
HAL Id: hal-04060986
https://hal.science/hal-04060986v1

Submitted on 7 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Interpretability-Performance Trade-off of
Classification Trees with Black-Box Reinforcement

Learning
Hector Kohler, Riad Akrour, Philippe Preux

To cite this version:
Hector Kohler, Riad Akrour, Philippe Preux. Optimal Interpretability-Performance Trade-off of Clas-
sification Trees with Black-Box Reinforcement Learning. RR-9503, Inria Lille Nord Europe - Labora-
toire CRIStAL - Université de Lille. 2023. �hal-04060986�

https://hal.science/hal-04060986v1
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
95

03
--

FR
+E

N
G

RESEARCH
REPORT
N° 9503
April 2023

Project-Team Scool

Optimal Interpretability-
Performance Trade-off of
Classification Trees with
Black-Box Reinforcement
Learning
Hector Kohler, Riad Akrour, Philippe Preux

RESEARCH CENTRE
LILLE – NORD EUROPE

Parc scientifique de la Haute-Borne
40 avenue Halley - Bât A - Park Plaza
59650 Villeneuve d’Ascq

Optimal Interpretability-Performance
Trade-off of Classification Trees with
Black-Box Reinforcement Learning

Hector Kohler ∗, Riad Akrour†, Philippe Preux∗

Project-Team Scool

Research Report n° 9503 — April 2023 — 21 pages

Abstract: Interpretability of AI models allows for user safety checks to build trust in these
models. In particular, decision trees (DTs) provide a global view on the learned model and clearly
outlines the role of the features that are critical to classify a given data. However, interpretability is
hindered if the DT is too large. To learn compact trees, a Reinforcement Learning (RL) framework
has been recently proposed to explore the space of DTs. A given supervised classification task is
modeled as a Markov decision problem (MDP) and then augmented with additional actions that
gather information about the features, equivalent to building a DT. By appropriately penalizing
these actions, the RL agent learns to optimally trade-off size and performance of a DT. However,
to do so, this RL agent has to solve a partially observable MDP. The main contribution of this
paper is to prove that it is sufficient to solve a fully observable problem to learn a DT optimizing
the interpretability-performance trade-off. As such any planning or RL algorithm can be used. We
demonstrate the effectiveness of this approach on a set of classical supervised classification datasets
and compare our approach with other interpretability-performance optimizing methods.

Key-words: Reinforcement Learning, Supervised Learning, Interpretability

∗ Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 – CRIStAL, Lille, France
† Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 – CRIStAL, Lille, France

Compromis Interprétabilité-Performance Optimale des
Arbres de Classification avec de l’Apprentissage par

Renforcement Boîte Noire
Résumé : L’interprétabilité des modèles d’IA permet à l’utilisateur d’effectuer des contrôles de
sécurité afin d’instaurer la confiance dans ces modèles. En particulier, les arbres de décision four-
nissent une vue d’ensemble du modèle appris et soulignent clairement le rôle des caractéristiques
essentielles à la classification de ces données. Cependant, l’interprétabilité est entravée si l’arbre
de décision est trop grand. Pour apprendre des arbres compacts, un cadre d’apprentissage par
renforcement a été récemment proposé pour explorer l’espace des arbres de décision. Une tâche
de classification supervisée donnée est modélisée comme un problème de décision de Markov
auquel on ajoute des actions qui récoltent des informations sur les caractéristiques d’une donnée,
ce qui équivaut à la construction d’un arbre de décision. En pénalisant ces actions de manière
appropriée, l’agent RL apprend à faire un compromis optimal entre la taille et les performances
de l’arbre appris. Cependant, un agent doit résoudre un problème de décision de Markov par-
tiellement observable. La principale contribution de cet article est de prouver qu’il suffit de
résoudre un problème entièrement observable pour apprendre un arbre de décision optimisant
le compromis interprétabilité-performance. Ainsi, n’importe quel algorithme de planification ou
d’apprentissage par renforcement peut être utilisé. Nous démontrons l’efficacité de cette ap-
proche sur un ensemble de tâches de classification supervisée et nous la comparons à d’autres
méthodes d’optimisation de l’interprétabilité et de la performance.

Mots-clés : Apprentissage par Renforcement, Apprentissage Supervisé, Interprétabilité

Classification Trees with RL 3

1 Introduction

The last decade or so has seen a surge in the performance of machine learning models, whether
in supervised learning [15] or RL [17]. These achievements rely on deep neural models that are
often described as black-box [18, 13, 2], trading interpretability for performance. In many real
world tasks, predictive models can hide undesirable biases (see e.g. Sec. 2 in [13] for a list of
such occurrences) hindering trustworthiness towards AIs. Gaining trust is one of the primary
goals of interpretability (see Sec. 2.4 of [2] for a literature review) along with informativeness
requests, i.e. the ability for a model to provide information on why a given decision was taken.
The computational complexity of such informativeness requests can be measured objectively, and
[5] showed that multi-layer neural networks cannot answer these requests in polynomial time,
whereas several of those are in polynomial time for linear models and DT.

In contrast to deep neural models, DTs provide a global look at the learned model and
transparently reveal which features of the input are used in taking a particular decision. This
is referred to as global [13] or model-based [18] interpretability, as opposed to post-hoc inter-
pretability [18, 2]. Even though DTs are globally intepretable, they have also been used in prior
work for post-hoc interpretability of deep neural models, e.g. in image classification [33] or RL
[6]. The latter work provides another motivation for DTs, as their simpler nature allowed to
make a stability analysis of the resulting controllers and provided theoretical guarantees of their
efficacy. In the 54 papers reviewed in [13], over 25% use DTs as the interpretable model and over
50% the more general class of decision rules.

DTs are a common interpretable model and it is thus important to improve their associated
learning algorithms. However, interpretability of DTs is hindered if the tree grows too large.
The quantification of what is too large might vary greatly depending on the desired type of
simulability, that is whether we want individual paths from root to leaf to be short or the total
size of the tree to be small [16, p. 13]. In both cases, an algorithmic mechanism to control these
tree metrics and to manage the inevitable trade-off between interpretability and performance is
necessary. One of the main challenges for learning DTs is that it is a discrete optimization problem
that cannot, a priori, be solved via gradient descent. Algorithms such as CART [10] build a DT
by greedily maximizing the information gain—a performance related criteria. Interpretability
can then be controlled by fixing a maximal tree depth, or by using post-processing pruning
algorithms [9, 22]. Unfortunately, this two-step process provides no guaranty that the resulting
DT is achieving an optimal interpretability-performance trade-off.

