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Abstract: The evolution of the coastal fringe is closely linked to the impact of climate change,
specifically increases in sea level and storm intensity. The anthropic pressure that is inflicted on
these fragile environments strengthens the risk. Therefore, numerous research projects look into the
possibility of monitoring and understanding the coastal environment in order to better identify its
dynamics and adaptation to the major changes that are currently taking place in the landscape. This
new study aims to improve the habitat mapping/classification at Very High Resolution (VHR) using
Pleiades–1–derived topography, its morphometric by–products, and Pleiades–1–derived imageries.
A tri–stereo dataset was acquired and processed by image pairing to obtain nine digital surface
models (DSM) that were 0.50 m pixel size using the free software RSP (RPC Stereo Processor) and
that were calibrated and validated with the 2018–LiDAR dataset that was available for the study area:
the Emerald Coast in Brittany (France). Four morphometric predictors that were derived from the
best of the nine generated DSMs were calculated via a freely available software (SAGA GIS): slope,
aspect, topographic position index (TPI), and TPI–based landform classification (TPILC). A maximum
likelihood classification of the area was calculated using nine classes: the salt marsh, dune, rock,
urban, field, forest, beach, road, and seawater classes. With an RMSE of 4 m, the DSM#2–3_1 (from
images #2 and #3 with one ground control point) outperformed the other DSMs. The classification
results that were computed from the DSM#2–3_1 demonstrate the importance of the contribution
of the morphometric predictors that were added to the reference Red–Green–Blue (RGB, 76.37% in
overall accuracy, OA). The best combination of TPILC that was added to the RGB + DSM provided a
gain of 13% in the OA, reaching 89.37%. These findings will help scientists and managers who are
tasked with coastal risks at VHR.

Keywords: Pleiades–1; photogrammetry; RSP; topography; classification; maximum likelihood;
landscape

1. Introduction
1.1. Global Change

Coastal landscapes have faced significant changes over billions of years, and their
evolution is concomitant with major climatic upheavals. In its sixth and most recent report,
the Intergovernmental Panel on Climate Change (IPCC) indicates that climate change is
occurring more rapidly than originally predicted, with unprecedented increases in sea
levels, heat waves, and the faster melting of polar ice caps [1]. Currently, mankind is trying
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to cope with and adapt to rapid climate changes that influence ocean currents, winds,
precipitations, temperatures, and strongly re–shaped landscapes [2].

1.2. Landuse/Landcover Observation Techniques

Observation techniques for tracking landscape changes are many and varied. At
local–scale and very–high (VH) spatial resolution, unmanned aerial vehicles (UAV) are
useful for the VH temporal resolution monitoring of coastal socio–ecosystems [3]. UAVs
are cost–efficient and easily deployable for shoreline detection [4] and for the identification
of seasonal variations in saltmarsh meadows [5]. They are, however, not well suited for
monitoring areas at the landscape scale (several km2) due to not only the restrictions that
are imposed by legislation but also the technical limitations that are enforced by the number
of flight times that are permitted by the battery capacity. In addition, in coastal areas, the
meteorological and marine conditions require a maximum time of presence on the site due
to the tides (±one hour after low water slack).

Manned aerial vehicles (MAV) serve as a robust alternative that leverages passive sen-
sors with a basic red–green–blue (RGB) spectrum and sometimes the infrared spectrum [6]
or an active light detection and ranging (LiDAR) sensor [7]. The complete solution makes
it difficult to plan missions, and sensors such as LiDAR are rather expensive.

1.3. Spaceborne Acquisition and Stereoscopy

Yet, the analysis of the environment at the landscape scale is made possible by satellites
which have a VH spatial, a multispectral, and even a hyperspectral resolution for the best–
equipped satellites [8].

A spaceborne solution exists to obtain multispectral VH resolution images that are
0.50 m and 0.30 m pixels in size, which are provided by Pleiades–1 or WorldView–3
and 4, respectively. Satellite–based multispectral VH resolution mapping of the coastal
fringe has been successfully performed in studies focusing on tropical [9] or temperate
environments [10].

