.074* -0.076* -0.075* -0.074* 
  (0.036) (0.035) (0.038) (0.037) (0.041) (0.037) (0.037) (0.039) 

𝑀𝑖𝑛𝑒   112.167*** 117.210*** 115.540*** 115.508*** 114.494*** 113.648*** 113.450*** 
   (21.455) (23.046) (25.093) (22.638) (24.060) (23.373) (21.875) 

𝐿𝑎𝑔_𝑃𝐴 × 𝑀𝑖𝑛𝑒     -0.004 -0.004 -0.004 -0.004 -0.003 -0.003 
     (0.009) (0.010) (0.010) (0.009) (0.009) (0.009) 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦       47.359*** 46.813*** 47.104*** 46.763*** 44.080*** 
       (14.089) (15.118) (3.916) (12.550) (16.078) 

𝑇𝑒𝑚𝑝         6.658 6.966 6.821 7.246 
         (17.517) (16.951) (16.963) (15.985) 

𝑅𝑎𝑖𝑛           -0.031 -0.032 -0.033 
           (0.029) (0.028) (0.029) 

𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑖𝑒𝑠             -0.023 -0.021 
             (0.022) (0.021) 

𝑃𝑜𝑝               0.120 
               (0.248) 

  Total                

𝐿𝑎𝑔_𝑃𝐴 -0.056 -0.074 -0.065 -0.097** -0.0990* -0.102* -0.101* -0.100* 
 (0.042) (0.047) (0.052) (0.050) (0.054) (0.049) (0.049) (0.051) 

𝑀𝑖𝑛𝑒   151.219*** 157.880*** 155.374*** 155.351*** 154.265*** 153.198*** 152.937*** 
    (26.528) (28.7748) (31.181) (27.993) (30.126) (29.455) (27.018) 

𝐿𝑎𝑔_𝑃𝐴 × 𝑀𝑖𝑛𝑒     -0.006 -0.005 -0.005 -0.005 -0.004 -0.005 
     (0.012) (0.013) (0.013) (0.012) (0.012) (0.012) 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦       63.687*** 62.961*** 63.466*** 63.037*** 59.423*** 
       (18.415) (19.742) (18.202) (16.596) (20.888) 

𝑇𝑒𝑚𝑝         8.955 9.386 9.195 9.767 
         (23.319) (22.772) (22.900) (21.454) 

𝑅𝑎𝑖𝑛           -0.041 -0.043 -0.045 
           (0.040) (0.038) (0.039) 

𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑖𝑒𝑠             -0.031 -0.029 
             (0.029) (0.029) 

𝑃𝑜𝑝               0.160 
               (0.329) 

*** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1; standard errors in parentheses. 
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Table 7. Marginal effects of covariates on deforestation; spatial autoregressive model with 
common factors 

 Model1 Model2 Model3 Model4 Model5 Model6 Model7 Model8 

  Direct                

𝐿𝑎𝑔_𝑃𝐴 -0.0140 -0.019* -0.017 -0.025* -0.025** -0.026** -0.026** -0.026** 
 (0.011) (0.011) (0.013) (0.013) (0.012) (0.014) (0.012) (0.013) 

𝑀𝑖𝑛𝑒   39.057*** 40.707*** 39.874*** 39.883*** 39.812*** 39.590*** 39.526*** 
    (5.202) (6.333) (6.100) (6.720) (6.321) (5.819) (6.339) 

𝐿𝑎𝑔_𝑃𝐴 × 𝑀𝑖𝑛𝑒     -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 
     (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦       16.351*** 16.171*** 16.383*** 16.295*** 15.369*** 
       (4.715) (4.442) (4.520) (4.659) (5.386) 

𝑇𝑒𝑚𝑝         2.290 2.411 2.365 2.513 
          (6.169) (6.112) (6.265) (5.405) 

𝑅𝑎𝑖𝑛           -0.011 -0.011 -0.011 
           (0.009) (0.009) (0.010) 

𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑖𝑒𝑠             -0.008 -0.007 
              (0.007) (0.008) 

𝑃𝑜𝑝               0.041 
               (0.081) 

  Indirect                

𝐿𝑎𝑔_𝑃𝐴 -0.042 -0.056* -0.048 -0.073* -0.074** -0.077* -0.076* -0.075** 
  (0.034) (0.033) (0.039) (0.038) (0.036) (0.043) (0.038) (0.041) 

𝑀𝑖𝑛𝑒   113.523*** 118.723*** 117.066*** 117.033*** 116.004*** 115.155*** 114.945*** 
   (19.420) (23.819) (22.638) (22.667) (23.000) (21.479) (24.452) 

𝐿𝑎𝑔_𝑃𝐴 × 𝑀𝑖𝑛𝑒     -0.004 -0.004 -0.004 -0.004 -0.003 -0.004 
     (0.009) (0.010) (0.009) (0.010) (0.009) (0.009) 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦       48.005*** 47.451*** 47.738*** 47.400*** 44.693*** 
       (14.742) (13.594) (14.941) (14.251) (16.552) 

𝑇𝑒𝑚𝑝         6.720 7.026 6.880 7.307 
         (17.943) (18.158) (18.717) (16.223) 

𝑅𝑎𝑖𝑛           -0.031 -0.031 -0.033 
           (0.027) (0.026) (0.030) 

𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑖𝑒𝑠             -0.023 -0.022 
             (0.022) (0.022) 

𝑃𝑜𝑝               0.112 
               (0.241) 

  Total                

𝐿𝑎𝑔_𝑃𝐴 -0.056 -0.075* -0.065 -0.097* -0.099** -0.103* -0.102** -0.101** 
 (0.045) (0.043) (0.042) (0.050) (0.048) (0.056) (0.051) (0.054) 

𝑀𝑖𝑛𝑒   152.580*** 159.430*** 156.939*** 156.916*** 155.815*** 154.745*** 154.471*** 
    (23.984) (23.436) (28.076) (28.715) (28.469) (26.548) (30.159) 

𝐿𝑎𝑔_𝑃𝐴 × 𝑀𝑖𝑛𝑒     -0.006 -0.006 -0.005 -0.005 -0.005 -0.005 
     (0.012) (0.013) (0.012) (0.013) (0.012) (0.013) 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦       64.356*** 63.622*** 64.121*** 63.692*** 60.062*** 
       (19.242) (17.865) (19.234) (18.681) (21.750) 

𝑇𝑒𝑚𝑝         9.009 9.437 9.245 9.820 
         (24.089) (24.844) (24.955) (21.599) 

𝑅𝑎𝑖𝑛           -0.041 -0.042 -0.045 
           (0.036) (0.035) (0.040) 

𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑖𝑒𝑠             -0.031 -0.0291 
             (0.029) (0.030) 

𝑃𝑜𝑝               0.160 
               (0.032) 

*** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1; standard errors in parentheses. 
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Figure 2. Marginal effect of mine on forest loss according to the distribution of protected 
areas 

 

Note: The grey area represents the confidence interval at the 5% level. 
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5.3 Robustness check 

To handle omitted variables in the spatial context, we also perform the spatial Durbin 

model (SDM) (Table A- 7 and Table A- 8 in Appendix). The main outcomes remain stable across 

specifications. The coefficients of the variables of interest retain the same sign, and most 

spatially lagged exogenous variables are insignificant. In addition, comparing the Akaike 

information criterion (AIC) and Bayes’ information criterion (BIC), results show that models 

without including spatially lagged independent variables are better than those with the 

spatially lagged exogenous explanatory variables (Table A- 9 in Appendix).  

5.4 Testing Heterogeneities 

Because of its importance, we estimate a SARAR model with spatial units and time-fixed 

effects only on the Congo Basin.19 Table A- 10 in Appendix reports the marginal effects. A 

noticeable result is the lack of significance of the protected area variable. Therefore, the 

unstable institutional context of the region likely makes this environmental protection 

instrument ineffective. This result is also in line with (Brandt, Nolte and Agrawal, 2016, 2018) 

though it was challenged by (Karsenty et al., 2017).  

We continue to explore the heterogeneity driven by local institutional variability. Poor 

institutional quality leads to many conflicts and violence.  Hence, we split the sample into two 

sub-samples according to a threshold depending on the number of conflict deaths measured 

at the polygon level (Fatalities). We assume institutions are “good” when this number is below 

the sample median.20 Protected areas reduce deforestation significantly only in polygons 

characterised by “good” institutional quality (Table A- 11 in Appendix: compared column 1 

versus column 2; total effect). In addition, the impact of mines on deforestation is higher in 

polygons with “weak” institutions.  

                                                           

19 The Congo Basin countries are: Angola, Burundi, Central African Republic, Cameroon, Democratic Republic of 
Congo, Congo Republic, Gabon, Rwanda, Tanzania, and Zambia. The number of polygons is 537. 

20 The sample was also split on the basis of the mean of the variable Fatalities. The results are unchanged. 



25 

We also studied the impact of mines according to mining status.21 We consider the category 

of pre-operating mines as it concerns many polygons (163).  The results are qualitatively 

unchanged (Table A- 11 in Appendix: column 3, total effect). In particular, protected areas do 

not mitigate mining-driven deforestation. In addition, an additional pre-operating mine 

appears to lead to a forest loss of 202.4 km2. This effect is more important than the one 

obtained with all the mines regardless of their status (155.4 km2; Table 6, model 4). Therefore, 

during the pre-operating phase, mining activity appears to have the highest impact on land 

use in the area surrounding the mine. 

Although the results favour the effectiveness of protected areas, these highlighted effects 

can also depend on the more or less strict character of the protected areas following the IUCN 

classification. We, therefore, break down protected areas into two groups. Both less stringent 

protected areas (𝐿𝑎𝑔 𝐿𝑎𝑟𝑔𝑒_𝑃𝐴) and strictly protected areas (𝐿𝑎𝑔 𝑆𝑡𝑟𝑖𝑐𝑡_𝑃𝐴) preserve the 

forest from deforestation (Table A- 3 and Table A- 4 in Appendix). Nevertheless, it is not 

possible to highlight the greater effectiveness of strictly protected areas. Moreover, even 

when we decompose protected areas into two groups, the interactive variable is still non-

significant. 

                                                           

21 There are three mining status, namely (1) operating mines, (2) pre-operating mines and (2) closed mines. 

Pre-operated mines include mines in the feasibility study phase, mines under construction and mines awaiting 

commissioning.  
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6 Concluding remarks 

This article studies mining-driven deforestation using fine-scale data from 2001 to 2019. 