An alternative way to learn DTs, that inherently takes into account the interpretability-
performance trade-off, is the recently proposed framework of Iterative Bounding Markov Decision
Processes (IBMDPs) [31]. An IBMDP extends a base MDP state space with feature bounds that
encode the current knowledge about the input, and the action space with information gathering
actions that refine the feature bounds by performing the same test a DT would do: comparing
a feature value to a threshold. The reward function is also augmented with a penalty to take
the cost of information gathering action into account. The IBMDP reward function encodes an
interpretability-performance trade-off: an agent learns when to add decision nodes or when to
make a prediction.

In this work we study the IBMDP setting when the base MDPs encode supervised classi-
fication tasks. By doing so, we are able to analyse the optimality of policies learned with RL
with respect to the IBDMP reward function. Thus our work studies RL frameworks to learn
DTs that trade-off between interpretability (depth of the DT) and performance (accuracy of the
DT). After a literature review and the introduction of our notations in Section 2 and 3, our work
continues as follows:
Section 4: we present a simple toy task to benchmark RL algorithms solving IBMDPs and

RR n° 9503

4 H. Kohler et al.

analyse causes of failure of existing RL algorithms solving IBMDPs.
Section 5: we present a new RL framework with optimality guarantees w.r.t the IBDMP ob-
jective.
Section 6: we apply this framework to UCI [11] supervised classification datasets.

All proofs are provided in Appendix. All learned DTs and the code to reproduce all experi-
ments can be found on an anonymous github1.

2 Decision Trees for Supervised Learning

2.1 Greedy Approaches

Early research on the induction of DTs focused on the ID3 algorithm, which uses a greedy
approach to select the best attribute at each node based on information gain [24]. This approach
was later extended by the C4.5 algorithm, which introduced techniques such as pruning and
handling missing data [25].

However, these methods may lead to large trees that a human cannot interpret. An other
very well-known DT induction algorithm is CART [10] which performs equivalently to C4.5 and
has the same troubles with the induction of large trees.

2.2 Optimal Decision Trees

The algorithms discussed earlier are greedy heuristics and may produce poorly performing trees
[14]. As a result, there is an increasing interest in developing algorithms that can train DTs to
achieve optimal accuracy.

Training optimal DTs for classification can done with dynamic programming [19] or with
Mixed-Integer Linear Programming based formulations [7, 32]. However there is no guarantee
that the optimal DT will not grow very large.

To provide regularization and encourage interpretability, the size of the tree is typically lim-
ited, and then a solver is used to find the DT that maximizes accuracy within the predetermined
size constraints. This cannot be considered as optimizing an interpretability-performance trade-
off as the size of the resulting DT is given by the user and not learned.

2.3 Online Learning

Another approach to learn DTs for classification is to model the classification task as an MDP.
When doing so, states correspond to training samples, and actions build the DT (either add a
decision node or a leaf node by making a prediction). The reward function of the MDP encodes
a trade-off between the depth of the tree and the performance of the tree. Indeed, there is a
penalty for querying information about a training sample feature, and rewards for predictions.

The proposed algorithms of [8] and [31] are RL agents solving Partially Observable MDPs
(POMDPs) [28, chapter 3]. In [12], an other RL agent is proposed, this time acting in a fully
observable MDP and is a special case of Iterative Bounding MDPs [31] where training samples
have categorical features.

None of these works study the optimality of their proposed method with respect to the
interpretability-performance trade-off.

1https://github.com/KohlerHECTOR/Interpretability-Performance-official-implem

Inria

Classification Trees with RL 5

3 Preliminaries

3.1 Supervised Classification Tasks

In this work, we aim to learn DTs for supervised classification tasks. We consider classification
tasks made of a set of training examples X = {x1, ..., xN} (a dataset), and a set of labels
Y ∈ {C1, ..., CK}N (one of K classes for each training example). Each of the N training example
xi ∈ X has d features xi1, ..., xid. The goal of the task is to find a classifier g : Rd → Y,
g : xi 7→ ŷi. Classifiers are computed by algorithms optimizing a loss function of ŷi = g(xi)
and the true label yi. In this paper we present algorithms returning classifiers that are DTs
optimizing a function of both the performance and the interpretability defined in the following
sections.

3.2 Markov Decision Problems

We consider an infinite horizon MDP [23] defined by the tuple 〈S,A, R, T, γ〉, where S is the
state space, A is the discrete action space, R : S ×A 7→ [Rmin, Rmax] ⊂ R is the reward function,
T is the transition function, and γ < 1 is the discount factor. The agent interacts with the
environment according to its policy π. At time t, the agent takes action at ∼ π(.|st), at ∈ A,
after which it observes the reward rt and the next state st+1 with probability T (st, at, st+1). Let
Qπ(s, a) = Eπ[

∑
t≥0 γ

tR(st, at) | s0 = s, a0 = a] be the Q-function, V π(s) = Eπ[Q(s, a)] be the
value function, Aπ(s, a) = Qπ(s, a)− V π(s) be the advantage function, and J(π) = E[V (s0)] be
the policy return for some initial state distribution. In this work we study RL algorithms that
find a policy π∗ that maximizes J .

3.3 Classification Markov Decision Problems

Any supervised classification task can be cast into a classification MDP
〈X , {C1, ..., CK}, R, T, γ〉. If the dataset to be classified is X (RN×d then the state space of the
MDP is X , that is the set of training examples. If the set of labels is Y ∈ {C1, ..., CK}N , then
the action space is {C1, ..., CK}. The transition function is stochastic, we simply transit to a new
state (draw a new data point to classify) whatever the action is: T (xi, Ch, xj) = 1

N . The reward
function depends on the current state and action: R(xi, Ch) = 1 if yi = Ch in the supervised
classification task; R(xi, Ch) = −1 otherwise. A policy π : xi 7→ Ch is a classifier, and a policy
π that maximizes the expected discounted cumulative reward, also maximizes the classification
accuracy.

3.4 Iterative Bounding Markov Decision Problems

3.4.1 Definition

Following [31], we introduce the notion of an Iterative Bounding MDP (IBMDP). IBMDPs
are MDPs. Let us consider a Classification MDP 〈X , {C1, ..., CK}, R, T, γ〉. We assume X =
[0, 1]N×d. An Iterative Bounding MDP 〈S ′,A′, R′, T ′, ζ, p, γ〉 is defined on top of it with the
following properties.

