
HAL Id: hal-04060634
https://hal.science/hal-04060634v1

Submitted on 6 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On-Line Testing of Neuromorphic Hardware
Theofilos Spyrou, Haralampos-G. Stratigopoulos

To cite this version:
Theofilos Spyrou, Haralampos-G. Stratigopoulos. On-Line Testing of Neuromorphic Hard-
ware. 2023 IEEE European Test Symposium (ETS), May 2023, Venise, Italy. pp.1-6,
�10.1109/ETS56758.2023.10174077�. �hal-04060634�

https://hal.science/hal-04060634v1
https://hal.archives-ouvertes.fr


On-Line Testing of Neuromorphic Hardware
Theofilos Spyrou and Haralampos-G. Stratigopoulos

Sorbonne Université, CNRS, LIP6, Paris, France

Abstract—We propose an on-line testing methodology for
neuromorphic hardware supporting spiking neural networks.
Testing aims at detecting in real-time abnormal operation due to
hardware-level faults, as well as screening of outlier or corner
inputs that are prone to misprediction. Testing is enabled by two
on-chip classifiers that prognosticate, based on a low-dimensional
set of features extracted with spike counting, whether the network
will make a correct prediction. The system of classifiers is
capable of evaluating the confidence of the decision, and when
the confidence is judged low a replay operation helps to resolve
the ambiguity. The testing methodology is demonstrated by fully
embedding it in a custom FPGA-based neuromorphic hardware
platform. It operates in the background being totally non-
intrusive to the network operation, while offering a zero-latency
test decision for the vast majority of inferences.

Index Terms—Neuromorphic computing, spiking neural net-
works, testing, reliability.

I. INTRODUCTION

Neuromorphic computing having as basis a Spiking Neural
Network (SNN) emulates brain-like functionality aiming at
solving various problems, such as visual sensing and per-
ception, control-loops for robotics, brain-computer interfac-
ing, audio processing, etc., with comparative advantage to
the contemporary von Neumann computing architecture as
well as the classical artificial neural networks. Neuromorphic
computing is a rapidly evolving field and intense efforts are
ongoing on hardware architecture and software design as well
as on demonstrating real-world applications [1]. Nowadays
there exist large-scale research hardware platforms [2]–[5] and
several chips have been demonstrated for various benchmarks
[6], [7].

This work addresses the on-line testing of SNNs aiming at
detection of abnormal behavior due to hardware-level faults,
as well as detection of outlier and corner inputs that are
prone to misprediction. Therefore, beyond fault detection, the
proposed methodology can be used to assess the confidence
in the SNN prediction, contributing to the trustworthiness of
the application.

The proposed methodology is based on a lightweight and
non-intrusive on-die symptom detector that operates in the
background in parallel with the SNN and outputs a decision
whether the running input will be correctly predicted by the
SNN. The detector is based on a committee of two classifiers
trained to make the decision based on a low-dimensional set
of spike-based features extracted on-die.

The detector is capable of evaluating the confidence of its
decision, thus achieving an optimal zero false negatives/zero

This work was supported by the ANR RE-TRUSTING project under Grant
No ANR-21-CE24-0015-03. The work of T. Spyrou was supported by the
Sorbonne Center for Artificial Intelligence (SCAI) through Fellowship.

false positives trade-off. For the vast majority of SNN infer-
ences, a correct decision is made deterministically in one-shot
with zero latency and concurrently with the SNN operation
without interfering with it. Whenever the decision has low-
confidence, the ambiguity is resolved by performing a single
replay operation. The detector is also capable of detecting a
percentage of faults that do not affect the SNN prediction
for the running input, but are likely to affect the prediction
of a future input, thus it serves also as a failure prognosis
mechanism that allows taking action to avoid such failures.

The method is demonstrated on hardware using an SNN
benchmark for poker card symbol recognition. The SNN
is designed in VHDL and is implemented on the FPGA
of the Zynq®UltraScale+TM MPSoC ZCU104 FPGA board
by Xilinx, Inc. The classifiers run on the ARM quad-core
ARM®CortexTM-A53 processor of the board.