We run spatial panel models controlling for spatial interactions. Mining activities harm the 

forest, and protected areas allow for reduced deforestation. We also find that protected areas 

do not dampen the impact of mining activities on deforestation.  The result is robust to several 

econometric specifications. In addition, spatial heterogeneity prevails: the lower the 

institutional quality of the polygon, the greater the impact of the mine on deforestation. 

Furthermore, the effectiveness of protected areas is lost in areas characterised by low 

institutional quality.  

The interpretation of the results may raise several questions. First, satellite data does not 

distinguish forest loss resulting from human actions or natural disasters. We cope with this 

issue with temperature and rainfall variables. Second, the presence of endogenous variables 

on the right-hand side is a common occurrence in econometric work. In particular, including 

variables related to protected areas could lead to localisation bias (Joppa and Pfaff, 2009). 

Nevertheless, the panel structure with period and polygon fixed effects and the one-year 

lagged value of protected areas address the bias.  

It is feared that the likely development of mining activities in Africa in the coming years will 

increase the pressure on the forest resource. Smart mining attracts increasing attention, but 

offsets' contribution to forest preservation depends on many factors, such as enabling 

institutions and support of local communities (Maddox et al., 2019). It is not realistic to hope 

that protected areas alone will be able to preserve the forest from mining activities. The 

weight of mining activity must be contained by increased diversification, thus reducing the 

dependence on primary commodities. Lower dependence on natural resources and higher 

diversification is not only an economic imperative but also an environmental one. 
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7 Appendix 

Figure A- 1. Polygons and the 926 forested polygons in 2001 

 

Source: authors' calculations. Forested polygons have at least 10% of their surface under forest 

Table A- 1. Variables description 
Variable name Description Source 

𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠 Forest loss Hansen's database 

𝑀𝑖𝑛𝑒 Number of industrial mines present in each 
cell 

MinEx database 

𝑃𝐴 Surface of protected area for each study 
unit. 

World Database on Protected Areas and world database 
on other effective area- based conservation measures 

𝑇𝑒𝑚𝑝 Absolute deviation of the temperature GISS Surface Temperature Analysis (GISTEMPv4) 
database 

𝑅𝑎𝑖𝑛  Rainfall Climate Hazards Group InfraRed Precipitation with 
Station data (CHIRPS) 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 Night-time luminosity  Defense Meteorological Program -Operational Line-
Scan System (DMSP-OLS) dataset 

𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑖𝑒𝑠 Number of deaths due to conflicts  ACLED database 

𝑃𝑜𝑝 Population density The Gridded Population of the World, Version 4 
(GPWv4) 

 

 



28 

Table A- 2. Pairwise correlations 
Variables (1) (2) (3) (4) (5) (6) (7) (8) 

 𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠 𝑃𝐴 𝑀𝑖𝑛𝑒 𝑇𝑒𝑚𝑝 𝑅𝑎𝑖𝑛 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑖𝑒𝑠 𝑃𝑜𝑝 

(1) 
𝐹𝑜𝑟𝑒𝑠𝑡_𝑙𝑜𝑠𝑠 

1.000        

(2) 𝑃𝐴 -0.069*** 1.000       

(3) 𝑀𝑖𝑛𝑒 0.167*** -0.057*** 1.000      

(4) 𝑇𝑒𝑚𝑝 0.043*** 0.050*** -0.011 1.000     

(5) 𝑅𝑎𝑖𝑛 0.210*** -0.055*** 0.040** 0.172*** 1.000    

(6) 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 0.056*** -0.029* 0.058*** -0.026* -0.109*** 1.000   

(7) 𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑖𝑒𝑠 -0.028* -0.018 0.006 -0.024 0.013 0.018 1.000  

(8) 𝑃𝑜𝑝 0.086*** -0.100*** 0.079*** -0.067*** -0.074*** 0.620*** 0.072*** 1.000 

*** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1 
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Table A- 3. Marginal effects of covariates on deforestation for heterogeneity PA; spatial 
autoregressive model without common factors  

  Model1 Model2 Model3 Model4 Model5 Model6 Model7 Model8 Model9 Model10 
 

Direct                   

Lag_Strict_PA -0,004 
(0.005) 

-0,018 
(0.018) 

-0.035** 
(0.019) 

-0.029 
(0.020) 

-0.037 
(0.025) 

-0.043** 
(0.022) 

-0.043** 
(0.024) 

-0.044* 
(0.022) 

-0.044** 
(0.024) 

-0.044* 
(0.022) 

Lag_Large_PA   -0,016 
(0.021) 

-0.034* 
(0.020) 

-0.033* 
(0.021) 

-0.042 
(0.026) 

-0.050** 
(0.023) 

-0.050** 
(0.026) 

-0.050* 
(0.023) 

-0.050** 
(0.026) 

-0.051* 
(0.024) 

Mine     39.908*** 
(5.891) 

41.890*** 
(5.972) 

40.034*** 
(6.463) 

39.009*** 
(6.550) 

39.023*** 
(6.429) 

38.961*** 
(7.412) 

38.718*** 
(6.859) 

