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Abstract. How do we teach robots to perform tasks? Here, we focus
on main methods and models enabling humans to teach embodied so-
cial agents such as social robots, using natural interaction. Humans guide
the learning process of such agents by providing various teaching signals,
which could take the form of feedback, demonstrations and instructions.
This overview describes how human teaching strategies are incorporated
within machine learning models. We detail the approaches by providing
definitions, technical descriptions, examples and discussions on limita-
tions. We also address natural human biases during teaching. We then
present applications such as interactive task learning, robot behavior
learning and socially assistive robotics. Finally, we discuss research op-
portunities and challenges of interactive robot learning.

Keywords: Robot Learning · Interactive Machine Learning · Reinforce-
ment Learning · Learning from Feedback · Learning from Demonstrations
· Learning from Instructions · Human Teaching Strategies

1 Introduction

Robot learning deals with algorithms, methods and methodologies allowing a
robot to master a new task such as navigation, manipulation and classification
of objects. At the intersection of machine learning and robotics, robot learning
addresses the challenge of task learning, which is defined by a goal (e.g. grasping
an object). The aim is to identify a sequence of actions to achieve this goal.
Multi-task learning, transfer learning or life-long learning are also considered for
this purpose.

Several trends of robot learning take inspiration from human learning by
studying developmental mechanisms [61]. In particular, several of such trends
focus social learning since human learning often occurs in a social context. The
computational approaches of social learning are formulated as an interaction be-
tween a tutor/teacher/demonstrator and an artificial learner/student/observer.
The aim of the teacher is to influence the behavior of the learning agent by pro-
viding various cues such as feedback, demonstrations or instructions. Interactive
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task learning [56] aims at translating such interactions into efficient and robust
machine learning frameworks. Interactive task learning is usually considered to
be an alternative to autonomous learning. The latter requires an evaluation
function that defines the objective of the task. The robot autonomously learns
the task by continuously evaluating its actions using this function. Interactive
learning assumes that a human will be able to assist the robot in the evaluation
by providing feedback, guidance and/or showing optimal actions. In this chap-
ter, we describe the fundamental concepts of interactive robot learning with the
aim of allowing students, engineers and researchers to get familiar with main
definitions, principles, methodologies, applications and challenges.

The chapter is structured as follows. Section 2 presents learning objectives,
notations, abbreviations and relevant readings. Section 3 provides a background
on reinforcement learning and robot learning. Section 4 describes the types of
human interventions in both traditional supervised machine learning and in-
teractive machine learning. Section 5 discusses human teaching strategies in
interactive robot learning. In Sections 6 to 8, we provide definitions, describe
learning methods and examples as well as limitations of each strategy: feedback
(Section 6), demonstrations (Section 7) and instructions (Section 8). Section 9
gives deeper insights about modeling approaches to take into account natural
human biases during teaching. Section 10 presents several applications of inter-
active robot learning: interactive task learning, learning robot behaviors from
human demonstrations or instructions, and socially assistive robotics. Finally, in
Section 11 sums up main observations and describes several opportunities and
challenges of interactive robot learning.

2 Tutorial scope and resources

2.1 Learning objectives

– Awareness of the human interventions in standard machine learning and
interactive machine learning.

– Understand human teaching strategies
– Gain knowledge about learning from feedback, demonstrations and instruc-

tions.
– Explore ongoing works on how human teaching biases could be modeled.
– Discover applications of interactive robot learning.

2.2 Notations

– s, a: state and action, s ∈ S and a ∈ A.
– a∗: optimal action.
– H(s, a): Human Feedback at state s for robot action a.
– D = {(st, a∗t ), (st+1, a

∗
t+1)....}: Human Demonstrations, a state-action se-

quence.
– I(s): Human Instruction at state s, Prt(a|i).
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– Pr(s′|s, a): the probability of going from state s to state s′ after executing
action a.

– < S,A, T,R, γ >: State & Action spaces, State-Transition probability func-
tion (Pr(s′|s, a)), Reward function, and the discount factor ([0, 1]).

– r(s, a): reward at state s for action a.
– π: agent/robot policy.
– V π(s): state-value function.
– Qπ(s, a): action-value function.

2.3 Acronyms

– AI: Artificial Intelligence
– HRI: Human Robot Interaction
– IML: Interactive Machine Learning
– IRL: Inverse Reinforcement Learning
– ITL: Interactive Task Learning
– LfD: Learning from Demonstrations
– MDP: Markov Decision Process
– ML: Machine Learning
– RL: Reinforcement Learning

2.4 Selected relevant readings

– Robot learning from human teachers, Chernova & Thomaz (2014) [21]
– Interactive task learning, Laird et al. (2017) [56]
– Recent advances in leveraging human guidance for sequential decision-making

tasks, Zhang et al. (2021) [100]
– Reinforcement Learning With Human Advice: A Survey, Najar & Chetouani

(2020) [67]
– Survey of Robot Learning from Demonstration, Argall et al. (2009) [6]
– Recent advances in robot learning from demonstration, Ravichandar et al.

(2020) [80]
– A survey on interactive reinforcement learning: Design principles and open

challenges, Cruz et al. (2020) [24]
– On studying human teaching behavior with robots: A review, Vollmer &

Schillingmann (2018) [96]
– Cognitive science as a source of forward and inverse models of human deci-

sions for robotics and control, Ho & Griffiths (2022) [40]
– Towards teachable autonomous agents, Sigaud et al. (2022) [85].

3 Background

3.1 Fundamentals of Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning concerned with
how an autonomous agent learns sequential decisions in an uncertain environ-
ment by maximizing a cumulative reward [87]. This category of problems is
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modeled as a Markov Decision Process (MDP), which is defined by a tuple <
S,A, T,R, γ > with S the state space, A the action space, T : S×A→ Pr(s′|s, a)
state-transition probability function, where Pr(s′|s, a) is the probability of going
from state s to state s′ after executing action a and R : S × A→ R the reward
function, which represents the reward r(s, a) that the agent gets for performing
action a in state s. The reward function R defines the objective of the task. A
discount factor γ ([0, 1]) controls of the trade-off between immediate reward and
delayed reward. In the reinforcement learning framework, the dynamics of the
autonomous agent is captured by the transition function T : at time t, the agent
performs an action at from state st, it receives a reward rt and transitions to
state st+1.

Example: Figure 1 illustrates the concept of RL in robotics in which the state
space describes the environment: position of boxes; action space the possible
robot actions: arm motion. After each action, the robot receives a binary reward.

Introduction Background                    Framework Simulation                    Real robots                   Discussion                    Conclusion

Autonomous Learning    Interactive Learning

Markov Decision Process (MDP)

Environment

Robot
state

action

reward

reward

state

action

𝑀𝐷𝑃 < 𝑆, 𝐴, 𝑇, 𝑅 >:
- 𝑠 ∈ 𝑆
- 𝑎 ∈ 𝐴
- 𝑇: 𝑆 × 𝐴 → Π 𝑆
- 𝑅: 𝑆 × 𝐴 → ℝ

Fig. 1. RL learning framework used to model the environment (state space S), robot
actions (action space A) and the task that should be achieved formulated by an MDP
(Markov Decision Process). The robot receives a reward R after each action (adapted
from [66])

The aim of RL is to find a policy π : S → A which maps from the state s to
a distribution on the action A, this is the decision function. An agent endowed
with a policy π will behave in a certain manner to achieve a task. The policy
could be either deterministic or stochastic [87]. The optimal policy π∗ maximizes
agent’s long-term rewards. Learning is performed with a trial-and-error strategy.
The long-term view is defined by the state-value function V π(s), which specifies
the expected gain for an agent to be in a particular state s with a policy π.
Similarly, the action-value function Qπ(s, a) defines the expected gain for policy
π starting from state s taking action a.