The rest of the article is structured as follows. In Section
II, we provide a concise overview of SNNs. In Section III,
we briefly present the state-of-the-art on SNN testing. In
Section IV, we discuss the proposed on-line testing approach.
In Section V, we present the case study and hardware platform.
In Section VI, we present the experimental results. Section VII
concludes this article.

II. SNN BACKGROUND INFORMATION

Inspired by biology, SNNs are an effort to leverage the
advantages of the human brain in Artificial Intelligence (AI).
The neurons comprising a SNN use unit instantaneous signals,
called spikes, in order to encode and process the informa-
tion. Sequences of spikes or spike trains are propagated to
the network through layers of neurons linked via weighted
connections, called synapses.

One of the least computationally complex, and hence
hardware-friendly, neuron model is the Integrate & Fire (I&F)
model [8]. Initially, the neuron is at a resting state, where the
membrane potential is set to a low value. The neuron integrates
the incoming spikes from the synapses at its input and the
membrane potential is increased correspondingly. Once the
potential exceeds a specified threshold, the neuron fires a
spike, which is propagated to the next layer of neurons via the
synapses connected to its output, and the neuron is reset to its
resting state again. The refractory period is the time in-between
successive spikes regulating the maximum possible spiking
frequency of the neuron. An extension to the aforementioned
model is the leaky I&F neuron, where the membrane potential
is periodically brought closer to the resting state during the idle
time of the neuron, so if there are no incoming spikes, then
the neuron is gradually reset.



The input to a SNN needs to be in a neuromorphic form
too, i.e., in a spike train representation. To achieve this, a
neuromorphic camera or a Dynamic Vision Sensor (DVS)
is usually employed. A DVS resembles the retina of the
human eye and is composed by pixels that behave similarly
to a neuron responding to changes in the brightness. If the
brightness of a pixel has changed sufficiently, a spike is
generated. Each pixel operates independently and reports the
brightness changes as they occur.

Neurons operate and fire spikes asynchronously. To handle
the inter-neuron communication in a realistic neuromorphic
architecture, a protocol like the Address Event Representation
(AER) is essential. According to AER, a spike is represented in
the form of an event containing the address of either the neuron
that generated it, or the neurons that the spike is destined to.
This allows the neurons to be triggered only when there is an
event associated with them.

For a multi-class recognition task, SNNs typically have one
neuron per class at their output layer. The winning class is, for
example, the one corresponding to the neuron that produced
the largest number of spikes within a given time interval or
the neuron that fired first a spike.

III. STATE-OF-THE-ART ON SNN TESTING

SNN hardware implementations inherit to a large degree the
remarkable fault tolerance capability of the biological brain.
Most faults are benign, that is, they affect a component that
does not take part in the computation, they are completely
masked thanks to the information propagation through the
network, they change the order of the top predicted classes
but not the top-1 class, or they lead to inaccurate predictions
for only a tiny fraction of the inputs and in this sense they
can be tolerated. However, some faults remain critical and can
lead to a large drop of correct classification percentage. This
fault behavior has been demonstrated in several recent fault
injection experiments at software level [9]–[16] and in actual
neuromorphic hardware [17].

At software level, faults are injected in synapses and neurons
assuming that each component can fail independently. In
[18], neuron fault simulation is performed at transistor-level
considering defects and process variations, in order to extract
failure modes. Main failure modes include a dead neuron, i.e.,
its output is stuck-at a value independently of the input activity,
a saturated neuron, i.e., it produces a non-stop output spike
train even in the absence of input activity, and timing variations
in the output spike train, such as variations in the time-to-first
spike and spiking frequency. Dead and saturated responses can
be modelled at software by modifying directly the output spike
train, while timing variations can be induced in various ways,
for example by modifying the neuron’s membrane threshold.
Common synapse faults include disabled, stuck-weight or
saturated-weight synapses. Given that synapse weights are
stored as digital words in a memory while at software are
handled as real values, a hardware-aware synapse fault model
in software is to digitize the real value, perform bit flips, and
then reconvert to a real faulty value.