State space S ′ = X × Ω, with Ω ([0, 1]2d. A state s ∈ S ′ has two parts. A training
sample xi = (xi1, ..., xid) ∈ X , and feature bounds o = (L1, ..., Ld, U1, ..., Ud) ∈ Ω. (Lk, Uk). For
each feature of the training sample xik, (Lk, Uk) represents the current known range of its value.

RR n° 9503

6 H. Kohler et al.

Initially, (Lk, Uk) = (0, 1) for all k, which are iteratively refined by taking Information-Gathering
Actions (IGAs) defined below.

Action space A′ = {C1, ..., CK} ∪ AI . An agent in an IBMDP can either take a base action
a ∈ {C1, ..., CK}, or an IGA in AI = {1, . . . , d} × { 1

p+1 , ...,
p
p+1}, with parameter p ∈ N.

Transition function. If a ∈ {C1, ..., CK}, a new training sample is drawn at random from
the state space X , while feature bounds are reset to (0, 1). If a ∈ AI , the base state is left
unchanged, but the feature bounds are refined. Given a training sample xi with feature bounds
o = (L1, ..., Ld, U1, ..., Ud) The information gathering action a = (k, v) will compare xik to
v′ = v× (Uk −Lk) +Lk, and will set the lower bound Uk to v′ if xik > v′, otherwise Lk is set to
v′.

Reward function. The reward for a base action in {C1, ..., CK} is defined by the base classifi-
cation MDP reward function R. For an IGA in AI the reward is a fixed value ζ ∈ (− inf, Rmax) ≡
ζ < 1 (the maximum value of the base reward function). We impose ζ < 1, as otherwise a policy
never taking any base action would always be optimal, though this restriction is not enough to
prevent this degenerate case for RL algorithms.

Objective function. Solving an IBDMP is finding a polciy π∗ ∈ Π : S ′ → A′ such that
π∗ = argmax

π∈Π
J(π) where J() is the expectation of cumulative discounted rewards given by R′

(the MDP objective function of Section 3.2).

3.4.2 Learning a DT using Partially Observable RL

As stated in [31], a RL algorithm for an IBMDP should return a policy depending on fea-
ture bounds only in order to be able to extract a DT. So an agent learns a DT optimizing an
interpretability-performance trade-off encoded by an IBMDP reward function by finding a policy
π∗ ∈ ΠDT : Ω → A′ such that π∗ = argmax

π∈ΠDT

J(π) . We illustrate how an agent learning such a

policy is equivalent to learning a DT in Figure 1. To learn a policy depending on feature bounds
only, [31] proposes CUSTARD, a partially observable RL algorithm learning a policy depending
only on the feature bounds of the IBMDP state and value functions depending on the full IBMDP
state. We connect CUSTARD to the class of asymmetric RL algorithms first studied empirically
in [21] and more recently theoretically in [3, 4].

Asymmetric Q-Learning. In asymmetric Q-Learning methods, like the DQN [17] version of
CUSTARD [31], an oracle state-action function depending on the full state of the IBMDP is
learned with TD-learning [30]. This oracle Q-function is used as target for the TD-learning of
an other state-action value function, this time, that depends only on feature bounds.

Asymmetric actor-critic. In asymmetric actor-critic methods, like the PPO [27] version of
CUSTARD [31], a value function depending on the full state of the IBMDP is learned and a
policy depending only on feature bounds is learned. Note that the policy gradient theorem [29]
still holds in the asymmetric setting. We show in the next section that CUSTARD fails to learn
DTs for simple tasks.

Inria

Classification Trees with RL 7

xi = (0.7, 0.23)

o = (0, 0, 1, 1)

C1

C2

(a) Initialisation of the IBMPD.

xi = (0.7, 0.23)

o = (0, 0, 1, 0.5)

C1

C2

(b) We take IGA (xi2, 0.5) and re-
ceive reward ζ.

xi = (0.7, 0.23)
o = (0, 0, 1, 0.25)

C1

C2

(c) We take IGA (xi2, 0.25) and re-
ceive reward ζ.

xj = (0.2, 0.9)

C1

C2

o = (0, 0, 1, 1)

(d) We take base action C1 and re-
ceive reward 1 as x ∈ C1.

xi2≤0.5

(e) Taking an IGA in the IBMDP
adds a decision node to a DT.

 xi2≤0.5

xi2≤0.25 ...

(f) Taking an IGA in the IBMDP
adds a decision node to a DT.

 xi2≤0.5

xi2≤0.25 ...

C1 ...

(g) Taking a base action add a de-
cision node to the DT.

Figure 1: Example trajectory of an IBMDP〈p = 1〉. The state space is divided in two; green
states are training samples with label C1, magenta states are training samples with label C2.
(1a): the IBMDP is initialised: the base state xi is drawn at random from the base MDP and the
feature bounds o are set to (0, 0, 1, 1). (1b): the agent takes the IGA (xi2, 0.5); the observation
part is updated to o = (0, 0, 1, 0.5) because xi2 = 0.23 ≤ 0.5. Another IGA is taken in (1c). (1d):
the agent takes a base action, so a new base state xj is drawn from the base transition function
and the feature bounds are reset: o = (0, 0, 1, 1).

RR n° 9503

8 H. Kohler et al.

(a)

−1.0 −0.5 0.0 0.5 1.0

ζ

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

C
u

m
u

la
ti

ve
d

is
co

u
n
te

d
IB

M
D

P
re

w
ar

d
s

Repeat a ∈ {C1, C2}
Best DT of depth 1

Best DT of depth 2

Best unbalanced tree

Repeat a ∈ AI
Best DT of depth 2 is optimal

(b)

Figure 2: A depth 2 binary DT that is optimal w.r.t to the IBMDP objective when ζ = 0.5 (2a)
and graphs of the IBMDP reward of different DTs as a function of ζ (2b).

4 Partially Observable RL for simple Classification Tasks

4.1 A Binary Classification Benchmark
In this subsection we address the question: can CUSTARD [31] find the optimal policy in ΠDT

with respect to the IBMDP objective of Section 3.4.2. To that end, we design toy experiments
that are amenable to an analysis thanks to their very small size.