Several algorithms of RL have been proposed (see [87] for an overview). A
fundamental problem faced by some of the RL algorithms, is the dilemma be-
tween the exploration and exploitation. Exploration allows the autonomous agent
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to gather new information that may improve future reward and consequently the
policy (eg., ϵ−greedy approach). The exploitation refers to making the best deci-
sion given the current model. Several modern RL algorithms have been proposed
to tackle this critical dilemma of exploration and exploitation.

3.2 Robot Learning

RL and robotics. In [52], the authors discuss the challenges, problems and
opportunities of reinforcement learning in the context of robotics. In particular,
the physical embodied nature of robots, the nature of tasks and the limited per-
ception of the environment often result in problems that should be represented
with high-dimensional continuous states and actions. In addition, these states
are not always completely observable. Exploration of actions is costly, difficult
to reproduce and sometimes unsafe. The specification of a ”good” reward func-
tion is not always straightforward and requires a significant amount of domain
knowledge.

Human interventions in the robot learning process. In the context of
human-robot interaction, reinforcement learning could be employed for several
purposes:

– Interactive Task Learning. The aim is to learn to perform tasks with a hu-
man involved in the learning process by evaluating and guiding the learning
process [92].

– Learning Communicative Behaviors. The aim is to learn to generate multi-
modal robot behaviors such as legible motion (transparency) [16] or select
appropriate behaviors during interaction in order to adapt to the human
partner [64].

The focus of this chapter is Interactive Task Learning. We consider tasks that
are performed by embodied agents in the physical world or in a simulation of it.
Such agents could use their sensors and effectors to both perform the task and
communicate with the human: manipulating an object, pointing to indicate an
object. This chapter discusses the role of interaction in the agent/robot learning
process.

Communication in the robot learning process. Human interventions could
enrich task learning in the form of teaching signals to guide the learning process
such as gaze at objects or spoken language for feedback. Demonstration of a task
is an interesting paradigm since it gathers action and communication about it at
the same time. Similarly, robot communication using transparency and explain-
ability mechanisms of robots could include both task and communicative goals
directed actions. For example, generation of legible motions [28, 98] facilitates
human interpretation of the robot task.

The objective of a task could be to communicate. For example to address
the symbol grounding problem [88], both physical and social symbol grounding,
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there is a need for agent to connect sensory and symbolic representations in
order to be able to process them, reason about them, generate new concepts and
communicate with humans in particular.

The distinction between task achievement and communication is not always
easy and sometimes not relevant at all. However, being able to qualify the goal
of learning is important for interactive and autonomous agents. For this pur-
pose, interactive learning is conceptualized as a mutual exchange process using
two main communication channels, the social channel and the task channel with
valuable interpretations of several learning strategies from: observation, demon-
stration, instruction or feedback [85].

4 Interactive Machine Learning vs. Machine Learning

The purpose of this section is to introduce the main concepts of interactive
machine learning. Reviewing all the mechanisms of interactive machine learning
is beyond the scope of this chapter. However, understanding the impact of human
interventions during the learning process is important for the content of this
chapter. For this purpose and for a sake of clarity, we only discuss the human
interventions on both the traditional and interactive machine learning processes.

4.1 Human interventions in the supervised machine learning
process

Human interventions are already present in the traditional machine learning
process (Figure 2). The obvious case is human machine interaction: the objective
is to support end-users interaction. However, in most of the machine learning
approaches, humans are present at different stages. They could provide data,
annotations, design the algorithms, evaluate the model, design the interaction
and interact with it (Figure 2). These interventions are made by different profiles:
users, domain expert, machine learning expert, human-machine expert and end-
users and at different steps corresponding to different time scales in the process:
data collection, annotation, data analysis, algorithm design, interaction design,
model training and evaluation and final end-user model interaction. The impacts
of such interventions are of different natures.

Example: Human emotion recognition systems require data and annotations to
build robust and efficient systems. Data collection is a key phase and usual ap-
proaches rely either on acted or real-life scenarios. In addition, various method-
ologies have been proposed to annotate emotions with different representations
(discrete vs. dimensional). Self-assessment (e.g, asking the data provider for an-
notation) or assessment from an external observer [1]. All these methodological
and experimental choices impact the design, performance and robustness of the
emotion recognition system.
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Fig. 2 The experimental setup. The participant is standing in front of the robot iCub; their interaction is recorded by a
Kinect, two standard HD cameras (front and side view of the scene). The experimenter monitors the interaction from the
side, not too far but close enough to be able to push the safety button and intervene in case of emergencies. The operator
is hidden behind a wall, and he controls the robot monitoring the interaction through a webcam placed over the robot. The
power supply and cluster of the robot are hidden behind a cabinet.

in this case) and the close proximity between the part-

ners may induce variations of the production of gaze

and speech with respect to simple face-to-face inter-

actions with a predominance of verbal exchange. The

alterations of the dynamics of the signals could be due

to the task and/or to some characteristics of the indi-

vidual, for example its personality or attitude towards

robots.

The engagement models do not currently di↵erenti-

ate between tasks with or without contact, and do not

take into account individual factors that may induce

changes in the dynamics of social signals.

It is therefore necessary to provide evidence of the

relation between these elements to improve the classi-

cal models of engagement. We do it in this paper for a

dyadic task that is fundamental for robotics in service

and industry: the cooperative assembly. Furthermore,

it seems necessary to take a comprehensive approach

with respect to the individual factors, considering per-

sonality traits and attitudes towards robots, as the per-

sonality traits alone could not be su�cient to explain

the variation of the social signals during an interaction

with a robot.

3.2 Research hypotheses

Based on the literature review discussed in Section 2, we

expect that participants that have high scores of extro-

version will talk more to the robot; we also expect that

participants with a very high negative attitude towards

robots score will avoid gazing at the robot. Due to the

specificity of the task, involving a contact between the

human and the robot, we expect that participants with

a high negative attitude towards robots will gaze more

at the robot hands (area of contact between the human

and the robot).

Therefore, we pose five research hypotheses:

Hypothesis 1: If the extroversion dimension is re-

lated to the frequency and duration of utterances ad-

dressed by the human to the robot, then we should find

a positive correlation between the questionnaire score of

extroversion and these variables.

Hypothesis 2: If the extroversion dimension is re-

lated to the frequency and duration of gazes directed

towards the robot’s face, then we should find a positive

correlation between the questionnaire score of extrover-

sion and these variables.

Hypothesis 3: If the negative attitude towards robots

is related to the frequency and duration of the utterances

addressed by the human to the robot, then we should find

a negative correlation between the questionnaire score of

the negative attitude towards robots and these variables.

Hypothesis 4: If the negative attitude towards robots

is related to the frequency and duration of gazes directed

towards the robot’s face, then we should find a negative

correlation between the questionnaire score of the neg-

ative attitude towards robots and these variables.