Since 2000, some remote sensing satellites that are specialized in stereo acquisition
have been launched into orbit around the Earth, such as the Worldview–1, –2, –3, –4
constellations, GeoEye–1 and –2, the Pleiades–1 and, –1B constellations, and the 2021–
launched Pleiades Neo, whose images are not yet available for research at the time of this
submission [11]. The operating principle of stereoscopy is to photograph an object or a
landscape from two different angles in the same way as human vision is able to, with a
specific overlap for determining the 3D information of the obtained images. Sometimes
a third angle (nadir) of view can be available as a redundant observation to increase the
accuracy when producing a digital elevation or surface model.

Satellite–based stereo topography has the capability of improving coastal mapping by
improving the spectral discrimination of eco–geo–morphological objects [12]. However,
when a tri–stereo product is used, do they augment/boost this coastal mapping? Do the
morphometric parameters that are derived from the topography contribute to a better
classification of coastal ecosystems than basic spectral information? This paper along with
the experimental results that are presented in it will seek to answer these two questions.

2. Materials and Methods
2.1. The Study Site

The entire study site (76 km2 terrestrial part) is located on the Emerald Coast in
Brittany (France) along the Channel Sea (48.60◦ N, 2.00◦ W; Figure 1). It is characterized by
a diversity of ecosystems that are shaped by the proximity of a megatidal sea and is one
of the six areas with the highest tidal ranges in the world (up to 14 m) [13]. The Rance, a
coastal river, ends its course in the bay of Saint Malo, dividing the area in two sub–sites. In
terms of land cover, this study area is composed of temperate zone coastal vegetation, salt
marshes, rocks, dunes, and fine sand beaches. The coastline is strongly indented, leaving
multiple sandy beaches surrounded by rocky points and islets a little further offshore.
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Bays are also common on this coastal fringe and are featured by the presence of salt marsh
meadows. In terms of urbanism, this Brittany coastal fringe is subject to strong anthropic
pressures. The small fishing villages of the past have evolved into resort urban areas that
now attract tourists in search of iodized air and marine landscapes.

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 19 
 

 

salt marshes, rocks, dunes, and fine sand beaches. The coastline is strongly indented, leav-
ing multiple sandy beaches surrounded by rocky points and islets a little further offshore. 
Bays are also common on this coastal fringe and are featured by the presence of salt marsh 
meadows. In terms of urbanism, this Brittany coastal fringe is subject to strong anthropic 
pressures. The small fishing villages of the past have evolved into resort urban areas that 
now attract tourists in search of iodized air and marine landscapes. 

As with all coastal areas in the world, the Emerald Coast is not exempted from coastal 
risks. Its highly populated coastline increases the vulnerability of lowland populations. 

 
Figure 1. Location of the study on the Emerald Coast (France). 

2.2. Pleiades–1 Satellite Imageries 
The Pleiades–1A and 1B constellation multispectral satellites were launched on 16 

December 2011 and 2 December 2012, respectively [14]. The Pleiades–1 constellation ac-
quires images of the Earth daily and can cover up to 1,000,000 km2 per day. The radio-
metric spectrum of the sensor extends from 430 nm to 940 nm (B: 430–550 nm; G: 500–620 
nm; R: 590–710 nm; and NIR: 740–940 nm). 

Data collection is based on tri–stereo images from the Pleiades–1 satellite sensor (Ta-
ble 1; Figure 2a). The satellite orbited over the study area on 28 November 2020 to collect 
three images at 11 h 26 min 14 s (UTC), then at 11 h 26 min 24 s (UTC), and finally at 11 h 
26 min 32 s (UTC; Table 1). Each dataset of images contains panchromatic and multi–
spectral images (R, G, B, NIR) that are 0.5 m and 2 m pixels in size, respectively (Table 1, 
Figure 2b,c). The images were delivered without initial geometric processing (primary 
level) and without radiometric processing. 