The base tasks are binary supervised classification tasks with 16 different data points and
two numerical features in [0, 1]. Each data can be perfectly classified using a depth-2 balanced
binary tree (see for example Figure 2a). We generate 5 such classification tasks (hence, we will
benchmark CUSTARD to retrieve 5 different DTs). Choosing ζ = 0.5, γ = 0.99 and p = 1,
induces 5 IBMDPs for which balanced binary DTs of depth 2 are optimal (see Figure 2b).

4.2 CUSTARD to retrieve IBMDP-optimal DTs
To benchmark CUSTARD, we use stable-baselines3 [26] implementations of PPO and DQN
and modify them following the definitions of asymmetric Q-learning and asymmetric actor-critic
(see Section 3.4.2). The actor network in PPO is modified to only take feature bounds as inputs
while the critic network uses the full state. An additional Q-function depending on the full
IBMDP state is learned and used as the target network. We use 5 independent runs for each of
the 5 different IBDMPs and normalize returns on each IBMDP so that results can be aggregated.
Fig. 3a shows that none of the agents were able to consistently retrieve the best DT despite the
extreme simplicity of the task.

4.3 Deriving an exact version of CUSTARD
To better understand how theoretically sound asymmetric actor-critic algorithms [3] like CUS-
TARD PPO fail to retrieve optimal DTs for simple supervised classification tasks, we start from
an exact version of CUSTARD where Qπ and the policy gradient are computed exactly, which is
possible in the tabular setup presented next. Note that there do not exist theoretical guarantees
for CUSTARD DQN [4, Section 4.4.2] equivalent to the one for CUSTARD PPO which is why
we focus on the latter.

Inria

Classification Trees with RL 9

We introduce a variant of an IBMDP that enforces a maximum depth of the resulting DTs—
and ensures that the DT extraction algorithm always terminates. Let this maximum depth be
M +1. M is the maximum number of consecutive time-steps during which a policy can select an
IGA. We implement this by forcing the policy to take a base action each time it has performedM
consecutive IGAs. Interestingly, if p+ 1 is prime (where p is the parameter controlling splitting
thresholds in IBMDPs), the state space already provides such information to the policy:

Proposition 1 For an IBMDP, if p+ 1 is prime then there is a mapping Ω 7→ N that maps any
feature bound to the number of consecutive IGAs taken since the last base action.

In other words, the number of consecutive IGAs since the last base action is directly encoded
in the feature bounds (please see Appendix for proofs of this and all future statements). Thus
we can benchmark, on the same IBMDP, algorithms that enforce a maximum tree depth and
algorithms such as CUSTARD [31] that do not.

Having fixed a maximum tree depth M + 1, the number of unique feature bounds, i.e. the
cardinality of the observation space |Ω|, becomes finite and is at most (2pd)M . Here pd = |AI |
is the number of IGAs available at any time (if available at all) and the factor of 2 stems from
the two possible state transitions following an IGA. Since the state-action space of an IBMDP
becomes finite, and its transition and reward functions are known, one can compute the policy
gradient exactly. This will let us investigate whether the sub-optimal performance of CUSTARD
is due to approximation errors—e.g. introduced by the learned value function—or if it is a
limitation of the gradient descent approach in itself.

Because Ω is finite, we can additionally implement policy gradient on tabular policies which
would eliminate any representation error of the policy. With a slight abuse of notation, we let
in this case θ(o, a) be the logit of observation-action pair (o, a), i.e. π(a|o) ∝ exp(θ(o, a)). By a
straightforward application of the chain rule on Lemma C.1 of [1] we obtain:

Proposition 2 Let θ ∈ RΩ×A′
be the logits of a tabular reactive policy of the IBMDP, then:

∂J(πθ)

∂θ(o, a)
=
∑
s∈S′

1O(s)=o
pπθ (s)

1− γ πθ(a|o)A
πθ (s, a). (1)

Here 1O(s)=o = 1 if the feature bound part of s is o, 0 otherwise.

4.4 Ablation study
Starting from the exact CUSTARD algorithm defined above, we perform an ablation study to
get to a CUSTARD algorithm similar to [31]. Algorithms are tested on the same IBMDPs as in
Section 4.1. The main features ablated from the exact CUSTARD are:
Using an approximated Q̂π-function instead of a Qπ-table updated exactly. In that case,
Q̂π is a neural network similar to the one in CUSTARD PPO.
Using neural network for the policy π instead of a table. In that case, the policy network
is similar to the one in CUSTARD PPO.

The results of the ablation are presented on Figure 3b. The exact CUSTARD algorithm
consistently finds the optimal policy. This is important as it means that the partially observable
framework of CUSTARD is not the reason for the poor results, at least when implemented exactly.
In practice however, we find that both the approximation errors of the neural Q-function and the
policy representation error hinder performance. Indeed, when the policy is encoded by a neural
network in place of a table, the aggregated cumulative IBMDP reward converges to sub-optimal
values after just a few iterations. When the Qπ function is encoded by a neural network, some
instances of the associated CUSTARD algorithm converged to the optimal policy—reflected by
the higher standard deviations on Fig. 3b, but many did not.

RR n° 9503

10 H. Kohler et al.

0 20 40 60 80 100

Iterations 5.103

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
IB

M
D

P
re

w
ar

d
s

CUSTARD DQN

CUSTARD PPO

Optimal DT

(a)

0 100 200 300 400 500

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
IB

M
D

P
re

w
ar

d
s

Exact CUSTARD

CUSTARD - Q is NN - π is a table

CUSTARD - Q is a table - π is NN

CUSTARD - Q is a table - π is NN -natural gradient

Optimal DT

(b)

Figure 3: Study of CUSTARD algorithms ability to retrieve DTs for simple supervised classifi-
cation tasks by solving IBMDPs. In Figure 3a, we plot the IBMDP cumulative reward during
training of CUSTARD as well as the IBMDP cumulative reward of the IBMDP-optimal DT. On
Figure 3b, we plot the IBMDP cumulative reward during training of an exact version of CUS-
TARD, the IBMDP cumulative reward of the IBMDP-optimal DT, as well as the cumulative
reward of different approximated versions of the exact CUSTARD.

5 IBMDP-optimal policies by solving fully observable MDPs

The main result of our work is to show that when using the IBMDP framework to learn a DT
for a supervised classification task, there is no need to use partially obesrvable RL and that it is
sufficient to use classical RL. We first define a new MDP and then show that a policy maximizing
the expected cumulative reward of this MDP also maximizes the IBMDP reward.