38.626*** 
(6.787) 

Lag_Strict_PA x 
Mine 

      -0.009 
(0.007) 

-0.008 
(0.007) 

-0.008 
(0.007) 

-0.008 
(0.007) 

-0.008 
(0.007) 

-0.008 
(0.007) 

-0.008 
(0.007) 

Lag_Large_PA x 
Mine 

        0.002 
(0.004) 

0.003 
(0.004) 

0.003 
(0.004) 

0.003 
(0.004) 

0.003 
(0.004) 

0.003 
(0.004) 

Activity           15.271*** 
(4.262) 

15.211*** 
(4.468) 

15.377*** 
(4.756) 

15.304*** 
(4.459) 

14.023*** 
(4.470) 

Temp             0.628 
(5.843) 

0.687 
(5.888) 

0.657 
(5.953) 

0.890 
(6.071) 

Rain               -0.010 
(0.009) 

-0.010 
(0.010) 

-0.011 
(0.010) 

Fatalities                 -0.008 
(0.008) 

-0.007 
(0.008) 

Pop                   0.058 
(0.077)  

Indirect                   

Lag_Strict_PA 0,001 
(0.001) 

0,003 
(0.004) 

-0.103** 
(0.057) 

-0.084 
(0.059) 

-0.106 
(0.075) 

-0.127* 
(0.068) 

-0.126* 
(0.072) 

-0.128* 
(0.066) 

-0.128** 
(0.074) 

-0.129* 
(0.068) 

Lag_Large_PA   0,003 
(0.004) 

-0.100* 
(0.060) 

-0.097* 
(0.061) 

-0.121 
(0.081) 

-0.143** 
(0.073) 

-0.143** 
(0.080) 

-0.146* 
(0.069) 

-0.145** 
(0.106) 

-0.147* 
(0.074) 

Mine     116.168*** 
(22.832) 

121.996*** 
(22.236) 

116.341*** 
(23.880) 

114.058*** 
(23.904) 

114.081*** 
(23.856) 

113.150*** 
(25.787) 

112.224*** 
(23.807) 

112.003*** 
(23.787) 

Lag_Strict_PA x 
Mine 

      -0.027 
(0.020) 

-0.024 
(0.019) 

-0.023 
(0.021) 

-0.023 
(0.021) 

-0.023 
(0.021) 

-0.023 
(0.022) 

-0.024 
(0.020) 

Lag_Large_PA x 
Mine 

        0.006 
(0.011) 

0.008 
(0.011) 

0.008 
(0.012) 

0.008 
(0.012) 

0.008 
(0.012) 

0.008 
(0.012) 

Activity           44.650*** 
(14.582) 

44.468*** 
(14.526) 

44.658*** 
(14.758) 

44.359*** 
(14.174) 

40.662*** 
(13.910) 

Temp             1.837 
(17.1888) 

1.995 
(17.675) 

1.906 
(17.398) 

2.580 
(18.039) 

Rain               -0.030 
(0.028) 

-0.030 
(0.031) 

-0.0331 
(0.029) 

Fatalities                 -0.024 
(0.023) 

-0.023 
(0.022) 

Pop                   0.168 
(0.232)  

Total                   

Lag_Strict_PA -0,003 
(0.004) 

-0,015 
(0.015) 

-0.139** 
(0.075) 

-0.113 
(0.079) 

-0.143 
(0.099) 

-0.170* 
(0.089) 

-0.170* 
(0.096) 

-0.172* 
(0.088) 

-0.172** 
(0.097) 

-0.174* 
(0.090) 

Lag_Large_PA   -0,013 
(0.017) 

-0.134* 
(0.079) 

-0.130* 
(0.081) 

-0.162 
(0.107) 

-0.193** 
(0.096) 

-0.192** 
(0.106) 

-0.196* 
(0.091) 

-0.196** 
(0.106) 

-0.198* 
(0.098) 

Mine     156.076*** 
(28.041) 

163.887*** 
(27.364) 

156.376*** 
(29.638) 

153.067*** 
(29.793) 

153.105*** 
(29.708) 

152.111*** 
(32.535) 

150.942*** 
(29.963) 

150.628*** 
(29.884) 

Lag_Strict_PA x 
Mine 

      -0.036 
(0.026) 

-0.033 
(0.026) 

-0.031 
(0.028) 

-0.031 
(0.028) 

-0.031 
(0.028) 

-0.031 
(0.029) 

-0.032 
(0.027) 

Lag_Large_PA x 
Mine 

        0.001 
(0.014) 

0.010 
(0.015) 

0.010 
(0.016) 

0.011 
(0.016) 

0.011 
(0.016) 

0.011 
(0.015) 

Activity           59.921*** 
(18.629) 

59.679*** 
(18.822) 

60.036*** 
(19.334) 

59.664*** 
(18.452) 

54.685*** 
(18.200) 

Temp             2.465 
(23.008) 

2.683 
(23.538) 

2.563 
(23.326) 

3.470 
(24.083) 

Rain               -0.040 
(0.038) 

-0.041 
(0.041) 

-0.045 
(0.038) 

Fatalities                 -0.033 
(0.030) 

-0.030 
(0.030) 

Pop                   0.226 
(0.309) 