Table 1. Pleiades–1 specificities of the tri–stereo acquisitions over the study site. 

Parameters Image #1 Image #2 Image #3 
Acquisition date 28 November 2020 28 November 2020 28 November 2020 

Time 11 h 26 min 14 s 11 h 26 min 24 s 11 h 26 min 32 s 
Image orientation angle (in degree) 180.01 180.03 180.01 

Incidence angle (in degrees) 16.41 15.35 16.05 
Sun azimuth (in degree) 172.60 172.60 172.60 
Sun elevation (in degree) 19.77 19.77 19.77 

Figure 1. Location of the study on the Emerald Coast (France).

As with all coastal areas in the world, the Emerald Coast is not exempted from coastal
risks. Its highly populated coastline increases the vulnerability of lowland populations.

2.2. Pleiades–1 Satellite Imageries

The Pleiades–1A and 1B constellation multispectral satellites were launched on
16 December 2011 and 2 December 2012, respectively [14]. The Pleiades–1 constellation
acquires images of the Earth daily and can cover up to 1,000,000 km2 per day. The radio-
metric spectrum of the sensor extends from 430 nm to 940 nm (B: 430–550 nm; G: 500–620
nm; R: 590–710 nm; and NIR: 740–940 nm).

Data collection is based on tri–stereo images from the Pleiades–1 satellite sensor
(Table 1; Figure 2a). The satellite orbited over the study area on 28 November 2020 to
collect three images at 11 h 26 min 14 s (UTC), then at 11 h 26 min 24 s (UTC), and finally
at 11 h 26 min 32 s (UTC; Table 1). Each dataset of images contains panchromatic and
multi–spectral images (R, G, B, NIR) that are 0.5 m and 2 m pixels in size, respectively
(Table 1, Figure 2b,c). The images were delivered without initial geometric processing
(primary level) and without radiometric processing.

Table 1. Pleiades–1 specificities of the tri–stereo acquisitions over the study site.

Parameters Image #1 Image #2 Image #3

Acquisition date 28 November 2020 28 November 2020 28 November 2020

Time 11 h 26 min 14 s 11 h 26 min 24 s 11 h 26 min 32 s

Image orientation angle (in degree) 180.01 180.03 180.01

Incidence angle (in degrees) 16.41 15.35 16.05

Sun azimuth (in degree) 172.60 172.60 172.60

Sun elevation (in degree) 19.77 19.77 19.77
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pixel size (c) of the study site.

2.3. LiDAR Airborne Dataset

Thanks to multiple LiDAR data acquisition campaigns on the French territory by the
French Navy’s Hydrographic and Oceanographic Department (SHOM), a LiDAR point
cloud was available for the study site. The land/sea continuum is guaranteed by the
precision of the topo–bathymetric dataset (horizontal and vertical topographic accuracy of
0.20 m), which was acquired with a Leica HawkEye–3 sensor (Chiroptera + Deep channel).

The 2018 LiDAR point cloud was used to calibrate and validate the digital elevation
model (DEM) using 36 validation points that were evenly distributed over the study area.
The coordinates in XY (WGS84 UTM 30N) and Z (ellipsoidal height) were extracted for
each point (Figure 3).

2.4. Coastal Landscape Classes

Nine classes that are representative of the coastal landscape were identified (Table 2,
Figure 4): dune (white dune vegetation Ammophila arenaria), salt marsh (salt marsh vegeta-
tion composed mainly of Spartina, Salicornia, Suaeda, and Halimione portulacoides), rock,
urban (building roof), forest (mix of deciduous and coniferous), field (cultivated and un-
cultivated), beach (wet and dry sand of grain of 0.06 to 2 mm), road (mainly asphalt), and
seawater (shallow to deep salt water). A sub–study site was extracted for the classification
tests (red rectangle in Figure 3).
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2.5. Satellite–Derived Topography: Photogrammetry Reconstruction