At hardware-level, traditional fault models such as gate-level
stuck-at faults, delay faults, or cell-aware defects can be used.
However, studies so far have considered single and multiple
bit-flips in the memories storing the various parameters of the
network, such as synapse weights, neuron threshold, leakage,
and refractory period, routing of events, etc. [17].

Post-manufacturing functional testing methods are proposed
in [13], [16], [19]. The idea in [13], [16] is to identify
available input samples or craft new input samples, for ex-
ample adversarial samples [13], that can sensitise faults and
output a prediction that differs from this of the nominal
fault-free network. A compact set of input samples can be
generated achieving this objective. In [19], a built-in self-test
for biological spiking neurons is proposed where the neuron
is exercised from its bias voltages to span the entire range of
operation and output all possible firing patterns. If a pattern
is missing, then the neuron is labelled faulty.

Fault tolerance techniques can be proactive or reactive, and
typically each can address a subset of fault types and locations.
Proactive techniques aim at making the SNN tolerate by design
a number or certain types of faults. One approach is to perform
fault-aware training where faults are injected during training
epochs, for example as synapse weight perturbations, aiming at
maximizing simultaneously accuracy and fault tolerance [11],
[12], [20]. A second approach is to derive the memory fault
map via testing, then prioritize placing of Most Significant
Bits (MSBs) of network parameters on non-faulty memory
cells [12]. A third approach is to adopt training algorithms that
naturally offer fault tolerance [11], [14]. For example, in [14],
it is shown that training with dropout can nullify the effect of
dead neuron faults and timing variations in all layers except
the very last ones. At hardware-level, a proactive technique is
to perform Triple Modular Redundancy (TMR) for the most
critical layers, with priority given on the last layer [14].

Reactive fault tolerance techniques are implemented at
hardware-level and, in general, are composed of two mech-
anisms, namely a self-test mechanism for fault detection and
a fault-mitigation strategy. One approach is to focus on the
most lethal faults, namely neuron saturation and large synapse
weight increases. For neuron saturation, it is proposed to
implement a symptom detector attached to each neuron and
silence the neuron if it exhibits saturation behavior [14],
[15]. For large synapse weight increases, it is proposed to
replace the weight with a pre-defined value, i.e., a zero value
[15]. These fault-mitigation approaches essentially translate a
critical fault into a benign fault. Finally, another approach is
to perform on-line re-learning by disabling components for
which re-learning cannot make up for the damage [9].

The reader is referred to [21] for a survey on testability and
dependability approaches for AI hardware including SNNs.

IV. PROPOSED TESTING APPROACH

Summarizing the state-of-the-art, we make the following
observations:
1) Proactive fault tolerance methods [11], [12], [14], [20]

cannot compensate the effect of all faults, thus a number



(a) Feature extractor at feature map-level.

(b) Network-level test.

Fig. 1: Principle of operation.

of faults remain critical and a dedicated test procedure is
desired.

2) On-line concurrent error detection is implemented at the
component-level, i.e., checking the status of synapses and
neurons individually [14], [15], [19]. This approach may
result in large overhead.

3) Functional testing based on selected fault-sensitizing inputs
[13], [16] is primarily a post-manufacturing testing ap-
proach but can also be executed on-line periodically in idle
times by storing the functional tests in an on chip memory.
Besides the memory overhead, the assumption is that the
memory remains fault-free. Moreover, this approach does
not guarantee high safety standards as it misses transient
errors and detects permanent errors with latency.

4) Testing approaches are demonstrated for hardware-level
fault detection only, while their utilisation for outlier and
corner input detection is not studied so far.

The primary objective of the proposed testing approach is
to detect in real-time any abnormality in the SNN operation,
either it is due to a fault occurring or due to an outlier or
corner input.