*** p<0.001, ** p<0.01, * p<0.05; standard errors in parentheses 
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Table A- 4. Marginal effects of covariates on deforestation for heterogeneity PA; spatial 
autoregressive model with common factors 

 Model1 Model2 Model3 Model4 Model5 Model6 Model7 Model8 Model9 Model10 

  Direct                   

Lag_Strict_PA 
-0.004 
(0.005) 

-0.018 
(0.018) 

-0.036* 
(0.017) 

-0.029 
(0.019) 

-0.037* 
(0.021) 

-0.043** 
(0.023) 

-0.043* 
(0.024) 

-0.044** 
(0.021) 

-0.044** 
(0.021) 

-0.047* 
(0.025) 

Lag_Large_PA   
-0.016 
(0.019) 

-0.0345 
(0.019) 

-0.033* 
(0.019) 

-0.041* 
(0.022) 

-0.049** 
(0.026) 

-0.049** 
(0.025) 

-0.050** 
(0.023) 

-0.050** 
(0.023) 

-0.051** 
(0.025) 

Mine     
39.923*** 
(5.475) 

41.914*** 
(6.455) 

40.047*** 
(6.490) 

39.045*** 
(6.699) 

39.060*** 
(6.611) 

38.998*** 
(6.381) 

38.754*** 
(6.284) 

38.661*** 
(6.486) 

Lag_Strict_PAxMine       
-0.009 
(0.007) 

-0.008 
(0.007) 

-0.008 
(0.007) 

-0.008 
(0.007) 

-0.008 
(0.007) 

-0.008 
(0.006) 

-0.008 
(0.007) 

Lag_Large_PAxMine         
0.002 
(0.004) 

0.003 
(0.004) 

0.003 
(0.004) 

0.003 
(0.004) 

0.003 
(0.004) 

0.003 
(0.004) 

Activity           
15.288*** 
(4.071) 

15.229*** 
(4.154) 

15.393*** 
(4.294) 

15.321*** 
(4.426) 

14.042*** 
(4.609) 

Temp             
0.619` 
(5.854) 

0.680 
(6.162) 

0.647 
(6.181) 

0.880 
(6.037) 

Rain               
-0.010 
(0.009) 

-0.010 
(0.009) 

-0.011 
(0.009) 

Fatalities                 
-0.009 
(0.007) 

-0.008 
(0.008) 

Pop                   
0.058 
(0.078) 

  Indirect                   

Lag_Strict_PA 
0.001 
(0.001) 

0.004 
(0.004) 

-0.105* 
(0.053) 

-0.086 
(0.059) 

-0.108* 
(0.065) 

-0.128** 
(0.072) 

-0.128* 
(0.075) 

-0.130* 
(0.065) 

-0.130* 
(0.064) 

-0.131* 
(0.074) 

Lag_Large_PA   
0.003 
(0.004) 

-0.102 
(0.058) 

-0.098* 
(0.059) 

-0.123* 
(0.069) 

-0.146** 
(0.078) 

-0.146* 
(0.078) 

-0.150** 
(0.071) 

-0.150** 
(0.070) 

-0.150** 
(0.076) 

Mine     
117.600*** 
(20.877) 

123.524*** 
(26.425) 

117.779*** 
(23.912) 

115.575*** 
(25.354) 

115.598*** 
(24.723) 

114.654*** 
(23.318) 

113.722*** 
(24.504) 

113.482*** 
(22.484) 

Lag_Strict_PAxMine       
-0.027 
(0.021) 

-0.025 
(0.022) 

-0.024 
(0.021) 

-0.024 
(0.021) 

-0.024 
(0.022) 

-0.024 
(0.020) 

-0.024 
(0.020) 

Lag_Large_PAxMine         
0.007 
(0.011) 

0.008 
(0.013) 

0.008 
(0.012) 

0.008 
(0.012) 

0.008 
(0.012) 

0.008 
(0.011) 

Activity           
45.253*** 
(13.473) 

45.071*** 
(14.078) 

45.257*** 
(14.290) 

44.959*** 
(13.976) 

41.217*** 
(15.346) 

Temp             
1.832 
(17.469) 

1.990 
(18.417) 

1.899 
(18.026) 

2.582 
(18.158) 

Rain               
-0.029 
(0.027) 

-0.030 
(0.027) 

-0.033 
(0.029) 

Fatalities                 
-0.025 
(0.021) 

-0.023 
(0.024) 

Pop                   
0.170 
(0.234) 

  Total                   

Lag_Strict_PA 
-0.003 
(0.004) 

-0.015 
(0.014) 

-0.140* 
(0.070) 

-0.115 
(0.078) 

-0.145* 
(0.085) 

-0.172** 
(0.095) 

-0.172* 
(0.098) 

-0.174** 
(0.086) 

-0.174* 
(0.085) 

-0.176* 
(0.098) 

Lag_Large_PA   
-0.013 
(0.015) 

-0.136 
(0.076) 

-0.132* 
(0.078) 

-0.166* 
(0.090) 

-0.195** 
(0.104) 

-0.195* 
(0.103) 

-0.198** 
(0.094) 

-0.198* 
(0.093) 

-0.201** 
(0.101) 

Mine     
157.523*** 
(25.689) 

165.438*** 
(32.244) 