Three couples of panchromatic images, which were characterized by three intersection
angles, were processed using the opensource software RSP (RPC stereo processor, [15],
Figure 5) from the tri–stereo images from Pleiades–1. RSP was used to process stereo
satellite images so as to create point dense clouds and then to create a Digital Surface
Model (DSM) using the photogrammetry technique. For each pair of images, RSP used
the Rational Polynomial Coefficients (RPC) files, which were delivered with the Pleiades–1
images, which contain the geometric parameters for the same images to build the projection
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relationship between the 3D and 2D space. The additional Ground Control Points (GCP)
increased the accuracy of the reconstruction horizontally and vertically.

Table 2. Pleiades–1 natural–coloured thumbnail of the nine coastal landscape classes.

Class Name Thumbnail

Dune
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where P is the value of the calculated DSM ellipsoidal height; O is the value of the LiDAR
ellipsoidal height; and n is the number of observations.
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derived topography and morphometry.

In addition, the DSMs were also evaluated at the ecosystem scale by referring to the
nine identified classes. A mean of the ellipsoidal heights per class was calculated, and a
dispersion parameter such as standard deviation was determined to show the homogeneity
or heterogeneity of the statistical series.

The MS images underwent three pre–processing stages before they were integrated
into the analyses:

ENVI’s FLAASH tool was used to correct the influence of the atmosphere (top of
atmosphere, TOA) for each pixel in the images. The radiometric correction of the MS
images consisted of converting the numerical radiance values into TOA reflectance values.
The reflectance was calculated according to the radiance/irradiance (solar) ratio.

The MS images were also geometrically corrected using both the RPC files and the
DSMs, which had been created previously from the panchromatic stereo images. This pre–
processing stage corrected the distortions in the images that were related to the positioning
of the satellite or the structure of the landform.

The MS images were pan–sharpened using the Gram–Schmidt algorithm. It resampled
the 2 m pixel size of the MS image to be of the 0.5 m pixel size of the panchromatic images
(see James et al., 2021).
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2.6. Satellite–Derived Morphometry

The morphometric features such as slope, aspect, topographic position index (TPI),
and TPI–based landform classification (TPILC) were calculated from the best DSMs using
the SAGA GIS opensource software (Figure 5) [16]. These indicators that were related to
the topography of the study site were coupled with the basic RGB spectral information to
reveal the contributions of each predictor. The near–infrared band of the image was also
compared to the morphometric predictors.

The slope highlights the inclination of a pixel, and this aspect defines the orientation
of the slope from a compass direction. The slope and aspect predictors generate raster
images that are computed from the DSM. The percentage of slope is the ratio between the
difference in altitude and the horizontal distance. A 3 × 3 pixel moving window compares
the values of a pixel around its neighbors to define the slope percentage.

TPI computes the elevation or altitude of each pixel and subtracts it from the mean
elevation or altitude of a neighborhood of that pixel of a grid raster [17]. Values that
are lower than 0 correspond to valleys. Values higher than 0 are ridges, and those that
are around 0 are flat areas. TPI–based landform classification was founded on the same
principle as the basic TPI. Two different scales were combined to allow for the better
identification of the topographic differences [18].

2.7. Classification Algorithm

A supervised machine learning classifier algorithm was tested: maximum likelihood
(ML) with ENVI® software (Figure 5) [19]. ML is a probabilistic method that calculates the
variance and covariance of each class by assuming that the statistics of each class in each
band are normally distributed. A pixel is then assigned to the class with the most likely
probability of membership.

An array of 500 calibration pixels and 500 validation pixels per class were extracted
from the satellite–derived products (Table 2). Overall accuracy (OA) is determined as
the sum of the correctly classified pixels divided by the number of pixels. The producer
accuracy (PA) corresponds to the accuracy of the map from the producer’s point of view, i.e.,
from the algorithm. The result expressed in % indicates the fraction of correctly classified
pixels of those that are known to belong to the class [20]. The OA of each by–product
combination was evaluated through the calibration/validation pixels that were calculated
with the confusion matrix.