Hypothesis 5: If the negative attitude towards robots

is related to the frequency and duration of gazes directed

towards the areas of contacts between the human and the

robot, then we should find a positive correlation between
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tothetaskand/ortosomecharacteristicsoftheindi-

vidual,forexampleitspersonalityorattitudetowards

robots. Theengagementmodelsdonotcurrentlydi↵erenti-

atebetweentaskswithorwithoutcontact,anddonot

takeintoaccountindividualfactorsthatmay
induce

changesinthedynamicsofsocialsignals.

Itisthereforenecessarytoprovideevidenceofthe

relationbetweentheseelementstoimprovetheclassi-

calmodelsofengagement.Wedoitinthispaperfora

dyadictaskthatisfundamentalforroboticsinservice

and
industry:thecooperativeassembly.Furthermore,

itseemsnecessarytotakeacomprehensiveapproach

withrespecttotheindividualfactors,consideringper-

sonalitytraitsandattitudestowardsrobots,astheper-

sonalitytraitsalonecouldnotbesu�cienttoexplain

thevariationofthesocialsignalsduringaninteraction

witharobot.
3.2Researchhypotheses

BasedontheliteraturereviewdiscussedinSection2,we

expectthatparticipantsthathavehighscoresofextro-

versionwilltalkmoretotherobot;wealsoexpectthat

participantswithaveryhighnegativeattitudetowards

robotsscorewillavoidgazingattherobot.Duetothe

specificityofthetask,involvingacontactbetweenthe

humanandtherobot,weexpectthatparticipantswith

ahighnegativeattitudetowardsrobotswillgazemore

attherobothands(areaofcontactbetweenthehuman

andtherobot).

Therefore,weposefiveresearchhypotheses:

Hypothesis1:Iftheextroversiondimensionisre-

lated
to

thefrequencyand
duration

ofutterancesad-

dressedbythehumantotherobot,thenweshouldfind

apositivecorrelationbetweenthequestionnairescoreof

extroversionandthesevariables.

Hypothesis2:Iftheextroversiondimensionisre-

lated
to

thefrequency
and

duration
ofgazesdirected

towardstherobot’sface,thenweshouldfindapositive

correlationbetweenthequestionnairescoreofextrover-

sionandthesevariables.

Hypothesis3:Ifthenegativeattitudetowardsrobots

isrelatedtothefrequencyanddurationoftheutterances

addressedbythehumantotherobot,thenweshouldfind

anegativecorrelationbetweenthequestionnairescoreof

thenegativeattitudetowardsrobotsandthesevariables.

Hypothesis4:Ifthenegativeattitudetowardsrobots

isrelatedtothefrequencyanddurationofgazesdirected

towardstherobot’sface,thenweshouldfindanegative

correlationbetweenthequestionnairescoreoftheneg-

ativeattitudetowardsrobotsandthesevariables.

Hypothesis5:Ifthenegativeattitudetowardsrobots

isrelatedtothefrequencyanddurationofgazesdirected

towardstheareasofcontactsbetweenthehumanandthe

robot,thenweshouldfindapositivecorrelationbetween
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Fig. 2. Humans in the Machine Learning Process. Data Providers, Domain, Machine
Learning and Human-Machine Interaction Experts as well as End-Users play a key role
in the machine learning process.

4.2 Human interventions in the interactive machine learning
process

Interaction with humans is at the core of the Interactive Machine Learning (IML)
process [4]: from the design to the usage (Figure 3). There is a growing interest for
IML for several applications: web recommendation, e-mail processing, chatbots
or rehabilitation. Interactive Machine Learning is at the intersection of Machine
Learning and Human-Computer/Machine Interaction.

Human interventions are of different nature. While in traditional ML (Figure
2), it is usual to collect and process very large datasets with multiple users,
interactive ML relies on the interaction with the end-user to collect data. The
training, evaluation and usage phases are intrinsically linked, which requires
specific approaches for the design of both algorithms and interactions.

Interestingly, interactive ML opens new ways of lifelong learning, adaptation
and personalization of models, which could improve usage and trust. However,
having humans at the center of the process also raises several ethical questions
[84, 56] that should be addressed including the definition of requirements to
develop human-centric AI that minimizes negative unintended consequences on
individuals and on the society as a whole [57, 30].

Interactive Robot Learning approaches are grounded in Interactive ML [21].
The embodied nature of robots make the researchers to also take inspiration
from human social learning [92] or even modeling its key mechanisms of child
development as done in developmental robotics [61, 85]. In the following sections,
we will describe human’s teaching strategies and how they are represented and
modeled to fit interactive machine learning frameworks.

5 Overview of Human Strategies

In this section, we give an overview of the main strategies employed by humans to
teach robots. We consider the situation in which a human provides teaching sig-
nals to a learning agent (Figure 4). Teaching signals could take different forms



8 M. Chetouani

Title Suppressed Due to Excessive Length 7

Fig. 2 The experimental setup. The participant is standing in front of the robot iCub; their interaction is recorded by a
Kinect, two standard HD cameras (front and side view of the scene). The experimenter monitors the interaction from the
side, not too far but close enough to be able to push the safety button and intervene in case of emergencies. The operator
is hidden behind a wall, and he controls the robot monitoring the interaction through a webcam placed over the robot. The
power supply and cluster of the robot are hidden behind a cabinet.
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ners may induce variations of the production of gaze
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cal models of engagement. We do it in this paper for a
dyadic task that is fundamental for robotics in service

and industry: the cooperative assembly. Furthermore,
it seems necessary to take a comprehensive approach
with respect to the individual factors, considering per-
sonality traits and attitudes towards robots, as the per-

sonality traits alone could not be su�cient to explain
the variation of the social signals during an interaction
with a robot.

3.2 Research hypotheses

Based on the literature review discussed in Section 2, we
expect that participants that have high scores of extro-

version will talk more to the robot; we also expect that
participants with a very high negative attitude towards

robots score will avoid gazing at the robot. Due to the
specificity of the task, involving a contact between the

human and the robot, we expect that participants with
a high negative attitude towards robots will gaze more
at the robot hands (area of contact between the human
and the robot).

Therefore, we pose five research hypotheses:

Hypothesis 1: If the extroversion dimension is re-
lated to the frequency and duration of utterances ad-

dressed by the human to the robot, then we should find
a positive correlation between the questionnaire score of
extroversion and these variables.

Hypothesis 2: If the extroversion dimension is re-

lated to the frequency and duration of gazes directed
towards the robot’s face, then we should find a positive
correlation between the questionnaire score of extrover-
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is related to the frequency and duration of the utterances
addressed by the human to the robot, then we should find
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is related to the frequency and duration of gazes directed
towards the robot’s face, then we should find a negative
correlation between the questionnaire score of the neg-

ative attitude towards robots and these variables.
Hypothesis 5: If the negative attitude towards robots

is related to the frequency and duration of gazes directed
towards the areas of contacts between the human and the

robot, then we should find a positive correlation between
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INTERACTIVE
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LEARNING

EXPERT
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Provides data, interacts, 
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and Usage

Domain Knowledge 
Informs

Fig. 3. Humans in the Interactive Machine Learning Process. End-users are both data
providers and model evaluators. Designing the interaction is as important as designing
the models. The Expert becomes an Interactive Machine Learning Expert.