Testing, in general, can be viewed as checking a set of
symptoms that point to abnormal operation. We postulate that
defining symptoms at the output of neurons is a good strategy
since information flows in the form of spike trains and for the
SNN prediction to be affected the output spike train of at least
one neuron in the network should be appreciably altered.

However, checking the output of every single neuron re-
sults in test resources with large overhead. To this end, we
propose defining symptoms at a higher-level of hierarchy in
the network, specifically at the output of each feature map.
By construction, according to the AER protocol, a feature
map outputs a flow of spiking events e(t, d), where t is the
time of the event and d is the sender or the recipient neuron
coordinates. Illustrated in Fig. 1a, we propose to project the

spike events of neurons of the feature map in time, consider
a pre-defined time window that is dependent on the duration
of the input, and define a test parameter at the feature map-
level equal to the count of accumulated spike events during the
time window. The premise is that an abnormal operation will
be manifested in the cumulative spiking activity at the output
of at least one feature map both in terms of the number of
produced spikes and the spike frequency, causing some test
parameters to drift away from their expected values. This drift
is a symptom of abnormal operation. In this way, we drastically
reduce the test parameter dimensionality from the neuron size
to the feature map size. In fact, it may not be necessary to
consider all feature maps since an abnormal spiking activity at
the output of a feature map will propagate and spread through
the network, thus it may be detectable at the output of feature
maps in the next network hierarchy levels.

Next step is making a test decision based on the test param-
eters. We postulate that checking their combination across the
network can be a better test criterion as opposed to checking
them individually. This can be done by training a single one-
class classifier to map the test parameters to an one-bit test
decision addressing the complete network. In machine learning
terminology, the test parameters serve as the input features of
the classifier, not to be confused with the feature extraction
performed by each feature map in the SNN. The classifier is
trained on the fault-free network using the available training
input samples. Each input is presented to the network and
test parameters are collected at the outputs of the feature
maps. This is an one-off effort that is already spent during
training. The classifier will learn the area in the test parameter
space that corresponds to normal operation, enclosing it with a
classification boundary, as shown for example with the yellow
classifier in Fig. 1b. In abnormal operation, the combination
of test parameters will drift outside the classification boundary
and the classifier will flag an error detection.

The performance of a classifier is assessed based on two
metrics, namely false negatives or test escapes, i.e., abnormal
operation goes undetected, and false positives or overkill, i.e.,
flagging an error when there is actually none. However, a
single classifier is likely incapable of perfectly distinguishing
normal from abnormal operation and is bounded to making
errors. Using a single classifier, the classifier establishing the
optimal trade-off between test escapes and overkill would have
been decided based on test economics.

To this end, we adopt a two-tier test approach originally
proposed for analog circuits [22]. We propose to avoid using
a single classifier making a deterministic decision and instead
use a system of two classifiers, as shown in Fig. 1b. The
yellow classifier is designed to be strict, i.e., in its inner
area it encloses only feature patterns corresponding to normal
operation. The blue classifier is designed to be lenient, i.e.,
feature patterns falling in its outer area for sure correspond
to abnormal operation. If the decision of the two classifiers
agrees, i.e., the footprint of the feature pattern lies into the
inner area of the yellow classifier or into the outer area of
the blue classifier, in other words it lies outside the grey zone



between the two boundaries, then this decision is deterministic
and can be trusted. In contrast, if the footprint lies into the grey
zone, then the test decision has low confidence. Essentially, the
grey zone serves as a guard-band.

To deal with low confidence decisions, we need an extra
fast test to make a final decision with incontestable accuracy.
For this purpose, we investigate the different scenarios to
understand how the system of the two classifiers responds in
each case. The input of the SNN can be typical or can be an
outlier or corner input that is foreign to the bulk of the training
set and, thereby, is prone misprediction. On the other hand,
the SNN can be fault-free or contain a fault. The case of fault
occurrence or an outlier or corner input will be flagged by the
yellow classifier by construction. The problem lies in the fact
that the yellow classifier can also inadvertently flag an error
for a typical input and a fault-free SNN.