3. Results

After the DSMs were derived and evaluated, the best one was further investigated
to build topographic by–products. A ML algorithm was applied to this DSM using nine
representative landscape classes from the study site. The contribution of each derived
topographic band was evaluated at the landscape (OA) and class (PA) level.

3.1. Pleiades–1 Digital Surface Model
3.1.1. Global Evaluation

The results of the overall DSM evaluation showed a slight increase in the overall
accuracy of the DSMs with the addition of GCPs (Figure 6). Thus, without GCP, with 1 GCP,
and with 3 GCPs, the results were 4.03 m, 4 m, and 4.01 m for DSM#2–3 (Figures 6 and 7a).
DSM#1–2 and DSM#1–3 increased their accuracy by 0.04 m and 0.02 m, respectively, as
soon as a GCP was added (Figures 6 and 7b,c). However, image pairs #1–#2 and #1–#3
gave unsatisfactory results compared to image pair #2–#3.
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At the global scale, the analysis of the three best DSMs (DSM#2–3_1, DSM#1–2_3, and
DSM#1–3_3) can be compared to the validation points that were extracted from the LiDAR–
2018 (Figure 7a–c). The distribution of the DSM#2–3_1 points shows a low dispersion
and therefore a positive correlation between the LiDAR–2018 dataset and DSM#2–3_1
(Figure 7a). The DSM#1–3_3 appeared to be sparsely correlated to the LiDAR–2018 dataset.

3.1.2. Class Level DSM Evaluation

The analysis of the DSM results from the Pleiades–1 images can also be examined at
the class level (Figure 8) on the sub–study site. Based on the validation polygons from the
classes, each DSM was evaluated.
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Figure 8. Ellipsoidal mean and standard deviation height at the class level on the sub–study site from
the three best digital surface models.
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Depending on the ecosystem, the mean heights between the DSMs within the same
class can vary. This is the case for almost all of the classes if the three DSMs are compared
to each other.

However, when DSM#2–3_1 and DSM#1–3_3 are compared to each other (due to
their performance at the landscape scale), the mean differences in heights were: +10.35 m,
+10.22 m, +13.16 m, +15.24 m, +15.11 m, +13.95 m, +10.83 m, +7.71, and +6.15 m for the salt
marsh, dune, rock, urban, forest, beach, road, and seawater classes, respectively.

3.2. Morphometric Derivatives

Four main morphometric by–products were calculated:

• The slope values ranged from 0 to 89◦, with 0◦ corresponding to a flat surface such
as the seawater or flatland (in green) and 89◦ corresponding to a steep cliff (in red in
Figure 9a).

• The aspect is categorized in 10 classes from 0 to 360◦, according to the main cardinal
points (north, south, east, west; Figure 9b). A value of −1 corresponds to flat areas
such as those for seawater.

• TPI is the third morphometric contributor (Figure 9c).
• Finally, TPILC (Figure 9d) groups the landscapes into 10 classes (1 to 10).
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Figure 9. Morphometric variables derived form the best Pleiades–1 DSM#2–3_1: slope in degrees (a);
aspect (b); topographic position index, (TPI) (c); TPI–based landform classification (d).
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3.3. Pixel–Based Classification
3.3.1. Overall Accuracy at the Landscape Scale

At the landscape scale, each band combination was assessed. To test individual
contribution, the RGB spectral composite was used as a basis, achieving an OA of 76.37%
(Figure 10).
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The NIR band was also tested and obtained a score of 84.34% combined with the RGB.
Thus, in addition to the RGB, the DSM significantly enhanced the OA by +12.51%,

but RGB + DSM + slope decreased the score (−11.23%) compared to the RGB + DSM
combination (Figure 10).