(e.g., demonstration, instruction) and are at the core of the human teaching
strategy. Most of these strategies assume that humans are rational intentional
agents, optimal with respect to their decisions, actions and behaviors. The con-
cept of intention is used to characterize both the human’s actions and mental
states [13]. In case of interactive robot learning, this means that humans provide
teaching signals with an intention, which is translated into a sequence of actions
aiming at influencing the robot learning.

In Table 1, we describe the main teaching signals considered in human-robot
interaction: feedback, demonstration and instruction. They are respectively used
to communicate specific intentions: evaluating/correcting, showing and telling.
Social and task channels are employed to communicate intentions (Figure 4).
Instructions, gaze or pointing are considered as being conveyed by the social
channel. Manipulation of objects to demonstrate a task exploit the task channel.
These channels could be combined and exploited by both the human and the
robot during the learning process.

The learning agent needs to infer human’s intention from the teaching signals.
However, intentions are not explicit. Ambiguities could occur during communi-
cation. Humans could also intentionally deviate from optimality and apparently
behave as non-rational agents (Section 9). The most common strategies are cer-
tainly to learn new tasks by providing feedback, demonstration or instructions
(Table 1). In the following sections, we propose definitions, mathematical formu-
lations and discuss interpretations and teaching/learning costs of such strategies.

6 Feedback

6.1 Representation

Human feedbackH(s, a) is considered as an observation about the reward r(s, a).
Binary and Real-valued quantities have been considered in interactive reinforce-
ment learning.
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Teaching Signals

Intention

Transparency, Query

Social and Task 
Channels

Fig. 4. Interactive Robot Learning Paradigm: The Human Teacher provides Teaching
signals using Social and/or Task Channels. Teaching signals are performed with an
intention. The Learning Agent/Robot infers the intention from the teaching signal and
exploits them to learn a task. Learning agents could improve learning by increasing
transparency and/or asking for additional information (e.g., labels, features).

Table 1. Description of main Human Teaching Strategies. Robot action is performed
at time-step t. A teaching signal is the physical support of the strategy using social
and/or task channels.

Teaching
signals

Feedback Demonstration Instruction

Nature
Notation H(s, a)

D = {(st, a∗
t ),

(st+1, a
∗
t+1)....}

Iπ(s) = a∗
t

Value Binary / Scalar State-Action pairs
Probability
of an action

Time-step
t-1 ! !

t !

t+1 !

Human
Intention Evaluating / Correcting Showing Telling

Teaching cost Low High Medium

Robot
Interpretation

State-Action evaluation
Reward-/Value-like

Optimal actions
Policy-like

Optimal action
Policy-like

Learning cost High Low High
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6.2 Definition

Human feedback H is produced at t + 1, after the evaluation of the robot’s
action (Table 1). Human feedback is provided with the intention of evaluating
the robot’s action (critique). Human Feedback is considered to communicate
about the performance of a robot’s action. Human feedback is usually termed as
evaluative feedback : the human observes the states st and st+1 and the last robot
action a and then gives a reward signal. The value of the evaluative feedback
depends on the last action performed by the robot.

Teaching with evaluative feedback is a low cost strategy (Table 1). The ac-
tions are performed by the robot using exploration algorithms. The human only
delivers feedback on the observed actions. However, intervention at each time-
step is not realistic and imposes a significant burden on the human teacher.
This calls for new algorithms able to efficiently integrate human feedback during
learning.

6.3 Learning from Evaluative Feedback

An intuitive way is to remove the reward function R from the reinforcement ap-
proach for task specification (Section 3). This results in an MDP\R, an MDP
without a reward function. The reward is then replaced by the human feedback.
Understanding human’s feedback strategy has been the focus of several works
[90, 47, 42, 68]. They all highlight the importance of understanding human’s in-
tentions and the design of adequate algorithms for the exploitation of teaching
signals. To efficiently learn from human feedback, there is a need to go beyond
just considering the human feedback as a reward and eventually combining it
with the reward of the environment.

The usual approach is to design models of human feedback that are able to
capture specific properties of human strategies. This leads to various integration
strategies of Human feedback H into RL systems. There is no clear agreement
on the many ways of achieving this integration but the main approaches rely on
shaping such as:

– Human feedback H as a reward r: reward shaping
– Human feedback H as a value V or Q: value shaping
– Human feedback H as a policy π: policy shaping

We detail the approaches that result from three different interpretations of
human feedback. They all consider shaping as a method to influence the agent
behavior towards a desired behavior [49, 69, 68].

6.4 Reward shaping

Human feedback is interpreted as a reward (Table 1). When the agent interacts
with its environment, modeled as a Markov Decision Process (MDP), it receives
a reward r(s, a) and an additional reward shaping reward H(s, a):

r′(s, a) = r(s, a) + β ∗ Ĥ(s, a). (1)
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where β, a decaying weight factor, controls the contribution of human feedback
H(s, a) over the environment reward r(s, a).

The reward r(s, a) is first augmented by the human feedback Ĥ(s, a). Then,
the augmented reward r′(s, a) is used to shape the agent. This is usually consid-
ered as an indirect shaping approach [68, 77].

6.5 Value shaping

Human feedback is interpreted as a human value function (Table 1). The human
evaluates the action by providing a rating of the current agent’s action with
respect to some forecast of future behavior [100, 68, 48, 23, 43]. This rating is
employed to augment the action-value function Q(s, a). Shaping method have
been considered in the literature [68]:

Q′(s, a) = Q(s, a) + β ∗ Ĥ(s, a), (2)

where β is a decaying weight factor (see also equation 1).

Other approaches consider an estimation of the human value function as done
in TAMER [49] (Section 6.7).

6.6 Policy shaping

Human feedback is still interpreted as a value (Table 1) but employed to directly
influence the agent’s policy [68, 77, 100]. Two main methods have been considered
so far [50]:

– Action biasing: The shaping is only performed during the decision-making
step. The value function is not directly perturbed by the human feedback
augmentation:

a∗ = argmax[Q(s, a) + β ∗ Ĥ(s, a)], (3)

– Control sharing: This method arbitrates between the MDP policy and human
value function. The human policy derived from feedback is used for action
selection given the probability β:

Pr
[
a = argmax

(
Ĥ(s, a)

)]
= min(β, 1) (4)

Other approaches have been proposed in the literature such as combination
of policies using multiplication of probability distributions [36, 69, 78]. COACH
(Convergent Actor-Critic by Humans) algorithm [62] is motivated by the obser-
vation that human policy is influenced by learner’s current policy. The authors
argue that the advantage function [87] is a good model of human feedback. They
use actor-critic algorithms to compute an unbiased estimate of the advantage
function.
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6.7 Example: The TAMER architecture

The TAMER architecture (Training an Agent Manually via Evaluative Rein-
forcement) [49] assumes that the human has an internal function H that maps
observed agent action in a feedback (negative, neutral or positive). The human
has in mind a desired policy πH and wants to communicate it to the agent
through feedback. In other words, TAMER estimates human’s intention (ta-
ble 1) from the observation of feedback. The internal function H is called the
”Human Reinforcement Function”. TAMER approximates the human internal
function by a regression model Ĥ∗ trough minimizing a standard squared error
loss between H(st, at) and Ĥ(st, at). TAMER is formulated as an MPD without
a reward (MDP\R). The agent uses this function to perform action selection:

π(s) = argmax
a

Ĥ∗(s, a) (5)

TAMER interprets Human feedback as a value. In [51], the authors address de-
lays in human evaluation (human’s feedback) through credit assignment, which
includes creation of labels from delayed reward signals. TAMER has been suc-
cessfully combined with Reinforcement learning (TAMER+RL) [50] and recently
Deep Learning (Deep TAMER) in order to deal with high-dimensional state
spaces [99].