We observed experimentally that this latter scenario happens
due to the stochasticity of the SNN. More specifically, a
neuromorphic design is by nature asynchronous, meaning that
a neuron might receive a spike event at its input or fire one at
its output anytime. On the other hand, the controlling processor
operates synchronously based on a clock. The synchronization
between the two could potentially create some micro-delays in
their communication, which propagate during the inference of
the SNN. Given that the decision-making in a SNN is based
on the temporal characteristics of the spike trains, these delays
result in a variance of the triggering time of neurons and,
thereby, in a stochasticity at their output spike trains.

To understand the effect of stochasticity, using our case
study described in Section V, we repeated the SNN inference
multiple times for each sample of the training set. We observed
that the scenario where the yellow classifier flags an error for
a typical input and fault-free SNN occurs for a handful of
repetitions for a few samples. The footprint of the feature
pattern of these samples lies closer to the boundary of the
yellow classifier, thus they can be marginally misclassified.

Based on this observation, to make a final decision when
the system has low confidence, the strategy that we propose
is to perform one replay operation presenting the same input
sample to the SNN a second time. If now the yellow classifier
predicts normal operation, then the SNN prediction can be
trusted to be correct. Otherwise, the system flags an error.

V. CASE STUDY

A. Convolutional SNN

As case study we use a convolutional SNN designed for
recognizing the symbol on poker cards [23]. The dataset
is generated by presenting successively a deck of 40 cards
in front of a DVS during 0.96 seconds, and considering
their symbol centered to a 32 × 32 pixel window. The SNN
architecture shown in Fig. 2 consists of 4 convolutional layers
SC1, SC2, SC3, and SC4 and 2 pooling layers SP1 and SP2
used to downsample the feature maps of layers SC1 and SC2,
respectively. Fig. 2 also indicates the number of feature maps
per layer, the feature map sizes, and the receptive fields on
each feature map.

Fig. 2: Convolutional SNN for poker card symbol recognition.

Fig. 3: Embedded neuromorphic hardware accelerator platform.

B. Hardware platform

Fig. 3 presents the architecture of the hardware platform
that embeds the testable SNN. The platform is implemented
on the Zynq®UltraScale+TM MPSoC ZCU104 FPGA board
by Xilinx, Inc., and consists of four main parts:
• SNN hardware accelerator: The SNN is designed in VHDL

using as building block to implement a feature map a
generic event-driven configurable convolutional node [24].
The main parts of the node are the convolutional unit, the
router to handle the transmission of the spike events from
their origin to their destination, a configuration block for
programming the synapse weights, neuron parameters (i.e.,
threshold, leakage, and refractory period), and feature map
parameters (i.e., size and center), and memory to store all
these parameters. The SNN is configured in a 2-D mesh of
nodes and is implemented on the FPGA of the board.

• Software: A MATLAB framework is designed with routines
to generate the SNN configuration file, perform the fault
injection to generate the configuration files of faulty SNN
instances, train the classifiers, and analyse the results to
compute the confusion matrix of the classification.

• Memory: The memory stores the input samples dataset, the
SNN configuration files, and the output file to be processed
off-line.



• Controlling processor: The processor of the board uses one
core for handling the configuration of the SNN instances
in batch mode, feeding the input samples to the SNN for
each experiment, and storing the SNN output (i.e., spike
trains produced by all feature maps). An extra core is used
to process the spike trains to extract the features used in the
classification, and to host and run the two classifiers.

C. Classifiers

Each classifier is implemented with a Support Vector Ma-
chine (SVM) using a Radial Basis Function (RBF) kernel.
The two hyper-parameters are ν, which controls the trade-off
between overfitting and generalization of the SVM in one-
class learning, and γ, which is the coefficient of the RBF
kernel [25]. We use the cross-language LIBSVM library [26].
The two SVM models are trained in MATLAB and then they
are loaded by the C application running on the processor.