The morphometric predictor combinations provided a strong contribution to the
classification, with +9.05%, +11.45%, and +12.52% for the RGB + DSM + TPI and RGB +
DSM + morphometric predictors and for RGB + DSM + aspect, respectively.

Finally, the best combination was the TPILC predictor combined with RGB + DSM,
with a classification score of 89.37%, namely an augmentation of +13%.

3.3.2. Evaluation at the Class Level

The analysis of the confusion matrix of each morphometric predictor added to the
basic RGB highlights a heterogeneity between the classes (Table 3, Figures 11 and 12).

Table 3. Producer accuracy (in %) from confusion matrix using the maximum likelihood classifier for
the salt marsh, dune, rock, urban, field, forest, beach, road, and seawater classes.

Salt Marsh Dune Rock Urban Field Forest Beach Road Seawater
RGB 84.47 58.67 64.8 62.27 87.67 57 80.27 92.27 100
RGB + NIR 89.13 68.93 75.07 71 90.27 73.67 99.4 91.67 100
RGB + DSM 95.2 94.67 70.8 73 88.6 89.27 97.67 92.33 98.47
RGB + DSM + slope 82 61.47 65.8 64.73 87.47 59.47 86.13 92.47 99.4
RGB + DSM + aspect 95.2 95.13 70.8 72.93 88.4 89.53 97.33 92.33 98.4
RGB + DSM + TPI 98.6 99.07 13.27 80.4 93.6 94.6 98.07 91.47 99.73
RGB + DSM + TPILC 96.67 96.27 75.27 70.13 89.67 87.93 97.6 92.4 98.47
RGB + DSM +
morphometric predictors 98.33 98.67 26.33 84.13 92.93 97.2 99.13 94.2 99.53



Remote Sens. 2022, 14, 219 13 of 18
Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 11. Bar plot of the producer accuracy of the morphometric predictor on the basis RGB at the 
class level (salt marsh, dune, rock, field, forest, beach, road, and seawater). 

RGB RGB + NIR 

  

(a) (b) 
RGB + DSM RGB + DSM + aspect 

  
(c) (d) 

Figure 11. Bar plot of the producer accuracy of the morphometric predictor on the basis RGB at the
class level (salt marsh, dune, rock, field, forest, beach, road, and seawater).

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 11. Bar plot of the producer accuracy of the morphometric predictor on the basis RGB at the 
class level (salt marsh, dune, rock, field, forest, beach, road, and seawater). 

RGB RGB + NIR 

  

(a) (b) 
RGB + DSM RGB + DSM + aspect 

  
(c) (d) 

Figure 12. Cont.



Remote Sens. 2022, 14, 219 14 of 18Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 19 
 

 

RGB + DSM + slope RGB + DSM + TPILC 

  
(e) (f) 

RGB + DSM + TPI RGB + DSM + morphometric predictors 

  
(g) (h) 

 

Figure 12. Coastal mapping classification at the class level computed with the maximum likelihood 
classifier: Basis RGB (a); RGB + NIR (b); RGB + DSM (c); RGB + DSM + slope (d); RGB + DSM + aspect 
(e); RGB + DSM + TPI (f); RGB + DSM + TPILC (g); RGB + DSM + morphometric predictors (h). 

4. Discussion 
4.1. Pleiades–1 Digital Surface Model 
4.1.1. The Intersection Angle as a Key Determinant 

At the global scale, nine DSM were computed via RSP from three Pleiades–1 satellite 
images captured at three different angles of incidence: 16.41° for image #1, 15.35° for im-
age #2, and 16.05° for image #3 (Figure 2a and Table 1). DSM#2–3_1, which was derived 
from the stereo reconstruction of images #2 and #3 outperformed, the other DSMs. Ac-
cording to the results of the satellite photogrammetry, reconstructions with the closest 
intersection angles (5.13°) produced better point–measurement accuracy compared to the 
the 2018–LiDAR altimetric reference. Another answer can also be provided by focusing 
on the solar angle. [21]. Moreover, close or near–similar intersection angles increase the 
risk of “hidden sides” because of their proximity [22,23]. 