157.826*** 
(29.687) 

154.620*** 
(31.345) 

154.658*** 
(30.625) 

153.651*** 
(29.061) 

152.476*** 
(30.195) 

152.143*** 
(28.296) 

Lag_Strict_PAxMine       
-0.037 
(0.085) 

-0.033 
(0.030) 

-0.032 
(0.028) 

-0.032 
(0.028) 

-0.032 
(0.029) 

-0.032 
(0.026) 

-0.032 
(0.027) 

Lag_Large_PAxMine         
0.009 
(0.015) 

0.010 
(0.017) 

0.010 
(0.016) 

0.010 
(0.016) 

0.011 
(0.016) 

0.011 
(0.015) 

Activity           
60.542*** 
(17.323) 

60.300*** 
(17.999) 

60.650*** 
(18.285) 

60.280*** 
(18.180) 

55.259*** 
(19.828) 

Temp             
2.451 
(23.306) 

2.667 
(24.551) 

2.546 
(24.180) 

3.461 
(24.171) 

Rain               
-0.039 
(0.036) 

-0.041 
(0.036) 

-0.044 
(0.038) 

Fatalities                 
-0.033 
(0.028) 

-0.031 
(0.031) 

Pop                   
0.228 
(0.312) 

*** p<0.001, ** p<0.01, * p<0.05; standard errors in parentheses 
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Table A- 5. Regression of error terms of Table 6 on the explanatory variables. 

 
error1 error2 error3 error4 error5 error6 error7 error8 

𝐿𝑎𝑔_𝑃𝐴 0.004 0.003 0.005 0.005 0.006 0.007 0.007 0.006 

  (0.010) (0.010) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) 

𝑀𝑖𝑛𝑒   0.940 2.202 1.455 1.483 1.562 1.578 1.595 

    (4.682) (5.428) (5.425) (5.425) (5.425) (5.426) (5.430) 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦       2.052 2.474 2.274 2.269 1.755 

        (3.893) (3.910) (3.913) (3.914) (4.206) 

𝑇𝑒𝑚𝑝         -6.435 -6.548 -6.562 -6.531 

          (5.853) (5.854) (5.854) (5.860) 

𝑅𝑎𝑖𝑛           0.012 0.012 0.011 

            (0.009) (0.009) (0.009) 

𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑖𝑒𝑠             0.0001 0.0003 

              (0.006) (0.006) 

𝑃𝑜𝑝               0.024 

                (0.072) 

𝐿𝑎𝑔_𝑃𝐴

× 𝑀𝑖𝑛𝑒     -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 

      (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

Standard errors in parentheses; *p< 0.1; **p<0.05; ***p<0.01 

Table A- 6. Standard tests in spatial panel models 

  Statistics Df 

LM_lag 3906.8*** 1 

LM_error 3502.4*** 1 

Robust LM_lag 410.32*** 1 

Robust LM_error 5.9003** 1 

Hausman 290.45*** 16 

*** p<0.01, ** p<0.05, * p<0.10  
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Table A- 7. Estimation results for the spatial Durbin model with additive PA 

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

 0.799*** 0.791*** 0.792*** 0.792*** 0.791*** 0.794*** 0.793*** 0.794*** 

  (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) 

 -0.229*** -0.229*** -0.231*** -0.231*** -0.230*** -0.236*** -0.234*** -0.239*** 

  (0.050) (0.050) (0.050) (0.050) (0.050) (0.049) (0.049) (0.049) 

Lag_PA -0.011 -0.015 -0.014 -0.015 -0.015 -0.021** -0.021** -0.021** 

  (0.009) (0.009) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

Mine   31.429*** 32.500*** 32.513*** 32.529*** 31.894*** 31.715*** 31.514*** 

    (4.458) (5.225) (5.226) (5.228) (5.206) (5.210) (5.203) 

Temp       4.600 4.835 3.167 3.042 2.586 

        (5.559) (5.572) (5.554) (5.563) (5.545) 

Rain         -0.008 -0.008 -0.009 -0.009 

          (0.008) (0.008) (0.008) (0.008) 

Activity           12.857*** 12.786*** 12.593*** 

            (3.609) (3.612) (3.869) 

Fatalities             -0.006 -0.006 

              (0.006) (0.006) 

Pop               0.009 

                (0.064) 

SlagW_Lag_PA 0.0002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

  (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

SlagW_Mine   3.928 3.914 4.052 3.968 3.389 3.461 3.115 

    (3.771) (5.055) (5.058) (5.060) (5.044) (5.046) (5.041) 

SlagW_Temp       5.250 5.898 4.659 4.100 1.942 

        (16.210) (16.240) (16.166) (16.195) (16.176) 

SlagW_Rain         -0.002 0.004 0.004 0.004 

          (0.009) (0.009) (0.009) (0.009) 

SlagW_Activity           7.638** 7.607** 15.105*** 

            (3.477) (3.477) (4.447) 

SlagW_Fatalities             0.008 0.008 

              (0.014) (0.014) 

SlagW_Pop               -0.132*** 

                (0.049) 

Lag_PA x Mine     -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 

      (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

SlagW_Lag_PAxMine 
 

  -0.0001 -0.0002 -0.0001 -0.00002 -0.0001 0.0001 

      (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

*** p<0.01, ** p<0.05, * p<0.1; standard errors in parentheses 
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Table A- 8. Estimation results for the spatial Durbin model with heterogeneity PA 
  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 