D. Dataset categorization

To account for the SNN stochasticity, for a given input
sample, the SNN inference is repeated multiple times and the
samples are categorized as follows:

• Group 1: Samples whose class is consistently correctly
predicted.

• Group 2: Samples whose class is consistently erroneously
predicted.

• Group 3: Samples that are ambiguously predicted during the
multiple repetitions due to the SNN stochasticity.

The two SVMs are trained using samples in Group 1. As
we care about the impact of faults when the SNN correctly
predicts an input sample, the fault detection capability of
the SVMs is assessed on Group 1 only. Group 2 comprises
the outlier input samples that the SNN did not learn to
predict correctly after training. Group 3 comprises corner input
samples for which the SNN prediction has high variance and
can end up being incorrect.

E. Fault model

The fault model consists of permanent bit-flips in the
memories that store the various SNN parameters (i.e., synapse
weights, neuron parameters, feature map parameters) and its
routing configuration. We consider two scenarios, namely sin-
gle bit-flips across different bit positions and multiple bit-flips
uniformly distributed with a Bit Error Rate (BER) probability
from 10−6 to 10−1. In total, we consider 7402 SNN instances
with single faults and 6278 SNN instances with multiple faults.

To assess the criticality of a fault, we consider its impact
on the SNN classification result. Faults are categorized into:

• Critical faults: For a given input sample, a fault is critical if
the predicted class of the faulty SNN is different than this
of the fault-free SNN.

• Benign faults: For a given input sample, a fault is benign
if the predicted class of the faulty SNN matches this of the
fault-free SNN.

Fig. 4: Pareto front curve test escape vs. overkill for SVMs trained
with different pairs of hyper-parameter values ν and γ.

Fig. 5: Performance of system with two SVMs.

VI. EXPERIMENTAL RESULTS

First we consider a single SVM and we assess the perfor-
mance based on the resultant test escape and overkill. The
trade-off is explored in Fig. 4 showing the Pareto front by
training different SVMs while varying the combination of ν
and γ values. The two end points marked in the Pareto front
correspond to test escape for zero overkill and overkill for zero
test escape, respectively. These two SVMs are the selected blue
and yellow classifiers, respectively, shown in Fig. 1.

Fig. 5 shows the performance of the system of two
SVMs for samples in Group 1. Rows correspond to the
SNN status (i.e., critical fault, benign fault, fault-free) and
the columns correspond to the on-line test decision. Out
of all faults, (8.8 + 0 + 1.35) = 10.15% are critical and
(17.02 + 56.97 + 15.86) = 89.85% are benign. As it can
be seen, (8.8/10.15) ∗ 100 = 86.7% of critical faults are
detected in real-time, while test escape and overkill are both
zero for the one-shot decisions. However, the system has
low confidence for (1.35/10.15) ∗ 100 = 13.3% of critical
faults and 0.31% of fault-free inferences. Regarding benign
faults, (17.02/89.85)∗100 = 18.94% are proactively detected,
(56.97/89.85) ∗ 100 = 63.41% are classified as no fault,
and for (15.86/89.85) ∗ 100 = 17.65% the system has
low confidence. With a replay operation all uncertainties are
lifted. The 0.31% of fault-free inferences that were previously
flagged as low-confidence are now flagged as “no-fault” since



their footprint jumps inside the yellow boundary. Whereas,
the inferences with the 13.3% of critical faults and 17.65% of
benign faults that were previously flagged as low-confidence,
are now flagged as “fault” since their footprint remains inside
the grey zone.

Regarding the outlier and corner samples from Groups 2 and
3, the yellow SVM flags an error in all cases, thus the system
successfully warns when SNN outputs incorrect predictions.
Considering the system of two SVMs, all samples in Group 3
and 59.98% of samples in Group 2 lie in the low-confidence
grey zone, while for the rest 40.02% of samples in Group 2
an error is flagged directly. The uncertainty is lifted with the
replay operation as all these samples remain in the grey zone.