Salt marsh

Dune

Rock

Urban

Field

Forest

Beach

Road

Seawater

Figure 12. Coastal mapping classification at the class level computed with the maximum likelihood
classifier: Basis RGB (a); RGB + NIR (b); RGB + DSM (c); RGB + DSM + slope (d); RGB + DSM + aspect
(e); RGB + DSM + TPI (f); RGB + DSM + TPILC (g); RGB + DSM + morphometric predictors (h).

Thus, the urban class obtained the worst results with the RGB and increased in
terms of classification performance when another predictor was added. The slope pre-
dictor increased by 2.46. The addition of a morphometric predictor allowed the 70.13%
of classification performance to increase until the threshold of 84.13% as reached with
the combination RGB + DSM + morphometric predictor. The NIR predictor holds up
reasonably, achieving a score of with 71% (Table 3, Figures 11 and 12).

The trend for the forest class seems to be the same as the trend observed for the urban
class. The slope provides a modest contribution of 2.47%, followed by the NIR predictor
with a contribution of 16.67%, and then by the DSM contribution with a contribution of
32.27%. When added to the RGB + DSM, morphometric predictors aspect, TPILC, TPI, and
the entire combination obtain values of +30.93%, +30.97%, +37.6%, and +40.2%, respectively.

The salt marsh, beach, and dune classes increased in classification accuracy when
a morphometric variable was added to the reference RGB: +10.73%, +17.4%, and +36%,
respectively with the RGB + DSM combination until the addition of TPI variable at 98.6%
and 99.07% for the salt marsh and dune classes. The beach class obtained the best result
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with RGB + NIR, achieving results of 99.4%. In contrast to the salt marsh and beach classes,
the rock class performed worst, with 13.27% and 26.33% with the RGB + TPI combinations
and the complete combination of morphometric variables added to the RGB, respectively.

The road class obtained linear classification scores between 91.47% for RGB + DSM + TPI
and 94.2% for the RGB + DSM + morphometric predictors.

The field class follows a slightly different pattern than the other classes since the worst
result, which was still very acceptable, is achieved by the combination RGB + DSM + slope,
with a score of 86.47%. The RGB combination increased the classification performance
by only +0.2% and +0.93% for the RGB + DSM + aspect and +1.13% for the RGB + DSM
combination. The RGB + DSM + TPILC, RGB + NIR, and RGB + DSM + morphometric
predictors increased the classification performance by +2.2%, 2.8%, and +5.46%. The best
combination for the field class was obtained by RGB + DSM + TPI, with a score of 93.6%.

The seawater class achieved high scores of almost 100% PA, regardless of the predictor
(Table 3, Figures 11 and 12).

4. Discussion
4.1. Pleiades–1 Digital Surface Model
4.1.1. The Intersection Angle as a Key Determinant

At the global scale, nine DSM were computed via RSP from three Pleiades–1 satellite
images captured at three different angles of incidence: 16.41◦ for image #1, 15.35◦ for image
#2, and 16.05◦ for image #3 (Figure 2a and Table 1). DSM#2–3_1, which was derived from
the stereo reconstruction of images #2 and #3 outperformed, the other DSMs. According to
the results of the satellite photogrammetry, reconstructions with the closest intersection
angles (5.13◦) produced better point–measurement accuracy compared to the the 2018–
LiDAR altimetric reference. Another answer can also be provided by focusing on the solar
angle [21]. Moreover, close or near–similar intersection angles increase the risk of “hidden
sides” because of their proximity [22,23].

However, many studies have shown interest in using tri–stereo satellite images to
benefit, when possible, from a nadir view [24]. The benefit of such a tri–stereo enables a
reduction in the shadows that are created by trees or buildings. This approach is highly
valued by urban planners, as it limits the risk of shadows and hidden areas [25].