 0.799*** 0.799*** 0.794*** 0.794*** 0.794*** 0.796*** 0.796*** 0.795*** 0.795*** 0.796*** 

  (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) 

 -0.229*** -0.229*** -0.232*** -0.234*** -0.230*** -0.236*** -0.236*** -0.234*** -0.232*** -0.238*** 

  (0.050) (0.050) (0.050) (0.050) (0.050) (0.049) (0.049) (0.049) (0.049) (0.049) 

Lag_Strict_PA -0.004 -0.018 -0.028* -0.023 -0.030 -0.034* -0.034* -0.035* -0.036* -0.035* 

  (0.005) (0.018) (0.015) (0.015) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) 

Lag_Large_PA   -0.015 -0.027* -0.026 -0.034* -0.039** -0.039** -0.040** -0.040** -0.040** 

    (0.020) (0.016) (0.016) (0.020) (0.020) (0.020) (0.020) (0.020) (0.020) 

Mine     32.021*** 33.644*** 31.874*** 31.290*** 31.321*** 31.281*** 31.090*** 30.983*** 

      (4.494) (4.633) (5.306) (5.287) (5.288) (5.290) (5.294) (5.288) 

Activity           11.915*** 11.827*** 12.102*** 12.049*** 11.535*** 

            (3.533) (3.562) (3.577) (3.580) (3.824) 

Temp             1.565 1.616 1.493 1.076 

              (5.514) (5.524) (5.534) (5.511) 

Rain               -0.008 -0.008 -0.008 

                (0.008) (0.008) (0.008) 

Fatalities                 -0.007 -0.007 

                  (0.006) (0.006) 

Pop                   0.024 

                    (0.065) 

Slag_Lag_Strict_PA 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.001 

  (0.002) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

Slag_Lag_Large_PA   -0.002 0.0001 -0.0001 -0.0001 0.0002 0.0002 0.0002 0.0002 -0.001 

    (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

Slag_Mine     3.561 3.476 3.747 3.074 3.110 3.060 3.103 2.688 

      (4.992) (4.991) (5.006) (4.993) (4.994) (4.995) (4.996) (4.991) 

Slag_Activity           7.415** 7.422** 7.611** 7.575** 14.986*** 

            (3.437) (3.444) (3.482) (3.482) (4.449) 

Slag_Temp             3.407 3.773 3.153 0.838 

              (16.162) (16.189) (16.219) (16.194) 

Slag_Rain               0.004 0.004 0.004 

                (0.009) (0.009) (0.009) 

Slag_Fatalities                 0.007 0.007 

                  (0.014) (0.014) 

Slag_Pop                   -0.131*** 

                    (0.049) 

Lag_Strict_Pa x 
Mine 

      -0.008 -0.007 -0.007 -0.006 -0.006 -0.006 -0.007 

        (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) 

Lag_Large_PA x 
Mine 

        0.002 0.002 0.002 0.002 0.002 0.002 

          (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

Slag_Lag_Strict_PA 
x Slag_Mine 

    -0.00005 -0.00002 -0.0001 -0.001 -0.001 -0.0004 -0.001 -0.001 

      (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

Slag_Lag_Large_PA 
x Slag_Mine 

    0.0005 0.001 0.001 0.001 0.001 0.001 0.001 0.002 

  
  

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

*** p<0.001, ** p<0.01, * p<0.05; standard errors in parentheses 
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Table A- 9. Akaike’s information criterion (AIC) and Bayes’ information criterion (BIC) : 
Comparison tests for models with and without spatially explanatory variables 

Criteria 

Model without spatially 
lagged independent 

variables 

Model with spatially 
lagged independent 

variables 

Loglik -23671.29 -23664.48 

AIC 49 222.58 49 224.96 

BIC 55 066.72 55 118.84 
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Table A- 10. Marginal effects of covariates on deforestation focusing on Congo Basin 
countries; spatial autoregressive model without common factors  

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

 Direct    . . . . . . . 

Lag_PA -0.099 -0.094 -0.092 -0.079 -0.081 -0.089 -0.086 -0.086 
  (0.134) (0.129) (0.126) (0.143) (0.130) (0.129) (0.128) (0.138) 

Mine   14.734*** 12.633** 12.182* 11.882** 11.842** 11.699** 11.650* 
    (5.617) (5.869) (6.064) (6.298) (6.032) (5.511) (6.663) 

Lag_PAxMine     0.00291 0.00293 0.00299 0.00297 0.00286 0.00286 
      (0.0036) (0.0040) (0.0035) (0.0035) (0.0036) (0.0034) 

Activity       9.976 9.689 9.584 8.810 8.203 
        (7.569) (7.163) (7.110) (7.615) (7.884) 

Temp         35.936* 36.351* 36.341* 36.527* 
          (20.353) (19.726) (20.502) (19.347) 

Rain           -0.0182 -0.0180 -0.0178 
            (0.0189) (0.0170) (0.0166) 

Fatalities             -0.009 -0.009 
              (0.0059) (0.0058) 

Pop               0.035 
                (0.099) 

Indirect    . . . . . . . 