As a final note, deterministic one-shot decisions are com-
pleted without delaying the next SNN inference, while when-
ever there is a low-confidence decision there is a delay equal
to the time of one inference due to the replay operation. The
SVMs run in software on a second processor core, in parallel
with the SNN operation. Thus, they are totally transparent to
the SNN without interrupting or interfering with it. The only
overhead in our hardware implementation is the utilization of
the extra processor core dedicated to the SVMs that increases
power consumption.

VII. CONCLUSIONS

We presented a generic on-line testing methodology vir-
tually applicable to any SNN hardware accelerator design
and cognitive task. Two classifiers monitor the cumulative
spike count at the output of feature maps of the SNN and
are trained to detect in real-time outlier or corner inputs that
are prone to misprediction, as well as hardware-level faults.
This is achieved without generating any overkill thanks to the
simultaneous assessment of the confidence in the decision.
Whenever the confidence is low, a single replay operation
suffices to resolve the ambiguity and make an accurate final
decision. The methodology is fully demonstrated on a custom
FPGA-based neuromorphic hardware platform. It is shown that
it enables trustworthy operation with zero-latency transparent
decisions for over 99.6% of the SNN inferences, while for the
rest the decision is made with a delay of one inference. The
only overhead is the power consumption from the utilization
of a second processor core dedicated to the integration of the
two classifiers.

REFERENCES

[1] D. V. Christensen et al., “2022 roadmap on neuromorphic computing
and engineering,” Neuromorph. Comput. Eng., vol. 2, no. 2, May 2022.

[2] J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner,
“A wafer-scale neuromorphic hardware system for large-scale neural
modeling,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May/Jun.
2010, pp. 1947–1950.

[3] E. Painkras et al., “SpiNNaker: A 1-W 18-core system-on-chip for
massively-parallel neural network simulation,” IEEE J. Solid-State
Circuits, vol. 48, no. 8, pp. 1943–1953, May 2013.

[4] P. A. Merolla et al., “A million spiking-neuron integrated circuit with a
scalable communication network and interface,” Science, vol. 345, no.
6197, pp. 668–673, Aug. 2014.

[5] M. Davies et al., “Loihi: A neuromorphic manycore processor with
on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan./Feb.
2018.

[6] G. K. Chen, R. Kumar, H. E. Sumbul, P. C. Knag, and R. K. Kr-
ishnamurthy, “A 4096-neuron 1M-synapse 3.8-pJ/SOP spiking neural
network with on-chip STDP learning and sparse weights in 10-nm
FinFET CMOS,” IEEE J. Solid-State Circuits, vol. 54, no. 4, pp. 992–
1002, Apr. 2019.

[7] C. Frenkel, M. Lefebvre, J.-D. Legat, and D. Bol, “A 0.086-mm2

12.7-pJ/SOP 64k-synapse 256-neuron online-learning digital spiking
neuromorphic processor in 28-nm CMOS,” IEEE Trans. Biomed.
Circuits Syst., vol. 13, no. 1, pp. 145–158, Feb. 2019.

[8] G. Indiveri et al., “Neuromorphic silicon neuron circuits,” Front.
Neurosci., vol. 5, May 2011, Article 73.

[9] A. Hashmi, H. Berry, O. Temam, and M. Lipasti, “Automatic abstraction
and fault tolerance in cortical microachitectures,” in Proc. ACM/IEEE
Annual Int. Symp. Comput. Archit. (ISCA), Jun. 2011, pp. 1–10.

[10] E. Vatajelu, G. Di Natale, and L. Anghel, “Special session: Reliability of
hardware-implemented spiking neural networks (SNN),” in Proc. IEEE
VLSI Test Symp. (VTS), Apr. 2019.

[11] C. D. Schuman et al., “Resilience and robustness of spiking neural
networks for neuromorphic systems,” in Proc. Int. Jt. Conf. Neural
Netw. (IJCNN), Jul. 2020.