6.8 Limitations

Understanding human feedback strategies is essential in the design and devel-
opment of learning from evaluative feedback algorithms. Previous works have
identified numerous issues such as:

– Credit assignment problem: humans provide feedback with a delay by con-
sidering actions happened in the past [24].

– Policy dependent : humans’ feedback strategy is influenced by learner’s cur-
rent policy [62].

– Positively biased feedback : positive and negative feedback are not employed
in the same way by humans [89, 43]. Whether providing both positive and
negative rewards is necessary is an open question [77].

– Reward hacking : this describes situations in which non anticipated actions
are introduced by the agent in order to obtain a positive human feedback.
Several works show that is difficult to anticipate failure behaviors aroused
from reward functions [24, 77].

– Autonomous/self agent exploration vs social interaction: relying only on hu-
man feedback is not efficient and imposes a significant burden on the human
teacher. Current trends combine agent exploration and human feedback in
order to improve robustness to sparse and/or erroneous teaching signals

Current and future works of the domain are addressing such issues by both
conducting human studies as well as developing new machine learning algorithms
and human-machine interaction designs.
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7 Demonstrations

7.1 Representation:

Human demonstrations D are usually represented by a state-action sequence
(Table 1): {(st, a∗t ).}. Where a∗t is the optimal human action at time-step t given
a state st.

7.2 Definition

A demonstration D is produced by the human demonstrator with the intention
of showing a state-action sequence to the robot (Table 1). The paradigm assumes
that the human expert shows the optimal actions a∗t for each state. The state-
action sequence is then reproduced by the robot.

The identification of a mapping between the human teacher and robot learner
actions, which allows the transfer of information from one to the other, is called
the correspondence problem [6]. Contrary to evaluative feedback, demonstrations
could be provided before (time-step t−1) or simultaneously (time-step t) to robot
actions (Table 1).

7.3 Methods

Teaching with a demonstration strategy imposes a significant burden on the
human teacher. The assumption is that the human teacher is being able to
perform the task in order to communicate optimal actions a∗t through the task
channel (see Figure 4). The set of demonstrations are interpreted as a human
policy of the task (πh) (Table 1). For such reasons, Interaction Design plays an
important role in learning from demonstrations (see Figure 3). Three general
methods are usually considered in the literature [80]: kinesthetic, teleoperation
and observation.

Kinesthetic demonstration is an example of simultaneous teacher-learner in-
teractions through demonstrations, in which the teacher directly manipulates
the robot. This approach eliminates the correspondence problem and simpli-
fies the machine learning process. Several industrial robots are now proposing
this approach to facilitate task learning (Section 10). Kinesthetic demonstration
facilitates the mapping and it facilitates the production of human demonstra-
tions. However, the quality of demonstrations is known to be low as it depends
on the dexterity and smoothness of the human demonstrator during the ma-
nipulation of the robot [80]. With teleoperation, the human demonstrator can
provide demonstrations of robots with high degrees-of-freedom (HOF) as well
as facilitating mapping. However, teleoperation requires the development of spe-
cific interfaces (including virtual/augmented reality) [80]. Observation of human
demonstrations offers a natural interaction mode to the users. However, learn-
ing from demonstrations by observation of human actions using a camera or
a motion capture is not sufficient to compute the mapping. Several challenges
of machine perception are faced including motion tracking, occlusion or high
degrees-of-freedom of human motion.
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7.4 Learning from demonstrations

Demonstration facilitates engagement of non-expert users in robot program-
ming. They can teach new tasks by showing examples rather than programming
them (see Section 10). Interest in learning from demonstrations is shown by
the number of publications in recent years (see [80] for an overview), resulting
also in various terminologies: imitation learning, programming by demonstration,
behavioral cloning and Learning from Demonstrations (LfD).

The challenge of learning from demonstrations in robotics has been addressed
by methods and models of supervised, unsupervised and reinforcement learning.
In [6], the authors argue that LfD could be seen as a subset of Supervised
Learning. The robot is presented with human demonstrations (labeled training
data) and learns an approximation to the function which produced the data.
In the following, we discuss two different perspectives: (i) behavioral cloning
(supervised learning) and sequential decision-making (reinforcement learning).
Inverse Reinforcement Learning (IRL) is presented as an example in section 7.7.

7.5 Behavioral cloning

Behavioral cloning employs supervised learning methods to determine a robot
policy that imitates the human expert policy. This is performed by minimiz-
ing the difference between the learned policy and expert demonstrations (state-
action pairs) with respect to some metric (see algorithm 1).

Algorithm 1 Behavioral Cloning

1: procedure Behavioral Cloning
2: Collect a set of expert demonstrations D = {(st, a∗

t ), (st+1, a
∗
t+1)...}

3: Select an agent policy representation πθ

4: Select a loss function L
5: Optimize L using supervised learning: L (a∗, πθ(s, a))
6: Return πθ

A series of recommendations are made in [75] regarding nature of demon-
strations (trajectory, action-state space), choice of Loss Functions (quadratic,
l1, log, hinge and Kullback-Leibler divergence) and supervised learning methods
(regression, model-free and model-based).

7.6 Imitation learning as a sequential decision-making problem

In [81], the authors argue that imitation learning could not be addressed as
a standard supervised learning problem, where it is assumed the training and
testing data are independent and identically distributed (i.i.d). They show that
imitation learning is a sequential decision-making problem. For this reason, rein-
forcement learning techniques and interactive supervision techniques have been
considered to address imitation learning.



Interactive Robot Learning: An Overview 15

7.7 Example: Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL) [70] is a popular approach in imitation
learning. IRL aims to recover an unknown reward function given a set of demon-
strations and then to find the optimal policy (conditioned by the learned reward
function) using reinforcement learning (see Figure 5).

IRL methods consider the set of expert’s demonstrations as observations
of the optimal policy π∗. Interpretation of demonstrations follows a policy-like
vision (Table 1). From a set of demonstrations, the goal of IRL is to estimate
the unknown reward function parameters of a policy π̂∗ that imitates expert’s
policy π∗. The reward function is then analyzed to understand and/or to explain
the expert’s policy. Standard IRL algorithms consider the reward function as a
linear combination (ψT ) of features f(s, a) of the environment:

rψ(s, a) = ψT f(s, a) (6)

This approach assumes that the expert is acting accordingly in the environment.
Modern approaches consider non-linear combinations using neural network based
estimators of rψ(s, a). IRL is an ill-posed problem since there are infinitely many
reward functions consistent with the human expert’s demonstrations.
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Fig. 5. Inverse Reinforcement Learning (IRL): Human expert provides demonstrations
(state-action pairs). Demonstrations are interpreted as a policy. The goal of IRL is to
compute the underlying reward function from the demonstrations.

7.8 Limitations

LfD methods assume that the demonstrations, state-action pairs (st, a
∗
t ), are

the only teaching signals available to the learner (Table 1). After human demon-
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strations recording, the learner attempts to learn the task using these teaching
signals. This approach has been formulated as an MDP without a reward func-
tion (MDP\R). As previously mentioned, demonstrations could be interpreted
as a human policy πh (Table 1). Similarly to learning from evaluative feedback,
a current challenge of LfD is to include other forms of rewards in the learning, in
particular those computed from environment and/or intrinsic motivations [85].