Lag_PA -0.029 -0.023 -0.022 -0.020 -0.020 -0.024 -0.022 -0.022 
  (0.0788) (0.0456) (0.047) (0.052) (0.053) (0.063) (0.053) (0.055) 

Mine   3.550 2.987 3.047 2.964 3.139 3.046 3.007 
    (4.034) (3.6413) (3.415) (3.826) (4.013) (3.689) (3.284) 

Lag_PAxMine     0.00068 0.00073 0.00074 0.00079 0.00075 0.00074 
      (0.0013) (0.0017) (0.0013) (0.0017) (0.0015) (0.0015) 

Activity       2.495 2.417 2.541 2.294 2.117 
        (3.604) (3.854) (4.044) (3.8259) (4.146) 

Temp         8.964 9.637 9.462 9.426 
          (11.875) (12.469) (10.637) (10.537) 

Rain           -0.0048 -0.0047 -0.0046 
            (0.0089) (0.0072) (0.0071) 

Fatalities             -0.0024 -0.0024 
              (0.0029) (0.00313) 

Pop               0.009 
                (0.041) 

Total    . . . . . . . 

Lag_PA -0.128 -0.116 -0.114 -0.099 -0.10 -0.112 -0.109 -0.108 
  (0.195) (0.165) (0.162) (0.187) (0.172) (0.177) (0.173) (0.183) 

Mine   18.285** 15.620* 15.229* 14.846* 14.981* 14.745* 14.657* 
    (8.132) (8.193) (8.351) (8.962) (8.661) (8.0512) (8.821) 

Lag_PAxMine     0.0036 0.0037 0.0037 0.0038 0.0036 0.0036 
      (0.0046) (0.0054) (0.0045) (0.0048) (0.0049) (0.0045) 

Activity       12.472 12.106 12.125 11.104 10.320 
        (10.347) (9.882) (10.025) (10.422) (11.171) 

Temp         44.901 45.99* 45.803* 45.954* 
          (28.975) (27.71) (26.759) (26.529) 

Rain           -0.023 -0.023 -0.022 
            (0.0258) (0.0223) (0.0221) 

Fatalities             -0.012 -0.0116 
              (0.0079) (0.008) 

Pop               0.0439 
                (0.134) 

*** p<0.01, ** p<0.05, * p<0.10; standard errors in parentheses 
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Table A- 11. Marginal effects of covariates on deforestation, Heterogeneities; spatial 
autoregressive model without common factors 

 Quality of institutions 
(Fatalities) 

 Status of mines 

 Weak (1) Strong  

 (1) (2) (3) 

 Direct   

Lag_PA -0.022 -0.023* -0.022* 
 (0.018) (0.014) (0.012) 

Mine 64.261*** 42.238***  
 (9.737) (6.719)  

Activity 12.0342** 18.092*** 15,075*** 
 (5.511) (5.994) (4.854) 

Temp 1.225 2.754 2,229 
 (8.267) (6.477) (5,976) 

Rain -0.0226 -0.00428 -0.011 
 (0.014) (0.010) (0.009) 

Pop 0.040 -0.035 0.040 
 (0.093) (0.113) (0.079) 

Lag_PA x Mine -0.00112 -0.00117  
 (0.004) (0.003)  

Pre_Operating Mine   52.182*** 
   (7,531) 

Fatalities   -0.009 
   (0.008) 

Lag_PA×Pre_Operating mine   -0.0064 
   (0.004) 

 Indirect   

Lag_PA -0.064 -0.057* -0,063* 
 (0.055) (0.035) (0.037) 

Mine 189.263*** 104.197*** . 
 (38.570) (21.877)  

Activity 35.444** 44.631*** 43.384*** 
 (17.494) (16.094) (15.112) 

Temp 3.607 6.793 6,415 
 (24.792) (16.415) -17,501 

Rain -0.067 -0.010 -0.0308 
 (0.0439) (0.025) (0.028) 

Pop 0.118 -0.0872 0,115 
 (0.279) (0.285) (0.231) 

Lag_PA×Mine -0.0033 -0.0029 . 
 (0.0124) (0.008)  

Pre_Operating mine   150.177*** 
   (28.404) 

Fatalities   -0.026 
   (0.023) 

Lag_PA×Pre_Operating mine   -0.0185 
   (0.012) 

 Total   

Lag_PA -0.085 -0.080* -0.084*** 
 (0.072) (0.049) (0.049) 

Mine 253.524*** 146.434*** . 
 (47.029) (27.74)  

Activity 47.478** 62.723*** 58.459*** 
 (22.868) (21.842) (19,792) 

Temp 4.832 9.5461 8.644 
 (33.022) (22.857) (23,454) 

Rain -0.0892 -0.0146 -0,042 
 (0.058) (0.035) (0.037) 

Pop 0.158 -0.123 0,155 
 (0.371) (0.397) (0.310) 

Lag_PA x Mine -0.0044 -0.0041 . 
 (0.0165) (0.0115)  

Pre_Operating mines   202,359*** 
   (35,029) 

Fatalities   -0.035 
   (0.030) 

Lag_PA x Pre_Operating mines   -0.0133162 
   (0.016) 

*** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1; standard errors in parentheses 
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