As for photogrammetric reconstructions from UAV images, a deficient RMSE could
be explained by reconstruction artifacts related to the algorithm or to the images them-
selves [26].

4.1.2. Ground Control Point Effect

At a more local scale, three scenarios can explain the results that were obtained. The
first is the number of GCP that were extracted from the 2018–LiDAR as calibration points
for our topographic models. The tests that were performed without GCP, with one, or
with three GCP, showed that when we added GCP points, the model is more accurate [27].
However, The RPC files that were delivered with the Pleiades–1 images could be more
powerful. The RPC files integrate all of the parameters that are related to the photographs
in order to correct for the satellite images. This approach could be investigated in a
future study.

4.1.3. Information Reflected by the LiDAR Wavelengths

Two laser sensors were used for the whole LiDAR dataset: a mixed topo–bathymetric
laser in the NIR and green spectra, and a stronger bathymetric laser in the green spec-
trum, which was specifically used for deeper areas. Depending on the nature (albedo) of
the coastal habitat, the wavelength that is used by the LiDAR does not return the same
information, being more or less reflected. Thus, the reflectance in the NIR is strong for
eco–geo–systems with high chlorophyll dominance, and conversely, it is fully absorbed by
habitats with a high water content, such as seawater, for example [28].



Remote Sens. 2022, 14, 219 16 of 18

The density of the LiDAR points may also play a crucial role. The intertidal and coastal
land area is denser in a number of points per square meter than marine area (deep water
area) is. The detection of features such as trees is easy when the density of measured points
is high [29].

4.2. Topographic Contribution to Habitat Classification

At the landscape scale, the contribution of the morphometric predictors surpassed the
classification performance. Although the basic RGB performs well, as soon as morphomet-
ric predictors are added, the OA increases (from +1.28% to +13%). The positive effect of the
slope raster and its by–products on the landscape classification were evidenced in several
studies based on satellite sensors [30] as well as in UAV studies [31]. The classification test
with the addition of the NIR band showed the relevance of a classification with morpho-
metric variables. Indeed, when these variables were added to the RGB, the classification
performance on the coastal fringe increased considerably contrary to the multispectral
RGB + NIR combination without any other predictors.

At the ecosystem class level, the morphometric predictors produced different results
depending on the coastal habitat type. For example, the topographic variables provided
successful results for salt marshes. This particular ecosystem is located in a geographical
area that is sheltered from strong prevailing marine currents. Coastal erosion has minimal
or no impact on the meadows, allowing the different plant species to grow.

5. Conclusions

This research study on satellite photogrammetry with Pleiades–1 tri–stereo images is
meaningful for the classification of coastal landscapes at VHR, especially in the context of
climate change and increasing anthropic pressure on the coastal fringe.

Three pairs of Pleiades–1 panchromatic images at the 0.5 m pixel size were tested for
DSM generation, and nine DSM were evaluated from 36 2018 LiDAR validation points.

The best DSM was derived from images #2 and #3 (DSM#2–3_1), which featured,
respectively, with incidence angles of 15.35◦ and 16.05◦ and an intersection angle of 5.13◦.
From this new DSM, four morphometric by–products were calculated: slope, aspect,
topographic position index (TPI), and TPI–based landform classification (TPILC).

A pixel–based classifier, the probabilistic maximum likelihood, was applied to the
0.5 m pansharpened RGB images, which initially had a pixel side of 2 m. Nine classes
(dune, salt marsh, rock, urban, field, forest, beach, road, and seawater) were examined to
map the study site (Figure 13). The best combination of morphometric predictors provided
a gain of 13% in the OA, reaching 89.37%, when added to the RGB + DSM. These findings
will help scientists and managers who tasked with the coastal risks at VHR.
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In a study that will be published in the near future, photogrammetric reconstruction
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meaning that it has two additional bands compared to Pleiades–1. Moreover, the purple
band will be interesting to investigate for the sake of bathymetry extraction.
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