As discussed in [80], the choice of learning methods is compelling: (i) the
optimal behavior cannot be scripted, (ii) the optimal behavior is not always eas-
ily defined in the form of a reward function, and (iii) the optimal behavior is
only available through human teacher demonstrations. This leads to several chal-
lenges at the intersection of machine learning (e.g. learning methods), robotics
(e.g. control of physical robots) and human-robot interaction (e.g., human fac-
tors, interaction design). In [75], a series of questions summarizes the current
challenges of imitation learning:

– Why and when should imitation learning be used?
– Who should demonstrate?
– How should we record data of the expert demonstrations?
– What should we imitate?
– How should we represent the policy?
– How should we learn the policy?

Answering these questions is required for the design of imitation learning based
systems (more details are available in [75]).

8 Instructions

8.1 Representation:

Human instructions are usually represented as a probability distribution over
actions: Prt(a|i) and a ∈ A.

8.2 Definition:

An instruction is produced by the human with the intention of communicat-
ing the action to be performed in a given task state (Table 1). This could be
formulated as telling, which is a language based perspective of the interaction.
Examples of instructions could be turn left, pick up the object or go forward.

Telling offers other opportunities to the teacher compared to evaluating (feed-
back) and showing (demonstration). A recent work of [86] studies how humans
teach concepts using either demonstrations or language. The results suggest that
language communicates more complex concepts by directly transmitting abstract
rules (e.g., shapes and colors), while demonstrations transmit positive examples
(e.g. manipulation of objects) and feedback evaluates actions. Inferring rules
from demonstrations or feedback is supposed to be more complex.

Instructions are of different nature and are produced with different intentions
grouped in the notion of advice [68]: guidance, critique, action advice. In [54],
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two different methods are compared: critique and action advice. In the critique
based teaching method, the learning agent is trained using positive and negative
verbal critiques, such as good job, and don’t do that. As described in section 6,
such verbal critiques are binary feedback. In the action advice based teaching
method, the learner is trained using action advice such as move right and go left.
The authors show that action advice creates a better user experience compared
to an agent that learns from binary critique in terms of frustration, perceived
performance, transparency, immediacy, and perceived intelligence.

8.3 Learning from instructions

Learning from instructions is formulated as mapping instructions (often in natu-
ral language) to a sequence of executable actions [12, 60]. Mutual understanding
(human/learning agent) of the meaning of instructions is usually assumed, which
obviously facilitates the instruction-to-action mapping. The usual approach is to
pre-define the mapping, which raises with several issues such as engineering and
calibration phases [37, 68], adaptation and flexibility [37, 68], intermediate se-
mantic representation [88, 63, 2], and reward inference from language [58].

We could distinguish between methods that focus on simple commands and
the ones addressing sequence of instructions. The latter are employed to compose
complex robot/agent behaviors with the interventions of a human teacher [82,
27, 76]. In [27], the authors describe a Spoken Language Programming (SLP)
approach that allows the user to guide the robot through an arbitrary, task
relevant, motor sequence via spoken commands, and to store this sequence as a
re-usable macro. Most of these approaches model the task through a graph [88].

Learning from instructions has been combined with learning from demon-
strations [72, 82] and evaluative feedback (critique) [54]. In [25], the authors
combine reinforcement learning, inverse reinforcement learning and instruction
based learning using policy shaping through action selection guidance. During
training, an external teacher is able to formulate verbal instructions that will
change a selected action to be performed in the environment. The results indicate
that interaction helps to increase the learning speed, even with an impoverished
Automatic Speech Recognition system.

8.4 Example: The TICS Architecture

The TICS architecture (Task-Instruction-Contingency-Shaping) [69] combines
different information sources: a predefined reward function, human evaluative
feedback and unlabeled instructions. Dealing with unlabeled instructions denotes
that the meaning of the teaching signal is unknown to the robot. There is a lack
of mutual understanding. TICS focuses on grounding the meaning of teaching
signals (instructions).

TICS architecture enables a human teacher to shape a robot behavior by
interactively providing it with unlabeled instructions. Grounding is performed
during the task-learning process, and used simultaneously for guiding the latter
(see Figure 6).
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Fig. 6. The TICS architecture includes four main components: a Task Model learns the
task, a Contingency Model associates task states with instruction signals, an Instruction
Model interprets instructions, and a Shaping Component combines the outputs of the
Task Model and the Instruction Model for decision-making (adapted from [69]).

Finally, TICS combines:

– standard RL with a predefined reward function (MDP rewards),
– learning from evaluative feedback based on policy shaping approach,
– learning from instructions, which are represented as a policy.

The Contingency Model plays a key role in grounding and it is defined for a
given state as a probability distribution over detected teaching signals. In [69], a
co-occurrence matrix is employed to estimate this probability distribution. TICS
enables human teachers to employ unlabeled instructions as well as evaluative
feedback during the interactive learning process. The robot is also learning from
its own experience using the predefined reward function. The results show that
in addition to the acceleration of learning, TICS offers more adaptability to the
preferences of the teacher.

8.5 Limitations

Learning from instructions suffers from similar limitations as learning from eval-
uative feedback and demonstrations. Here, we report some specific limitations:

– Speech recognition: Instructions are usually provided through natural spo-
ken language. Speech recognition is challenging in human-robot interaction
contexts. Most of the approaches are impacted by the performance of speech
recognition systems [25, 76, 27].

– Instruction-to-action mapping : Learning from instructions is mainly formu-
lated as an instruction-to-action mapping. Going beyond engineering based
approaches requires to address the Symbol Grounding problem [39], which fa-
cilitates the correspondence between natural language instructions and agent
actions [69, 2]
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– Descriptions and Explanation: Instructions explicitly communicate about
robot/agent actions by either advise or critique. Language allows other forms
of teaching such as explanations [93, 74] and descriptions [22, 71]. Counter-
factual explanations evaluate what would happen if an alternative action is
performed. There is a less restrictive nature in a description.

– Pragmatics: Natural language conveys more than the literal interpretation of
words [35]. There is an increasing interest in the introduction of pragmatics
in interactive learning, often inspired by research in linguistics and cognitive
science [34, 41, 38, 18].

– Emotions: Spoken language is also employed to communicate emotions,
which have to be taken into account for interpretation of instructions [53].

Most of these limitations call for methods able to handle uncertainty of spo-
ken natural language in order to build efficient interactive robot/agent learning
methods.

9 Modeling Human Teaching Strategies

Interactive robot learning is a joint activity allowing robots to learn a task by ex-
ploiting observable human behaviors (Figure 3). Most of the methods assume the
observation of overt teaching signals such as feedback, demonstrations and/or
instructions. The decoding phase, i.e. interpretation of teaching signals (Table
1), is usually pre-specified by designers and engineers. This approach does not
consider covert communication such as intentions, beliefs, goals, emotions or at-
titudes. Humans change their behavior in response to the actions of the robot
they are interacting with. Several works have shown that people modify their
tutoring behavior in robot-directed interaction [95, 90, 91, 47, 14]. When humans
demonstrate a task to another human or agent, the demonstrations are directed
not just towards the objects that are manipulated (instrumental action), but
they are also accompanied by ostensive communicative cues such as eye gaze
and/or modulations of the demonstrations in the space–time dimensions (belief-
directed action). This modulation results in behaviors that might appear to be
sub-optimal, such as pause, repetition and exaggeration, while they are the re-
sult of simultaneous instrumental and belief-directed actions, i.e. performing the
action and communicating about it.