5.1 Observation-IBMDP

Let us consider a base Classification MDP 〈X , {C1, ..., CK}, R, T, γ〉. and an associated IBMDP
〈S ′,A′, R′, T ′, ζ, p, γ〉. An Observation-IBMDP (OIBMDP) 〈Ω,A′, R′′, T ′′, ζ, p, γ〉 is defined as
follows:

State space The state space is the space of possible feature bounds Ω ([0, 1]2d.

Action space The action space is AI , the same as in the given IBMDP.

Reward function Assume the current state of the MDP is o = (L1, ..., Ld, U1, ..., Ud).

• a ∈ AI : The reward for taking an IGA is still ζ.

• a = Ch ∈ {C1, ..., CK}: We denote XCho the set of all xi such that yi = Ch and Lk ≤
xik ≤ Uk for all k. Similarly, We denote X C̄ho the set of all xi such that yi 6= Ch and

Lk ≤ xik ≤ Uk for all k. So R′′(o, Ch) = |XCho |−|X C̄ho |
|XCho |+|X C̄ho |

Transition function Assume the current state of is o = (L1, ..., Ld, U1, ..., Ud).

• a = Ch ∈ {C1, ..., CK}: T (o, Ch, (0, ..., 0, 1, ..., 1)) = 1

Inria

Classification Trees with RL 11

• a = (k, u
p+1) ∈ AI : We denote v = u

p+1 (Uk − Lk) + Lk. The MDP will transit to
oinf = (L1, ..., v, ..., Ld, U1, ..., Ud) (resp. osup = (L1, ..., Ld, U1, ..., v, ..., Ud)) with proba-

bility
|Xoinf |

|Xoinf |+|Xosup |
(resp. |Xosup |

|Xoinf |+|Xosup |
)

Theorem 1 Any optimal policy of the OIBMDP has the same policy return as J(π∗) in the
IBMDP. As such, any policy optimal w.r.t the OIBMDP reward is optimal w.r.t a certain
interpretability-performance trade-off.

5.2 Avoiding to learn large trees

We will observe from experimental results that CUSTARD [31] tends to learn large trees (more
than 10 decision nodes). To avoid this problem, we learn an OIBMDPs with a maximum tree
depth Mmax and with p a prime number to leverage Proposition 1. Thus given the current
observation o = (L1, ..., Ld, U1, ..., Ud), the current depth is M =

∑d
i=1 log2(1

Ui−Li). When an
agent learning in an OIBMDP observes o such thatM ≥Mmax, it takes an action in {C1, ..., CK}
equivalent to adding a leaf node to the learned DT.

5.3 DQN Decision Tree

We now present a DQN [17] variant to learn DTs for OIBMDPs with a given max depth. As
guaranteed by Theorem 1, any optimal policy of the OIBMDP is equivalent to the DT with the
optimal interpretability-performance trade-off encoded by an IBMDP reward function. However
existing algorithms returning optimal policies for MDPs [30] require the full state space to be
stored in memory and the state space of OIBMDPs is of size (2pd)Mmax with elements in Rd.
Experimentally, we used Policy Iteration [30] to consistently retrieve the optimal DT for the
benchmarks of Section 4.1. However, when the number of features d and Mmax grow, Policy
Iteration becomes intractable. We have also tried Q-learning and SARSA [30] but did not
manage to solve the benchmark of Section 4.1. To overcome this challenge we go for the Deep
RL algorithm DQN [17] that we modify so that π(o) = argmax

a∈{C1,...,CK}
Q(o, a) when M ≥Mmax. It

is clear from Figure 4 that DQNDT outperforms CUSTARD on the simple benchmark of Section
4.1

0 20 40 60 80 100

Iterations 5.103

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
IB

M
D

P
re

w
ar

d
s

CUSTARD DQN

CUSTARD PPO

Optimal DT

DQN-DT (ours)

Figure 4: Comparison of CUSTARD and DQNDT on the simple binary classification benchmark
of Section 4.1.

RR n° 9503

12 H. Kohler et al.

Table 1: UCI datasets: number of training samples, number of features per sample, and number
of classes.

|X | d K
Wine 178 13 3
Diabete 520 16 2
Banknote 1372 4 2

6 Experiments on Supervised Classification Datasets

In this section, we apply DQNDT on UCI [11] datasets. We compare the learned DTs of DQNDT
with trees learned by CUSTARD [31] with respect to the interpretability-performance trade-off.

6.1 Reproducibility statement

All the code to reproduce the experiments is given in the anonymous github (footnote 1). All
experiments were run multiple times on independent seeds. All the versions of the necessary
python libraries are given in a requirements.txt file.

All implementations of CUSTARD and DQNDT are available in the anonymous github (foot-
note 1). We modify the source code of stable-baselines3 [26] implementations of PPO and
DQN with the modification of Sections 3.4.2 and 5.3. All hyperparameters of CUSTARD and
DQNDT are the default hyperparameters of PPO and DQN from stable-baselines3.

6.2 Experimental setup

For each UCI dataset, we try 6 different values for the cost of building decision nodes: ζ ∈
{−1,−0.6,−0.2, 0.2, 0.6, 1}. The splitting parameter p is always 1. Hence we solve 6 different
IBMDPs (resp. OIBMDPs) with CUSTARD (resp. DQNDT). Each DT learning agent is run
5 times with 2 million timesteps. For each UCI dataset and each ζ, we analyse the best DTs
obtained with each agent. We report the accuracy and the number of nodes of the best DTs and
plot the interpretability-performance trade-off. For DQNDT, we fix the maximum tree depth
Mmax to 4, 5, and 5 for Wine, Diabete, Banknote respectively. We also compute DTs using
CART (we use the implementation of [20], and fix the max_depth parameter to 4 or 5).

6.3 Interpretability-Performance Trade-Offs

From Figure 5, it is clear that CUSTARD learns either very small trees (2 decision nodes at most
for the Wine dataset) or very large trees (up to 13 decision nodes for the Banknote dataset). And
in general, for ζ ≥ 0.6, CUSTARD learns to repeat IGAs indefinitely. DQNDT is able to return
DTs with a wider range of interpretability-performance trade-offs (DTs with 2, 4, 6, 7, 8 decision
nodes). The trees returned by DQNDT are always limited in depth. As expected, CART follows
a greedy approach and simply maximises the accuracy of DT resulting in non-interpretable trees
with many decision nodes. All computed trees are available in the anonymous github (footnote
1).