[12] R. V. W. Putra, M. A. Hanif, and M. Shafique, “ReSpawn: Energy-
efficient fault-tolerance for spiking neural networks considering unreli-
able memories,” in Proc. ACM/IEEE Int. Conf. Comput.-Aided Design
(ICCAD), Nov. 2021.

[13] H.-Y. Tseng, I-W. Chiu, M.-T. Wu, and J. C.-M. Li, “Machine learning-
based test pattern generation for neuromorphic chips,” in IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2021.

[14] T. Spyrou, S. A. El-Sayed, E. Afacan, L. A. Camuñas-Mesa, B. Linares-
Barranco, and H.-G. Stratigopoulos, “Neuron fault tolerance in spiking
neural networks,” in Proc. Design Autom. Test Europe Conf. (DATE),
Feb. 2021, pp. 743–748.

[15] R. V. W. Putra, M. A. Hanif, and M. Shafique, “SoftSNN: Low-cost
fault tolerance for spiking neural network accelerators under soft errors,”
in Proc. 59th Design Autom. Conf. (DAC), Jul. 2022, p. 151–156.

[16] S. A. El-Sayed, T. Spyrou, L. A. Camuñas-Mesa, and H.-G. Stratigopou-
los, “Compact functional testing for neuromorphic computing circuits,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 2022.

[17] T. Spyrou, S. A. El-Sayed, E. Afacan, L. A. Camuñas-Mesa, B. Linares-
Barranco, and H.-G. Stratigopoulos, “Reliability analysis of a spiking
neural network hardware accelerator,” in Proc. Design Autom. Test
Europe Conf. (DATE), Mar. 2022, pp. 370–375.

[18] S. A. El-Sayed, T. Spyrou, E. Afacan, L. A. Camuñas-Mesa, B. Linares-
Barranco, and H.-G. Stratigopoulos, “Spiking neuron hardware-level
fault modeling,” in Proc. 26th IEEE Int. Symp. On-Line Test. Robust
Syst. Des. (IOLTS), Jul. 2020.

[19] S. A. El-Sayed, L. A. Camuñas-Mesa, B. Linares-Barranco, and H.-G.
Stratigopoulos, “Self-testing analog spiking neuron circuit,” in Proc.
Int. Conf. Synth. Model. Anal. Simulat. Methods Appl. Circuit Design
(SMACD), Jul. 2019.

[20] R. V. W. Putra, M. A. Hanif, and M. Shafique, “SparkXD: A framework
for resilient and energy-efficient spiking neural network inference using
approximate DRAM,” in Proc. 58th Design Autom. Conf. (DAC), Dec.
2021, p. 379–384.

[21] F. Su, C. Liu, and H.-G. Stratigopoulos, “Testability and dependability
of AI hardware: Survey, trends, challenges, and perspectives,” IEEE
Des. Test, vol. 40, no. 2, pp. 8–58, Apr. 2023.

[22] H.-G. Stratigopoulos and Y. Makris, “Error moderation in low-cost
machine-learning-based analog/RF testing,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 27, no. 2, pp. 339–351, Feb. 2008.

[23] J. A. Pérez-Carrasco et al., “Mapping from frame-driven to frame-free
event-driven vision systems by low-rate rate coding and coincidence
processing–application to feedforward ConvNets,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 11, pp. 2706–2719, Nov. 2013.

[24] L. A. Camuñas-Mesa, Y. L. Domı́nguez-Cordero, A. Linares-Barranco,
T. Serrano-Gotarredona, and B. Linares-Barranco, “A configurable
event-driven convolutional node with rate saturation mechanism for
modular convnet systems implementation,” Front. Neurosci., vol. 12,
Feb. 2018, Article 63.

[25] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribution,”
Neural Comput., vol. 13, no. 7, pp. 1443–1471, Jul. 2001.

[26] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector ma-
chines,” ACM Trans. Intell. Syst. Technol., vol. 2, pp. 27:1–27:27, Apr.
2011, Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.