To address such limitations, several research directions have been proposed.
For example, computer vision and signal processing techniques are largely em-
ployed in human-robot interaction for the analysis and modeling non-verbal cues
(e.g. tone of the voice, gesture, facial expressions, gaze) in order to infer human’s
mental states, intentions, engagement, emotions and attitudes [94, 5]. Another
research direction focuses on human-decision making by studying forward mod-
els of human decision-making and inverse models of how humans think about
others decision-making [40]. The approaches draw inspiration from research on
how humans interpret observed behaviors as goal-directed actions and address
the challenge of communication in action [40]: actor intends to not just perform
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the ordinary action, but also to convey something about it. In [40], a general
mathematical framework of probabilistic inference and decision-making has been
proposed to characterize the underlying beliefs, intentions and goals of commu-
nicative demonstrations. The framework is largely inspired by language in which
literal interpretation and pragmatic inference of linguistic and paralinguistic con-
tent are performed. These approaches exploit models and methodologies of com-
putational cognitive science and behavioral economics making them relevant for
interactive machine learning. How humans make decisions reveal their beliefs,
intentions and goals. In the following, we describe some examples of natural hu-
man teaching biases (section 9.1) and a Bayesian approach of modeling human
decisions (section 9.2).

9.1 Natural human teaching biases

Human teaching biases have been observed in several situations. In section 6.8,
we described several natural biases of human feedback strategies, which include
delay in feedback delivery [24], influence of robot actions [62] and a tendency to
generate more positive feedback than negative ones [89]. Natural deviations to
optimal behaviors also occur during communicative demonstrations. In [42], the
authors showed the differences in behavior when a human trainer is intentionally
teaching (showing) versus merely doing the task. All these studies call for new
methods that go beyond naive and literal interpretations of teaching signals
(Table 1) such as evaluating/correcting, showing and telling.

Learning situations with children have inspired robotics researchers for the
study of natural human biases during teaching others. We describe two dimen-
sions of interest in human-robot interaction: (i) modulation of non-verbal teacher
behaviors in the space–time dimensions (ii) teacher training strategy.

Non-verbal teacher behaviors modulation. Human teaching situations are
characterized by significant changes in various adult behaviors such as prosody
(motherese [83]) or motion (motionese). In [95], the authors compared Adult-
Child / Adult-Adult / Adult-Robot Interactions. They identified significant dif-
ferences in hand movement velocity, motion pauses, range of motion, and eye
gaze in an Adult-Child Interaction, opposed to an Adult-Adult Interaction. This
decrease is even higher in the Adult-Robot Interaction.

There is a large body of research in cognitive science showing that humans
are specifically efficient in the communication of generic knowledge to other
individuals. This ability has been described in [26] as a communication system
called the ‘Natural Pedagogy’. This work and others show that humans seem
inherently sensitive to ostensive communicative signals such as eye gaze, gesture
as well as tone of the voice. In particular, these works show that contingency
of ostensive signals is a natural characteristic of social interaction in humans,
which has inspired several studies of human teaching behavior [96].

Teacher training strategy. Interactive learning requires that human teach-
ers organize the way they provide training examples to the robot. They select
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which examples to present and in which order to present them to the robot
in the form of instructions, demonstrations and/or feedback. Organization of a
training strategy is termed curriculum learning [8], which is a key element in
human teaching. Several human curriculum learning strategies have been ob-
served and often result in gradually increasing the level of task complexity, i.e.
presentation of simple examples then more complex examples. AI and Machine
learning techniques have been derived from this notion of curriculum learning
with the idea that guiding training will significantly increase the learning speed
of artificial agents. Several works are focusing on the question of how to effec-
tively teach agents with the emergence of computational machine teaching as an
inverse problem of machine learning [101].

Example: In [46], the authors conduct a study in which participants are asked
to teach a robot the concept of ”graspability”, i.e. if an object can be grasped
or not with one hand. To teach the binary task (graspable vs. not graspable),
the participants are provided several cards with photos of common objects (e.g.,
food, furniture, and animals). They have to pick up the cards from the table and
show them to the robot while teaching them the concept of ”graspability”. The
authors observed three different human teaching strategies [46]: (1) the extreme
strategy, which starts with objects with extreme ratings and gradually moves
toward the decision boundary; (2) the linear strategy, which follows a prominent
left-to-right or right-to-left sequence; and (3) the positive-only strategy, which
involves only positively labeled examples. Building up on such observations, they
propose a computational framework as a potential explanation for the teaching
strategy that follows a curriculum learning principle.

In [91], observation of various human teaching strategies raised the following
question: can we influence humans to teach optimally? The authors developed
Teaching Guidance algorithms that allow robots to generate instructions for the
human teacher in order to improve their input. They performed experiments to
compare human teaching with and without teaching guidance and show that
Teaching Guidance substantially improves the data provided by teachers. The
experiments demonstrate that humans are not spontaneously as good as com-
putational teachers.

9.2 A noisily-rational decision model

A more accurate model of human behavior would help in interpreting, antic-
ipating and predicting behaviors, in particular when they are not optimal. A
common approach is to formalize human intent via a reward function, and as-
sume that the human will act rationally with regard to the reward function [45,
55]. The Boltzmann noisily-rational decision model [59] is often employed for
this purpose. This model assumes that people choose trajectories in proportion
to their exponentiated reward.

The Boltzmann noisily-rational decision model quantifies the likelihood that
a human will select any particular option o ∈ O (e.g. any teaching signal or
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example). If each option o has an underlying reward R(o), the Boltzmann model
computes the desirability of an option as:

P (o) =
eR(o)∑
i∈O e

R(i)
(7)

Interactive robot learning usually considers a sequence of human states and
actions, called a trajectory τ = (s1, a1, ..., sT , aT ). Boltzmann noisily-rational
decision model is usually approximated to estimate the probability the human
will take a trajectory is proportional to exponentiated return times a ”rationality
coefficient” β (”inverse temperature”):

P (τ) ≈ exp

{
β

T∑
t=1

γtR(st, at)

}
(8)

The rationality coefficient β captures how good an optimizer the human is.
The following values are usually considered:

– β = 0 would yield the uniform distribution capturing a random human type;
– β → ∞ would yield a perfectly rational human type.

The goal of a noisily-rational decision mode is to draw inference from the
observation of human actions. In [45], the authors introduce a formalism ex-
ploiting such a framework to interpret different types of human behaviors called
the reward-rational choice. Within this framework, the robot is able to interpret
a large range of teaching signals such as demonstrations, reward/punishment
and instructions. However, several works have demonstrated the limits of the
Boltzmann based modeling approach (see for example [9]): needs to identify al-
ternatives of an option (equation 7), suited for trajectories but not policies [55],
and only one parameter β is employed to model rationality. In addition, the
approach does not take into account human reactions to machine actions (i.e.
continuous adaption of human partner to the robot). As described in [40], there
is a need to build better Human Models of Machines to address such issues by
exploiting recent research in cognitive science.