Inria

Classification Trees with RL 13

0 5 10 15 20

Number of decision nodes

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

CUSTARD DQN

CUSTARD PPO

DQN DT (ours)

CART

(a) Wine Trade-off

 Proline≤979.0

Col_Intens≤7.14 wine1

Col_Intens≤4.21 wine3

wine2 Col_Intens≤5.675

wine2 wine3

(b) Wine DT: accuracy 0.82, decision
nodes 4

0 5 10 15 20 25 30 35

Number of decision nodes

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

CUSTARD DQN

CUSTARD PPO

DQN DT (ours)

CART

(c) Banknote Trade-off

variance≤-0.109

real skewness≤-0.411

 fake img_entropy≤-3.049

skewness≤6.27 fake

real fake

(d) Banknote DT: accuracy 0.87, decision
nodes 4

0 5 10 15 20 25 30 35 40

Number of decision nodes

0.70

0.75

0.80

0.85

0.90

0.95

A
cc

u
ra

cy

CUSTARD DQN

DQN DT (ours)

CART

(e) Diabete Trade-off

polyuria≤0.5

risk no_risk

(f) Diabete DT: accuracy 0.8, decision
nodes 1

Figure 5: Interpretability-performance trade-offs of DTs learned using CUSTARD, DQNDT, or
CART; DTs learned with DQNDT.

RR n° 9503

14 H. Kohler et al.

7 Future work

7.1 Beyond DTs
Scaling to larger IGA spaces would allow for finer splittings at decision nodes, but could also ease
the generalization of IBMDPs to more general classes of interpretable models. At the very least
one could consider test nodes that also test if a feature value is within closed intervals [v1, v2] or
for example could consider combinations of more than one feature. As long as one can write the
associated transition function, it is very likely that our results would extend to such settings too.

7.2 Beyond supervised learning
Finally, we stress out that provably convergent algorithms for finding an optimal IBMDP policy
when the base task is a sequential decision making problem remains an open question. Perhaps
one intermediate step is to study the learning of DT policies by imitation learning as in [6], which
can be reduced to a sequence of supervised learning problems.

8 Conclusion
In this work we analysed and evaluated the recently proposed IBMDP framework [31] that
tackles the interesting problem of learning compact DTs with RL. We showed that CUSTARD
[31] can be seen as asymmetric RL [21, 3, 4]. We showed experimentally that CUSTARD fails
to retrieve the optimal DT for IBMDPs of simple supervised classification base tasks. One of
the main contribution of the paper is to show that this problem can be reformulated into a fully
observable MDP. To scale to supervised classification tasks with large feature dimension and to
avoid the learning of arbitrarily large DTs, we proposed a variant of DQN [17]: DQNDT. We
showed experimentally that DQNDT is able to learn DTs with more interpretability-performances
trade-offs than CUSTARD on UCI [11] datasets. Our work opens up a large avenue for future
research to go beyond greedy search algorithms and explore the full space of DTs and similar
models of discrete nature.

9 Ethical statement
The ethical implications of this work are the same as the DQN algorithm [17]. Furthermore since
DQNDT learns an interpretable DT, we believe our work offers a new way to solve classification
tasks in an ethical manner.

10 Acknowledgements
Hector Kohler acknowledges the funding from ANR AI_PhD@Lille for his PhD. Philippe Preux
acknowledges the support of the Métropole Européenne de Lille (MEL), ANR, Inria, Université de
Lille, through the AI chair Apprenf number R-PILOTE-19-004-APPRENF. We also acknowledge
the outstanding working environment provided by Inria in the Scool research group 2.

2https://team.inria.fr/scool/

Inria

Classification Trees with RL 15

References

[1] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and
approximation with policy gradient methods in markov decision processes. In Conference
on Learning Theory, pages 64–66. PMLR, 2020.

[2] Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto
Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja
Chatila, and Francisco Herrera. Explainable artificial intelligence (xai): Concepts, tax-
onomies, opportunities and challenges toward responsible ai. Information Fusion, 58:82–115,
2020.

[3] Andrea Baisero and Christopher Amato. Unbiased asymmetric actor-critic for partially
observable reinforcement learning. CoRR, 2021.

[4] Andrea Baisero, Brett Daley, and Christopher Amato. Asymmetric DQN for partially ob-
servable reinforcement learning. In James Cussens and Kun Zhang, editors, Proceedings
of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence, volume 180 of
Proceedings of Machine Learning Research, pages 107–117. PMLR, 01–05 Aug 2022.

[5] Pablo Barceló, Mikaël Monet, Jorge Pérez, and Bernardo Subercaseaux. Model interpretabil-
ity through the lens of computational complexity. In Neural Information Processing Systems
(NeurIPS), 2020.

[6] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning
via policy extraction. CoRR, 2018.

[7] Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learning,
106:1039–1082, 2017.

[8] Blai Bonet and Héctor Geffner. Learning sorting and decision trees with pomdps. In ICML,
pages 73–81. Citeseer, 1998.

[9] Jeffrey P Bradford, Clayton Kunz, Ron Kohavi, Cliff Brunk, and Carla E Brodley. Pruning
decision trees with misclassification costs. In European Conference on Machine Learning,
pages 131–136. Springer, 1998.

[10] L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. Classification and Regression Trees.
Taylor & Francis, 1984.

[11] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[12] Abhinav Garlapati, Aditi Raghunathan, Vaishnavh Nagarajan, and Balaraman Ravindran.
A reinforcement learning approach to online learning of decision trees, 2015.

[13] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and
Dino Pedreschi. A survey of methods for explaining black box models. ACM Comput. Surv.,
2018.

[14] Michael Kearns. Boosting theory towards practice: Recent developments in decision tree
induction and the weak learning framework. In Proceedings of the national conference on
artificial intelligence, pages 1337–1339, 1996.

RR n° 9503

16 H. Kohler et al.

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 25. Curran Associates,
Inc., 2012.

[16] Zachary C. Lipton. The mythos of model interpretability, 2016.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[18] W. James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. Def-
initions, methods, and applications in interpretable machine learning. Proceedings of the
National Academy of Sciences, 116(44):22071–22080, oct 2019.