10 Applications

In this section, we illustrate how Interactive Robot Learning Algorithms have
been applied to several domains such as Interactive Task Learning, Behavior
Generation/ Composition, and Socially Assistive Robotics. In all these appli-
cations, it is necessary to define the role of the human, the agent and their
interactions during the learning and use phases.

10.1 Interactive Task Learning

Interactive Task Learning (ITL) [56] is one of the main areas of applications of
methods and algorithms presented in this chapter. The aim of ITL is to develop
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agents able to learn a task through natural interaction with a human instructor.
Numerous applications have been considered and some of them transferred to
industry.

A use-case, object sorting task, is presented in figure 7. The robot has to
learn to sort two types of objects: Plain (left) and Pattern (right), with two
different sizes and three colors. In [69], the TICS architecture (Section 8.4) has
been employed to achieve this learning with a human teacher. The results show
that the interactive learning perspective facilitates programming by including
real-time interaction with humans, and improves flexibility and adaptability of
communication.

Fig. 7. Teaching object sorting (adapted from [66]).

10.2 Learning robot behaviors from human demonstrations

Figure 8 describes how Inverse Reinforcement Learning (IRL) is employed to
learn robot behaviors: how a mobile robot approaches a moving human?. As
described in section 7.7, IRL starts with the recording of human demonstrations.
In [79], demonstrations collection is performed off-line: humans were asked to
teleoperate a mobile robot with the aim of approaching humans (Figure 8a).
Based on such demonstration, IRL is then used to learn a reward function that
could replicate navigation behaviors. This work contributes to the challenge of
generating legible robot motion [28] that should be addressed with a human-in-
the-loop perspective [97].

10.3 Learning robot behaviors from human instructions

Spoken language based programming of robots has been described in section 8.3.
Humans simply describe actions and behaviors through natural language, which
take the form of instructions. The ambition is to go beyond simple commands
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(a) Human demonstrations of the
robot approaching the target per-
son.

(b) Robot approaching solution us-
ing IRL. A smooth trajectory is
generated using a Bézier curve.

Fig. 8. Learning how to approach humans using Inverse Reinforcement Learning
(adapted from [79]).

and enable end-users to create new personalized behaviors through natural in-
teractions. In [76], a cognitive architecture has been developed for this purpose
(Figure 9). This approach has been successfully transferred to industry and im-
plemented in a Pepper robot with SoftBank Robotics. The cognitive architecture
has been evaluated within the Pepper@Home program. The results demonstrate
that end-users were able to create their own behaviors and share them with other
end-users.

Fig. 9. Teaching new robot behaviors using natural language (adapted from [76]).
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10.4 Socially Assistive Robotics

There is a substantial body of work in the design and development of socially
assistive robotics where interactive robot learning plays an important role. The
research works explore whether a robot could facilitate reciprocal social interac-
tion in cases in which the robot was more predictable, attractive and simple [29,
32, 11]. In figure 10, imitation learning has been employed with children with
Autism Spectrum Disorders. The children are asked to teach robots new pos-
tures, which is unusual in rehabilitation. Having the children teaching the robot
has been shown to be relevant in rehabilitation and education (protégé effect)
(see [33] for a use-case on dysgraphia). Contrary to the usual assumption of
interactive robot learning, the challenge is to learn with children who do not
fully master the task. The impact of the human teacher has been analyzed and
exploited to capture individual social signatures [10] (Figure 10). Using different
imitation experiments (posture, facial expressions, avatar-robot), we were able
to assess the impact of individual partners in the learning.

Fig. 10. Exploitation of Imitation Learning in Psychiatry, Developmental and Cogni-
tive Sciences (adapted from [10]).

11 Conclusions, challenges and perspectives

In this chapter, we introduced the main concepts of Interactive Robot Learning,
which were illustrated by several examples and applications. The chapter shows
that the design of human interventions is as important as the design of algorithms
in the efficiency of interactive robot learning. There is a substantial body of
literature documenting interactive robot/machine learning methods and models
(see also relevant readings in Section 2.4).

In the following, we report some relevant challenges of the domain shared by
all human intervention strategies.
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Autonomous - Interactive Learning. Collecting human teaching signals is ex-
pensive and a limited number of teaching signals could be collected. This issue
refers to sample efficiency of algorithms and most of the interactive approaches
are sample inefficient since they require a large number of human interventions.
In addition, introducing human interventions in algorithms not designed for such
purpose raises new issues not always expected (e.g., credit assignment, reward
hacking, non-optimal human behaviors, implicit feedback or emotion). There has
been several attempts aiming at combining rewards from multiple sources such
as from the human and the environment.

This leads to challenges at the core of Human Centered AI, in particular
how to build hybrid teams that are more efficient than each team member. In
addition, following a Human Centered AI perspective, the aim is to augment
the human and not to replace it. In [85], we discuss a range of reinforcement
learning agents equipped with different skills that could handle such situations
(including intrinsic motivations [77] and curriculum learning).

Evaluation and Replicability. Comparing, selecting and adapting models is essen-
tial in Interactive Robot Learning. Machine Learning and Robotics have set-up
evaluation metrics that could be employed there. Similar to Human-Robot In-
teraction (HRI) methodology, there is a need to complement the evaluation by
human oriented metrics, which could include questionnaires (see for example
engagement evaluation in HRI [73]) as well as as assessment of interaction load
(e.g., number of interactions [69]).

Another important factor allowing to obtain consistent results is replicability
(repeatability + reproducibility). Compared to standard machine learning, the
data are collected during training through interaction with humans. In Interac-
tive Robot Learning, data collection is about collecting data from both humans
& robots. As mentioned in section 7, recording of teaching signals is part of the
interaction design and exploit various modalities: speech signals, gesture, robot
motion... Consequently standardization of data collection is challenging. In ad-
dition, as mentioned in section 6.8, reciprocal (human-robot) interdependence
is observed during interactive robot learning scenarios, which impacts repeata-
bility of experiments. This calls for new ways of collecting and sharing data for
improving reproducibility of works.

Multiple and Multimodal Human Interventions. The most common strategies
are certainly to learn new tasks by providing feedback, demonstration or in-
structions (Table 1). However, many other interventions have been considered
in the literature such as human preference given in regards to pairwise agent be-
haviors [77, 100], (joint) attention to states and/or actions during learning [100,
31] and expressing hierarchy of a task [100].

Humans are per definition multimodal and should be enabled to produce mul-
timodal teaching signals. Most of the current works consider only one modality
such as facial expressions [15, 10], gesture [69], social signals [65], or physiological
signals [3].
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Grounding multiple and multimodal teaching signals into actions is required
to facilitate interpretation and learning. How to design interactions, interfaces,
methods and models able to handle multimodal teaching signals is still an open
question.

Mutual Understanding. The ability of agents to predict others and to be pre-
dicted by others is usually referred to as mutual understanding, which plays an
important role in collaborative human-robot settings [44]. This could be achieved
by transparency/explainability of robots [19, 98] through the generation of verbal
and non-verbal cues including gaze [7], legible motion [28], emotional expressions
[16], queries/questions and dialog [20, 17].

Being able to understand humans is also required and this will result in bet-
ter Computational Human Models of Machines. In such direction, several recent
contributions deal with inferential social learning to understand how humans
think, plan, and act during interactive robot/agent learning [45, 58, 18, 97, 40].
This calls for new interdisciplinary research grounded in Cognitive Science, Ma-
chine Learning and Robotics [40, 85].
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