[19] Siegfried Nijssen and Elisa Fromont. Mining optimal decision trees from itemset lattices.
In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 530–539, 2007.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Jour-
nal of Machine Learning Research, 12:2825–2830, 2011.

[21] Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter Abbeel.
Asymmetric actor critic for image-based robot learning. In Robotics: Science and Systems
XIV, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, June 26-30, 2018, 2018.

[22] Andreas L Prodromidis and Salvatore J Stolfo. Cost complexity-based pruning of ensemble
classifiers. Knowledge and Information Systems, 3(4):449–469, 2001.

[23] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

[24] J. Ross Quinlan. Induction of decision trees. Machine learning, 1:81–106, 1986.

[25] J. Ross Quinlan. C4.5: Programs for machine learning. 1992.

[26] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and
Noah Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Jour-
nal of Machine Learning Research, 2021.

[27] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, 2017.

[28] Olivier Sigaud and Olivier Buffet. Markov decision processes in artificial intelligence. John
Wiley & Sons, 2013.

[29] R. S. Sutton, D. Mcallester, S. Singh, and Y. Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. In Advances in Neural Information Processing
Systems, 2000.

[30] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

Inria

Classification Trees with RL 17

[31] Nicholay Topin, Stephanie Milani, Fei Fang, and Manuela Veloso. Iterative bounding mdps:
Learning interpretable policies via non-interpretable methods. Proceedings of the AAAI
Conference on Artificial Intelligence, 2021.

[32] Sicco Verwer and Yingqian Zhang. Learning decision trees with flexible constraints and
objectives using integer optimization. In Integration of AI and OR Techniques in Constraint
Programming: 14th International Conference, CPAIOR 2017, Padua, Italy, June 5-8, 2017,
Proceedings 14, pages 94–103. Springer, 2017.

[33] Quanshi Zhang, Yu Yang, Haotian Ma, and Ying Nian Wu. Interpreting cnns via decision
trees. In Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

RR n° 9503

18 H. Kohler et al.

A Proofs

A.1 Proposition 1: tree depth information in feature bounds
We want to show that in an IBMDP, if p+ 1 is prime, then the number of information-gathering
actions performed since the last base action is encoded in the feature bounds part of the state.
Without loss of generality we only study the case of a single feature, showing that l = U − L,
the difference between the upper and lower bound of the feature, fully determines the number of
information-gathering actions taken since the last base action. The extension to multiple features
is trivial by addition of each feature’s inferred number of information-gathering actions.

Let n be the number of information-gathering actions taken since the last base action. Let
ln be the difference between upper and lower bounds of the feature after these n information-

gathering actions. Clearly n = 0 ⇔ ln = 1. When n > 0, ln is given by ln =
n∏
k=1

hk
p+1 , where

hk ∈ {1, ..., p} for each k. We want to show that if p+ 1 is prime =⇒ @(i, j) : i < j and li = lj .

Suppose ∃(i, j) : 0 < i < j and li = lj ,

=⇒

i∏
k=1

hk

(p+ 1)i
=

j∏
k=1

h′k

(p+ 1)j
,

=⇒
i∏

k=1

hk = (p+ 1)j−i
j∏

k=1

h′k,

=⇒
i∏

k=1

hk = (p+ 1)(p+ 1)j−i−1

j∏
k=1

h′k,

But that is impossible since the left-hand side is the product of non-zero natural numbers < p+1
and the right-hand side is the product of non-zero natural numbers containing the prime number
p+ 1. �

A.2 Proposition 2: gradient of soft-max reactive policy
For an MDP 〈S,A, R, T, γ〉 with finite state-action spaces, Lemma C.1 of [1] showed that for
tabular soft-max policies

∂J(πθ)

∂θ(s, a)
=

1

1− γ p
πθ (s)πθ(a|s)Aπθ (s, a), (2)

where θ(s, a) is the logit parameter of the policy. Now extending this MDP into an IBMDP
〈S ′,A′, R′, T ′, ζ, p, γ〉 with a fixed maximum depth as defined in Sec. 4.3, the state space remains
finite. Let s = (φ, o) ∈ S ′ be a state of the IBMDP, with o ∈ Ω where Ω is the finite set of
reachable feature bounds. We are interested in tabular policies parameterized by logits θ′ ∈
RΩ×A′

such that πθ′(a|s) ∝ exp(θ′(o, a)). That is, the main difference with the setting of Eq. (2)
is that a given logit θ′(o, a) is shared between several states and provides the unormalized log-
probability of taking action a in all states s ∈ S ′ such that their feature bounds is o, i.e. such
that O(s) = o. Informally, we can decompose this map θ′ 7→ J(πθ′) going from logits in RΩ×A′

to a policy return into the composition θ′ 7→ θ 7→ J(πθ), where the first map maps logits in
RΩ×A′

into logits in RS′×A′
according to θ(s, a) = θ′(O(s), a). By the chain rule, we have

Inria

Classification Trees with RL 19

∇θ′J(πθ′) = H(θ, θ′)T∇θJ(πθ) where H is the Jacobian of the map θ′ 7→ θ. This Jacobian will
have a value of 1 at row (s, a) and column (O(s), a) for all s and a and is 0 otherwise. Thus the
product simply becomes

∂J(πθ)

∂θ′(o, a)
=
∑
s∈S′

1O(s)=o
∂J(πθ)

∂θ(s, a)

∣∣∣∣
θ(s,a)=θ′(o,a)

(3)

Combining Eq. (2) and Eq. (3) completes the proof of Eq. (1).

A.3 Theorem 1: problem equivalence with the OIBMDP

A stochastic reactive policy of an IBMDP π : Ω 7→ ∆A′, where ∆A′ is the set of all probability
distributions over A′, can also act on the OIBMDP (Sec. 5.1) since the state and action spaces
of the OIBMDP are respectively Ω and A′. We will show in this section that any such policy
has the same policy return in the IBMDP and the OIBMDP. Indeed, the construction of the
OIBMDP’s transition function is such that feature bounds are visited with the same frequency
in the IBMDP and the OIBMDP, while the reward at state o of the OIBMDP is the average over
the state rewards of the IBMDP that ’fall’ within the feature bounds of o.

The proof only holds when the base MDP of the IBMDP is a supervised task because we
have that for any reactive policy acting in the IBMDP, Pr(st = s|ot = o) = p(s|o). That is,
for a policy π acting in the IBMDP, if at time-step t the observation part of the state is o,
then the distribution of the random variable st follows the fixed distribution p(s|o). This is
trivial to see because on one hand, information gathering actions in an IBMDP only influence
the observation part of the state, and on the other hand, all base actions induce the same next
state distribution since in the supervised setting, the next data point is sampled randomly from
the dataset independently from the last prediction (base action). Thus one can easily show by
induction that for any policy π, Pr(st = s|ot = o) is independent of π, since the base state is
independent of the actions of the policy.

Following Sec. 5.1, one can see that the reward and transition functions of the OIBMDP can
be written as

R′′(o, a) =
∑
s∈S′

p(s|o)R′(s, a),

and

T ′′(ot, at, ot+1) =
∑

s,s′∈S′

1O(s′)=ot+1
p(s|ot)T ′(s, at, s′),

where p(s|o) = 1
|Xo| if O(s) = o and the base state of s is in Xo and is 0 otherwise.

Let ot and vt, t ≥ 0 be the feature bounds random variables as π acts on the IBMDP and
the OIBMDP respectively. We will show that for all o ∈ Ω and t ≥ 0, P r(ot = o) = Pr(vt = o).
By induction, it is true for t = 0 since the feature bounds are all initialized to (0, 1) for both the

RR n° 9503

20 H. Kohler et al.

IBMDP and OIBMDP. Assume it is true for t then,

Pr(ot+1 = o′) =
∑
a∈A′

∑
s,s′∈S′

Pr(st = s)π(a|O(s))T ′(s, a, s′)1O(s′)=o′ (4)

=
∑
o∈Ω

∑
a∈A′

∑
s,s′∈S′

Pr(st = s|ot = o)Pr(ot = o)π(a|O(s))T ′(s, a, s′)1O(s′)=o′ (5)

=
∑
o∈Ω

Pr(ot = o)
∑
a∈A′

π(a|o)
∑

s,s′∈S′

Pr(st = s|ot = o)T ′(s, a, s′)1O(s′)=o′ (6)

=
∑
o∈Ω

Pr(ot = o)
∑
a∈A′

π(a|o)
∑

s,s′∈S′

p(s|o)T ′(s, a, s′)1O(s′)=o′ (7)

=
∑
o∈Ω

Pr(vt = o)
∑
a∈A′

π(a|o)
∑

s,s′∈S′

T ′′(o, a, o′) (8)

= Pr(vt+1 = o′) (9)

Now let JO(π) be the policy return of π when acting on the OIBMDP. We have

J(π) =
∑
t≥0

γt
∑
s∈S′

∑
a∈A′

Pr(st = s)π(a|O(s))R(s, a) (10)

=
∑
t≥0

γt
∑
s∈S′

∑
o∈Ω

∑
a∈A′

Pr(st = s|ot = o)Pr(ot = o)π(a|O(s))R′(s, a) (11)

=
∑
t≥0

γt
∑
o∈Ω

∑
a∈A′

Pr(vt = o)π(a|o)
∑
s∈S′

p(s|o)R′(s, a) (12)

=
∑
t≥0

γt
∑
o∈Ω

∑
a∈A′

Pr(vt = o)π(a|o)R′′(o, a) (13)

= JO(π) (14)

Thus reactive policies have the same policy return in the IBMDP and the OIBMDP. Since we
know that an MDP always admits a deterministic policy as a solution, an optimal policy of the
OIBMDP has a return J(π∗), the return of the best deterministic reactive policy.

Inria

Classification Trees with RL 21

Contents
1 Introduction 3

2 Decision Trees for Supervised Learning 4
2.1 Greedy Approaches . 4
2.2 Optimal Decision Trees . 4
2.3 Online Learning . 4

3 Preliminaries 5
3.1 Supervised Classification Tasks . 5
3.2 Markov Decision Problems . 5
3.3 Classification Markov Decision Problems . 5
3.4 Iterative Bounding Markov Decision Problems . 5

3.4.1 Definition . 5
3.4.2 Learning a DT using Partially Observable RL 6

4 Partially Observable RL for simple Classification Tasks 8
4.1 A Binary Classification Benchmark . 8
4.2 CUSTARD to retrieve IBMDP-optimal DTs . 8
4.3 Deriving an exact version of CUSTARD . 8
4.4 Ablation study . 9

5 IBMDP-optimal policies by solving fully observable MDPs 10
5.1 Observation-IBMDP . 10
5.2 Avoiding to learn large trees . 11
5.3 DQN Decision Tree . 11

6 Experiments on Supervised Classification Datasets 12
6.1 Reproducibility statement . 12
6.2 Experimental setup . 12
6.3 Interpretability-Performance Trade-Offs . 12

7 Future work 14
7.1 Beyond DTs . 14
7.2 Beyond supervised learning . 14

8 Conclusion 14

9 Ethical statement 14

10 Acknowledgements 14

A Proofs 18
A.1 Proposition 1: tree depth information in feature bounds 18
A.2 Proposition 2: gradient of soft-max reactive policy 18
A.3 Theorem 1: problem equivalence with the OIBMDP 19

RR n° 9503

RESEARCH CENTRE
LILLE – NORD EUROPE

Parc scientifique de la Haute-Borne
40 avenue Halley - Bât A - Park Plaza
59650 Villeneuve d’Ascq

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Decision Trees for Supervised Learning
	Greedy Approaches
	Optimal Decision Trees
	Online Learning

	Preliminaries
	Supervised Classification Tasks
	Markov Decision Problems
	Classification Markov Decision Problems
	Iterative Bounding Markov Decision Problems
	Definition
	Learning a DT using Partially Observable RL

	Partially Observable RL for simple Classification Tasks
	A Binary Classification Benchmark
	CUSTARD to retrieve IBMDP-optimal DTs
	Deriving an exact version of CUSTARD
	Ablation study

	IBMDP-optimal policies by solving fully observable MDPs
	Observation-IBMDP
	Avoiding to learn large trees
	DQN Decision Tree

	Experiments on Supervised Classification Datasets
	Reproducibility statement
	Experimental setup
	Interpretability-Performance Trade-Offs

	Future work
	Beyond DTs
	Beyond supervised learning

	Conclusion
	Ethical statement
	Acknowledgements
	Proofs
	Proposition 1: tree depth information in feature bounds
	Proposition 2: gradient of soft-max reactive policy
	Theorem 1: problem equivalence with the OIBMDP

